51
|
Sasaki K, Kakuwa T, Akimoto K, Koga H, Ohno S. Regulation of epithelial cell polarity by PAR-3 depends on Girdin transcription and Girdin-Gαi3 signaling. J Cell Sci 2015; 128:2244-58. [PMID: 25977476 DOI: 10.1242/jcs.160879] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/07/2015] [Indexed: 12/31/2022] Open
Abstract
Epithelial apicobasal polarity has fundamental roles in epithelial physiology and morphogenesis. The PAR complex, comprising PAR-3, PAR-6 and atypical protein kinase C (aPKC), is involved in determining cell polarity in various biological contexts, including in epithelial cells. However, it is not fully understood how the PAR complex induces apicobasal polarity. In this study, we found that PAR-3 regulates the protein expression of Girdin (also known as GIV or CCDC88A), a guanine-nucleotide-exchange factor (GEF) for heterotrimeric Gαi subunits, at the transcriptional level by cooperating with the AP-2 transcription factor. In addition, we confirmed that PAR-3 physically interacts with Girdin, and show that Girdin, together with the Gαi3 (also known as GNAI3), controls tight junction formation, apical domain development and actin organization downstream of PAR-3. Taken together, our findings suggest that transcriptional upregulation of Girdin expression and Girdin-Gαi3 signaling play crucial roles in regulating epithelial apicobasal polarity through the PAR complex.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Taku Kakuwa
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kazunori Akimoto
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan Department of Molecular Medical Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hisashi Koga
- Department of Human Genome Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
52
|
Von Stetina SE, Mango SE. PAR-6, but not E-cadherin and β-integrin, is necessary for epithelial polarization in C. elegans. Dev Biol 2015; 403:5-14. [PMID: 25773364 DOI: 10.1016/j.ydbio.2015.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/29/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Cell polarity is a fundamental characteristic of epithelial cells. Classical cell biological studies have suggested that establishment and orientation of polarized epithelia depend on outside-in cues that derive from interactions with either neighboring cells or the substratum (Akhtar and Streuli, 2013; Chen and Zhang, 2013; Chung and Andrew, 2008; McNeill et al., 1990; Nejsum and Nelson, 2007; Nelson et al., 2013; Ojakian and Schwimmer, 1994; Wang et al., 1990; Yu et al., 2005). This paradigm has been challenged by examples of epithelia generated in the absence of molecules that mediate cell-cell or cell-matrix interactions, notably E-cadherin and integrins (Baas et al., 2004; Choi et al., 2013; Costa et al., 1998; Harris and Peifer, 2004; Raich et al., 1999; Roote and Zusman, 1995; Vestweber et al., 1985; Williams and Waterston, 1994; Wu et al., 2009). Here we explore an alternative hypothesis, that cadherins and integrins function redundantly to substitute for one another during epithelium formation (Martinez-Rico et al., 2010; Ojakian et al., 2001; Rudkouskaya et al., 2014; Weber et al., 2011). We use C. elegans, which possesses a single E-cadherin (Costa et al., 1998; Hardin et al., 2013; Tepass, 1999) and a single β-integrin (Gettner et al., 1995; Lee et al., 2001), and analyze the arcade cells, which generate an epithelium late in embryogenesis (Portereiko and Mango, 2001; Portereiko et al., 2004), after most maternal factors are depleted. Loss of E-cadherin(HMR-1) in combination with β-integrin(PAT-3) had no impact on the onset or formation of the arcade cell epithelium, nor the epidermis or digestive tract. Moreover, ß-integrin(PAT-3) was not enriched at the basal surface of the arcades, and the candidate PAT-3 binding partner β-laminin(LAM-1) was not detected until after arcade cell polarity was established and exhibited no obvious polarity defect when mutated. Instead, the polarity protein par-6 (Chen and Zhang, 2013; Watts et al., 1996) was required to polarize the arcade cells, and par-6 mutants exhibited mislocalized or absent apical and junctional proteins. We conclude that the arcade cell epithelium polarizes by a PAR-6-mediated pathway that is independent of E-cadherin, β-integrin and β-laminin.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA 02138, USA.
| | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA 02138, USA.
| |
Collapse
|
53
|
Yamamoto H, Awada C, Matsumoto S, Kaneiwa T, Sugimoto T, Takao T, Kikuchi A. Basolateral secretion of Wnt5a in polarized epithelial cells is required for apical lumen formation. J Cell Sci 2015; 128:1051-63. [PMID: 25593127 DOI: 10.1242/jcs.163683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wnt5a regulates planar cell polarity in epithelial cells, but it remains to be determined whether Wnt5a and its receptors are sorted apically or basolaterally, and how Wnt5a signaling is involved in apical and basolateral polarization. We found that Wnt5a was secreted basolaterally in polarized kidney epithelial cells. The basolateral secretion of Wnt5a required Wntless (Wls), clathrin and adaptor protein 1 (AP-1). Wnt5a receptors were also localized to the basolateral membranes, but their sorting did not require Wls. Wnt5a-induced signaling was stimulated more efficiently at the basolateral side than the apical side of epithelial cells. Knockdown of Wnt5a delayed apical lumen formation of the epithelial cyst, and these phenotypes were rescued by wild-type Wnt5a, but not by a Wnt5a mutant that is secreted apically. Although apoptosis was not required for apical lumen formation in a wild-type cyst, apoptosis was necessary for eliminating luminal cells in a Wnt5a-depleted cyst. These results suggest that Wnt5a and its receptors are sorted to their correct destination by different mechanisms and that the basolateral secretion of Wnt5a is necessary for apical lumen formation in the epithelial cyst.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chihiro Awada
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Kaneiwa
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Sugimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
54
|
Huebner RJ, Lechler T, Ewald AJ. Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Development 2014; 141:1085-94. [PMID: 24550116 DOI: 10.1242/dev.103333] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mammary ducts are elongated during development by stratified epithelial structures, known as terminal end buds (TEBs). TEBs exhibit reduced apicobasal polarity and extensive proliferation. A major unanswered question concerns the mechanism by which the simple ductal epithelium stratifies during TEB formation. We sought to elucidate this mechanism using real-time imaging of growth factor-induced stratification in 3D cultures of mouse primary epithelial organoids. We hypothesized that stratification could result from vertical divisions in either the apically positioned luminal epithelial cells or the basally positioned myoepithelial cells. Stratification initiated exclusively from vertical apical cell divisions, both in 3D culture and in vivo. During vertical apical divisions, only the mother cell retained tight junctions and segregated apical membranes. Vertical daughter cells initiated an unpolarized cell population located between the luminal and myoepithelial cells, similar to the unpolarized body cells in the TEB. As stratification and loss of apicobasal polarity are early hallmarks of cancer, we next determined the cellular mechanism of oncogenic stratification. Expression of activated ERBB2 induced neoplastic stratification through analogous vertical divisions of apically positioned luminal epithelial cells. However, ERBB2-induced stratification was accompanied by tissue overgrowth and acute loss of both tight junctions and apical polarity. Expression of phosphomimetic MEK (MEK1DD), a major ERBB2 effector, also induced stratification through vertical apical cell divisions. However, MEK1DD-expressing organoids exhibited normal levels of growth and retained apicobasal polarity. We conclude that both normal and neoplastic stratification are accomplished through receptor tyrosine kinase signaling dependent vertical cell divisions within the luminal epithelial cell layer.
Collapse
Affiliation(s)
- Robert J Huebner
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 N. Wolfe Street, 452 Rangos Building, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
55
|
Ebnet K. JAM-A and aPKC: A close pair during cell-cell contact maturation and tight junction formation in epithelial cells. Tissue Barriers 2014; 1:e22993. [PMID: 24665372 PMCID: PMC3879182 DOI: 10.4161/tisb.22993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/15/2012] [Accepted: 11/21/2012] [Indexed: 12/19/2022] Open
Abstract
Cell-cell adhesion plays a critical role in the formation of barrier-forming epithelia. The molecules which mediate cell-cell adhesion frequently act as signaling molecules by recruiting and/or assembling cytoplasmic protein complexes. Junctional Adhesion Molecule (JAM)-A interacts with the cell polarity protein PAR-3, a member of the PAR-3-aPKC-PAR-6 complex, which regulates the formation of cell-cell contacts and the development of tight junctions (TJs). In our recent study we found that JAM-A is localized at primordial, spot-like cell-cell junctions (pAJs) in a non-phosphorylated form. After the recruitment of the PAR-aPKC complex and its activation at pAJs, aPKC phosphorylates JAM-A at Ser285 to promote the maturation of immature junctions. In polarized epithelial cells, aPKC phosphorylates JAM-A selectively at the TJs to maintain the barrier function of TJs. Thus, through mutual regulation, JAM-A and aPKC form a functional unit that regulates the establishment of barrier-forming junctions in vertebrate epithelial cells.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-associated Research Group: Cell adhesion and cell polarity; Institute of Medical Biochemistry; Center of Molecular Biology of Inflammation; University Muenster; Muenster, Germany
| |
Collapse
|
56
|
Bisel B, Calamai M, Vanzi F, Pavone FS. Decoupling polarization of the Golgi apparatus and GM1 in the plasma membrane. PLoS One 2013; 8:e80446. [PMID: 24312472 PMCID: PMC3846482 DOI: 10.1371/journal.pone.0080446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/03/2013] [Indexed: 01/19/2023] Open
Abstract
Cell polarization is a process of coordinated cellular rearrangements that prepare the cell for migration. GM1 is synthesized in the Golgi apparatus and localized in membrane microdomains that appear at the leading edge of polarized cells, but the mechanism by which GM1 accumulates asymmetrically is unknown. The Golgi apparatus itself becomes oriented toward the leading edge during cell polarization, which is thought to contribute to plasma membrane asymmetry. Using quantitative image analysis techniques, we measure the extent of polarization of the Golgi apparatus and GM1 in the plasma membrane simultaneously in individual cells subject to a wound assay. We find that GM1 polarization starts just 10 min after stimulation with growth factors, while Golgi apparatus polarization takes 30 min. Drugs that block Golgi polarization or function have no effect on GM1 polarization, and, conversely, inhibiting GM1 polarization does not affect Golgi apparatus polarization. Evaluation of Golgi apparatus and GM1 polarization in single cells reveals no correlation between the two events. Our results indicate that Golgi apparatus and GM1 polarization are controlled by distinct intracellular cascades involving the Ras/Raf/MEK/ERK and the PI3K/Akt/mTOR pathways, respectively. Analysis of cell migration and invasion suggest that MEK/ERK activation is crucial for two dimensional migration, while PI3K activation drives three dimensional invasion, and no cumulative effect is observed from blocking both simultaneously. The independent biochemical control of GM1 polarity by PI3K and Golgi apparatus polarity by MEK/ERK may act synergistically to regulate and reinforce directional selection in cell migration.
Collapse
Affiliation(s)
- Blaine Bisel
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- * E-mail:
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence, Italy
| | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
- Department of Evolutionary Biology “Leo Pardi”, University of Florence, Florence, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
57
|
Goldenring JR. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat Rev Cancer 2013; 13:813-20. [PMID: 24108097 PMCID: PMC4011841 DOI: 10.1038/nrc3601] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cell carcinogenesis involves the loss of cell polarity, alteration of polarized protein presentation, dynamic cell morphology changes, increased proliferation, and increased cell motility and invasion. Membrane vesicle trafficking underlies all of these processes. Specific membrane trafficking regulators, including RAB small GTPases, through the coordinated dynamics of intracellular trafficking along cytoskeletal pathways, determine the cell surface presentation of proteins and the overall function of both differentiated and neoplastic cells. Although mutations in vesicle trafficking proteins may not be direct drivers of transformation, components of the machinery of vesicle movement have crucial roles in the phenotypes of neoplastic cells. Therefore, the regulators of membrane vesicle trafficking decisions are essential mediators of the full range of cell physiologies that drive cancer cell biology, including initial loss of cell polarity, invasion and metastasis. Targeting of these fundamental intracellular processes may permit the manipulation of cancer cell behaviour.
Collapse
Affiliation(s)
- James R Goldenring
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center and the Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA; and the Nashville Veternas Affairs Medical Center, Nashville, Tennessee 37212, USA
| |
Collapse
|
58
|
Fedeles S, Gallagher AR. Cell polarity and cystic kidney disease. Pediatr Nephrol 2013; 28:1161-72. [PMID: 23161205 DOI: 10.1007/s00467-012-2337-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
Abstract
Epithelial cell polarity is essential for organ development; aberrations in this process have been implicated in various diseases, including polycystic kidney disease. Establishment and maintenance of cell polarity is governed by a number of molecular processes and how these processes operate remains an interesting question. Conserved protein complexes guide both apical-basolateral polarity and planar cell polarity. In this review we discuss the recent findings that provide insights into polarity mechanisms and the intriguing crosstalk between apical-basolateral polarity and planar cell polarity, and their relationship to cystic kidney disease.
Collapse
Affiliation(s)
- Sorin Fedeles
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208029, 333 Cedar Street, New Haven, CT 06520-8029, USA
| | | |
Collapse
|
59
|
Kay P, Yang YC, Paraoan L. Directional protein secretion by the retinal pigment epithelium: roles in retinal health and the development of age-related macular degeneration. J Cell Mol Med 2013; 17:833-43. [PMID: 23663427 PMCID: PMC3822888 DOI: 10.1111/jcmm.12070] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/24/2013] [Indexed: 11/29/2022] Open
Abstract
The structural and functional integrity of the retinal pigment epithelium (RPE) is fundamental for maintaining the function of the neuroretina. These specialized cells form a polarized monolayer that acts as the retinal–blood barrier, separating two distinct environments with highly specialized functions: photoreceptors of the neuroretina at the apical side and Bruch's membrane/highly vascularized choriocapillaris at the basal side. The polarized nature of the RPE is essential for the health of these two regions, not only in nutrient and waste transport but also in the synthesis and directional secretion of proteins required in maintaining retinal homoeostasis and function. Although multiple malfunctions within the RPE cells have been associated with development of age-related macular degeneration (AMD), the leading cause of legal blindness, clear causative processes have not yet been conclusively characterized at the molecular and cellular level. This article focuses on the involvement of directionally secreted RPE proteins in normal functioning of the retina and on the potential association of incorrect RPE protein secretion with development of AMD. Understanding the importance of RPE polarity and the correct secretion of essential structural and regulatory components emerge as critical factors for the development of novel therapeutic strategies targeting AMD.
Collapse
Affiliation(s)
- Paul Kay
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
60
|
Reduced dynamic models in epithelial transport. JOURNAL OF BIOPHYSICS 2013; 2013:654543. [PMID: 23533397 PMCID: PMC3603462 DOI: 10.1155/2013/654543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/26/2013] [Indexed: 11/17/2022]
Abstract
Most models developed to represent transport across epithelia assume that the cell interior constitutes a homogeneous compartment, characterized by a single concentration value of the transported species. This conception differs significantly from the current view, in which the cellular compartment is regarded as a highly crowded media of marked structural heterogeneity. Can the finding of relatively simple dynamic properties of transport processes in epithelia be compatible with this complex structural conception of the cell interior? The purpose of this work is to contribute with one simple theoretical approach to answer this question. For this, the techniques of model reduction are utilized to obtain a two-state reduced model from more complex linear models of transcellular transport with a larger number of intermediate states. In these complex models, each state corresponds to the solute concentration in an intermediate intracellular compartment. In addition, the numerical studies reveal that it is possible to approximate a general two-state model under conditions where strict reduction of the complex models cannot be performed. These results contribute with arguments to reconcile the current conception of the cell interior as a highly complex medium with the finding of relatively simple dynamic properties of transport across epithelial cells.
Collapse
|
61
|
Masaki T. Polarization and myelination in myelinating glia. ISRN NEUROLOGY 2012; 2012:769412. [PMID: 23326681 PMCID: PMC3544266 DOI: 10.5402/2012/769412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed.
Collapse
Affiliation(s)
- Toshihiro Masaki
- Department of Medical Science, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo 120-0045, Japan
| |
Collapse
|
62
|
Cotton CU, Hobert ME, Ryan S, Carlin CR. Basolateral EGF receptor sorting regulated by functionally distinct mechanisms in renal epithelial cells. Traffic 2012. [PMID: 23205726 DOI: 10.1111/tra.12032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proliferation of epithelial tissues is controlled by polarized distribution of signaling receptors including the EGF receptor (EGFR). In kidney, EGFRs are segregated from soluble ligands present in apical fluid of nephrons by selective targeting to basolateral membranes. We have shown previously that the epithelial-specific clathrin adaptor AP1B mediates basolateral EGFR sorting in established epithelia. Here we show that protein kinase C (PKC)-dependent phosphorylation of Thr654 regulates EGFR polarity as epithelial cells form new cell-cell junctional complexes. The AP1B-dependent pathway does not override a PKC-resistant T654A mutation, and conversely AP1B-defective EGFRs sort basolaterally by a PKC-dependent mechanism, in polarizing cells. Surprisingly, EGFR mutations that interfere with these different sorting pathways also produce very distinct phenotypes in three-dimensional organotypic cultures. Thus EGFRs execute different functions depending on the basolateral sorting route. Many renal disorders have defects in cell polarity and the notion that apically mislocalized EGFRs promote proliferation is still an attractive model to explain many aspects of polycystic kidney disease. Our data suggest EGFR also integrates various aspects of polarity by switching between different basolateral sorting programs in developing epithelial cells. Fundamental knowledge of basic mechanisms governing EGFR sorting therefore provides new insights into pathogenesis and advances drug discovery for these renal disorders.
Collapse
Affiliation(s)
- Calvin U Cotton
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | |
Collapse
|
63
|
Zaarour N, Demaretz S, Defontaine N, Zhu Y, Laghmani K. Multiple evolutionarily conserved Di-leucine like motifs in the carboxyl terminus control the anterograde trafficking of NKCC2. J Biol Chem 2012. [PMID: 23105100 DOI: 10.1074/jbc.m112.399162.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome, a life-threatening kidney disease. Yet the mechanisms underlying the regulation of NKCC2 trafficking in renal cells are scarcely known. We previously showed that naturally occurring mutations depriving NKCC2 of its distal COOH-terminal tail and interfering with the (1081)LLV(1083) motif result in defects in the ER exit of the co-transporter. Here we show that this motif is necessary but not sufficient for anterograde trafficking of NKCC2. Indeed, we have identified two additional hydrophobic motifs, (1038)LL(1039) and (1048)LI(1049), that are required for ER exit and surface expression of the co-transporter. Double mutations of (1038)LL(1039) or (1048)LI(1049) to di-alanines disrupted glycosylation and cell surface expression of NKCC2, independently of the expression system. Pulse-chase analysis demonstrated that the absence of the terminally glycosylated form of NKCC2 was not due to reduced synthesis or increased rates of degradation of mutant co-transporters, but was instead caused by defects in maturation. Co-immunolocalization experiments revealed that (1038)AA(1039) and (1048)AA(1049) were trapped mainly in the ER as indicated by extensive co-localization with the ER marker calnexin. Remarkably, among several analyzed motifs present in the NKCC2 COOH terminus, only those required for ER exit and surface expression of NKCC2 are evolutionarily conserved in all members of the SLC12A family, a group of cation-chloride co-transporters that are targets of therapeutic drugs and mutated in several human diseases. Based upon these data, we propose abnormal anterograde trafficking as a common mechanism associated with mutations depriving NKCC2, and also all other members of the SLC12A family, of their COOH terminus.
Collapse
Affiliation(s)
- Nancy Zaarour
- INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France
| | | | | | | | | |
Collapse
|
64
|
Zaarour N, Demaretz S, Defontaine N, Zhu Y, Laghmani K. Multiple evolutionarily conserved Di-leucine like motifs in the carboxyl terminus control the anterograde trafficking of NKCC2. J Biol Chem 2012; 287:42642-53. [PMID: 23105100 DOI: 10.1074/jbc.m112.399162] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome, a life-threatening kidney disease. Yet the mechanisms underlying the regulation of NKCC2 trafficking in renal cells are scarcely known. We previously showed that naturally occurring mutations depriving NKCC2 of its distal COOH-terminal tail and interfering with the (1081)LLV(1083) motif result in defects in the ER exit of the co-transporter. Here we show that this motif is necessary but not sufficient for anterograde trafficking of NKCC2. Indeed, we have identified two additional hydrophobic motifs, (1038)LL(1039) and (1048)LI(1049), that are required for ER exit and surface expression of the co-transporter. Double mutations of (1038)LL(1039) or (1048)LI(1049) to di-alanines disrupted glycosylation and cell surface expression of NKCC2, independently of the expression system. Pulse-chase analysis demonstrated that the absence of the terminally glycosylated form of NKCC2 was not due to reduced synthesis or increased rates of degradation of mutant co-transporters, but was instead caused by defects in maturation. Co-immunolocalization experiments revealed that (1038)AA(1039) and (1048)AA(1049) were trapped mainly in the ER as indicated by extensive co-localization with the ER marker calnexin. Remarkably, among several analyzed motifs present in the NKCC2 COOH terminus, only those required for ER exit and surface expression of NKCC2 are evolutionarily conserved in all members of the SLC12A family, a group of cation-chloride co-transporters that are targets of therapeutic drugs and mutated in several human diseases. Based upon these data, we propose abnormal anterograde trafficking as a common mechanism associated with mutations depriving NKCC2, and also all other members of the SLC12A family, of their COOH terminus.
Collapse
Affiliation(s)
- Nancy Zaarour
- INSERM, Centre de Recherche des Cordeliers, UMRS872, Paris, France
| | | | | | | | | |
Collapse
|
65
|
Takiar V, Mistry K, Carmosino M, Schaeren-Wiemers N, Caplan MJ. VIP17/MAL expression modulates epithelial cyst formation and ciliogenesis. Am J Physiol Cell Physiol 2012; 303:C862-71. [PMID: 22895261 PMCID: PMC3469709 DOI: 10.1152/ajpcell.00338.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 08/13/2012] [Indexed: 11/22/2022]
Abstract
The polarized organization of epithelial cells is required for vectorial solute transport and may be altered in renal cystic diseases. Vesicle integral protein of 17 kDa (VIP17/MAL) is involved in apical vesicle transport. VIP17/MAL overexpression in vivo results in renal cystogenesis of unknown etiology. Renal cystogenesis can occur as a consequence of defects of the primary cilium. To explore the role of VIP17/MAL in renal cystogenesis and ciliogenesis, we examined the polarization and ciliary morphology of wild-type and VIP17/MAL overexpressing Madin-Darby canine kidney renal epithelial cells grown in two-dimensional (2D) and three-dimensional (3D) cyst culture. VIP17/MAL is apically localized when expressed in cells maintained in 2D and 3D culture. VIP17/MAL overexpressing cells produce more multilumen cysts compared with controls. While the distributions of basolateral markers are not affected, VIP17/MAL expression results in aberrant sorting of the apical marker gp135 to the primary cilium. VIP17/MAL overexpression is also associated with shortened or absent cilia. Immunofluorescence analysis performed on kidney sections from VIP17/MAL transgenic mice also demonstrates fewer and shortened cilia within dilated lumens (P < 0.01). These studies demonstrate that VIP17/MAL overexpression results in abnormal cilium and cyst development, in vitro and in vivo, suggesting that VIP17/MAL overexpressing mice may develop cysts secondary to a ciliary defect.
Collapse
Affiliation(s)
- Vinita Takiar
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520-8026, USA
| | | | | | | | | |
Collapse
|
66
|
Irie K, Shimizu K, Sakisaka T, Ikeda W, Takai Y. Roles of nectins in cell adhesion, signaling and polarization. Handb Exp Pharmacol 2012:343-72. [PMID: 20455098 DOI: 10.1007/978-3-540-68170-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules which constitute a family of four members. Nectins homophilically and heterophilically trans-interact and cause cell-cell adhesion. This nectin-based cell-cell adhesion plays roles in the organization of adherens junctions in epithelial cells and fibroblasts and synaptic junctions in neurons in cooperation with cadherins. The nectin-based cell-cell adhesion plays roles in the contacts between commissural axons and floor plate cells and in the organization of Sertoli cell-spermatid junctions in the testis, independently of cadherins. Nectins furthermore regulate intracellular signaling through Cdc42 and Rac small G proteins and cell polarization through cell polarity proteins. Pathologically, nectins serve as entry and cell-cell spread mediators of herpes simplex viruses.
Collapse
Affiliation(s)
- K Irie
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
67
|
Spatial segregation between cell-cell and cell-matrix adhesions. Curr Opin Cell Biol 2012; 24:628-36. [PMID: 22884506 DOI: 10.1016/j.ceb.2012.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/27/2012] [Accepted: 07/18/2012] [Indexed: 12/18/2022]
Abstract
Cell-cell adhesion (CCA) and cell-matrix adhesion (CMA) play determinant roles in the architecture and function of epithelial cells. CCA and CMA are supported by transmembrane molecular complexes that dynamically interact with the extracellular environment and the cell cytoskeleton. Although those complexes have distinct functions, they are involved in a continuous crosstalk. In epithelia, CCA and CMA segregate in distinct regions of the cell surface and thereby take part in cell polarity. Recent results have shown that the two adhesion systems exert negative feedback on each other and appear to regulate actin network dynamics and mechanical force production in different ways. In light of this, we argue that the interplay between these regulatory mechanisms plays an important role in the spatial separation of cell-cell and cell-matrix adhesions components in distinct regions of the cell surface.
Collapse
|
68
|
Shafaq-Zadah M, Brocard L, Solari F, Michaux G. AP-1 is required for the maintenance of apico-basal polarity in the C. elegans intestine. Development 2012; 139:2061-70. [DOI: 10.1242/dev.076711] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epithelial tubes perform functions that are essential for the survival of multicellular organisms. Understanding how their polarised features are maintained is therefore crucial. By analysing the function of the clathrin adaptor AP-1 in the C. elegans intestine, we found that AP-1 is required for epithelial polarity maintenance. Depletion of AP-1 subunits does not affect epithelial polarity establishment or the formation of the intestinal lumen. However, the loss of AP-1 affects the polarised distribution of both apical and basolateral transmembrane proteins. Moreover, it triggers de novo formation of ectopic apical lumens between intestinal cells along the lateral membranes later during embryogenesis. We also found that AP-1 is specifically required for the apical localisation of the small GTPase CDC-42 and the polarity determinant PAR-6. Our results demonstrate that AP-1 controls an apical trafficking pathway required for the maintenance of epithelial polarity in vivo in a tubular epithelium.
Collapse
Affiliation(s)
- Massiullah Shafaq-Zadah
- INSERM Avenir group, F-35043 Rennes, France
- CNRS, UMR6061, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
- Université de Rennes 1, UEB, IFR140, Faculté de Médecine, F-35043 Rennes, France
| | - Lysiane Brocard
- INSERM Avenir group, F-35043 Rennes, France
- CNRS, UMR6061, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
- Université de Rennes 1, UEB, IFR140, Faculté de Médecine, F-35043 Rennes, France
| | - Florence Solari
- CNRS UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Université Claude Bernard Lyon 1 F-69622 Villeurbanne, France
| | - Grégoire Michaux
- INSERM Avenir group, F-35043 Rennes, France
- CNRS, UMR6061, Institut de Génétique et Développement de Rennes, F-35043 Rennes, France
- Université de Rennes 1, UEB, IFR140, Faculté de Médecine, F-35043 Rennes, France
| |
Collapse
|
69
|
Polarised apical-like intracellular sorting and trafficking regulates invadopodia formation and degradation of the extracellular matrix in cancer cells. Eur J Cell Biol 2012; 91:961-8. [PMID: 22564726 DOI: 10.1016/j.ejcb.2012.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/07/2023] Open
Abstract
Invadopodia are proteolytically active protrusions formed by invasive tumoral cells when grown on an extracellular matrix (ECM) substratum. A current challenge is to understand how proteolytic activity is so precisely localised at discrete sites of the plasma membrane to produce focalised ECM degradation at invadopodia. Indeed, a number of components including metalloproteases need to be directed to invadopodia to ensure proper segregation of proteolytic activities. We recently found invadopodia to feature the properties of cholesterol-rich membrane domains (a.k.a. lipid drafts) and that ECM degradation depends on the tight control of cholesterol homeostasis. Since apically directed polarised sorting and transport in epithelial cells relies on segregation of proteins into lipid rafts at the Golgi complex, we hypothesised that invadopodia-dependent ECM degradation might also rely on lipid raft-dependent polarised transport routes. To investigate this issue we undertook a three-pronged approach. First, we found that microtubule depolymerisation, which is known to disrupt polarised transport in polarised cells, strongly inhibited invadopodia formation, while not affecting overall protein transport. In the second approach we found that glycosylphosphatidylinositol-anchored green fluorescent protein (an apical model protein), but not vesicular stomatitis virus G-protein or influenza virus hemagglutinin (both model basolateral model cargoes), was transported to sites of ECM degradation. Finally, RNAi-mediated knock-down of proteins known to specifically regulate polarised apical or basolateral transport in epithelial cells, such as caveolin 1 and annexin XIIIB or clathrin, respectively, demonstrated that the selective inhibition of the apical, but not the basolateral, transport route impairs invadopodia formation and ECM degradation. Taken together, our findings suggest that invadopodia are apical-like membrane domains, where signal transduction and local membrane remodelling events might be temporally and spatially confined via selective raft-dependent apical transport routes.
Collapse
|
70
|
The plasma membrane potential and the organization of the actin cytoskeleton of epithelial cells. Int J Cell Biol 2012; 2012:121424. [PMID: 22315611 PMCID: PMC3272338 DOI: 10.1155/2012/121424] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/08/2011] [Indexed: 12/22/2022] Open
Abstract
The establishment and maintenance of the polarized epithelial phenotype require a characteristic organization of the cytoskeletal components. There are many cellular effectors involved in the regulation of the cytoskeleton of epithelial cells. Recently, modifications in the plasma membrane potential (PMP) have been suggested to participate in the modulation of the cytoskeletal organization of epithelia. Here, we review evidence showing that changes in the PMP of diverse epithelial cells promote characteristic modifications in the cytoskeletal organization, with a focus on the actin cytoskeleton. The molecular paths mediating these effects may include voltage-sensitive integral membrane proteins and/or peripheral proteins sensitive to surface potentials. The voltage dependence of the cytoskeletal organization seems to have implications in several physiological processes, including epithelial wound healing and apoptosis.
Collapse
|
71
|
García-Miranda P, Vázquez-Carretero MD, Gutiérrez G, Peral MJ, Ilundáin AA. Lack of reelin modifies the gene expression in the small intestine of mice. J Physiol Biochem 2011; 68:205-18. [PMID: 22161684 DOI: 10.1007/s13105-011-0132-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/22/2011] [Indexed: 12/25/2022]
Abstract
We recently demonstrated that the mucosa of the small intestine of the rat expresses reelin and some components of its signaling system. The current study evaluates whether reelin affects the intestinal gene expression profile using microarray analysis and reeler mice, a natural mutant in which reelin is not expressed. The effect of the mutation on body weight and intestinal morphology is also evaluated. The mutation reduces body and intestinal weight during the first 2 months of age and modifies the morphology of the crypts and villi. For the microarray assays, total RNA was obtained from either isolated epithelial cells or intact small intestine. Of the 45,101 genes present in the microarray the mutation significantly alters the expression of 62 genes in the isolated epithelial cell samples and of 84 in the intact small intestine. The expression of 83% of the genes tested for validation was substantiated by reverse transcriptase polymerase chain reaction. The mutation notably up-regulates genes involved in intestinal metabolism, while it down-regulates genes related with immune response, inflammation, and tumor development. Genes involved in cell proliferation, differentiation, apoptosis, membrane transport and cytoskeleton are also differently expressed in the reeler mice as compared with the control. This is the first report showing that the lack of reelin modifies intestinal morphology and gene expression profile and suggests a role for reelin in intestinal epithelium homeostasis.
Collapse
Affiliation(s)
- P García-Miranda
- Departamento de Fisiología y Zoología, Universidad de Sevilla, c/o Profesor García González, no. 2, 41012, Sevilla, Spain
| | | | | | | | | |
Collapse
|
72
|
Zhao B, Knepper MA, Chou CL, Pisitkun T. Large-scale phosphotyrosine proteomic profiling of rat renal collecting duct epithelium reveals predominance of proteins involved in cell polarity determination. Am J Physiol Cell Physiol 2011; 302:C27-45. [PMID: 21940666 DOI: 10.1152/ajpcell.00300.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although extensive phosphoproteomic information is available for renal epithelial cells, previous emphasis has been on phosphorylation of serines and threonines with little focus on tyrosine phosphorylation. Here we have carried out large-scale identification of phosphotyrosine sites in pervanadate-treated native inner medullary collecting ducts of rat, with a view towards identification of physiological processes in epithelial cells that are potentially regulated by tyrosine phosphorylation. The method combined antibody-based affinity purification of tyrosine phosphorylated peptides coupled with immobilized metal ion chromatography to enrich tyrosine phosphopeptides, which were identified by LC-MS/MS. A total of 418 unique tyrosine phosphorylation sites in 273 proteins were identified. A large fraction of these sites have not been previously reported on standard phosphoproteomic databases. All results are accessible via an online database: http://helixweb.nih.gov/ESBL/Database/iPY/. Analysis of surrounding sequences revealed four overrepresented motifs: [D/E]xxY*, Y*xxP, DY*, and Y*E, where the asterisk symbol indicates the site of phosphorylation. These motifs plus contextual information, integrated using the NetworKIN tool, suggest that the protein tyrosine kinases involved include members of the insulin- and ephrin-receptor kinase families. Analysis of the gene ontology (GO) terms and KEGG pathways whose protein elements are overrepresented in our data set point to structures involved in epithelial cell-cell and cell-matrix interactions ("adherens junction," "tight junction," and "focal adhesion") and to components of the actin cytoskeleton as major sites of tyrosine phosphorylation in these cells. In general, these findings mesh well with evidence that tyrosine phosphorylation plays a key role in epithelial polarity determination.
Collapse
Affiliation(s)
- Boyang Zhao
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | | | |
Collapse
|
73
|
Thuenauer R, Juhasz K, Mayr R, Frühwirth T, Lipp AM, Balogi Z, Sonnleitner A. A PDMS-based biochip with integrated sub-micrometre position control for TIRF microscopy of the apical cell membrane. LAB ON A CHIP 2011; 11:3064-71. [PMID: 21814704 DOI: 10.1039/c1lc20458k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A poly(dimethylsiloxane) (PDMS)-based biochip with an integrated pressure controlled positioning system with sub-micrometre precision was realized. The biochip was easy and cheap to manufacture and enabled positioning in a wet environment. It allowed the application of total internal reflection fluorescence (TIRF) microscopy at the dorsal cell membrane, which is not adhering to a support. Specifically, the chip enabled TIRF microscopy at the apical membrane of polarized epithelial cells. Thereby, the device allowed us for the first time to monitor individual fusion events of GPI-GFP bearing vesicles at the apical membrane in live Madin-Darby canine kidney II (MDCK II) cells. Moreover, a mapping of fusion sites became feasible and revealed that the whole apical membrane is fusion competent. In total, the biochip offers an all-in-one solution for apical TIRF microscopy and contributes a novel tool to study trafficking processes close to the apical plasma membrane in polarized epithelial cells.
Collapse
Affiliation(s)
- Roland Thuenauer
- Center for Advanced Bioanalysis GmbH, Scharitzerstrasse 6-8, 4020, Linz, Austria.
| | | | | | | | | | | | | |
Collapse
|
74
|
Differential effects of TNF (TNFSF2) and IFN-γ on intestinal epithelial cell morphogenesis and barrier function in three-dimensional culture. PLoS One 2011; 6:e22967. [PMID: 21853060 PMCID: PMC3154921 DOI: 10.1371/journal.pone.0022967] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/04/2011] [Indexed: 12/21/2022] Open
Abstract
Background The cytokines TNF (TNFSF2) and IFNγ are important mediators of inflammatory bowel diseases and contribute to enhanced intestinal epithelial permeability by stimulating apoptosis and/or disrupting tight junctions. Apoptosis and tight junctions are also important for epithelial tissue morphogenesis, but the effect of TNF and IFNγ on the process of intestinal epithelial morphogenesis is unknown. Methods/Principal Findings We have employed a three-dimensional cell culture system, reproducing in vivo-like multicellular organization of intestinal epithelial cells, to study the effect of TNF on intestinal epithelial morphogenesis and permeability. We show that human intestinal epithelial cells in three-dimensional culture assembled into luminal spheres consisting of a single layer of cells with structural, internal, and planar cell polarity. Exposure of preformed luminal spheres to TNF or IFNγ enhanced paracellular permeability, but via distinctive mechanisms. Thus, while both TNF and IFNγ, albeit in a distinguishable manner, induced the displacement of selected tight junction proteins, only TNF increased paracellular permeability via caspase-driven apoptosis and cell shedding. Infliximab and adalumimab inhibited these effects of TNF. Moreover, we demonstrate that TNF via its stimulatory effect on apoptosis fundamentally alters the process of intestinal epithelial morphogenesis, which contributes to the de novo generation of intestinal epithelial monolayers with increased permeability. Also IFNγ contributes to the de novo formation of monolayers with increased permeability, but in a manner that does not involve apoptosis. Conclusions Our study provides an optimized 3D model system for the integrated analysis of (real-time) intestinal epithelial paracellular permeability and morphogenesis, and reveals apoptosis as a pivotal mechanism underlying the enhanced permeability and altered morphogenesis in response to TNF, but not IFNγ.
Collapse
|
75
|
Abstract
Epigenetics describes the development and maintenance of stable heritable gene expression patterns, which allow cells to show different phenotypes despite of a commonly shared genetic code. The increasing knowledge in this field during the last decades reveals its importance for many physiological processes like differentiation, embryogenesis and parental imprinting, but also for some diseases such as cancer. Recent data have shown that the complexity of carcinogenesis can no longer be explained solely on the basis of genetic changes, but epigenomic alterations such as changes of the DNA methylation pattern and/or post-translational histone modifications and changes of microRNA expression need to be equally considered. Such epigenetic alterations may cause permanent changes in gene expression patterns and may therefore essentially contribute to some of the known phenotypic characteristics of cancer cells like the loss of growth control, altered intercellular communication and enhanced motility. The two latter may essentially be associated with the downregulation of cellular adhesion molecules, which may therefore be relevant in the context of cancer invasiveness and prognosis. The targeted modification of the epigenome may therefore open new horizons within the increasingly important field of epigenetic therapeutics-particularly in view of the regulation of cellular adhesion with particular attention to tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Judith Katto
- Department of Internal Medicine, Saarland University Medical Center, Kirrbergerstrasse, Germany
| | | |
Collapse
|
76
|
Xu K, Cleaver O. Tubulogenesis during blood vessel formation. Semin Cell Dev Biol 2011; 22:993-1004. [PMID: 21624487 DOI: 10.1016/j.semcdb.2011.05.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 12/13/2022]
Abstract
The ability to form and maintain a functional system of contiguous hollow tubes is a critical feature of vascular endothelial cells (ECs). Lumen formation, or tubulogenesis, occurs in blood vessels during both vasculogenesis and angiogenesis in the embryo. Formation of vascular lumens takes place prior to the establishment of blood flow and to vascular remodeling which results in a characteristic hierarchical vessel organization. While epithelial lumen formation has received intense attention in past decades, more recent work has only just begun to elucidate the mechanisms controlling the initiation and morphogenesis of endothelial lumens. Studies using in vitro and in vivo models, including zebrafish and mammals, are beginning to paint an emerging picture of how blood vessels establish their characteristic morphology and become patent. In this article, we review and discuss the molecular and cellular mechanisms driving the formation of vascular tubes, primarily in vivo, and we compare and contrast proposed models for blood vessel lumen formation.
Collapse
Affiliation(s)
- Ke Xu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | |
Collapse
|
77
|
Jokhadar SZ, Suštar V, Svetina S, Batista U. Time lapse monitoring of CaCo-2 cell shapes and shape dependence of the distribution of integrin β1 and F-actin on their basal membrane. ACTA ACUST UNITED AC 2011; 16:1-13. [PMID: 19468924 DOI: 10.1080/15419060902957296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CaCo-2 cell line is a model system for cell differentiation. For the effective use of CaCo-2 cells, it is important to understand how their growth depends on environmental conditions. The authors grew them on laminin-1, fibronectin, and collagen-1 adsorbed to glass and polystyrene. The time lapse technique was applied to follow their growth and shape changes for 21.5 h post seeding. The results upgraded the auhtors' previous findings about the series of consecutive shape changes that occur post seeding. Most cells were initially rounded and then they changed shape in two directions. A smaller fraction of cells, which attained cumulus shapes, eventually detached and drifted away. Other cells attained a semispread, transient shape, which was followed by a fully spread shape that was dominant on all protein-coated surfaces. The average time over which cells changed their shape type was different on different surfaces. It was longer on protein-coated glass surfaces than on protein-coated polystyrene surfaces. On collagen-1-coated surfaces, cells spread in the shortest time. Different cell shape types exhibited different spatial distributions of integrin β1, F-actin, and focal adhesions.
Collapse
Affiliation(s)
- Spela Zemljič Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
78
|
Affiliation(s)
- T Jespersen
- Department of Biomedical Sciences 16.5, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
79
|
Reina S, Sterin-Borda L, Passafaro D, Borda E. Anti-M(3) muscarinic cholinergic autoantibodies from patients with primary Sjögren's syndrome trigger production of matrix metalloproteinase-3 (MMP-3) and prostaglandin E(2) (PGE(2)) from the submandibular glands. Arch Oral Biol 2011; 56:413-20. [PMID: 21371688 DOI: 10.1016/j.archoralbio.2010.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/12/2010] [Accepted: 08/24/2010] [Indexed: 01/22/2023]
Abstract
BACKGROUND We demonstrated that serum immunoglobulin G (IgG) from patients with primary Sjögren's syndrome (pSS), interacting with the second extracellular loop of human glandular M(3) muscarinic acetylcholine receptors (M(3) mAChR), trigger the production of matrix metalloproteinase-3 (MMP-3) and prostaglandin E(2) (PGE(2)). METHODS Enzyme-linked immunosorbent assays (ELISAs) were performed in the presence of M(3) mAChR synthetic peptide as antigen to detect in serum the autoantibodies. Further, MMP-3 and PGE(2) production were determined in the presence of anti-M(3) mAChR autoantibodies. RESULTS An association was observed between serum and anti-M(3) mAChR autoantibodies and serum levels of MMP-3 and PGE(2) in pSS patients. Thus, we established that serum anti-M(3) mAChR autoantibodies, MMP-3 and PGE(2) may be considered to be early markers of pSS associated with inflammation. Affinity-purified anti-M(3) mAChR peptide IgG from pSS patients, whilst stimulating salivary-gland M(3) mAChR, causes an increase in the level of MMP-3 and PGE(2) as a result of the activation of phospholipase A(2) (PLA(2)) and cyclooxygenase-2 (COX-2) (but not COX-1). CONCLUSIONS These results provide a novel insight into the role that cholinoceptor antibodies play in the development of glandular inflammation. This is the first report showing that an antibody interacting with glandular mAChR can induce the production of pro-inflammatory mediators (MMP-3/PGE(2)).
Collapse
Affiliation(s)
- Silvia Reina
- Pharmacology Unit, School of Dentistry, University of Buenos Aires, Argentina
| | | | | | | |
Collapse
|
80
|
Heilmann A, Altmann F, Cismak A, Baumann W, Lehmann M. Investigation of Cell-Sensor Hybrid Structures by Focused Ion Beam (FIB) Technology. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-983-0983-ll03-03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractFor the investigation of the adhesion of mammalian cells on a semiconductor biosensor structure, nerve cells on silicon neurochips were prepared for scanning electron microscopy investigations (SEM) and cross-sectional preparation by focused ion beam technology (FIB). The cross-sectional pattern demonstrates the focal adhesion points of the nerve cells on the chip. Finally, SEM micrographs were taken parallel to the FIB ablation to investigate the cross section of the cells slice by slice in order to demonstrate the spatial distribution of focal contact positions for a possible three-dimensional reconstruction of the cell-silicon interface.
Collapse
|
81
|
Effects of calcium oxalate monohydrate crystals on expression and function of tight junction of renal tubular epithelial cells. J Transl Med 2011; 91:97-105. [PMID: 20856225 DOI: 10.1038/labinvest.2010.167] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tight junction has a crucial role in regulating paracellular transports (as a barrier) and in separating apical from basolateral compartments to maintain cell polarity (as a fence). Tight junction can be disrupted by various stimuli, including oxidative stress, pathogens and proinflammatory cytokines. However, association of defective tight junction with kidney stone pathogenesis remains unknown. We therefore examined whether calcium oxalate monohydrate (COM) crystals, which are the major crystalline composition in kidney stones, have any effects on expression and function of tight junction of polarized renal tubular epithelial cells. Western blot analysis revealed marked decrease in levels of occludin and zonula occludens-1 (ZO-1) in COM-treated polarized Madin-Darby canine kidney (MDCK) cells. Immunofluorescence staining revealed not only the decline of these tight junction proteins but also their redistribution and dissociation in COM-treated cells. Additionally, transepithelial resistance was significantly decreased, indicating impaired tight junction barrier and increased paracellular permeability in COM-treated cells. Subcellular fractionation followed by western blot analysis of Na(+)/K(+)-ATPase-α1 revealed that this basolateral membrane marker was also detectable in apical membrane fraction of COM-treated cells, but not in apical membrane fraction of control cells. Immunofluorescence study confirmed the translocation of Na(+)/K(+)-ATPase-α1 (from basolateral to apical membranes) in COM-treated cells, indicating impaired fence function of the tight junction. Moreover, dihydrorhodamine assay using flow cytometry revealed the significantly higher level of hydrogen peroxide in the COM-treated cells. These data provide the first evidence to demonstrate decreased expression and defective barrier and fence functions of the tight junction of renal tubular epithelial cells exposed to COM crystals that may be fundamental for subsequent renal tubulointerstitial injury, which in turn enhances the stone pathogenesis.
Collapse
|
82
|
Yang X, Xie X, Chen L, Zhou H, Wang Z, Zhao W, Tian R, Zhang R, Tian C, Long J, Shen Y. Structural basis for tandem L27 domain‐mediated polymerization. FASEB J 2010. [DOI: 10.1096/fj.10.163857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xue Yang
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Xingqiao Xie
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Liu Chen
- School of Life Science, University of Science and Technology China Anhui China
| | - Hao Zhou
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Zheng Wang
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Weijing Zhao
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Ran Tian
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Rongguang Zhang
- Institute of BiophysicsChinese Academy of Science Beijing China
| | - Changlin Tian
- School of Life Science, University of Science and Technology China Anhui China
| | - Jiafu Long
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Yuequan Shen
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| |
Collapse
|
83
|
Yang X, Xie X, Chen L, Zhou H, Wang Z, Zhao W, Tian R, Zhang R, Tian C, Long J, Shen Y. Structural basis for tandem L27 domain-mediated polymerization. FASEB J 2010; 24:4806-15. [PMID: 20702775 DOI: 10.1096/fj.10-163857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The establishment of epithelial cell polarity requires the assembly of multiprotein complexes and is crucial during epithelial morphogenesis. Three scaffolding proteins, Dlg1, MPP7, and Mals3, can be assembled to form a complex that functions in the establishment and maintenance of apicobasal polarity in epithelial tissues through their L27 domains. Here we report the crystal structure of a 4-L27-domain complex derived from the human tripartite complex Dlg1-MPP7-Mals3 in combination with paramagnetic relaxation enhancement measurements. The heterotrimer consists of 2 pairs of heterodimeric L27 domains. These 2 dimers are asymmetric due to the large difference between the N- and C-terminal tandem L27 domain of MPP7. Structural analysis combined with biochemical experiments further reveals that the loop αA-αB and helix αB of the C-terminal L27 domain of MPP7 play a critical role in assembling the entire tripartite complex, suggesting a synergistic tandem L27-mediated assembling event.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Hotta A, Kawakatsu T, Nakatani T, Sato T, Matsui C, Sukezane T, Akagi T, Hamaji T, Grigoriev I, Akhmanova A, Takai Y, Mimori-Kiyosue Y. Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5alpha/beta. ACTA ACUST UNITED AC 2010; 189:901-17. [PMID: 20513769 PMCID: PMC2878951 DOI: 10.1083/jcb.200910095] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A newly discovered interaction between LL5s, laminins, and integrins reveals how the extracellular matrix directs microtubule polarity in epithelial tissues. LL5β has been identified as a microtubule-anchoring factor that attaches EB1/CLIP-associating protein (CLASP)–bound microtubule plus ends to the cell cortex. In this study, we show that LL5β and its homologue LL5α (LL5s) colocalize with autocrine laminin-5 and its receptors, integrins α3β1 and α6β4, at the basal side of fully polarized epithelial sheets. Depletion of both laminin receptor integrins abolishes the cortical localization of LL5s, whereas LL5 depletion reduces the amount of integrin α3 at the basal cell cortex. Activation of integrin α3 is sufficient to initiate LL5 accumulation at the cell cortex. LL5s form a complex with the cytoplasmic tails of these integrins, but their interaction might be indirect. Analysis of the three-dimensional distribution of microtubule growth by visualizing EB1-GFP in epithelial sheets in combination with RNA interference reveals that LL5s are required to maintain the density of growing microtubules selectively at the basal cortex. These findings reveal that signaling from laminin–integrin associations attaches microtubule plus ends to the epithelial basal cell cortex.
Collapse
Affiliation(s)
- Azusa Hotta
- KAN Research Institute, Inc., Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Wolff SC, Qi AD, Harden TK, Nicholas RA. Charged residues in the C-terminus of the P2Y1 receptor constitute a basolateral-sorting signal. J Cell Sci 2010; 123:2512-20. [PMID: 20592187 PMCID: PMC2894661 DOI: 10.1242/jcs.060723] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2010] [Indexed: 11/20/2022] Open
Abstract
The P2Y(1) receptor is localized to the basolateral membrane of polarized Madin-Darby canine kidney (MDCK) cells. In the present study, we identified a 25-residue region within the C-terminal tail (C-tail) of the P2Y(1) receptor that directs basolateral sorting. Deletion of this sorting signal caused redirection of the receptor to the apical membrane, indicating that the region from the N-terminus to transmembrane domain 7 (TM7) contains an apical-sorting signal that is overridden by a dominant basolateral signal in the C-tail. Location of the signal relative to TM7 is crucial, because increasing its distance from the end of TM7 resulted in loss of basolateral sorting. The basolateral-sorting signal does not use any previously established basolateral-sorting motifs, i.e. tyrosine-containing or di-hydrophobic motifs, for function, and it is functional even when inverted or when its amino acids are scrambled, indicating that the signal is sequence independent. Mutagenesis of different classes of amino acids within the signal identified charged residues (five basic and four acidic amino acids in 25 residues) as crucial determinants for sorting function, with amidated amino acids having a lesser role. Mutational analyses revealed that whereas charge balance (+1 overall) of the signal is unimportant, the total number of charged residues (nine), either positive or negative, is crucial for basolateral targeting. These data define a new class of targeting signal that relies on total charge and might provide a common mechanism for polarized trafficking of epithelial proteins.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Amino Acids, Acidic/chemistry
- Amino Acids, Acidic/genetics
- Amino Acids, Basic/chemistry
- Amino Acids, Basic/genetics
- Animals
- Cell Line
- Cell Polarity/genetics
- Cloning, Molecular
- Dogs
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Kidney/pathology
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation/genetics
- Protein Sorting Signals/genetics
- Protein Structure, Tertiary/genetics
- Protein Transport/genetics
- Receptors, Purinergic P2Y1/chemistry
- Receptors, Purinergic P2Y1/genetics
- Receptors, Purinergic P2Y1/metabolism
Collapse
Affiliation(s)
- Samuel C. Wolff
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - Ai-Dong Qi
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - T. Kendall Harden
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | - Robert A. Nicholas
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| |
Collapse
|
86
|
Gao N, Kaestner KH. Cdx2 regulates endo-lysosomal function and epithelial cell polarity. Genes Dev 2010; 24:1295-305. [PMID: 20551175 DOI: 10.1101/gad.1921510] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In contrast to our significant understanding of signaling cascades that determine cell polarity in lower eukaryotic or immortalized cells, little is known about the transcriptional program that governs mammalian epithelial polarization in vivo. Here we show, using conditional gene ablation and three-dimensional tissue culture, that the homeobox transcription factor Cdx2 controls apical-basolateral polarity in mouse enterocytes and human colonic epithelial cells. Cdx2 regulates a comprehensive gene network involved in endo-lysosomal maturation and protein transport. In the absence of Cdx2, defective protein trafficking impairs apical-basal transport and induces ectopic lumen formation. These defects are partially recapitulated by suppression of key apical transport components, Rab11a and Kif3b, which are regulated by Cdx2. Furthermore, Cdx2 deficiency affects components that control the organization of microvillus actin cytoskeleton, leading to severe microvillus atrophy. These results demonstrate that Cdx2 regulates epithelial cell polarity and morphogenesis through control of apical protein transport and endo-lysosomal function.
Collapse
Affiliation(s)
- Nan Gao
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
87
|
Abstract
Cell polarity, the generation of cellular asymmetries, is necessary for diverse processes in animal cells, such as cell migration, asymmetric cell division, epithelial barrier function, and morphogenesis. Common mechanisms generate and transduce cell polarity in different cells, but cell type-specific processes are equally important. In this review, we highlight the similarities and differences between the polarity mechanisms in eggs and epithelia. We also highlight the prospects for future studies on how cortical polarity interfaces with other cellular processes, such as morphogenesis, exocytosis, and lipid signaling, and how defects in polarity contribute to tumor formation.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom.
| | | |
Collapse
|
88
|
Goossens K, Tesfaye D, Rings F, Schellander K, Hölker M, Van Poucke M, Van Zeveren A, Lemahieu I, Van Soom A, Peelman LJ. Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference. Reprod Fertil Dev 2010; 22:395-404. [PMID: 20047725 DOI: 10.1071/rd09080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/13/2009] [Indexed: 11/23/2022] Open
Abstract
The expression of the cytoskeleton protein Keratin 18 (KRT18) starts at the onset of bovine blastocyst formation. KRT18 is solely expressed in the trophectoderm and can therefore be used as a marker for trophectodermal differentiation. In the present study, the expression of KRT18 was suppressed by RNA interference to probe its functional importance in bovine blastocyst formation. Microinjection of KRT18 double-stranded RNA into the cytoplasm of zygotes resulted in reduced KRT18 mRNA (76% reduction) and protein expression at the blastocyst stage and a lower developmental competence (41% reduction in the percentage of blastocyst formation) compared with non-injected and phosphate-buffered saline (PBS)-injected controls. KRT18 downregulation was associated with reduced mRNA expression of KRT8, the binding partner of KRT18, but had no effect on the expression of KRT19, CDH1 and DSP, other genes involved in intermediate filament and cytoskeleton formation. The results of the present study demonstrated that KRT18 knockdown in preimplantation embryos results in reduced blastocyst formation, but no further morphological aberrations were observed with regard to the biological function of KRT18. These observations could be due to the function of KRT18 being replaced by that of another gene, the surviving blastocysts expressing the minimum level of KRT18 required for normal blastocyst development or the possibility that further aberrations may occur later in development.
Collapse
Affiliation(s)
- Karen Goossens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Zhang D, Shu J, Wang Y. [Salvia Miltiorrhiza injection relieves peritoneal dialysis solution-induced injuries of peritoneal structure and function in rats]. ACTA ACUST UNITED AC 2010; 6:517-23. [PMID: 18471419 DOI: 10.3736/jcim20080517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the effect of Salvia Miltiorrhiza injection (SMI) on peritoneal dialysis solution (PDS) induced injuries of peritoneal structure and function in a rat model, and to observe the relationship between the failure of peritoneal dialysis and expressions of aquaporin-1 (AQP-1) and zonula occluden-1 (ZO-1) in peritoneal tissues. METHODS Fifty-six SD rats were randomly divided into normal control group, 1.5% PDS group, 4.25% PDS group, 1.5%PDS+1% SMI group, 1.5%PDS+2% SMI group, 4.25% PDS+1% SMI group and 4.25% PDS+2% SMI group. Two-hour peritoneal dialysis test was performed in rats in different groups by intraperitoneal injection for 8-week. Then rats were killed on the 8th week, and the bloods and peritoneal tissues were gathered. The rate of ultrafiltration, clearance rates of urea nitrogen, creatinine and glucose of peritoneum and content of total protein in PDS were detected. Peritoneal membrane histology was evaluated by light microscopy and transmission electron microscopy. Expressions of ZO-1 and AQP-1 proteins in peritoneal tissues were detected by immunohistochemical method, and AQP-1 protein expression was also detected by Western blotting technique. RESULTS Compared with normal control group, using of 1.5% PDS and 4.25% PDS caused the changes of structure and function in peritoneum, such as pathological change of peritoneum, decreasing of the rate of ultrafiltration (P<0.05), clearance rates of creatinine and glucose (P<0.01) and the expression of ZO-1 protein (P<0.05), and increasing of the expression of AQP-1 protein (P<0.05). Compared with the simple PDS groups, the pathological damage of peritoneum was lessened and the rate of ultrafiltration and clearance rates of creatinine and glucose were increased in the 1.5% PDS+2% SMI group and 1.5% PDS+2% SMI group. Expression of AQP-1 protein was decreased by 1.5% PDS+2% SMI as compared with 1.5% PDS (P<0.05).[JP] CONCLUSION SMI can relieve the injuries of function and structure of peritoneum by down-regulating the expression of AQP-1 protein.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | | | | |
Collapse
|
90
|
Abstract
We set up a polarized cell culture model to study the pathogenicity of a common respiratory tract pathogen, Chlamydia pneumoniae. Immunofluorescence staining of ZO-1 (a tight junction protein) and Na(+)K(+) ATPase (a protein pump localized at the basolateral membrane in the polarized epithelial cells), as well as TER measurements, suggested that the filter-grown Calu-3 cells, but not the A549 cells, were polarized when grown on collagen-coated membranes. Both the flat and the filter-grown cultures were infected with C. pneumoniae. Infection in the polarized Calu-3 cultures produced more C. pneumoniae genome equivalents than infection in the flat cultures. However, this progeny was not as infective as that in the flat cultures. The maximum amount of C. pneumoniae was detected at 6 days postinfection in the filter-grown A549 cells, indicating a slower developmental cycle than that observed in the flat A549 cultures. The effect of cycloheximide on the growth of C. pneumoniae in the polarized cells was negligible. Furthermore, the infection in the polarized Calu-3 cells was resistant to doxycycline, and several cytokines were released mainly on the apical side of the polarized cells in response to C. pneumoniae infection. These findings indicate that the growth of chlamydiae was altered in the filter-grown epithelial culture system. The diminished production of infective progeny of C. pneumoniae, together with the resistance to doxycycline and polarized secretion of cytokines from the infected Calu-3 cells, suggests that this model is useful for examining epithelial cell responses to C. pneumoniae infection, and it might better resemble in vivo infection in respiratory epithelial cells.
Collapse
|
91
|
García-Miranda P, Peral MJ, Ilundain AA. Rat small intestine expresses the reelin-Disabled-1 signalling pathway. Exp Physiol 2010; 95:498-507. [DOI: 10.1113/expphysiol.2009.050682] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
92
|
Pereira-Rodrigues N, Poleni PE, Guimard D, Arakawa Y, Sakai Y, Fujii T. Modulation of hepatocarcinoma cell morphology and activity by parylene-C coating on PDMS. PLoS One 2010; 5:e9667. [PMID: 20300511 PMCID: PMC2838777 DOI: 10.1371/journal.pone.0009667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/15/2010] [Indexed: 01/07/2023] Open
Abstract
Background The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC) deposited on polydimethylsiloxane (PDMS) as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2) cells. Principal Findings Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS) influence and modulate initial extracellular matrix (ECM; here, type-I collagen) surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM), which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication. Conclusion/Significance We demonstrated for the first time the modulation of HepG2 cells' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.
Collapse
Affiliation(s)
| | - Paul-Emile Poleni
- CIRMM, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- LIMMS/CNRS-IIS, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- * E-mail:
| | - Denis Guimard
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Yasuhiko Arakawa
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Yasuyuki Sakai
- LIMMS/CNRS-IIS, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Teruo Fujii
- CIRMM, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
- LIMMS/CNRS-IIS, Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
93
|
Abstract
In response to injury, epithelial cells migrate across the denuded tissue to rapidly close the wound and restore barrier, thereby preventing the entry of pathogens and leakage of fluids. Efficient, proper migration requires a range of processes, acting both inside and out of the cell. Among the extracellular responses is the expression of various matrix metalloproteinases (MMPs). Though long thought to ease cell migration simply by breaking down matrix barriers, findings from various models demonstrate that MMPs facilitate (and sometimes repress) cell movement by other means, such as affecting the state of cell-matrix interactions or proliferation. In this Prospect, we review some key data indicting how specific MMPs function via their activity as proteinases to control closure of epithelial wounds.
Collapse
Affiliation(s)
- Peter Chen
- Center for Lung Biology, Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98109, USA.
| | | |
Collapse
|
94
|
Wang X, Sun L, Maffini MV, Soto A, Sonnenschein C, Kaplan DL. A complex 3D human tissue culture system based on mammary stromal cells and silk scaffolds for modeling breast morphogenesis and function. Biomaterials 2010; 31:3920-9. [PMID: 20185172 DOI: 10.1016/j.biomaterials.2010.01.118] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 01/19/2010] [Indexed: 12/01/2022]
Abstract
Epithelial-stromal interactions play a crucial role in normal embryonic development and carcinogenesis of the human breast while the underlying mechanisms of these events remain poorly understood. To address this issue, we constructed a physiologically relevant, three-dimensional (3D) culture surrogate of complex human breast tissue that included a tri-culture system made up of human mammary epithelial cells (MCF10A), human fibroblasts and adipocytes, i.e., the two dominant breast stromal cell types, in a Matrigel/collagen mixture on porous silk protein scaffolds. The presence of stromal cells inhibited MCF10A cell proliferation and induced both alveolar and ductal morphogenesis and enhanced casein expression. In contrast to the immature polarity exhibited by co-cultures with either fibroblasts or adipocytes, the alveolar structures formed by the tri-cultures exhibited proper polarity similar to that observed in breast tissue in vivo. Only alveolar structures with reverted polarity were observed in MCF10A monocultures. Consistent with their phenotypic appearance, more functional differentiation of epithelial cells was also observed in the tri-cultures, where casein alpha- and -beta mRNA expression was significantly increased. This in vitro tri-culture breast tissue system sustained on silk scaffold effectively represents a more physiologically relevant 3D microenvironment for mammary epithelial cells and stromal cells than either co-cultures or monocultures. This experimental model provides an important first step for bioengineering an informative human breast tissue system, with which to study normal breast morphogenesis and neoplastic transformation.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | | | |
Collapse
|
95
|
Jeanes A, Smutny M, Leerberg JM, Yap AS. Phosphatidylinositol 3'-kinase signalling supports cell height in established epithelial monolayers. J Mol Histol 2010; 40:395-405. [PMID: 20157769 DOI: 10.1007/s10735-010-9253-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/31/2010] [Indexed: 12/21/2022]
Abstract
Cell-cell interactions influence epithelial morphogenesis through an interplay between cell adhesion, trafficking and the cytoskeleton. These cellular processes are coordinated, often by cell signals found at cell-cell contacts. One such contact-based signal is the phosphatidylinositol 3'-kinase (PI3-kinase; PI3K) pathway. PI3-kinase is best understood for its role in mitogenic signalling, where it regulates cell survival, proliferation and differentiation. Its precise morphogenetic impacts in epithelia are, in contrast, less well-understood. Using phosphoinositide-specific biosensors we confirmed that E-cadherin-based cell-cell contacts are enriched in PIP(3), the principal product of PI3-kinase. We then used pharmacologic inhibitors to assess the morphogenetic impact of PI3-kinase in MDCK and MCF7 monolayers. We found that inhibiting PI3-kinase caused a reduction in epithelial cell height that was reversible upon removal of the drugs. This was not attributable to changes in E-cadherin expression or homophilic adhesion. Nor were there detectable changes in cell polarity. While Myosin II has been implicated in regulating keratinocyte height, we found no effect of PI3-kinase inhibition on apparent Myosin II activity; nor did direct inhibition of Myosin II alter epithelial height. Instead, in pursuing signalling pathways downstream of PI3-kinase we found that blocking Rac signalling, but not mTOR, reduced epithelial cell height, as did PI3-kinase inhibition. Overall, our findings suggest that PI3-kinase exerts a major morphogenetic impact in simple cultured epithelia through preservation of cell height. This is independent of potential effects on adhesion or polarity, but may occur through PI3-kinase-stimulated Rac signaling.
Collapse
Affiliation(s)
- Angela Jeanes
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
96
|
Vijayaraj P, Kroeger C, Reuter U, Hartmann D, Magin TM. Keratins regulate yolk sac hematopoiesis and vasculogenesis through reduced BMP-4 signaling. Eur J Cell Biol 2010; 89:299-306. [PMID: 20097443 DOI: 10.1016/j.ejcb.2009.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/08/2009] [Accepted: 10/19/2009] [Indexed: 10/19/2022] Open
Abstract
Keratin intermediate filament proteins form the major cytoskeleton in all embryonic and adult epithelia. Increasing evidence suggests that keratins, besides their primary cytoskeletal function, can act as scaffolds which locally regulate cell growth and survival in epithelial cells. Many of these functions, however, are not understood in full, owing to keratin redundancy. We have recently created mice which lack all keratins and found that keratins act upstream of mTOR signaling to regulate protein biosynthesis via GLUT localization. Here, we report that keratins are necessary to maintain adhesion between endodermal and mesodermal cell layers of the yolk sac. As a consequence, keratin(-/-) embryos suffer from reduced yolk sac hematopoiesis and vasculogenesis. Pathway analysis revealed a reduction of the hedgehog target Foxf1 in yolk sac mesoderm of keratin(-/-) embryos, and subsequent reduction of BMP-4 and P-p38 MAPK. These defects may be caused by the overall reduction in protein biosynthesis and diminished adhesion. Our data show for the first time that keratins are necessary for the differentiation of a non-epithelial cell lineage through a combination of mechanical and signaling mechanisms.
Collapse
Affiliation(s)
- Preethi Vijayaraj
- Institute of Physiological Chemistry, Division of Cell Biochemistry, Bonner Forum Biomedizin and LIMES-Institute, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
97
|
Park KM, Fogelgren B, Zuo X, Kim J, Chung DC, Lipschutz JH. Exocyst Sec10 protects epithelial barrier integrity and enhances recovery following oxidative stress, by activation of the MAPK pathway. Am J Physiol Renal Physiol 2010; 298:F818-26. [PMID: 20053792 DOI: 10.1152/ajprenal.00596.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell-cell contacts are essential for epithelial cell function, and disruption is associated with pathological conditions including ischemic kidney injury. We hypothesize that the exocyst, a highly-conserved eight-protein complex that targets secretory vesicles carrying membrane proteins, is involved in maintaining renal epithelial barrier integrity. Accordingly, increasing exocyst expression in renal tubule cells may protect barrier function from oxidative stress resulting from ischemia and reperfusion (I/R) injury. When cultured on plastic, Madin-Darby canine kidney (MDCK) cells overexpressing Sec10, a central exocyst component, formed domes showing increased resistance to hydrogen peroxide (H2O2). Transepithelial electric resistance (TER) of Sec10-overexpressing MDCK cells grown on Transwell filters was higher than in control MDCK cells, and the rate of TER decrease following H2O2 treatment was less in Sec10-overexpressing MDCK cells compared with control MDCK cells. After removal of H2O2, TER returned to normal more rapidly in Sec10-overexpressing compared with control MDCK cells. In collagen culture MDCK cells form cysts, and H2O2 treatment damaged Sec10-overexpressing MDCK cell cysts less than control MDCK cell cysts. The MAPK pathway has been shown to protect animals from I/R injury. Levels of active ERK, the final MAPK pathway step, were higher in Sec10-overexpressing compared with control MDCK cells. U0126 inhibited ERK activation, exacerbated the H2O2-induced decrease in TER and cyst disruption, and delayed recovery of TER following H2O2 removal. Finally, in mice with renal I/R injury, exocyst expression decreased early and returned to normal concomitant with functional recovery, suggesting that the exocyst may be involved in the recovery following I/R injury.
Collapse
Affiliation(s)
- Kwon Moo Park
- Department of Medicine, University of Pennsylvania, and the Veterans Administration Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
98
|
Wong EWP, Cheng CY. Polarity proteins and cell-cell interactions in the testis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:309-53. [PMID: 19815182 DOI: 10.1016/s1937-6448(09)78007-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In mammalian testes, extensive junction restructuring takes place in the seminiferous epithelium at the Sertoli-Sertoli and Sertoli-germ cell interface to facilitate the different cellular events of spermatogenesis, such as mitosis, meiosis, spermiogenesis, and spermiation. Recent studies in the field have shown that Rho GTPases and polarity proteins play significant roles in the events of cell-cell interactions. Furthermore, Rho GTPases, such as Cdc42, are working in concert with polarity proteins in regulating cell polarization and cell adhesion at both the blood-testis barrier (BTB) and apical ectoplasmic specialization (apical ES) in the testis of adult rats. In this chapter, we briefly summarize recent findings on the latest status of research and development regarding Cdc42 and polarity proteins and how they affect cell-cell interactions in the testis and other epithelia. More importantly, we provide a new model in which how Cdc42 and components of the polarity protein complexes work in concert with laminin fragments, cytokines, and testosterone to regulate the events of cell-cell interactions in the seminiferous epithelium via a local autocrine-based regulatory loop known as the apical ES-BTB-basement membrane axis. This new functional axis coordinates various cellular events during different stages of the seminiferous epithelium cycle of spermatogenesis.
Collapse
Affiliation(s)
- Elissa W P Wong
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065, USA
| | | |
Collapse
|
99
|
Peeling as a novel, simple, and effective method for isolation of apical membrane from intact polarized epithelial cells. Anal Biochem 2009; 395:25-32. [DOI: 10.1016/j.ab.2009.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 11/23/2022]
|
100
|
Yui N, Okutsu R, Sohara E, Rai T, Ohta A, Noda Y, Sasaki S, Uchida S. FAPP2 is required for aquaporin-2 apical sorting at trans-Golgi network in polarized MDCK cells. Am J Physiol Cell Physiol 2009; 297:C1389-96. [PMID: 19794145 DOI: 10.1152/ajpcell.00098.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
FAPP2 is an adaptor protein of phosphatidylinositol-4-phosphate and is involved in the transport of some apical cargos from the trans-Golgi network (TGN). To investigate whether the regulated apical transport of aquaporin-2 (AQP2) is involved in the FAPP2-dependent apical protein-sorting machinery, we measured apical sorting of AQP2 in Madin-Darby canine kidney (MDCK) cells with or without FAPP2 knockdown. We established MDCK cell lines that stably express rat AQP2 without any tag sequence. Then, FAPP2-deficient stable cell lines were established from the AQP2-expressing cell lines by a retrovirus-mediated RNA interference system. In the established cell lines, AQP2 was detected in both apical and basolateral membranes. Forskolin increased only the apical localization of AQP2, which was not affected by basolateral treatment with 0.5% tannic acid, indicating that the forskolin-induced apical transport of AQP2 did not include the transcytotic pathway from basolateral to apical membranes but is a direct transport from TGN to the apical membranes. Using these cell lines, we tested the effect of FAPP2 knockdown on the polarized AQP2 transport to plasma membranes and found that the forskolin-induced apical transport of AQP2 was completely abolished by FAPP2 knockdown. By contrast, the basolateral localization of AQP2 was not affected by FAPP2 knockdown. AQP2 phosphorylation by forskolin was also impaired in FAPP2 knockdown MDCK cells. These results suggest that FAPP2 is necessary to generate AQP2-bearing vesicles at trans-Golgi that will undergo phosphorylation by PKA in subapical regions.
Collapse
Affiliation(s)
- Naofumi Yui
- Dept. of Nephrology, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | |
Collapse
|