51
|
Baldassarro VA, Perut F, Cescatti M, Pinto V, Fazio N, Alastra G, Parziale V, Bassotti A, Fernandez M, Giardino L, Baldini N, Calzà L. Intra-individual variability in the neuroprotective and promyelinating properties of conditioned culture medium obtained from human adipose mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:128. [PMID: 37170115 PMCID: PMC10173531 DOI: 10.1186/s13287-023-03344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Greater knowledge of mesenchymal stromal cell (MSC)-based therapies is driving the research into their secretome, identified as the main element responsible for their therapeutic effects. The aim of this study is to characterize the individual variability of the secretome of adipose tissue-derived MSCs (adMSCs) with regard to potential therapeutical applications in neurology. METHODS adMSCs were isolated from the intact adipose tissue of ten subjects undergoing abdominal plastic surgery or reduction mammoplasty. Two commercial lines were also included. We analyzed the expansion rate, production, and secretion of growth factors of interest for neurological applications (VEGF-A, BDNF, PDGF-AA and AA/BB, HGF, NGF, FGF-21, GDNF, IGF-I, IGF-II, EGF and FGF-2). To correlate these characteristics with the biological effects on the cellular targets, we used individual media conditioned with adMSCs from the various donors on primary cultures of neurons/astrocytes and oligodendrocyte precursor cells (OPCs) exposed to noxious stimuli (oxygen-glucose deprivation, OGD) to evaluate their protective and promyelinating properties, using MSC medium as a control group. RESULTS The MSC secretome showed significant individual variability within the considered population with regard to PDGF-AA, PDGF-AB/BB, VEGF-A and BDNF. None of the MSC-derived supernatants affected neuron viability in normoxia, while substantial protection by high BDNF-containing conditioned MSC medium was observed in neuronal cultures exposed to OGD conditions. In OPC cultures, the MSC-derived supernatants protected cells from OGD-induced cell death, also increasing the differentiation in mature oligodendrocytes. Neuroprotection showed a positive correlation with VEGF-A, BDNF and PDGF-AA concentrations in the culture supernatants, and an inverse correlation with HGF, while OPC differentiation following OGD was positively correlated to PDGF-AA concentration. CONCLUSIONS Despite the limited number of adMSC donors, this study showed significant individual variability in the biological properties of interest for neurological applications for adMSC secretome, an under-researched aspect which may represent an important step in the translation of MSC-derived acellular products to clinical practice. We also showed the potential protection capability of MSC conditioned medium on neuronal and oligodendroglial lineages exposed to oxygen-glucose deprivation. These effects are directly correlated to the concentration of specific growth factors, and indicate that the remyelination should be included as a primary target in MSC-based therapies.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Maura Cescatti
- IRET Foundation, Via Tolara Di Sopra 41/E, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Valentina Pinto
- Division of Plastic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Nicola Fazio
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Giuseppe Alastra
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Valentina Parziale
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Alessandra Bassotti
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Mercedes Fernandez
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy.
- Pharmacology and Biotecnology Department (FaBiT), University of Bologna, Via San Donato, 15, 40127, Bologna, Italy.
- Monetecatone Rehabilitation Institute (MRI), Via Montecatone, 37, 40026, Imola, Bologna, Italy.
| |
Collapse
|
52
|
Zhu Y, Wang T, Bao MJ, Qu XH, Li ZM. Effect of stem cell conditional medium-loading adhesive hydrogel on TGF-β1-induced endometrial stromal cell fibrosis. Front Bioeng Biotechnol 2023; 11:1168136. [PMID: 37214295 PMCID: PMC10192850 DOI: 10.3389/fbioe.2023.1168136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Uterine adhesion (IUA) is a severe complication that results from uterine operations or uterine infections. Hysteroscopy is considered the gold standard for the diagnosis and treatment of uterine adhesions. Yet, this invasive procedure leads to re-adhesions after hysteroscopic treatment. Hydrogels loading functional additives (e.g., placental mesenchymal stem cells (PC-MSCs)) that can act as physical barriers and promote endometrium regeneration are a good solution. However, traditional hydrogels lack tissue adhesion which makes them unstable under a rapid turnover of the uterus, and PC-MSCs have biosafety risks when used as functional additives. Methods: In this study, we coupled an adhesive hydrogel with a PC-MSCs conditioned medium (CM) to form a hybrid of gel and functional additives (CM/Gel-MA). Results and Discussion: Our experiments show that CM/Gel-MA enhances the activity of endometrial stromal cells (ESCs), promotes cell proliferation, and reduces the expression of α-SMA, collagen I, CTGF, E-cadherin, and IL-6, which helps to reduce the inflammatory response and inhibit fibrosis. We conclude that CM/Gel-MA can more potentially prevent IUA by combining the physical barriers from adhesive hydrogel and functional promotion from CM.
Collapse
Affiliation(s)
- Yuan Zhu
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
- Department of Reproductive Health, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Ting Wang
- Department of Reproductive Health, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Ming-Jie Bao
- Department of Reproductive Health, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Xiao-Hui Qu
- Pathology Department, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Zeng-Ming Li
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
53
|
Kim S, Im G, Kim YH, Bhang SH. Fortifying angiogenic efficacy of conditioned media using phototoxic-free blue light for wound healing. Bioeng Transl Med 2023; 8:e10462. [PMID: 37206233 PMCID: PMC10189464 DOI: 10.1002/btm2.10462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/13/2022] [Accepted: 11/23/2022] [Indexed: 11/02/2023] Open
Abstract
We used a blue organic light-emitting diode (bOLED) to increase the paracrine factors secreted from human adipose-derived stem cells (hADSCs) for producing conditioned medium (CM). Our results showed that while the bOLED irradiation promotes a mild-dose reactive oxygen generation that enhances the angiogenic paracrine secretion of hADSCs, it does not induce phototoxicity. The bOLED enhances paracrine factors via a cell-signaling mechanism involving hypoxia-inducible factor 1 alpha. This study demonstrated that the CM resulting from bOLED treatment shows improved therapeutic effects on mouse wound-healing models. This method contributes to overcoming the barriers to stem-cell therapies, including the toxicity and low yields from other methods such as nanoparticles, synthetic polymers, and even cell-derived vesicles.
Collapse
Affiliation(s)
- Sung‐Won Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
| | - Gwang‐Bum Im
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
- Present address:
Department of Cardiac SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonSouth Korea
| |
Collapse
|
54
|
Rhatomy S, Pawitan JA, Kurniawati T, Fiolin J, Dilogo IH. Allogeneic umbilical cord mesenchymal stem cell conditioned medium (secretome) for treating posterior cruciate ligament rupture: a prospective single-arm study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:669-675. [PMID: 35699826 DOI: 10.1007/s00590-022-03278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Outcomes of the current management of posterior cruciate ligament (PCL) rupture are still unsatisfactory. Recent literature demonstrated the efficacy of the paracrine action of mesenchymal stem cells (MSC) in ligament rupture healing. This study aimed to evaluate the outcome of arthroscopic administration of allogeneic umbilical cord-derived MSC (UC-MSC) conditioned medium (secretome) for the treatment of PCL rupture. PATIENTS AND METHODS This is a prospective study including 12 individuals with PCL rupture grade 1 or 2 who were performed arthroscopy and secretome administrations. The functional and radiologic outcome of the knee was examined one year following intervention. RESULTS Preoperatively, posterior drawer test revealed three cases of grade 2+ and nine cases of grade 1+, whereas the final follow-up revealed two cases of grade 2+ and ten cases of grade 1+ PCL rupture. At final follow-up, the mean scores for the IKDC, modified Cincinnati, and Lysholm were 90.58 ± 4.30, 90.90 ± 2.15, and 89.42 ± 3.16, respectively. The means of the serial hop tests were 90.33, 94.16, 93.66, and 95.33 for single, triple, crossover, and time hop tests, respectively. Five patients were able to resume competitive sport after an average of 25.8 weeks (25-38). The final MRI analysis revealed that six knees (50%) regained PCL continuity with low signal intensity, five knees (41.6%) returned near-normal PCL continuity, and one knee (8.3%) regained PCL continuity but with deformed outlines. CONCLUSIONS Short-term follow-up indicated that the secretome generated from allogenic UC-MSC produces excellent functional and radiographic results in grade I-II PCL rupture.
Collapse
Affiliation(s)
- Sholahuddin Rhatomy
- Sport and Adult Reconstruction Division, Department of Orthopaedic and Traumatology, Soeradji Tirtonegoro Hospital, Klaten, Indonesia.
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Jeanne Adiwinata Pawitan
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Cluster Indonesian Medical Education and Research Institute (IMERI), Universitas Indonesia, Jl. Salemba Raya No. 5, Jakarta, Indonesia
| | - Trie Kurniawati
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, Jl. Diponegoro no. 5, Jakarta, Indonesia
| | - Jessica Fiolin
- Orthopaedic Surgeon of Jakarta Knee, Shoulder and Orthopaedic Sport Clinic, Pondok Indah General Hospital, Jl. Metro Duta Kav UE, Jakarta Selatan, 12310, Indonesia
| | - Ismail Hadisoebroto Dilogo
- Stem Cell Medical Technology Integrated Service Unit, Cipto Mangunkusumo Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Orthopaedic and Traumatology Department, Faculty of Medicine, RS DR Cipto Mangunkusumo, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Cluster Indonesian Medical Education and Research Institute (IMERI), Universitas Indonesia, Jl. Diponegoro no 71, Jakarta, Indonesia
| |
Collapse
|
55
|
Wang W, Wang A, Hu G, Bian M, Chen L, Zhao Q, Sun W, Wu Y. Potential of an Aligned Porous Hydrogel Scaffold Combined with Periodontal Ligament Stem Cells or Gingival Mesenchymal Stem Cells to Promote Tissue Regeneration in Rat Periodontal Defects. ACS Biomater Sci Eng 2023; 9:1961-1975. [PMID: 36942823 DOI: 10.1021/acsbiomaterials.2c01440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Periodontal tissue regeneration is a major challenge in tissue engineering due to its regenerated environment complexity. It aims to regenerate not only the supporting alveolar bone and cementum around teeth but also the key connecting periodontal ligament. Herein, a constructed aligned porous hydrogel scaffold carrying cells based on chitosan (CHI) and oxidized chondroitin sulfate (OCS) treated with a freeze-casting technique was fabricated, which aimed to induce the arrangement of periodontal tissue regeneration. The microscopic morphology and physical and chemical properties of the hydrogel scaffold were evaluated. The biocompatibilities with periodontal ligament stem cells (PDLSCs) or gingival-derived mesenchymal stem cells (GMSCs) were verified, respectively, by Live/Dead staining and CCK8 in vitro. Furthermore, the regeneration effect of the aligned porous hydrogel scaffold combined with PDLSCs and GMSCs was evaluated in vivo. The biocompatibility experiments showed no statistical significance between the hydrogel culture group and blank control (P > 0.05). In a rat periodontal defect model, PDLSC and GMSC hydrogel experimental groups showed more pronounced bone tissue repair than the blank control (P < 0.05) in micro-CT. In addition, there was more tissue repair (P < 0.05) of PDLSC and GMSC hydrogel groups from histological staining images. Higher expressions of OPN, Runx-2, and COL-I were detected in both of the above groups via immunohistochemistry staining. More importantly, the group with the aligned porous hydrogel induced more order periodontal ligament formation than that with the ordinary hydrogel in Masson's trichrome analysis. Collectively, it is expected to promote periodontal tissue regeneration utilizing an aligned porous hydrogel scaffold combined with PDLSCs and GMSCs (CHI-OCS-PDLSC/GMSC composite), which provides an alternative possibility for clinical application.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310000, People's Republic of China
| | - Ao Wang
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou 310000, People's Republic of China
| | - Gaofu Hu
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Mengyao Bian
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Lili Chen
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310000, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 310000, People's Republic of China
| | - Weilian Sun
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Yanmin Wu
- Department of Periodontology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, People's Republic of China
| |
Collapse
|
56
|
Lara ML, Carvalho MG, de Souza FF, Schmith RA, Codognoto VM, De Vita B, Freitas Dell'Aqua CDP, Landim FDC, Alvarenga MLE. Influence of culture conditions on the secretome of mesenchymal stem cells derived from feline adipose tissue: Proteomics approach. Biochimie 2023; 211:78-86. [PMID: 36931338 DOI: 10.1016/j.biochi.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
This study aimed to describe the secretome of mesenchymal stem cells derived from feline adipose tissue (AD-MSCs) and compare the effects of different culture conditions on AD-MSC proteomics using a shotgun approach. Adipose tissue was collected from 5 female cats and prepared to culture. Conditioned media was collected at third passage, in which the cells were cultured under 4 conditions, normoxia with fetal bovine serum (N + FBS), hypoxia with FBS (H + FBS), normoxia without FBS (N - FBS), and hypoxia without FBS (H - FBS). Then, the secretome was concentrated and prepared for proteomic approaches. Secretomes cultured with FBS-free medium had more than twice identified proteins in comparison with the secretomes cultured with FBS. In contrast, hypoxic conditions did not increase protein amount and affected only a small proteome fraction. Relevant proteins were related to the extracellular matrix promoting environmental modulation, influencing cell signaling pathways, and providing a suitable environment for cell proliferation and maintenance. Moreover, other proteins were also related to cell adhesion, migration and morphogenesis. Culture conditions can influence protein abundance in AD-MSC secretome, and can give also more specificity to cell and cell-free treatments for different diseases.
Collapse
Affiliation(s)
- Maria Laura Lara
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Marcos Gomides Carvalho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Fabiana Ferreira de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil.
| | - Rubia Alves Schmith
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Viviane Maria Codognoto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Bruna De Vita
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil; International Product Marketing Manager - PROCARE HEALTH, Universitat de Barcelona, Barcelona, Catalunha, Spain
| | - Camila de Paula Freitas Dell'Aqua
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Fernada da Cruz Landim
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Marina Landim E Alvarenga
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil; Omics Animal Biotechnology, Botucatu, São Paulo, Brazil
| |
Collapse
|
57
|
Ra K, Park SC, Lee BC. Female Reproductive Aging and Oxidative Stress: Mesenchymal Stem Cell Conditioned Medium as a Promising Antioxidant. Int J Mol Sci 2023; 24:ijms24055053. [PMID: 36902477 PMCID: PMC10002910 DOI: 10.3390/ijms24055053] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The recent tendency to delay pregnancy has increased the incidence of age-related infertility, as female reproductive competence decreases with aging. Along with aging, a lowered capacity of antioxidant defense causes a loss of normal function in the ovaries and uterus due to oxidative damage. Therefore, advancements have been made in assisted reproduction to resolve infertility caused by reproductive aging and oxidative stress, following an emphasis on their use. The application of mesenchymal stem cells (MSCs) with intensive antioxidative properties has been extensively validated as a regenerative therapy, and proceeding from original cell therapy, the therapeutic effects of stem cell conditioned medium (CM) containing paracrine factors secreted during cell culture have been reported to be as effective as that of direct treatment of source cells. In this review, we summarized the current understanding of female reproductive aging and oxidative stress and present MSC-CM, which could be developed as a promising antioxidant intervention for assisted reproductive technology.
Collapse
Affiliation(s)
- Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| |
Collapse
|
58
|
Joshi JM, Muttigi MS, Upadhya R, Seetharam RN. An overview of the current advances in the treatment of inflammatory diseases using mesenchymal stromal cell secretome. Immunopharmacol Immunotoxicol 2023:1-11. [PMID: 36786742 DOI: 10.1080/08923973.2023.2180388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The growing interest in mesenchymal stromal cell (MSC) therapy has been leading to the utilization of its therapeutic properties in a variety of inflammatory diseases. The clinical translation of the related research from bench to bedside is cumbersome due to some obvious limitations of cell therapy. It is evident from the literature that the MSC secretome components mediate their wide range of functions. Cell-free therapy using MSC secretome is being considered as an emerging and promising area of biotherapeutics. The secretome mainly consists of bioactive factors, free nucleic acids, and extracellular vesicles. Constituents of the secretome are greatly influenced by the cell's microenvironment. The broad array of immunomodulatory properties of MSCs are now being employed to target inflammatory diseases. This review focuses on the emerging MSC secretome therapies for various inflammatory diseases. The mechanism of action of the various anti-inflammatory factors is discussed. The potential of MSC secretome as a viable anti-inflammatory therapy is deliberated.
Collapse
Affiliation(s)
- Jahnavy Madhukar Joshi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manjunatha S Muttigi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Upadhya
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
59
|
Conditioned Medium - Is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management? Stem Cell Rev Rep 2023:10.1007/s12015-023-10517-1. [PMID: 36790694 PMCID: PMC10366316 DOI: 10.1007/s12015-023-10517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND The approaches currently used in osteoarthritis (OA) are mainly short-term solutions with unsatisfactory outcomes. Cell-based therapies are still controversial (in terms of the sources of cells and the results) and require strict culture protocol, quality control, and may have side-effects. A distinct population of stromal cells has an interesting secretome composition that is underrated and commonly ends up as biological waste. Their unique properties could be used to improve the existing techniques due to protective and anti-ageing properties. SCOPE OF REVIEW In this review, we seek to outline the advantages of the use of conditioned media (CM) and exosomes, which render them superior to other cell-based methods, and to summarise current information on the composition of CM and their effect on chondrocytes. MAJOR CONCLUSIONS CM are obtainable from a variety of mesenchymal stromal cell (MSC) sources, such as adipose tissue, bone marrow and umbilical cord, which is significant to their composition. The components present in CMs include proteins, cytokines, growth factors, chemokines, lipids and ncRNA with a variety of functions. In most in vitro and in vivo studies CM from MSCs had a beneficial effect in enhance processes associated with chondrocyte OA pathomechanism. GENERAL SIGNIFICANCE This review summarises the information available in the literature on the function of components most commonly detected in MSC-conditioned media, as well as the effect of CM on OA chondrocytes in in vitro culture. It also highlights the need to standardise protocols for obtaining CM, and to conduct clinical trials to transfer the effects obtained in vitro to human subjects.
Collapse
|
60
|
Lan J, Zhou Y, Wang H, Tang J, Kang Y, Wang P, Liu X, Peng Y. Protective effect of human umbilical cord mesenchymal stem cell derived conditioned medium in a mutant TDP-43 induced motoneuron-like cellular model of ALS. Brain Res Bull 2023; 193:106-116. [PMID: 36563944 DOI: 10.1016/j.brainresbull.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multi-factor neurodegenerative disease, characterized by the loss of motor neurons. TAR DNA-binding protein 43 (TDP-43) mutation, accumulation and aggregation, as well as oxidative stress are recognized as major pathological denominators and biochemical markers for ALS. Recently, human umbilical cord mesenchymal stem cell-derived conditioned medium (UC-CM) has been introduced to treat ALS patients. However, there is no research for the protective effect of UC-CM on the TDP-43 model of ALS. In this study, we evaluated the potential neuroprotective effect of UC-CM on a cellular ALS model expressing TDP-43mutant M337V, as well as its underlying mechanism. We found that 24 h UC-CM treatment could protect M337V expressing motor neurons by increasing cell viability and reducing LDH leakage. Furthermore, the aggregation of M337V, generation of ROS, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), protein carbonyl and 8-OHdG were also reduced by UC-CM, indicating that UC-CM protected cells by reducing oxidative damage. Moreover, UC-CM significantly increased the expression of nuclear Nrf2 and its downstream enzyme HO1. The Nrf2 translocation inhibitor ML385 could inhibit the effect of UC-CM on the cell viability and aggregate of M337V. Our results suggest that UC-CM protect cells against M337V expression by its strong antioxidative effect via Nrf-2/HO-1 axis activation.
Collapse
Affiliation(s)
- Jiaqi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongyue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingshu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peishen Wang
- Department of Cell Transplantation, The third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xuebin Liu
- Department of Cell Transplantation, The third Medical Center of Chinese PLA General Hospital, Beijing 100039, China; Beijing Zhongguang Tianyi Biotechnology Co., Ltd, Beijing 100026, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
61
|
Zou J, Yang W, Cui W, Li C, Ma C, Ji X, Hong J, Qu Z, Chen J, Liu A, Wu H. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnology 2023; 21:14. [PMID: 36642728 PMCID: PMC9841717 DOI: 10.1186/s12951-023-01778-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Tendon-bone insertion (TBI) injuries, such as anterior cruciate ligament injury and rotator cuff injury, are the most common soft tissue injuries. In most situations, surgical tendon/ligament reconstruction is necessary for treating such injuries. However, a significant number of cases failed because healing of the enthesis occurs through scar tissue formation rather than the regeneration of transitional tissue. In recent years, the therapeutic potential of mesenchymal stem cells (MSCs) has been well documented in animal and clinical studies, such as chronic paraplegia, non-ischemic heart failure, and osteoarthritis of the knee. MSCs are multipotent stem cells, which have self-renewability and the ability to differentiate into a wide variety of cells such as chondrocytes, osteoblasts, and adipocytes. Numerous studies have suggested that MSCs could promote angiogenesis and cell proliferation, reduce inflammation, and produce a large number of bioactive molecules involved in the repair. These effects are likely mediated by the paracrine mechanisms of MSCs, particularly through the release of exosomes. Exosomes, nano-sized extracellular vesicles (EVs) with a lipid bilayer and a membrane structure, are naturally released by various cell types. They play an essential role in intercellular communication by transferring bioactive lipids, proteins, and nucleic acids, such as mRNAs and miRNAs, between cells to influence the physiological and pathological processes of recipient cells. Exosomes have been shown to facilitate tissue repair and regeneration. Herein, we discuss the prospective applications of MSC-derived exosomes in TBI injuries. We also review the roles of MSC-EVs and the underlying mechanisms of their effects on promoting tendon-bone healing. At last, we discuss the present challenges and future research directions.
Collapse
Affiliation(s)
- Jiaxuan Zou
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Weinan Yang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Wushi Cui
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Congsun Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Chiyuan Ma
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Xiaoxiao Ji
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Jianqiao Hong
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Zihao Qu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China
| | - Jing Chen
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, People's Republic of China.
| | - An Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China.
| | - Haobo Wu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310002, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, 310002, People's Republic of China.
| |
Collapse
|
62
|
Yamanaka K, Haraguchi Y, Takahashi H, Kawashima I, Shimizu T. Development of serum-free and grain-derived-nutrient-free medium using microalga-derived nutrients and mammalian cell-secreted growth factors for sustainable cultured meat production. Sci Rep 2023; 13:498. [PMID: 36627406 PMCID: PMC9832167 DOI: 10.1038/s41598-023-27629-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Considering the amount of global resources and energy consumed, and animal welfare issues associated with traditional meat production, cultured meat production has been proposed as a solution to these problems and is attracting worldwide attention. Cultured meat is produced by culturing/proliferating animal muscle cells in vitro. This process requires significant amounts of culture medium, which accounts to a major portion of the production cost. Furthermore, it is composed of nutrients derived from grains and heterotrophic microorganisms and fetal bovine serum (FBS), which will impact the sustainability of cultured meat in future. Here, we developed a novel medium containing nutrients extracted from microalga and cell-secreted growth factors. First, rat liver epithelial RL34 cells were cultured by adding Chlorella vulgaris extract (CVE) to inorganic salt solution. The supernatant, containing the RL34 cell-secreted growth factors, was used as the conditioned medium (CM). This CM, with CVE added as a nutrient source, was applied to primary bovine myoblast cultures. This serum-free and grain-derived-nutrient-free medium promoted the proliferation of bovine myoblasts, the main cell source for cultured beef. Our findings will allow us to take a major step toward reducing production costs and environmental impacts, leading to an expansion of the cultured meat market.
Collapse
Affiliation(s)
- Kumiko Yamanaka
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ikko Kawashima
- IntegriCulture Inc., The Advanced Technology Research Laboratory, Tokyo Women's Medical University, TWIns N101, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
63
|
Adipose-derived stem cells exosome and its potential applications in autologous fat grafting. J Plast Reconstr Aesthet Surg 2023; 76:219-229. [PMID: 36527904 DOI: 10.1016/j.bjps.2022.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022]
Abstract
Recently, there has been renewed interest in autologous fat grafting both for its filler and regenerative traits. The universal application, however, has been impeded by the unstable survival rates and complications. There has been substantial research undertaken on the role of adipose-derived stem cells (ADSCs) involved in fat graft fates including angiogenesis, adipogenesis, and inflammatory regulation. As the effectors of their parental cells, ADSC-derived exosomes (ADSC-exos) encapsulating multiple bioactive cargoes mediate cell-to-cell communication in a paracrine manner. ADSC-exos have received much attention for their biocompatible and efficient therapeutic potentials as "cell-free therapy" in plastic surgery, including increasing fat grafting survival rates. In this review, we summarize the current knowledge about the biological basis of ADSC-exos, ADSC-related mechanisms of fat survival, research updates of ADSC-exos in autologous fat grafting, and discuss some challenges along with research prospects.
Collapse
|
64
|
Aghaei Z, Karbalaei N, Namavar MR, Haghani M, Razmkhah M, Ghaffari MK, Nemati M. Neuroprotective Effect of Wharton's Jelly-Derived Mesenchymal Stem Cell-Conditioned Medium (WJMSC-CM) on Diabetes-Associated Cognitive Impairment by Improving Oxidative Stress, Neuroinflammation, and Apoptosis. Stem Cells Int 2023; 2023:7852394. [PMID: 37081849 PMCID: PMC10113062 DOI: 10.1155/2023/7852394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
According to strong evidence, diabetes mellitus increases the risk of cognitive impairment. Mesenchymal stem cells have been shown to be potential therapeutic agents for neurological disorders. In the current study, we aimed to examine the effects of Wharton's jelly-derived mesenchymal stem cell-conditioned medium (WJMSC-CM) on learning and memory, oxidative stress, apoptosis, and histological changes in the hippocampus of diabetic rats. Randomly, 35 male Sprague Dawley rats weighing 260-300 g were allocated into five groups: control, diabetes, and three diabetic groups treated with insulin, WJMSC-CM, and DMEM. The injections of insulin (3 U/day, S.C.) and WJMSC-CM (10 mg/week, I.P.) were done for 60 days. The Morris water maze and open field were used to measure cognition and anxiety-like behaviors. Colorimetric assays were used to determine hippocampus glutathione (GSH), malondialdehyde (MDA) levels, and antioxidant enzyme activity. The histopathological evaluation of the hippocampus was performed by Nissl staining. The expression levels of Bax, Bcl-2, BDNF, and TNF-α were detected by real-time polymerase chain reaction (RT-PCR). According to our findings, WJMSC-CM significantly reduced and increased blood glucose and insulin levels, respectively. Enhanced cognition and improved anxiety-like behavior were also found in WJMSC-CM-treated diabetic rats. In addition, WJMSC-CM treatment reduced oxidative stress by lowering MDA and elevating GSH and antioxidant enzyme activity. Reduced TNF-α and enhanced Bcl-2 gene expression levels and elevated neuronal and nonneuronal (astrocytes and oligodendrocytes) cells were detected in the hippocampus of WJMSC-CM-treated diabetic rats. In conclusion, WJMSC-CM alleviated diabetes-related cognitive impairment by reducing oxidative stress, neuroinflammation, and apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Zohre Aghaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
65
|
Chang YF, Cheng YH, Ko YC, Chiou SH, Liu CJL. Anti-apoptotic and autophagic effect: Using conditioned medium from human bone marrow mesenchymal stem cells to treat human trabecular meshwork cells. Regen Ther 2022; 22:50-58. [PMID: 36618489 PMCID: PMC9804247 DOI: 10.1016/j.reth.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Glaucoma is a vision-threatening disease associated with accelerated aging of trabecular meshwork (TM) which results in elevated intraocular pressure (IOP). Increased oxidative stress in TM plays an important role in cellular molecular damage which leads to senescence. Autophagy is an intracellular lysosomal degradation process which is activated when cells are under stressful condition, and emerging studies have demonstrated increased expression of modulators of apoptosis and expression of autophagic cascade in ex-vivo TM specimens or cultured TM cells under oxidative stress. Recently, studies have shown neuroprotective and IOP-lowering effects after transplanting mesenchymal stem cells (MSCs) or injecting condition medium (CM) of MSCs into ocular hypertension animal models. However, knowledge of the underlying mechanism accounting for these effects is limited. Using condition medium (CM) from human bone marrow-derived mesenchymal stem cells (BM-MSCs), we investigated the effects of the CM derived from BM-MSCs on TM autophagy and apoptosis. Methods H2O2 was added to culture medium of human TM cells to mimic oxidative damage in glaucomatous eyes, and the autophagic and anti-apoptotic effects of BM-MSCs-derived CM was explored on the oxidatively damaged cells. Mitochondrial ROS production was examined by MitoSOX™, apoptosis was evaluated using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) staining, and the expression of proteins involved in autophagy as well as extracellular matrix was investigated via Western blot. Results There were no significant differences in TM cell viability when the cells were treated with different concentrations of CM in the absence of oxidative stress. Cell viability was significantly higher in oxidatively damaged TM cells treated with 1X or 5X CM compared to untreated TM cells under oxidative stress. The mitochondrial ROS level significantly increased with oxidative stress, which was mitigated in the CM treatment groups. DNA fragmentation significantly decreased in oxidatively stressed TM cells after treatment with CM. LCB3 II/LCB3 I was significantly elevated in the oxidative stress group compared to the control group and was significantly decreased in the CM treatment groups. Expression of fibronectin was not significantly different among the groups. Conclusion The CM derived from human BM-MSCs has the capacity to rescue oxidatively damaged human TM cells associated with decreased autophagy and apoptosis. The BM-MSCs CM has potential for slowing down age- and disease-related degeneration of TM in patients with glaucoma, facilitating success in the control of IOP.
Collapse
Affiliation(s)
- Yu-Fan Chang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan,National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Hsin Cheng
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Chieh Ko
- National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan,National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan,Corresponding author. Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, Department of Medical Research, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, 112, Taiwan, ROC. Fax: +886-2-28757133.
| | - Catherine Jui-Ling Liu
- National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan,Corresponding author. National Yang Ming Chiao Tung University School of Medicine, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, ROC, Department of Ophthalmology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei, 112, Taiwan, ROC. Fax: +886-2-28757133.
| |
Collapse
|
66
|
Rodríguez-Eguren A, Gómez-Álvarez M, Francés-Herrero E, Romeu M, Ferrero H, Seli E, Cervelló I. Human Umbilical Cord-Based Therapeutics: Stem Cells and Blood Derivatives for Female Reproductive Medicine. Int J Mol Sci 2022; 23:ijms232415942. [PMID: 36555583 PMCID: PMC9785531 DOI: 10.3390/ijms232415942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
There are several conditions that lead to female infertility, where traditional or conventional treatments have limited efficacy. In these challenging scenarios, stem cell (SC) therapies have been investigated as alternative treatment strategies. Human umbilical cord (hUC) mesenchymal stem cells (hUC-MSC), along with their secreted paracrine factors, extracts, and biomolecules, have emerged as promising therapeutic alternatives in regenerative medicine, due to their remarkable potential to promote anti-inflammatory and regenerative processes more efficiently than other autologous treatments. Similarly, hUC blood derivatives, such as platelet-rich plasma (PRP), or isolated plasma elements, such as growth factors, have also demonstrated potential. This literature review aims to summarize the recent therapeutic advances based on hUC-MSCs, hUC blood, and/or other plasma derivatives (e.g., extracellular vesicles, hUC-PRP, and growth factors) in the context of female reproductive medicine. We present an in-depth analysis of the principal molecules mediating tissue regeneration, compiling the application of these therapies in preclinical and clinical studies, within the context of the human reproductive tract. Despite the recent advances in bioengineering strategies that sustain delivery and amplify the scope of the therapeutic benefits, further clinical trials are required prior to the wide implementation of these alternative therapies in reproductive medicine.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 05610, USA
| | | | - Emilio Francés-Herrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Mónica Romeu
- Gynecological Service, Consortium General University Hospital of Valencia, 46014 Valencia, Spain
| | - Hortensia Ferrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 05610, USA
- IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
| | - Irene Cervelló
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain
- Correspondence: or
| |
Collapse
|
67
|
Abdul Ghani N‘I, Razali RA, Chowdhury SR, Fauzi MB, Bin Saim A, Ruszymah BHI, Maarof M. Effect of Different Collection Times of Dermal Fibroblast Conditioned Medium (DFCM) on In Vitro Re-Epithelialisation Process. Biomedicines 2022; 10:biomedicines10123203. [PMID: 36551960 PMCID: PMC9775936 DOI: 10.3390/biomedicines10123203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
A key event in wound healing is re-epithelialisation, which is mainly regulated via paracrine signalling of cytokines, chemokines, and growth factors secreted by fibroblasts. Fibroblast-secreted factors can be collected from the used culture medium, known as dermal fibroblast conditioned medium (DFCM). The goal of this study was to optimise the culture condition to acquire DFCM and evaluate its effect on keratinocyte attachment, proliferation, migration, and differentiation. Confluent fibroblasts were cultured with serum-free keratinocyte-specific (DFCM-KM) and fibroblast-specific (DFCM-FM) medium at different incubation times (Days 1, 2, and 3). DFCM collected after 3 days of incubation (DFCM-KM-3 and DFCM-FM-3) contained a higher protein concentration compared to other days. Supplementation of DFCM-KM-3 enhanced keratinocyte attachment, while DFCM-FM-3 significantly increased the keratinocyte wound-healing rate, with an increment of keratinocyte area and collective cell migration, which was distinctly different from DFCM-KM-3 or control medium. Further analysis confirmed that the presence of calcium at higher concentrations in DFCM-FM facilitated the changes. The confluent dermal fibroblasts after 3 days of incubation with serum-free culture medium produced higher proteins in DFCM, resulting in enhanced in vitro re-epithelialisation. These results suggest that the delivery of DFCM could be a potential treatment strategy for wound healing.
Collapse
Affiliation(s)
- Nurul ‘Izzah Abdul Ghani
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Rabiatul Adawiyah Razali
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Shiplu Roy Chowdhury
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | | | - Binti Haji Idrus Ruszymah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence: or ; Tel.: +603-91457685; Fax: +603-91457678
| |
Collapse
|
68
|
Isildar B, Ozkan S, Ercin M, Gezginci-Oktayoglu S, Oncul M, Koyuturk M. 2D and 3D cultured human umbilical cord-derived mesenchymal stem cell-conditioned medium has a dual effect in type 1 diabetes model in rats: immunomodulation and beta-cell regeneration. Inflamm Regen 2022; 42:55. [PMID: 36451229 PMCID: PMC9710085 DOI: 10.1186/s41232-022-00241-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a T-cell-mediated autoimmune disease characterized by the irreversible destruction of insulin-producing β-cells in pancreatic islets. Helper and cytotoxic T-cells and cytokine production, which is impaired by this process, take a synergetic role in β-cell destruction, and hyperglycemia develops due to insulin deficiency in the body. Mesenchymal stem cells (MSCs) appear like an excellent therapeutic tool for autoimmune diseases with pluripotent, regenerative, and immunosuppressive properties. Paracrine factors released from MSCs play a role in immunomodulation by increasing angiogenesis and proliferation and suppressing apoptosis. In this context, the study aims to investigate the therapeutic effects of MSC's secretomes by conditioned medium (CM) obtained from human umbilical cord-derived MSCs cultured in 2-dimensional (2D) and 3-dimensional (3D) environments in the T1D model. METHODS First, MSCs were isolated from the human umbilical cord, and the cells were characterized. Then, two different CMs were prepared by culturing MSCs in 2D and 3D environments. The CM contents were analyzed in terms of total protein, IL-4, IL-10, IL-17, and IFN-λ. In vivo studies were performed in Sprague-Dawley-type rats with an autoimmune T1D model, and twelve doses of CM were administered intraperitoneally for 4 weeks within the framework of a particular treatment model. In order to evaluate immunomodulation, the Treg population was determined in lymphocytes isolated from the spleen after sacrification, and IL-4, IL-10, IL-17, and IFN-λ cytokines were analyzed in serum. Finally, β-cell regeneration was evaluated immunohistochemically by labeling Pdx1, Nkx6.1, and insulin markers, which are critical for the formation of β-cells. RESULTS Total protein and IL-4 levels were higher in 3D-CM compared to 2D-CM. In vivo results showed that CMs induce the Treg population and regulate cytokine release. When the immunohistochemical results were evaluated together, it was determined that CM application significantly increased the rate of β-cells in the islets. This increase was at the highest level in the 3D-CM applied group. CONCLUSION The dual therapeutic effect of MSC-CM on immunomodulation and homeostasis/regeneration of β-cells in the T1D model has been demonstrated. Furthermore, this effect could be improved by using 3D scaffolds for culturing MSCs while preparing CM.
Collapse
Affiliation(s)
- Basak Isildar
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serbay Ozkan
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Ercin
- grid.9601.e0000 0001 2166 6619Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Selda Gezginci-Oktayoglu
- grid.9601.e0000 0001 2166 6619Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Mahmut Oncul
- grid.506076.20000 0004 1797 5496Department of Gynecology and Obstetrics, Cerrahpasa Faculty of Medicine, Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Meral Koyuturk
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
69
|
Martin R, Lei R, Zeng Y, Zhu J, Chang H, Ye H, Cui Z. Membrane Applications in Autologous Cell Therapy. MEMBRANES 2022; 12:1182. [PMID: 36557091 PMCID: PMC9788437 DOI: 10.3390/membranes12121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Stem cell and cell therapies, particularly autologous cell therapies, are becoming a common practice. However, in order for these technologies to achieve wide-scale clinical application, the prohibitively high cost associated with these therapies must be addressed through creative engineering. Membranes can be a disruptive technology to reshape the bioprocessing and manufacture of cellular products and significantly reduce the cost of autologous cell therapies. Examples of successful membrane applications include expansions of CAR-T cells, various human stem cells, and production of extracellular vesicles (EVs) using hollow fibre membrane bioreactors. Novel membranes with tailored functions and surface properties and novel membrane modules that can accommodate the changing needs for surface area and transport properties are to be developed to fulfil this key role.
Collapse
Affiliation(s)
- Risto Martin
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Rui Lei
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Yida Zeng
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Jiachen Zhu
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Hong Chang
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| | - Zhanfeng Cui
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| |
Collapse
|
70
|
Kholodenko IV, Kholodenko RV, Majouga AG, Yarygin KN. Apoptotic MSCs and MSC-Derived Apoptotic Bodies as New Therapeutic Tools. Curr Issues Mol Biol 2022; 44:5153-5172. [PMID: 36354663 PMCID: PMC9688732 DOI: 10.3390/cimb44110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Over the past two decades, mesenchymal stem cells (MSCs) have shown promising therapeutic effects both in preclinical studies (in animal models of a wide range of diseases) and in clinical trials. However, the efficacy of MSC-based therapy is not always predictable. Moreover, despite the large number of studies, the mechanisms underlying the regenerative potential of MSCs are not fully elucidated. Recently, it has been reliably established that transplanted MSCs can undergo rapid apoptosis and clearance from the recipient's body, still exhibiting therapeutic effects, especially those associated with their immunosuppressive/immunomodulating properties. The mechanisms underlying these effects can be mediated by the efferocytosis of apoptotic MSCs by host phagocytic cells. In this concise review, we briefly describe three types of MSC-generated extracellular vesicles, through which their therapeutic functions can potentially be carried out; we focused on reviewing recent data on apoptotic MSCs and MSC-derived apoptotic bodies (MSC-ApoBDs), their functions, and the mechanisms of their therapeutic effects.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
71
|
Molaei S, Amiri F, Salimi R, Ferdowsi S, Bahadori M. Therapeutic effects of mesenchymal stem cells-conditioned medium derived from suspension cultivation or silymarin on liver failure mice. Mol Biol Rep 2022; 49:10315-10325. [PMID: 36097106 DOI: 10.1007/s11033-022-07785-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Common treatments of liver disease failed to meet all the needs in this important medical field. It results in an urgent need for proper some new adjuvant therapies. Mesenchymal stem cells (MSCs) and their derivatives are promising tools in this regard. We aimed to compare the Silymarin, as traditional treatment with mesenchymal stem cell conditioned medium (MSC-CM), as a novel strategy, both with therapeutic potentialities in term of liver failure (LF) treatment. METHODS AND RESULTS Mice models with liver failure were induced with CCl4 and were treated in the groups as follows: normal mice receiving DMEM-LG medium as control, LF-mice receiving DMEM-LG medium as sham, LF-mice receiving Silymarin as LF-SM, and LF-mice receiving MSC sphere CM as LF-MSC-CM. Biochemical, histopathological, molecular and protein level parameters were evaluated using blood and liver samples. Liver enzymes, MicroRNA-122 values as well as necrotic score were significantly lower in the LF-SM and LF-MSC-CM groups compared to sham. LF-SM showed significantly higher level of total antioxidant capacity and malondialdehyde than that of LF-MSC-CM groups. Sph-MSC-CM not only induced more down-regulated expression of fibrinogen-like protein 1 and receptor interacting protein kinases1 but also led to higher expression level of keratinocyte growth factor. LF-MSC-CM showed less mortality rate compared to other groups. CONCLUSIONS Hepato-protective potentialities of Sph-MSC-CM are comparable to those of Silymarin. More inhibition of necroptosis/ necrosis and inflammation might result in rapid liver repair in case of MSC-CM administration.
Collapse
Affiliation(s)
- Sedigheh Molaei
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Rasoul Salimi
- Department of Emergency Medicine, Besat Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Ferdowsi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Marzie Bahadori
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
72
|
Ozkan S, Isildar B, Ercin M, Gezginci-Oktayoglu S, Konukoglu D, Neşetoğlu N, Oncul M, Koyuturk M. Therapeutic potential of conditioned medium obtained from deferoxamine preconditioned umbilical cord mesenchymal stem cells on diabetic nephropathy model. Stem Cell Res Ther 2022; 13:438. [PMID: 36056427 PMCID: PMC9438289 DOI: 10.1186/s13287-022-03121-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background The therapeutic potential of mesenchymal stem cells (MSCs)-derived conditioned media (CM) can be increased after preconditioning with various chemical agents. The aim of this study is comparative evaluation of effects of N-CM and DFS-CM which are collected from normal (N) and deferoxamine (DFS) preconditioned umbilical cord-derived MSCs on rat diabetic nephropathy (DN) model. Methods After incubation of the MSCs in serum-free medium with/without 150 µM DFS for 48 h, the contents of N-CM and DFS-CM were analyzed by enzyme-linked immunosorbent assay. Diabetes (D) was induced by single dose of 55 mg/kg streptozotocin. Therapeutic effects of CMs were evaluated by biochemical, physical, histopathological and immunohistochemical analysis. Results The concentrations of vascular endothelial growth factor alpha, nerve growth factor and glial-derived neurotrophic factor in DFS-CM increased, while one of brain-derived neurotrophic factor decreased in comparison with N-CM. The creatinine clearance rate increased significantly in both treatment groups, while the improvement in albumin/creatinine ratio and renal mass index values were only significant for D + DFS-CM group. Light and electron microscopic deteriorations and loss of podocytes-specific nephrin and Wilms tumor-1 (WT-1) expressions were significantly restored in both treatment groups. Tubular beclin-1 expression was significantly increased for DN group, but it decreased in both treatment groups. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cell death increased in the tubules of D group, while it was only significantly decreased for D + DFS-CM group. Conclusions DFS-CM can be more effective in the treatment of DN by reducing podocyte damage and tubular apoptotic cell death and regulating autophagic activity with its more concentrated secretome content than N-CM. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03121-6.
Collapse
Affiliation(s)
- Serbay Ozkan
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey
| | - Basak Isildar
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey
| | - Merve Ercin
- Biology Department, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Selda Gezginci-Oktayoglu
- Biology Department, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Dildar Konukoglu
- Medical Biochemistry Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Neşet Neşetoğlu
- Faculty of Pharmacy, Drug Application and Research Center, Istanbul University, Istanbul, Turkey
| | - Mahmut Oncul
- Cerrahpasa Faculty of Medicine, Obstetrics and Gynecology Department, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meral Koyuturk
- Histology and Embryology Department, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Kocamustafapaşa Street, 34098, Istanbul, Turkey.
| |
Collapse
|
73
|
Yuan A, Gu Y, Bian Q, Wang R, Xu Y, Ma X, Zhou Y, Gao J. Conditioned media-integrated microneedles for hair regeneration through perifollicular angiogenesis. J Control Release 2022; 350:204-214. [PMID: 35961471 DOI: 10.1016/j.jconrel.2022.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Androgenetic alopecia (AGA), the most prevalent type of hair loss in clinic, is induced partly by insufficient perifollicular vascularization. Here we designed a dissolvable microneedles (MNs) patch that was loaded with conditioned media (CM) derived from hypoxia-pretreated mesenchymal stem cells, which contained elevated HIF-1α. The CM-integrated MNs patch (designated as CM-MNs) can puncture the stratum corneum and deliver the pro-angiogenic factors directly into skin in a one-step and minimally invasive manner. Meanwhile, the administration of CM-MNs induced a certain mechanical stimulation on the skin, which can also promote neovascularization. With the combined effects of the pro-angiogenic factors in CM and the mechanical stimulation induced by MNs, CM-MNs successfully boosted perifollicular vascularization, and activated hair follicle stem cells, thereby inducing notably faster hair regeneration at a lower administration frequency on AGA mouse model compared with minoxidil. Furthermore, we proved that the inhibition of perifollicular angiogenesis restrained the awakening of hair follicle stem cells, elucidating the tight correlation between perifollicular angiogenesis and the activation of hair follicle stem cells. The innovative integration of CM and MNs holds great promise for clinical AGA treatment and indicates that boosting angiogenesis around hair follicles is an effective strategy against AGA.
Collapse
Affiliation(s)
- Anran Yuan
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; College of Pharmacy, Inner Mongolia Medical University, Hohhot 010000, PR China
| | - Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaolu Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yanjun Zhou
- Zhejiang Huanling Pharmaceutical Technology Company, Jinhua 321000, PR China
| | - Jianqing Gao
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, PR China; Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, PR China.
| |
Collapse
|
74
|
Wang Y, Leak RK, Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front Cell Neurosci 2022; 16:980722. [PMID: 36052339 PMCID: PMC9426757 DOI: 10.3389/fncel.2022.980722] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains a major cause of long-term disability and mortality worldwide. The immune system plays an important role in determining the condition of the brain following stroke. As the resident innate immune cells of the central nervous system, microglia are the primary responders in a defense network covering the entire brain parenchyma, and exert various functions depending on dynamic communications with neurons, astrocytes, and other neighboring cells under both physiological or pathological conditions. Microglia activation and polarization is crucial for brain damage and repair following ischemic stroke, and is considered a double-edged sword for neurological recovery. Microglia can exist in pro-inflammatory states and promote secondary brain damage, but they can also secrete anti-inflammatory cytokines and neurotrophic factors and facilitate recovery following stroke. In this review, we focus on the role and mechanisms of microglia-mediated neuroinflammation and neuroplasticity after ischemia and relevant potential microglia-based interventions for stroke therapy.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| | - Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Guodong Cao Yuan Wang
| |
Collapse
|
75
|
Fuentes P, Torres MJ, Arancibia R, Aulestia F, Vergara M, Carrión F, Osses N, Altamirano C. Dynamic Culture of Mesenchymal Stromal/Stem Cell Spheroids and Secretion of Paracrine Factors. Front Bioeng Biotechnol 2022; 10:916229. [PMID: 36046670 PMCID: PMC9421039 DOI: 10.3389/fbioe.2022.916229] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.
Collapse
Affiliation(s)
- Paloma Fuentes
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María José Torres
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Rodrigo Arancibia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Francisco Aulestia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Flavio Carrión
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS, Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
- *Correspondence: Claudia Altamirano,
| |
Collapse
|
76
|
Yang M, Wang L, Chen Z, Hao W, You Q, Lin J, Tang J, Zhao X, Gao WQ, Xu H. Topical administration of the secretome derived from human amniotic epithelial cells ameliorates psoriasis-like skin lesions in mice. Stem Cell Res Ther 2022; 13:393. [PMID: 35922852 PMCID: PMC9351215 DOI: 10.1186/s13287-022-03091-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease. Tissue stem cells have exhibited a therapeutic effect on psoriatic mice. However, the therapeutic effect of topical administration of the secretome derived from tissue stem cells on psoriasis has not been reported. METHODS The secretome from human amniotic epithelial cells (AEC-SC) and human umbilical cord mesenchymal stem cells (UMSC-SC) was topically administrated on the back of imiquimod-induced psoriasis-like mice. Subsequently, we observed the skin lesions and skin inflammation of psoriasis-like mice. Next, we further analyzed the paracrine factors in AEC-SC and UMSC-SC by protein chips. Lastly, the effect of the crucial paracrine factor was investigated by imiquimod-induced psoriasis-like mice. RESULTS We found that AEC-SC had a better therapeutic effect on attenuating psoriasis-like skin lesions including skin scales, skin redness and skin thickness than UMSC-SC, and it had a better regulatory effect on keratinocyte hyperproliferation and altered differentiation. Thus, we focused on AEC-SC. Further study showed that AEC-SC reduced the infiltration of neutrophils and interleukin-17-producing T cells. Next, the analysis of AEC-SC with protein chip revealed that the levels of anti-inflammatory factor interleukin-1 receptor antagonist (IL-1ra) were much higher in AEC-SC compared to that in UMSC-SC. More importantly, the beneficial effect of AEC-SC on psoriasis-like skin lesions and skin inflammation of mice were significantly impaired when neutralizing with IL-1ra antibody, while the recombinant human IL-1ra showed a less protective effect than AEC-SC. CONCLUSIONS The present study demonstrated that AEC-SC could efficiently ameliorate psoriasis-like skin lesions and skin inflammation and IL-1ra plays an essential role. Therefore, topical administration of AEC-SC may provide a novel strategy for treating psoriasis-like inflammatory skin diseases.
Collapse
Affiliation(s)
- Mengbo Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lanqi Wang
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhimin Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weijie Hao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian You
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianhua Lin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jingzhi Tang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xin Zhao
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Med-X Research Institute and School of Biological Medical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
77
|
Azari Matin A, Fattah K, Saeidpour Masouleh S, Tavakoli R, Houshmandkia SA, Moliani A, Moghimimonfared R, Pakzad S, Dalir Abdolahinia E. Synthetic electrospun nanofibers as a supportive matrix in osteogenic differentiation of induced pluripotent stem cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1469-1493. [PMID: 35321624 DOI: 10.1080/09205063.2022.2056941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Continuous remodeling is not able to repair large bone defects. Bone tissue engineering is aimed to repair these defects by creating bone grafts. To do this, several technologies and biomaterials have been employed to fabricate an in vivo-like supportive matrix. Electrospinning is a versatile technique to fabricate porous matrices with interconnected pores and high surface area, replicating in vivo microenvironment. Electrospun scaffolds have been used in a large number of studies to provide a matrix for bone regeneration and osteogenic differentiation of stem cells such as induced pluripotent stem cells (iPSCs). Electrospinning uses both natural and synthetic polymers, either alone or in combination, to fabricate scaffolds. Among them, synthetic polymers have had a great promise in bone regeneration and repair. They allow the fabrication of biocompatible and biodegradable scaffolds with high mechanical properties, suitable for bone engineering. Furthermore, several attempts have done to increase the osteogenic properties of these scaffolds. This paper reviewed the potential of synthetic electrospun scaffolds in osteogenic differentiation of iPSCs. In addition, the approaches to improve the osteogenic differentiation of these scaffolds are addressed.
Collapse
Affiliation(s)
- Arash Azari Matin
- Department of Biology, California State University, Northridge, CA, USA
| | - Khashayar Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Tavakoli
- Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Afshin Moliani
- Isfahan Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Moghimimonfared
- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sahar Pakzad
- Department of Oral and Maxillofacial Surgery, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
78
|
Kim JH, Green DS, Ju YM, Harrison M, Vaughan JW, Atala A, Lee SJ, Jackson JD, Nykiforuk C, Yoo JJ. Identification and characterization of stem cell secretome-based recombinant proteins for wound healing applications. Front Bioeng Biotechnol 2022; 10:954682. [PMID: 35935504 PMCID: PMC9354600 DOI: 10.3389/fbioe.2022.954682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells have been introduced as a promising therapy for acute and chronic wounds, including burn injuries. The effects of stem cell-based wound therapies are believed to result from the secreted bioactive molecules produced by stem cells. Therefore, treatments using stem cell-derived conditioned medium (CM) (referred to as secretome) have been proposed as an alternative option for wound care. However, safety and regulatory concerns exist due to the uncharacterized biochemical content and variability across different batches of CM samples. This study presents an alternative treatment strategy to mitigate these concerns by using fully characterized recombinant proteins identified by the CM analysis to promote pro-regenerative healing. This study analyzed the secretome profile generated from human placental stem cell (hPSC) cultures and identified nine predominantly expressed proteins (ANG-1, FGF-7, Follistatin, HGF, IL-6, Insulin, TGFβ-1, uPAR, and VEGF) that are known to contribute to wound healing and angiogenesis. These proteins, referred to as s (CMFs), were used in combination to test the effects on human dermal fibroblasts (HDFs). Our results showed that CMF treatment increased the HDF growth and accelerated cell migration and wound closure, similar to stem cell and CM treatments. In addition, the CMF treatment promoted angiogenesis by enhancing new vessel formation. These findings suggest that the defined CMF identified by the CM proteomic analysis could be an effective therapeutic solution for wound healing applications. Our strategy eliminates the regulatory concerns present with stem cell-derived secretomes and could be developed as an off-the-shelf product for immediate wound care and accelerating healing.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Ji Hyun Kim,
| | - Denethia S. Green
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Young Min Ju
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mollie Harrison
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - J. William Vaughan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John D. Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
79
|
Song MK, Sun HJ, Cho SW. Conditioned medium of amniotic fluid-derived stromal cells exerts a bone anabolic effect by enhancing progenitor population and angiogenesis. J Tissue Eng Regen Med 2022; 16:923-933. [PMID: 35819750 DOI: 10.1002/term.3340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022]
Abstract
A cell-free approach utilizing the paracrine effects of mesenchymal stromal cells is receiving attention in regenerative medicine. In the present study, we evaluated the effects of a conditioned medium of amniotic fluid-derived stromal cells (AFSC-CM) on bone metabolism. In mice, intraperitoneal injections of AFSC-CM increased bone mass and enhanced bone turnover. The precursor populations of myeloid and mesenchymal lineages, as well as endothelial cells in bone marrow, were also augmented by AFSC-CM administration. In an in vitro culture experiment, AFSC-CM increased osteoclast differentiation of bone marrow-derived macrophages, but had no significant effect on the osteogenic differentiation of preosteoblasts. However, AFSC-CM administration dramatically accelerated the migration and tube formation of endothelial cells, and a cytokine array showed that AFSC-CM contained many angiogenic factors. These results indicate that AFSC-CM exerts a bone anabolic effect by changing the bone marrow microenvironment, including angiogenesis and precursor expansion. Therefore, ameliorating marrow angiogenesis is a potential therapeutic strategy for bone regeneration, for which AFSCs can be a good cellular source.
Collapse
Affiliation(s)
- Min-Kyoung Song
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Daehak-ro, Jongno-gu, Seoul, Korea
| | - Hyun Jin Sun
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Korea
| |
Collapse
|
80
|
S S, Dahal S, Bastola S, Dayal S, Yau J, Ramamurthi A. Stem Cell Based Approaches to Modulate the Matrix Milieu in Vascular Disorders. Front Cardiovasc Med 2022; 9:879977. [PMID: 35783852 PMCID: PMC9242410 DOI: 10.3389/fcvm.2022.879977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) represents a complex and dynamic framework for cells, characterized by tissue-specific biophysical, mechanical, and biochemical properties. ECM components in vascular tissues provide structural support to vascular cells and modulate their function through interaction with specific cell-surface receptors. ECM–cell interactions, together with neurotransmitters, cytokines, hormones and mechanical forces imposed by blood flow, modulate the structural organization of the vascular wall. Changes in the ECM microenvironment, as in post-injury degradation or remodeling, lead to both altered tissue function and exacerbation of vascular pathologies. Regeneration and repair of the ECM are thus critical toward reinstating vascular homeostasis. The self-renewal and transdifferentiating potential of stem cells (SCs) into other cell lineages represents a potentially useful approach in regenerative medicine, and SC-based approaches hold great promise in the development of novel therapeutics toward ECM repair. Certain adult SCs, including mesenchymal stem cells (MSCs), possess a broader plasticity and differentiation potential, and thus represent a viable option for SC-based therapeutics. However, there are significant challenges to SC therapies including, but not limited to cell processing and scaleup, quality control, phenotypic integrity in a disease milieu in vivo, and inefficient delivery to the site of tissue injury. SC-derived or -inspired strategies as a putative surrogate for conventional cell therapy are thus gaining momentum. In this article, we review current knowledge on the patho-mechanistic roles of ECM components in common vascular disorders and the prospects of developing adult SC based/inspired therapies to modulate the vascular tissue environment and reinstate vessel homeostasis in these disorders.
Collapse
|
81
|
Kim JH, Yang H, Kim MW, Cho KS, Kim DS, Yim HE, Atala Z, Ko IK, Yoo JJ. The Delivery of the Recombinant Protein Cocktail Identified by Stem Cell-Derived Secretome Analysis Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury. Front Bioeng Biotechnol 2022; 10:848679. [PMID: 35646873 PMCID: PMC9130839 DOI: 10.3389/fbioe.2022.848679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in cell therapy have shown the potential to treat kidney diseases. As the treatment effects of the cell therapies are mainly attributed to secretomes released from the transplanted cells, the delivery of secretomes or conditioned medium (CM) has emerged as a promising treatment option for kidney disease. We previously demonstrated that the controlled delivery of human placental stem cells (hPSC)-derived CM using platelet-rich plasma (PRP) ameliorated renal damages and restored kidney function in an acute kidney injury (AKI) model in rats. The proteomics study of the hPSC-CM revealed that hPSC secrets several proteins that contribute to kidney tissue repair. Based on our results, this study proposed that the proteins expressed in the hPSC-CM and effective for kidney repair could be used as a recombinant protein cocktail to treat kidney diseases as an alternative to CM. In this study, we analyzed the secretome profile of hPSC-CM and identified five proteins (follistatin, uPAR, ANGPLT4, HGF, VEGF) that promote kidney repair. We investigated the feasibility of delivering the recombinant protein cocktail to improve structural and functional recovery after AKI. The pro-proliferative and anti-apoptotic effects of the protein cocktail on renal cells are demonstrated in vitro and in vivo. The intrarenal delivery of these proteins with PRP ameliorates the renal tubular damage and improved renal function in the AKI-induced rats, yielding similar therapeutic effects compared to the CM delivery. These results indicate that our strategy may provide a therapeutic solution to many challenges associated with kidney repair resulting from the lack of suitable off-the-shelf regenerative medicine products.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Heejo Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Michael W Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kang Su Cho
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Doo Sang Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Hyung Eun Yim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Pediatrics, Korea University College of Medicine, Seoul, South Korea
| | - Zachary Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
82
|
Yano F, Takeda T, Kurokawa T, Tsubaki T, Chijimatsu R, Inoue K, Tsuji S, Tanaka S, Saito T. Effects of conditioned medium obtained from human adipose-derived stem cells on skin inflammation. Regen Ther 2022; 20:72-77. [PMID: 35509265 PMCID: PMC9034017 DOI: 10.1016/j.reth.2022.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
|
83
|
Sasaki GH. Clinical Use of Extracellular Vesicles in the Management of Male and Female Pattern Hair Loss: A Preliminary Retrospective IRB Safety and Efficacy Study. Aesthet Surg J Open Forum 2022; 4:ojac045. [PMID: 35923863 PMCID: PMC9342625 DOI: 10.1093/asjof/ojac045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Pattern hair loss is a common disorder in female and male subjects that may benefit from the use of cell-free XoFlo (Direct Biologics, LLC, Austin, TX) therapy.
Objectives
To assess the safety, efficacy and satisfaction of a single extracellular vesicle (EV) treatment over 6 months.
Methods
A retrospective open-label study among 22 female and 9 male subjects who demonstrated early stages of alopecia or were in remission from prior medical and surgical treatments. The amount of undiluted or diluted volumes of EV solution used was determined by extent and degree of alopecia. Global photography, SGAIS and IGAIS questionnaires, and trichoscan measurements were compared at baseline and six months in three response categories.
Results
Frequent growth responses were observed: older aged females and younger aged males, shorter history of alopecia; earlier stages of hair loss; larger and undiluted volumes of XoFlo; prior positive responses to medical and surgical treatments; and absence or control of disease factors affecting hair. The benefit of micro-needling to therapy was indeterminate. Global photography, trichoscan for density, follicle diameter, terminal: vellus ratio, and SGAIS/IGAIS satisfaction questionnaires at baseline and six months were useful in assessing clinical efficacy. No significant adverse reactions were observed.
Conclusions
Intradermal injections with varying doses of EVs were safe and effective among indicated alopecic female and male subjects. Findings suggest that the presence of positive factors, absence of conditions known to negatively affect hair growth, and administration of larger volumes of XoFlo may have a significant influence on the use of this new cell-free therapy. FDA-approved biologic, multi-centered IRB/ Investigational New Drug (IND) trials are clearly required to determine its future in the management of hair loss.
Collapse
|
84
|
Genome-Wide Gene Expression Profiling Defines the Mechanism of Anticancer Effect of Colorectal Cancer Cell-Derived Conditioned Medium on Acute Myeloid Leukemia. Genes (Basel) 2022; 13:genes13050883. [PMID: 35627268 PMCID: PMC9171579 DOI: 10.3390/genes13050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of leukemia in adults, accounting for 30% of all adult leukemia cases. While there have been recent improvements in the prognosis of the disease, the prognosis remains grim, and further understanding of AML and the development of new therapeutic agents is critical. This study aimed to investigate the potential interaction between colorectal cancer (CRC) cells and AML cells. Unexpectedly, we found that CRC cell-derived conditioned medium (CM) showed anticancer activities in AML cells by inducing apoptosis and differentiation. Mechanistic studies suggest that these phenotypes are closely associated with the suppression of PI3K/AKT/mTOR and MAPK survival signaling, the upregulation of myeloid differentiation-promoting transcription factors c/EBPα and PU.1, and the augmentation of executioner caspases-3/7. Importantly, bioinformatic analyses of our gene expression profiling data, including that derived from principal component analysis (PCA), volcano plots, boxplots, heat maps, kyoto encyclopedia of genes and genomes (KEGG) pathways, and receiver operating characteristic (ROC) curves, which evaluate gene expression profiling data, provided deeper insight into the mechanism in which CRC-CM broadly modulates apoptosis-, cell cycle arrest-, and differentiation-related gene expression, such as BMF, PLSCR3, CDKN1C, and ID2, among others, revealing the genes that exert anticancer effects in AML cells at the genomic level. Collectively, our data suggest that it may be worthwhile to isolate and identify the molecules with tumor-suppressive effects in the CM, which may help to improve the prognosis of patients with AML.
Collapse
|
85
|
Ogata K, Moriyama M, Matsumura-Kawashima M, Kawado T, Yano A, Nakamura S. The Therapeutic Potential of Secreted Factors from Dental Pulp Stem Cells for Various Diseases. Biomedicines 2022; 10:biomedicines10051049. [PMID: 35625786 PMCID: PMC9138802 DOI: 10.3390/biomedicines10051049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
An alternative source of mesenchymal stem cells has recently been discovered: dental pulp stem cells (DPSCs), including deciduous teeth, which can thus comprise potential tools for regenerative medicine. DPSCs derive from the neural crest and are normally implicated in dentin homeostasis. The clinical application of mesenchymal stem cells (MSCs) involving DPSCs contains various limitations, such as high cost, low safety, and cell handling issues, as well as invasive sample collection procedures. Although MSCs implantation offers favorable outcomes on specific diseases, implanted MSCs cannot survive for a long period. It is thus considered that their mediated mechanism of action involves paracrine effects. It has been recently reported that secreted molecules in DPSCs-conditioned media (DPSC-CM) contain various trophic factors and cytokines and that DPSC-CM are effective in models of various diseases. In the current study, we focus on the characteristics of DPSC-CM and their therapeutic potential against various disorders.
Collapse
|
86
|
Zhou J, Ni W, Ling Y, Lv X, Niu D, Zeng Y, Qiu Y, Si Y, Wang Z, Hu J. Human neural stem cells secretome inhibits lipopolysaccharide-induced neuroinflammation through modulating microglia polarization by activating PPAR-γ. Stem Cells Dev 2022; 31:369-382. [PMID: 35481777 DOI: 10.1089/scd.2022.0081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is one of the typical events in multiple neurodegenerative diseases, whereas microglia are the critical participants in the pathogenesis of neuroinflammation. Several studies suggest that neural stem cells (NSCs) present immunomodulatory benefits due to their paracrine products, which contain mounting trophic factors. In the current study, the anti-inflammatory effects of neural stem cells secretome (NSC-S) on lipopolysaccharide (LPS)-induced neuroinflammatory models were evaluated in vivo and the underlying mechanism was further investigated in vitro. It was revealed that NSC-S significantly attenuated the severity of LPS-induced behaviour disorders and inflammatory response in mice. In vitro studies found that NSC-S significantly promoted the polarization of microglia from proinflammatory M1 to anti-inflammatory M2 phenotype, and reduced the production of proinflammatory cytokines while elevated anti-inflammatory cytokines in BV2 cells. NSC-S promoted peroxisome proliferator-activated receptor gamma (PPAR-γ) pathway activation. However, these effects of NSC-S were abrogated by PPAR-γ inhibitor GW9662. Notably, the fatty acid binding protein 5 (FABP5) in NSC-S may mediate PPAR-γ activation and inflammation remission. In summary, NSC-S promotes the regression of LPS-induced microglia-mediated inflammation through the PPAR-γ pathway. This function might be achieved via FABP5.
Collapse
Affiliation(s)
- Jiqin Zhou
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Wei Ni
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yating Ling
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Xiaorui Lv
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Dongdong Niu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yu Zeng
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yun Qiu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Yu Si
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, , Jiangsu, China;
| | - Ziyu Wang
- Health Clinical Laboratories, Health BioMed Co.,Ltd, Ningbo, Zhejiang, China;
| | - Jiabo Hu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, 301, , Jiangsu, China, 212013;
| |
Collapse
|
87
|
Chouaib B, Cuisinier F, Collart-Dutilleul PY. Dental stem cell-conditioned medium for tissue regeneration: Optimization of production and storage. World J Stem Cells 2022; 14:287-302. [PMID: 35662860 PMCID: PMC9136565 DOI: 10.4252/wjsc.v14.i4.287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) effects on tissue regeneration are mainly mediated by their secreted substances (secretome), inducing their paracrine activity. This Conditioned medium (CM), including soluble factors (proteins, nucleic acids, lipids) and extracellular vesicles is emerging as a potential alternative to cell therapy. However, the manufacturing of CM suffers from variable procedures and protocols leading to varying results between studies. Besides, there is no well-defined optimized procedure targeting specific applications in regenerative medicine.
AIM To focus on conditioned medium produced from dental MSC (DMSC-CM), we reviewed the current parameters and manufacturing protocols, in order to propose a standardization and optimization of these manufacturing procedures.
METHODS We have selected all publications investigating the effects of dental MSC secretome in in vitro and in vivo models of tissue regeneration, in accordance with the PRISMA guidelines.
RESULTS A total of 351 results were identified. And based on the inclusion criteria described above, 118 unique articles were included in the systematic review. DMSC-CM production was considered at three stages: before CM recovery (cell sources for CM), during CM production (culture conditions) and after production (CM treatment).
CONCLUSION No clear consensus could be recovered as evidence-based methods, but we were able to describe the most commonly used protocols: donors under 30 years of age, dental pulp stem cells and exfoliated deciduous tooth stem cells with cell passage between 1 and 5, at a confluence of 70% to 80%. CM were often collected during 48 h, and stored at -80 °C. It is important to point out that the preconditioning environment had a significant impact on DMSC-CM content and efficiency.
Collapse
Affiliation(s)
- Batoul Chouaib
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | - Frédéric Cuisinier
- Laboratory Bioengineering and Nanosciences UR_UM104, University of Montpellier, Montpellier 34000, France
| | | |
Collapse
|
88
|
Successful application of conditioned culture medium for the treatment of a chronic wound of an amputation stump: a clinical case. КЛИНИЧЕСКАЯ ПРАКТИКА 2022. [DOI: 10.17816/clinpract105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background: Amputation of the lower extremities is a necessary procedure to save a patient with critical arterial and neurotrophic disorders in the lower extremities. The amputation stump-related complications develop in many patients with diabetes mellitus (up to 40% of the total population).
Clinical case description: Patient Yu., 64 years old, was admitted on October 19, 21 for an outpatient treatment of purulent-necrotic wounds of the amputation stump of the right lower limb. А high amputation was performed on September 24, 2021 due to thrombosis of the femoral-tibial bypass, installed on September 08, 2021 (bypassing below the knee joint gap with a Vascutek 7 mm synthetic prosthesis on the right) and the development of critical ischemia of the right lower limb with necrosis of the distal phalanges of the right foot toes. The wound was assessed according to the Bates-Jensen scale (BJ) and examined according to the developed protocol. The wound treatment was carried out according to an individual plan using a conditioned culture medium from mesenchymal stem cells (CM-MSCs), which stimulates angiogenesis and improves remodeling and recovery in the wound area. CM-MSC application made it possible to reduce the healing time and achieve a scarless closure of the tissue defect.
Conclusion: The use of CM-MSC can be an effective method for healing a purulent-necrotic postoperative wound resulting from amputation of a limb in patients with critical ischemia of the lower extremities.
Collapse
|
89
|
Heydari MB, Ghanbari-Movahed Z, Heydari M, Farzaei MH. In vitro study of the mesenchymal stem cells-conditional media role in skin wound healing process: A systematic review. Int Wound J 2022; 19:2210-2223. [PMID: 35412017 DOI: 10.1111/iwj.13796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-conditioned medium (CM) offers a potential opportunity in the skin wound healing treatment. In this systematic review, an overview of the knowledge on this topic has been provided. A multistep search of the PubMed, Scopus and Science Direct database has been performed to identify papers on MSCs-conditional media used in skin wound healing. Eligibility checks were performed based upon predefined selection criteria. Of the 485 articles initially identified, consequently, only 96 articles apparently related to MSC-conditional media were initially assessed for eligibility. Finally, the 32 articles, strictly regarding the in vitro use of MSCs-conditional media in skin wounds, were analysed. The information analysed highlights the efficacy of MSCs-conditional media on skin wound healing in vitro models. The outcome of this review may be used to guide pre-clinical and clinical studies on the role of MSCs-conditional media in skin wound healing.
Collapse
Affiliation(s)
- Mohammad Bagher Heydari
- Specialist General Surgeon, Taleghani Hospital, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Zahra Ghanbari-Movahed
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Heydari
- Department of Pharmacy Zabol University of Medical Sciences, Zabol, Iran
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
90
|
Kim CK, Won JS, An JY, Lee HJ, Nam AJ, Nam H, Lee JY, Lee KH, Lee SH, Joo KM. Significant Therapeutic Effects of Adult Human Neural Stem Cells for Spinal Cord Injury Are Mediated by Monocyte Chemoattractant Protein-1 (MCP-1). Int J Mol Sci 2022; 23:ijms23084267. [PMID: 35457084 PMCID: PMC9029183 DOI: 10.3390/ijms23084267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
The limited capability of regeneration in the human central nervous system leads to severe and permanent disabilities following spinal cord injury (SCI) while patients suffer from no viable treatment option. Adult human neural stem cells (ahNSCs) are unique cells derived from the adult human brain, which have the essential characteristics of NSCs. The objective of this study was to characterize the therapeutic effects of ahNSCs isolated from the temporal lobes of focal cortical dysplasia type IIIa for SCI and to elucidate their treatment mechanisms. Results showed that the recovery of motor functions was significantly improved in groups transplanted with ahNSCs, where, in damaged regions of spinal cords, the numbers of both spread and regenerated nerve fibers were observed to be higher than the vehicle group. In addition, the distance between neuronal nuclei in damaged spinal cord tissue was significantly closer in treatment groups than the vehicle group. Based on an immunohistochemistry analysis, those neuroprotective effects of ahNSCs in SCI were found to be mediated by inhibiting apoptosis of spinal cord neurons. Moreover, the analysis of the conditioned medium (CM) of ahNSCs revealed that such neuroprotective effects were mediated by paracrine effects with various types of cytokines released from ahNSCs, where monocyte chemoattractant protein-1 (MCP-1, also known as CCL2) was identified as a key paracrine mediator. These results of ahNSCs could be utilized further in the preclinical and clinical development of effective and safe cell therapeutics for SCI, with no available therapeutic options at present.
Collapse
Affiliation(s)
- Chung Kwon Kim
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| | - Jeong-Seob Won
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Jae Yeol An
- Department of Anatomy, Seoul National University College of Medicine, Seoul 03880, Korea; (J.Y.A.); (J.Y.L.)
- Healthcare Division, Partners Investment Co., Ltd., Seoul 06152, Korea
| | - Ho Jin Lee
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Ah-Jin Nam
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Hyun Nam
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Ji Yeoun Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul 03880, Korea; (J.Y.A.); (J.Y.L.)
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - Kyung-Hoon Lee
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
| | - Sun-Ho Lee
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (S.-H.L.); (K.M.J.); Tel.: +82-2-3410-2457 (S.-H.L.); +82-31-299-6073 (K.M.J.); Fax: +82-2-3410-0048 (S.-H.L.); +82-31-299-6029 (K.M.J.)
| | - Kyeung Min Joo
- Medical Innovation Technology Inc. (MEDINNO Inc.), Ace High-End Tower Classic 26, Seoul 08517, Korea; (C.K.K.); (J.-S.W.); (H.N.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.J.L.); (K.-H.L.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea;
- Correspondence: (S.-H.L.); (K.M.J.); Tel.: +82-2-3410-2457 (S.-H.L.); +82-31-299-6073 (K.M.J.); Fax: +82-2-3410-0048 (S.-H.L.); +82-31-299-6029 (K.M.J.)
| |
Collapse
|
91
|
Laksmitawati DR, Noor SU, Sumiyati Y, Hartanto A, Widowati W, Pratami DK. The effect of mesenchymal stem cell-conditioned medium gel on burn wound healing in rat. Vet World 2022; 15:841-847. [PMID: 35698516 PMCID: PMC9178599 DOI: 10.14202/vetworld.2022.841-847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Stem cells are cells that can proliferate to form a new tissue, leading to its use in regenerative therapy. Stem cells will secrete biological factors, such as growth factors, cytokines, and other proteins to their surroundings and culture medium/conditioned medium (CM), altering tissue physiology. These factors can help wound healing, but their effect on third-degree burns is poorly understood. This research aimed to study the activity of mesenchymal stem cell-conditioned medium gel in healing and repairing third-degree burns on rats skin.
Materials and Methods: Twenty-four Sprague–Dawley rats with burn wounds on the dorsal area were divided into four groups; the first group was treated with CM gel, with a concentration equivalent to 0.05% protein, the second group was treated with a placebo gel, the third group with silver sulfadiazine (SSD) cream (SSD-Burnazin contain 10 mg/g SSD), and the fourth group was not given any treatment, for 21 days, and on the final day, the rats were sacrificed, and the skins were taken. All topical treatments completely cover the wound area.
Results: Wound healing process indicators observed include wound diameter, scabs' formation, blister formation, and hair growth every day. The skins taken were processed with hematoxylin-eosin and Masson's trichrome staining. The indicators studied include neutrophil infiltration, mononuclear cell infiltration, neovascularization, collagen area, and re-epithelization ratio.
Conclusion: CM shows better wound healing than other groups and faster hair growth.
Collapse
Affiliation(s)
- Dian Ratih Laksmitawati
- Laboratory of Biochemistry, Faculty of Pharmacy, Universitas Pancasila, Jakarta, 12640, Indonesia
| | - Siti Umrah Noor
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Pancasila, Jakarta, 12640, Indonesia
| | - Yati Sumiyati
- Laboratory of Biochemistry, Faculty of Pharmacy, Universitas Pancasila, Jakarta, 12640, Indonesia
| | - Adrian Hartanto
- Laboratory of Biochemistry, Faculty of Pharmacy, Universitas Pancasila, Jakarta, 12640, Indonesia
| | - Wahyu Widowati
- Medical Research Center, Faculty of Medicine, Maranatha University, Bandung, West Java, 40164, Indonesia
| | - Diah Kartika Pratami
- Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Pancasila University, Jakarta, 12640, Indonesia
| |
Collapse
|
92
|
Inhaled Placental Mesenchymal Stromal Cell Secretome from Two- and Three-Dimensional Cell Cultures Promotes Survival and Regeneration in Acute Lung Injury Model in Mice. Int J Mol Sci 2022; 23:ijms23073417. [PMID: 35408778 PMCID: PMC8998959 DOI: 10.3390/ijms23073417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is a common clinical problem, leading to significant morbidity and mortality, and no effective pharmacotherapy exists. The problem of ARDS causing mortality became more apparent during the COVID-19 pandemic. Biotherapeutic products containing multipotent mesenchymal stromal cell (MMSC) secretome may provide a new therapeutic paradigm for human healthcare due to their immunomodulating and regenerative abilities. The content and regenerative capacity of the secretome depends on cell origin and type of cultivation (two- or three-dimensional (2D/3D)). In this study, we investigated the proteomic profile of the secretome from 2D- and 3D-cultured placental MMSC and lung fibroblasts (LFBs) and the effect of inhalation of freeze-dried secretome on survival, lung inflammation, lung tissue regeneration, fibrin deposition in a lethal ALI model in mice. We found that three inhaled administrations of freeze-dried secretome from 2D- and 3D-cultured placental MMSC and LFB protected mice from death, restored the histological structure of damaged lungs, and decreased fibrin deposition. At the same time, 3D MMSC secretome exhibited a more pronounced trend in lung recovery than 2D MMSC and LFB-derived secretome in some measures. Taking together, these studies show that inhalation of cell secretome may also be considered as a potential therapy for the management of ARDS in patients suffering from severe pneumonia, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, their effectiveness requires further investigation.
Collapse
|
93
|
Arifka M, Wilar G, Elamin KM, Wathoni N. Polymeric Hydrogels as Mesenchymal Stem Cell Secretome Delivery System in Biomedical Applications. Polymers (Basel) 2022; 14:polym14061218. [PMID: 35335547 PMCID: PMC8955913 DOI: 10.3390/polym14061218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Secretomes of mesenchymal stem cells (MSCs) have been successfully studied in preclinical models for several biomedical applications, including tissue engineering, drug delivery, and cancer therapy. Hydrogels are known to imitate a three-dimensional extracellular matrix to offer a friendly environment for stem cells; therefore, hydrogels can be used as scaffolds for tissue construction, to control the distribution of bioactive compounds in tissues, and as a secretome-producing MSC culture media. The administration of a polymeric hydrogel-based MSC secretome has been shown to overcome the fast clearance of the target tissue. In vitro studies confirm the bioactivity of the secretome encapsulated in the gel, allowing for a controlled and sustained release process. The findings reveal that the feasibility of polymeric hydrogels as MSC -secretome delivery systems had a positive influence on the pace of tissue and organ regeneration, as well as an enhanced secretome production. In this review, we discuss the widely used polymeric hydrogels and their advantages as MSC secretome delivery systems in biomedical applications.
Collapse
Affiliation(s)
- Mia Arifka
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Khaled M. Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
- Correspondence: ; Tel.: +62-22-842-888-888
| |
Collapse
|
94
|
Potential Anti-Inflammatory Effects of a New Lyophilized Formulation of the Conditioned Medium Derived from Periodontal Ligament Stem Cells. Biomedicines 2022; 10:biomedicines10030683. [PMID: 35327485 PMCID: PMC8944955 DOI: 10.3390/biomedicines10030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
The mesenchymal stem cells’ (MSCs) secretome includes the bioactive molecules released in the conditioned medium (CM), such as soluble proteins, free nucleic acids, lipids and extracellular vesicles. The secretome is known to mediate some of the beneficial properties related to MSCs, such as anti-inflammatory, anti-apoptotic and regenerative capacities. In this work, we aim to evaluate the anti-inflammatory potential of a new lyophilized formulation of CM derived from human periodontal ligament stem cells (hPDLSCs). With this aim, we treat hPDLSCs with lipopolysaccharide (LPS) and test the anti-inflammatory potential of lyophilized CM (LYO) through the evaluation of wound closure, transcriptomic and immunofluorescence analysis. LPS treatment increased the expression of TLR4 and of genes involved in its signaling and in p38 and NF-κB activation, also increasing the expression of cytokines and chemokines. Interestingly, LYO downregulated the expression of genes involved in Toll-like receptor 4 (TLR-4), nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and p38 signaling. As a consequence, the genes encoding for cytokines and chemokines were also downregulated. Immunofluorescence acquisitions confirmed the downregulation of TLR-4 and NF-κB with the LYO treatment. Moreover, the LYO treatment also increased hPDLSCs’ migration. LYO was demonstrated to contain transforming growth factor (TGF)-β3 and vascular endothelial growth factor (VEGF). These results suggest that LYO represents an efficacious formulation with anti-inflammatory potential and highlights lyophilization as a valid method to produce stable formulations of MSCs’ secretome.
Collapse
|
95
|
Kim D, Kim S, Sung A, Patel N, Wong N, Conboy MJ, Conboy IM. Autologous treatment for ALS with implication for broad neuroprotection. Transl Neurodegener 2022; 11:16. [PMID: 35272709 PMCID: PMC8915496 DOI: 10.1186/s40035-022-00290-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/18/2022] [Indexed: 01/20/2023] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is characterized by a progressive loss of motor neurons (MNs), leading to paralysis, respiratory failure and death within 2–5 years of diagnosis. The exact mechanisms of sporadic ALS, which comprises 90% of all cases, remain unknown. In familial ALS, mutations in superoxide dismutase (SOD1) cause 10% of cases. Methods ALS patient-derived human-induced pluripotent stem cells (ALS hiPSCs, harboring the SOD1AV4 mutation), were differentiated to MNs (ALS-MNs). The neuroprotective effects of conditioned medium (CM) of hESCs (H9), wt hiPSCs (WTC-11) and the ALS iPSCs, on MN apoptosis and viability, formation and maintenance of neurites, mitochondrial activity and expression of inflammatory genes, were examined. For in vivo studies, 200 μl of CM from the ALS iPSCs (CS07 and CS053) was injected subcutaneously into the ALS model mice (transgenic for the human SOD1G93A mutation). Animal agility and strength, muscle innervation and mass, neurological score, onset of paralysis and lifespan of the ALS mice were assayed. After observing significant disease-modifying effects, the CM was characterized biochemically by fractionation, comparative proteomics, and epigenetic screens for the dependence on pluripotency. CM of fibroblasts that were differentiated from the wt hiPSCs lacked any neuroprotective activity and was used as a negative control throughout the studies. Results The secretome of PSCs including the ALS patient iPSCs was neuroprotective in the H2O2 model. In the model with pathogenic SOD1 mutation, ALS iPSC-CM attenuated all examined hallmarks of ALS pathology, rescued human ALS-MNs from denervation and death, restored mitochondrial health, and reduced the expression of inflammatory genes. The ALS iPSC-CM also improved neuro-muscular health and function, and delayed paralysis and morbidity in ALS mice. Compared side by side, cyclosporine (CsA), a mitochondrial membrane blocker that prevents the leakage of mitochondrial DNA, failed to avert the death of ALS-MNs, although CsA and ALS iPSC-CM equally stabilized MN mitochondria and attenuated inflammatory genes. Biochemical characterization, comparative proteomics, and epigenetic screen all suggested that it was the interactome of several key proteins from different fractions of PSC-CM that delivered the multifaceted neuroprotection. Conclusions This work introduces and mechanistically characterizes a new biologic for treating ALS and other complex neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00290-5.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Subin Kim
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Ashley Sung
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Neetika Patel
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Nathan Wong
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
96
|
Anudeep TC, Jeyaraman M, Muthu S, Rajendran RL, Gangadaran P, Mishra PC, Sharma S, Jha SK, Ahn BC. Advancing Regenerative Cellular Therapies in Non-Scarring Alopecia. Pharmaceutics 2022; 14:pharmaceutics14030612. [PMID: 35335987 PMCID: PMC8953616 DOI: 10.3390/pharmaceutics14030612] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Alopecia or baldness is a common diagnosis in clinical practice. Alopecia can be scarring or non-scarring, diffuse or patchy. The most prevalent type of alopecia is non-scarring alopecia, with the majority of cases being androgenetic alopecia (AGA) or alopecia areata (AA). AGA is traditionally treated with minoxidil and finasteride, while AA is treated with immune modulators; however, both treatments have significant downsides. These drawbacks compel us to explore regenerative therapies that are relatively devoid of adverse effects. A thorough literature review was conducted to explore the existing proven and experimental regenerative treatment modalities in non-scarring alopecia. Multiple treatment options compelled us to classify them into growth factor-rich and stem cell-rich. The growth factor-rich group included platelet-rich plasma, stem cell-conditioned medium, exosomes and placental extract whereas adult stem cells (adipose-derived stem cell-nano fat and stromal vascular fraction; bone marrow stem cell and hair follicle stem cells) and perinatal stem cells (umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs), Wharton jelly-derived MSCs (WJ-MSCs), amniotic fluid-derived MSCs (AF-MSCs), and placental MSCs) were grouped into the stem cell-rich group. Because of its regenerative and proliferative capabilities, MSC lies at the heart of regenerative cellular treatment for hair restoration. A literature review revealed that both adult and perinatal MSCs are successful as a mesotherapy for hair regrowth. However, there is a lack of standardization in terms of preparation, dose, and route of administration. To better understand the source and mode of action of regenerative cellular therapies in hair restoration, we have proposed the "À La Mode Classification". In addition, available evidence-based cellular treatments for hair regrowth have been thoroughly described.
Collapse
Affiliation(s)
- Talagavadi Channaiah Anudeep
- Department of Plastic Surgery, Topiwala National Medical College and BYL Nair Ch. Hospital, Mumbai 400008, India;
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- À La Mode Esthétique Studio, Mysuru 570011, India
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (P.G.); (B.-C.A.)
| | - Prabhu Chandra Mishra
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
| | - Shilpa Sharma
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (P.G.); (B.-C.A.)
| |
Collapse
|
97
|
Carvalho GL, Sarra G, Schröter GT, Silva LSRG, Ariga SKK, Gonçalves F, Caballero-Flores HV, Moreira MS. Pro-angiogenic potential of a functionalized hydrogel scaffold as a secretome delivery platform: An innovative strategy for cell homing-based dental pulp tissue engineering. J Tissue Eng Regen Med 2022; 16:472-483. [PMID: 35244346 DOI: 10.1002/term.3294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023]
Abstract
Angiogenesis is a key process that provides a suitable environment for successful tissue engineering and is even more crucial in regenerative endodontic procedures, since the root canal anatomy limits the development of a vascular network supply. Thus, sustainable and accelerated vascularization of tissue-engineered dental pulp constructs remains a major challenge in cell homing approaches. This study aimed to functionalize a chitosan hydrogel scaffold (CS) as a platform loaded with secretomes of stem cells from human exfoliated deciduous teeth (SHEDs) and evaluate its bioactive function and pro-angiogenic properties. Initially, the CS was loaded with SHED secretomes (CS-S), and the release kinetics of several trophic factors were assessed. Proliferation and chemotaxis assays were performed to analyze the effect of functionalized scaffold on stem cells from apical papilla (SCAPs) and the angiogenic potential was analyzed through the Matrigel tube formation assay with co-cultured of human umbilical vein endothelial cells and SCAPs. SHEDs and SCAPs expressed typical levels of mesenchymal stem cell surface markers. CS-S was able to release the trophic factors in a sustained manner, but each factor has its own release kinetics. The CS-S group showed a significantly higher proliferation rate, accelerated the chemotaxis, and higher capacity to form vascular-like structures. CS-S provided a sustained and controlled release of trophic factors, which, in turn, improved proliferation, chemotaxis and all angiogenesis parameters in the co-culture. Thus, the functionalization of chitosan scaffolds loaded with secretomes is a promising platform for cell homing-based tissue engineering.
Collapse
Affiliation(s)
- Giovanna Lopes Carvalho
- Post-Graduation Program in Dentistry, School of Dentistry, Ibirapuera University, São Paulo, Brazil
| | - Giovanna Sarra
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Suely Kunimi Kubo Ariga
- Department of Clinical Medicine, School of Medicine, Emergency Medicine Laboratory, University of São Paulo, São Paulo, Brazil
| | - Flávia Gonçalves
- Post-Graduation Program in Dentistry, School of Dentistry, Ibirapuera University, São Paulo, Brazil
| | | | - Maria Stella Moreira
- Post-Graduation Program in Dentistry, School of Dentistry, Ibirapuera University, São Paulo, Brazil.,Department of Stomatology, A.C. Camargo Cancer Center, São Paulo, Brazil
| |
Collapse
|
98
|
Characterization and functional analysis of the adipose tissue-derived stromal vascular fraction of pediatric patients with osteogenesis imperfecta. Sci Rep 2022; 12:2414. [PMID: 35165317 PMCID: PMC8844034 DOI: 10.1038/s41598-022-06063-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractPediatric patients with Osteogenesis Imperfecta (OI), a heritable connective tissue disorder, frequently suffer from long bone deformations. Surgical correction often results in bone non-unions, necessitating revision surgery with autogenous bone grafting using bone-marrow-derived stem cells (BM-SC) to regenerate bone. BM-SC harvest is generally invasive and limited in supply; thus, adipose tissue's stromal vascular fraction (SVF) has been introduced as an alternative stem cell reservoir. To elucidate if OI patients' surgical site dissected adipose tissue could be used as autologous bone graft in future, we investigated whether the underlying genetic condition alters SVF's cell populations and in vitro differentiation capacity. After optimizing SVF isolation, we demonstrate successful isolation of SVF of pediatric OI patients and non-OI controls. The number of viable cells was comparable between OI and controls, with about 450,000 per gram tissue. Age, sex, type of OI, disease-causing collagen mutation, or anatomical site of harvest did not affect cell outcome. Further, SVF-containing cell populations were similar between OI and controls, and all isolated SVF's demonstrated chondrogenic, adipogenic, and osteogenic differentiation capacity in vitro. These results indicate that SVF from pediatric OI patients could be used as a source of stem cells for autologous stem cell therapy in OI.
Collapse
|
99
|
Salehi MS, Jurek B, Karimi-Haghighi S, Nezhad NJ, Mousavi SM, Hooshmandi E, Safari A, Dianatpour M, Haerteis S, Miyan JA, Pandamooz S, Borhani-Haghighi A. Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review. Rev Neurosci 2022; 33:583-606. [DOI: 10.1515/revneuro-2021-0163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
Abstract
Intranasal delivery of stem cells and conditioned medium to target the brain has attracted major interest in the field of regenerative medicine. In pre-clinical investigations during the last ten years, several research groups focused on this strategy to treat cerebral hypoxia/ischemia in neonates as well as adults. In this review, we discuss the curative potential of stem cells, stem cell derivatives, and their delivery route via intranasal application to the hypoxic/ischemic brain. After intranasal application, stem cells migrate from the nasal cavity to the injured area and exert therapeutic effects by reducing brain tissue loss, enhancing endogenous neurogenesis, and modulating cerebral inflammation that leads to functional improvements. However, application of this administration route for delivering stem cells and/or therapeutic substances to the damaged sites requires further optimization to translate the findings of animal experiments to clinical trials.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Benjamin Jurek
- Institute of Molecular and Cellular Anatomy , University of Regensburg , Regensburg 93053 , Germany
| | - Saeideh Karimi-Haghighi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Nahid Jashire Nezhad
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Seyedeh Maryam Mousavi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Anahid Safari
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Silke Haerteis
- Institute of Molecular and Cellular Anatomy , University of Regensburg , Regensburg 93053 , Germany
| | - Jaleel A. Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology , The University of Manchester , Manchester M13 9PL , UK
| | - Sareh Pandamooz
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Afshin Borhani-Haghighi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| |
Collapse
|
100
|
In Vitro Neuroprotective Effect of the Bovine Umbilical Vein Endothelial Cell Conditioned Medium Mediated by Downregulation of IL-1β, Caspase-3, and Caspase-9 Expression. Vet Sci 2022; 9:vetsci9020048. [PMID: 35202301 PMCID: PMC8878894 DOI: 10.3390/vetsci9020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) and conditioned medium (CM) derived from human umbilical blood cord stem cells (HUBSC) are now being extensively utilized. Human umbilical vein endothelial cells (HUVECs) have the same ability as HUBSC as an option for autologous therapy. In addition, cell therapy using HUVECs may produce protective signals for cerebral vessels and promote neuronal survival after hypoxic–ischemic damage. HUVECs have the same anatomical and physiological structure as bovine umbilical vein endothelial cells (BUVECs). In this study, we aim to determine the ability of BUVEC-CM to reduce inflammation and apoptosis on in vitro neurodegeneration models (PC12 and SH-SY5Y cell lines). BUVEC-CM obtained from the third and fourth passages were analyzed using liquid chromatography–mass spectrometry (LC-MS) and high-resolution mass spectrometry (HR-MS), while the other part was used as a treatment for in vitro model neurodegeneration. The PC12 and SH-SY5Y cell lines were cultured and grouped into seven different treatments, including untreated cells. As the treatment group, cells were given TMT 10 µM in the presence of different doses of CM (25%, 50%, 75%, and 100%); as a control comparison of recent therapy, donepezil was used. In addition, cells with the administration of TMT 10 µM were run as a positive control. Cell viability assay (CCK-8) and enzyme-linked immunosorbent assay (ELISA) were performed to identify the viability and expression of interleukin-1β (IL-1β), caspase-3, and caspase-9 for both PC12 and SH-SY5Y cells. The results showed that BUVEC-CM could significantly reduce IL-1β expression and downregulate caspase-3 and caspase-9, as well as when compared to the donepezil group. Taken together, these results indicate that BUVEC-CM can be used as a potential candidate for neuroprotective agents by reducing the activity of IL-1β and the expression of caspase-9 and caspase-3 in PC12 and SH-SY5Y cells induced by TMT. However, further research still needs to be conducted.
Collapse
|