51
|
Lu A, Williams RO, Maniruzzaman M. 3D printing of biologics-what has been accomplished to date? Drug Discov Today 2024; 29:103823. [PMID: 37949427 DOI: 10.1016/j.drudis.2023.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Three-dimensional (3D) printing is a promising approach for the stabilization and delivery of non-living biologics. This versatile tool builds complex structures and customized resolutions, and has significant potential in various industries, especially pharmaceutics and biopharmaceutics. Biologics have become increasingly prevalent in the field of medicine due to their diverse applications and benefits. Stability is the main attribute that must be achieved during the development of biologic formulations. 3D printing could help to stabilize biologics by entrapment, support binding, or crosslinking. Furthermore, gene fragments could be transited into cells during co-printing, when the pores on the membrane are enlarged. This review provides: (i) an introduction to 3D printing technologies and biologics, covering genetic elements, therapeutic proteins, antibodies, and bacteriophages; (ii) an overview of the applications of 3D printing of biologics, including regenerative medicine, gene therapy, and personalized treatments; (iii) information on how 3D printing could help to stabilize and deliver biologics; and (iv) discussion on regulations, challenges, and future directions, including microneedle vaccines, novel 3D printing technologies and artificial-intelligence-facilitated research and product development. Overall, the 3D printing of biologics holds great promise for enhancing human health by providing extended longevity and enhanced quality of life, making it an exciting area in the rapidly evolving field of biomedicine.
Collapse
Affiliation(s)
- Anqi Lu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
52
|
Ullah M, Bibi A, Wahab A, Hamayun S, Rehman MU, Khan SU, Awan UA, Riaz NUA, Naeem M, Saeed S, Hussain T. Shaping the Future of Cardiovascular Disease by 3D Printing Applications in Stent Technology and its Clinical Outcomes. Curr Probl Cardiol 2024; 49:102039. [PMID: 37598773 DOI: 10.1016/j.cpcardiol.2023.102039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. In recent years, 3D printing technology has ushered in a new era of innovation in cardiovascular medicine. 3D printing in CVD management encompasses various aspects, from patient-specific models and preoperative planning to customized medical devices and novel therapeutic approaches. In-stent technology, 3D printing has revolutionized the design and fabrication of intravascular stents, offering tailored solutions for complex anatomies and individualized patient needs. The advantages of 3D-printed stents, such as improved biocompatibility, enhanced mechanical properties, and reduced risk of in-stent restenosis. Moreover, the clinical trials and case studies that shed light on the potential of 3D printing technology to improve patient outcomes and revolutionize the field has been comprehensively discussed. Furthermore, regulatory considerations, and challenges in implementing 3D-printed stents in clinical practice are also addressed, underscoring the need for standardization and quality assurance to ensure patient safety and device reliability. This review highlights a comprehensive resource for clinicians, researchers, and policymakers seeking to harness the full potential of 3D printing technology in the fight against CVD.
Collapse
Affiliation(s)
- Muneeb Ullah
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ayisha Bibi
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Mahboob Ur Rehman
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Khyber Pakhtunkhwa, Pakistan.
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi, Rawalpindi, Punjab, Pakistan
| | - Noor-Ul-Ain Riaz
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi, Rawalpindi, Punjab, Pakistan.
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - Talib Hussain
- Women Dental College Abbottabad, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
53
|
Aggarwal K, Nagpal K. Three-Dimensional Printing as a Progressive Innovative Tool for Customized and Precise Drug Delivery. Crit Rev Ther Drug Carrier Syst 2024; 41:95-130. [PMID: 38037821 DOI: 10.1615/critrevtherdrugcarriersyst.2023046832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
While using three-dimensional printing, materials are deposited layer by layer in accordance with the digital model created by computer-aided design software. Numerous research teams have shown interest in this technology throughout the last few decades to produce various dosage forms in the pharmaceutical industry. The number of publications has increased since the first printed medicine was approved in 2015 by Food and Drug Administration. Considering this, the idea of creating complex, custom-made structures that are loaded with pharmaceuticals for tissue engineering and dose optimization is particularly intriguing. New approaches and techniques for creating unique medication delivery systems are made possible by the development of additive manufacturing keeping in mind the comparative advantages it has over conventional methods of manufacturing medicaments. This review focuses on three-dimensional printed formulations grouped in orally disintegrated tablets, buccal films, implants, suppositories, and microneedles. The various types of techniques that are involved in it are summarized. Additionally, challenges and applications related to three-dimensional printing of pharmaceuticals are also being discussed.
Collapse
Affiliation(s)
- Kirti Aggarwal
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, AUUP
| | - Kalpana Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, UP-201303, India
| |
Collapse
|
54
|
Wang Z, Wang L, Tang F, Shen C. PLA-Based Composite Panels Prepared via Multi-Material Fused Filament Fabrication and Associated Investigation of Process Parameters on Flexural Properties of the Fabricated Composite. Polymers (Basel) 2023; 16:109. [PMID: 38201774 PMCID: PMC10780428 DOI: 10.3390/polym16010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
This study prepares composite panels with three Polylactic acid (PLA)-based materials via the multi-material fused filament fabrication method. The influences of four processing parameters on the mechanical properties of 3D-printed samples are investigated employing the Taguchi method. These parameters include the relative volume ratio, material printing order, filling pattern, and filling density. A "larger is better" signal-to-noise analysis is performed to identify the optimal combination of printing parameters that yield maximum bending strength and bending modulus of elasticity. The results reveal that the optimal combination of printing parameters that maximizes the bending strength involves a volume ratio of 1:1:2, a material sequence of PLA/foam-agent-modified eco-friendly PLA (ePLA-LW)/glass fiber-reinforced eco-friendly PLA (ePLA-GF), a Gyroid filling pattern, and a filling density of 80%, and the optimal combination of printing parameters for maximum bending modulus involves a volume ratio of 1:2:1 with a material sequence of PLA/ePLA-LW/ePLA-GF, a Grid filling pattern, and 80% filling density. The Taguchi prediction method is utilized to determine an optimal combination of processing parameters for achieving optimal flexural performances, and predicted outcomes are validated through related experiments. The experimental values of strength and modulus are 43.91 MPa and 1.23 GPa, respectively, both very close to the predicted values of 46.87 MPa and 1.2 GPa for strength and modulus. The Taguchi experiments indicate that the material sequence is the most crucial factor influencing the flexural strength of the composite panels. The experiment result demonstrates that the flexural strength and modulus of the first material sequence are 67.72 MPa and 1.53 GPa, while the flexural strength and modulus of the third material sequence are reduced to 27.09 MPa and 0.72 GPa, respectively, only 42% and 47% of the first material sequence. The above findings provide an important reference for improving the performance of multi-material 3D-printed products.
Collapse
Affiliation(s)
- Zhaogui Wang
- Department of Mechanical Engineering, Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Lihan Wang
- Department of Mechanical Engineering, Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Feng Tang
- Houston International Institute, Dalian Maritime University, Dalian 116026, China
| | - Chengyang Shen
- Houston International Institute, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
55
|
Awuah WA, Tenkorang PO, Adebusoye FT, Ng JC, Wellington J, Abdul-Rahman T, Nazir A, Mustapha MJ, Bulut H, Papadakis M. 3D printing in surgery: revolutionizing trauma and fracture care in low and middle-income countries. Postgrad Med J 2023; 100:1-3. [PMID: 37857514 DOI: 10.1093/postmj/qgad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/27/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Affiliation(s)
| | | | | | - Jyi Cheng Ng
- Faculty of Medicine and Health Sciences, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Jack Wellington
- Cardiff University School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| | | | - Abubakar Nazir
- Faculty of Medicine, King Edward Medical University, Nelagumbad, Anarkali, Lahore 54000, Pakistan
| | | | - Halil Bulut
- Cerrahpasa School of Medicine, Istanbul University Cerrahpasa, Istanbul 34320, Turkey
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal 42283, Germany
| |
Collapse
|
56
|
Bell CE, Feizi A, Roytman GR, Ramji AF, Tommasini SM, Wiznia DH. Fabricating Patient-Specific 3D Printed Drill Guides to Treat Femoral Head Avascular Necrosis. RESEARCH SQUARE 2023:rs.3.rs-3650115. [PMID: 38106183 PMCID: PMC10723539 DOI: 10.21203/rs.3.rs-3650115/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Femoral head avascular necrosis (AVN), or death of femoral head tissue due to a lack of blood supply, is a leading cause of total hip replacement for non-geriatric patients. Core decompression (CD) is an effective treatment to re-establish blood flow for patients with AVN. Techniques aimed at improving its efficacy are an area of active research. We propose the use of 3D printed drill guides to accurately guide therapeutic devices for CD. Methods Using femur sawbones, image processing software, and 3D modeling software, we created a custom-built device with pre-determined drill trajectories and tested the feasibility of the 3D printed drill guides for CD. A fellowship trained orthopedic surgeon used the drill guide to position an 8 ga, 230 mm long decompression device in the three synthetic femurs. CT scans were taken of the sawbones with the drill guide and decompression device. CT scans were processed in the 3D modeling software. Descriptive statistics measuring the angular and needle-tip deviation were compared to the original virtually planned model. Results Compared to the original 3D model, the trials had a mean displacement of 1.440±1.03 mm and a mean angle deviation of 1.093±0.749°. Conclusions The drill guides were demonstrated to accurately guide the decompression device along its predetermined drill trajectory. Accuracy was assessed by comparing values to literature-reported values and considered AVN lesion size. This study demonstrates the potential use of 3D printing technology to improve the efficacy of CD techniques.
Collapse
|
57
|
Yasli M, Dabbagh SR, Tasoglu S, Aydin S. Additive manufacturing and three-dimensional printing in obstetrics and gynecology: a comprehensive review. Arch Gynecol Obstet 2023; 308:1679-1690. [PMID: 36635490 DOI: 10.1007/s00404-023-06912-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, is a technology used to create complex 3D structures out of a digital model that can be almost any shape. Additive manufacturing allows the creation of customized, finely detailed constructs. Improvements in 3D printing, increased 3D printer availability, decreasing costs, development of biomaterials, and improved cell culture techniques have enabled complex, novel, and customized medical applications to develop. There have been rapid development and utilization of 3D printing technologies in orthopedics, dentistry, urology, reconstructive surgery, and other health care areas. Obstetrics and Gynecology (OBGYN) is an emerging application field for 3D printing. This technology can be utilized in OBGYN for preventive medicine, early diagnosis, and timely treatment of women-and-fetus-specific health issues. Moreover, 3D printed simulations of surgical procedures enable the training of physicians according to the needs of any given procedure. Herein, we summarize the technology and materials behind additive manufacturing and review the most recent advancements in the application of 3D printing in OBGYN studies, such as diagnosis, surgical planning, training, simulation, and customized prosthesis. Furthermore, we aim to give a future perspective on the integration of 3D printing and OBGYN applications and to provide insight into the potential applications.
Collapse
Affiliation(s)
- Mert Yasli
- Koç University School of Medicine, Koç University, Sariyer, 34450, Istanbul, Turkey
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, 34450, Istanbul, Turkey
- Arçelik Research Center for Creative Industries (KUAR), Koç University, Koç University, Sariyer, 3445, Istanbul, Turkey
- Koc University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, 34450, Istanbul, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, 34450, Istanbul, Turkey
- Arçelik Research Center for Creative Industries (KUAR), Koç University, Koç University, Sariyer, 3445, Istanbul, Turkey
- Koc University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, 34450, Istanbul, Turkey
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Serdar Aydin
- Department of Obstetrics and Gynecology, Koç University Hospital, Davutpaşa Cad. No:4, Zeytinburnu, 34010, Istanbul, Turkey.
- Koç University School of Medicine, Koç University, Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
58
|
Gawande V, Badge A. Clinical Effectiveness of Arthroscopy-Assisted Fixation in the Treatment of Avulsed Posterior Cruciate Ligament Injuries. Cureus 2023; 15:e50152. [PMID: 38186527 PMCID: PMC10771625 DOI: 10.7759/cureus.50152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Avulsed posterior cruciate ligament (PCL) injuries are complex orthopedic challenges that require careful consideration and optimal management. Arthroscopy offers advantages, including smaller incisions, reduced soft tissue disruption, reduced postoperative pain, and improved visualization of intraarticular anatomy. Arthroscopy-assisted fixation results in superior clinical outcomes. Patient-specific factors, graft choice, and timing of surgery significantly impact outcomes. Rehabilitation is vital and requires a tailored approach to restore knee function. Biomechanically, arthroscopy-assisted fixation enhances joint stability and range of motion, reducing the risk of secondary injuries. Advancements in technology and surgical techniques further improve outcomes. Concomitant injuries and incorporation are essential considerations. Arthroscopy-assisted fixation is a recommended approach, but personalized care is crucial for successful recovery. Its precision in reattaching the PCL enhances joint stability and clinical results, aligning with outcomes seen in conventional procedures. Using biocompatible materials in fixation devices has significantly reduced the risk of allergic reactions or complications. This has allowed a faster and smoother recovery process for patients undergoing arthroscopy-assisted fixation. The incorporation of physical therapy and rehabilitation programs after surgery plays a vital role in restoring joint function and preventing muscle atrophy. The combination of advanced technology, surgical techniques, and personalized care has greatly improved the success rate of arthroscopy-assisted fixation procedures. Advancements in technology further improve patient outcomes, but each case should be individually assessed to determine the most appropriate treatment approach.
Collapse
Affiliation(s)
- Vasant Gawande
- Orthopedics, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, IND
| | - Ankit Badge
- Medicine, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research, Nagpur, IND
| |
Collapse
|
59
|
Urkande NK, Mankar N, Nikhade PP, Chandak M. Understanding the Complexities of Cast Post Retention: A Comprehensive Review of Influential Factors. Cureus 2023; 15:e51258. [PMID: 38288201 PMCID: PMC10823198 DOI: 10.7759/cureus.51258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
This comprehensive review delves into the intricate landscape of cast post retention in restorative dentistry, encompassing historical perspectives, contemporary techniques, and future directions. Examining factors ranging from tooth-related considerations to prosthesis-related dynamics, the review provides a detailed analysis of clinical techniques, including step-by-step procedures, common challenges, and innovative advancements. Technological breakthroughs, such as digital impressions, computer-aided design and computer-aided manufacturing (CAD/CAM) technology, three-dimensional (3D) printing, and finite element analysis, are explored for their transformative impact on precision and customization. The discussion extends to the promising future of cast post retention, emphasising emerging materials, the integration of artificial intelligence in treatment planning, and patient-specific approaches. Implications for clinical practice underscore the importance of individualised treatment planning and the adoption of advanced technologies. Recommendations for future research advocate for comprehensive long-term clinical studies, investigations into AI-driven treatment planning, and a focus on patient outcomes and satisfaction. This review consolidates existing knowledge and anticipates a future marked by enhanced precision, individualised care, and improved long-term success in cast post-retained restorations.
Collapse
Affiliation(s)
- Neha K Urkande
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Nikhil Mankar
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pradnya P Nikhade
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Manoj Chandak
- Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
60
|
Reddy K, Gharde P, Tayade H, Patil M, Reddy LS, Surya D. Advancements in Robotic Surgery: A Comprehensive Overview of Current Utilizations and Upcoming Frontiers. Cureus 2023; 15:e50415. [PMID: 38222213 PMCID: PMC10784205 DOI: 10.7759/cureus.50415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Robotic surgery, a groundbreaking advancement in medical technology, has redefined the landscape of surgical procedures. This comprehensive overview explores the multifaceted world of robotic surgery, encompassing its definition, historical development, current applications, clinical outcomes, benefits, emerging frontiers, challenges, and future implications. We delve into the fundamentals of robotic surgical systems, examining their components and advantages. From general and gynecological surgery to urology, cardiac surgery, orthopedics, and beyond, we highlight the diverse specialties where robotic surgery is making a significant impact. The many benefits discussed include improved patient outcomes, reduced complications, faster recovery times, cost-effectiveness, and enhanced surgeon experiences. The outlook reveals a healthcare landscape where robotic surgery is increasingly vital, enabling personalized medicine, bridging healthcare disparities, and advancing surgical precision. However, challenges such as cost, surgeon training, technical issues, ethical considerations, and patient acceptance remain relevant. In conclusion, robotic surgery is poised to continue shaping the future of health care, offering transformative possibilities while emphasizing the importance of collaboration, innovation, and ethical governance.
Collapse
Affiliation(s)
- Kavyanjali Reddy
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pankaj Gharde
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshal Tayade
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mihir Patil
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Lucky Srivani Reddy
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Dheeraj Surya
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
61
|
Neumann M, di Marco G, Iudin D, Viola M, van Nostrum CF, van Ravensteijn BGP, Vermonden T. Stimuli-Responsive Hydrogels: The Dynamic Smart Biomaterials of Tomorrow. Macromolecules 2023; 56:8377-8392. [PMID: 38024154 PMCID: PMC10653276 DOI: 10.1021/acs.macromol.3c00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/21/2023] [Indexed: 12/01/2023]
Abstract
In the past decade, stimuli-responsive hydrogels are increasingly studied as biomaterials for tissue engineering and regenerative medicine purposes. Smart hydrogels can not only replicate the physicochemical properties of the extracellular matrix but also mimic dynamic processes that are crucial for the regulation of cell behavior. Dynamic changes can be influenced by the hydrogel itself (isotropic vs anisotropic) or guided by applying localized triggers. The resulting swelling-shrinking, shape-morphing, as well as patterns have been shown to influence cell function in a spatiotemporally controlled manner. Furthermore, the use of stimuli-responsive hydrogels as bioinks in 4D bioprinting is very promising as they allow the biofabrication of complex microstructures. This perspective discusses recent cutting-edge advances as well as current challenges in the field of smart biomaterials for tissue engineering. Additionally, emerging trends and potential future directions are addressed.
Collapse
Affiliation(s)
- Myriam Neumann
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Greta di Marco
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Dmitrii Iudin
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Martina Viola
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Bas G. P. van Ravensteijn
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht 3508 TB, The Netherlands
| |
Collapse
|
62
|
Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech 2023; 24:228. [PMID: 37964180 DOI: 10.1208/s12249-023-02682-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
This review explores recent advancements and applications of 3D printing in healthcare, with a focus on personalized medicine, tissue engineering, and medical device production. It also assesses economic, environmental, and ethical considerations. In our review of the literature, we employed a comprehensive search strategy, utilizing well-known databases like PubMed and Google Scholar. Our chosen keywords encompassed essential topics, including 3D printing, personalized medicine, nanotechnology, and related areas. We first screened article titles and abstracts and then conducted a detailed examination of selected articles without imposing any date limitations. The articles selected for inclusion, comprising research studies, clinical investigations, and expert opinions, underwent a meticulous quality assessment. This methodology ensured the incorporation of high-quality sources, contributing to a robust exploration of the role of 3D printing in the realm of healthcare. The review highlights 3D printing's potential in healthcare, including customized drug delivery systems, patient-specific implants, prosthetics, and biofabrication of organs. These innovations have significantly improved patient outcomes. Integration of nanotechnology has enhanced drug delivery precision and biocompatibility. 3D printing also demonstrates cost-effectiveness and sustainability through optimized material usage and recycling. The healthcare sector has witnessed remarkable progress through 3D printing, promoting a patient-centric approach. From personalized implants to radiation shielding and drug delivery systems, 3D printing offers tailored solutions. Its transformative applications, coupled with economic viability and sustainability, have the potential to revolutionize healthcare. Addressing material biocompatibility, standardization, and ethical concerns is essential for responsible adoption.
Collapse
Affiliation(s)
- Lorca Alzoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan.
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, LN6 7TS, UK.
| |
Collapse
|
63
|
Soni P, Shrivastava P, Rai SK. Development of reduced volume endosseous cuspid tooth implant using topology optimization by SIMP technique for improved osseointegration. Comput Methods Biomech Biomed Engin 2023:1-15. [PMID: 37950447 DOI: 10.1080/10255842.2023.2279939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/01/2023] [Indexed: 11/12/2023]
Abstract
The article aims to design and develop a topology-optimized endosseous cuspid tooth implant of the maxilla region. The manuscript presents a numerical analysis of the resulting von Mises stresses and effective strain resulting in the topology-optimized implant with occlusal loading of 110 N. Solid Isotropic Material with Penalization (SIMP) method is employed for topology optimization and four different models, namely model-1, model-2, model-3, and model-4, are developed based on volume reduction rates of 8%, 16%, 24%, and 32%, respectively. FEA results highlight that the maximum stress and strain in the screw increases with volume reduction rates. The comparative analyses of the resulting stresses in the compact and cancellous bone along with the strain in the screw led to the conclusion that model-1, model-2, and model-3 resulted in moderate stresses on compact and cancellous bone compared to the original model of the implant. However, the screw and bones are subjected to maximum stress and strain in the model-4. The study concludes that model-2, with 16% reduced volume and 14.2% reduced mass as compared to the original implant, may be considered as the optimized design of the model. The resulting model offers a significant reduction in the weight and volume with a minor increase in effective stress and strain without negatively impacting the functionality and bio-mechanical performance of the implant. The optimized dental implant prototype is also fabricated as a proof of concept by the Fused Deposition Modelling process.
Collapse
Affiliation(s)
- Priyanshu Soni
- School of Biomedical Engineering, Indian Institute of Technology BHU, Varanasi, India
| | - Parnika Shrivastava
- Department of Mechanical Engineering, National Institute of Technology, Jalandhar, India
| | - Sanjay Kumar Rai
- School of Biomedical Engineering, Indian Institute of Technology BHU, Varanasi, India
| |
Collapse
|
64
|
Wang C, Cheng Y, Song Y, Lei J, Li Y, Li X, Shi H. Dosimetric parameters and safety analysis of 3D-printing non-coplanar template-assisted interstitial brachytherapy for non-centrally recurrent cervical cancer. Front Oncol 2023; 13:1174470. [PMID: 37954084 PMCID: PMC10637940 DOI: 10.3389/fonc.2023.1174470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction The prognosis of patients with non-central recurrent cervical cancer (NRCC) remains poor, and treatment options are limited. We aimed to explore the accuracy and safety of the 3D-printed non-coplanar template (3D-PNCT)-assisted 192Ir interstitial brachytherapy (ISBT) in the treatment of NRCC. Material and methods A total of 36 patients with NRCC who received 3D-PNCT-guided 192Ir ISBT in the First Affiliated Hospital of Zhengzhou University from January 2021 to July 2022 were included in this study. There were 36 3D-PNCTs that were designed and printed. The prescribed dose was 30-36 Gy, divided into five to six times, once a week. To evaluate whether the actual parameters were consistent with the preoperative design, the dosimetric parameters of pre- and postoperative treatment plans were compared, including dose of 90% high-risk clinical target volume (HR-CTV D90), volume percentage of 100% and 150% prescribed dose V100% and V150%, homogeneity index (HI), conformal index (CI), external index (EI), and dose received by 2 cm3 (D2cm3) of the rectum, colon, bladder, and ileum. The safety parameters including occurrence of bleeding, infection, pain, radiation enteritis, and radiation cystitis within 3 months after operation were recorded. Results All patients successfully completed the treatment and achieved the goals of the preoperative plan. There was no significant difference in the accuracy (HRCTVD90, V100%, EI, CI, and HI) and safety (D2cm3 of rectum, colon, bladder, and ileum) parameters of the postoperative plan compared with the preoperative plan (all p>0.05). Major side effects included bleeding at the puncture site (13.9%), postoperative pain (8.3%), acute radiation cystitis (13.9%), and radiation enteritis (19.4%). There were no serious perioperative complications and no grade 3-4 acute radiotherapy side effects. Conclusion 3D-PNCT-assisted 192Ir ISBT can be accurately and safely applied in the treatment of patients with NRCC.
Collapse
Affiliation(s)
- Cong Wang
- Department of Gynecological Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Cheng
- Department of Gynecological Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yadong Song
- Department of Gynecological Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Lei
- Department of Gynecological Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiqian Li
- Department of Gynecological Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xia Li
- Department of Gynecological Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huirong Shi
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
65
|
Choi J, Lee EJ, Jang WB, Kwon SM. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. J Funct Biomater 2023; 14:497. [PMID: 37888162 PMCID: PMC10607080 DOI: 10.3390/jfb14100497] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
Collapse
Affiliation(s)
- Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
66
|
López Seguí F, Cos Codina J, Ricou Ríos L, Martínez Segura MI, Miró Mezquita L, Escrich Navarro R, Davins Riu M, Estrada Cuxart O, Anashkin Kachalin G, Moreno-Martínez D. Readiness for Change in the Implementation of a 3D Printing Initiative in a Catalan Tertiary Hospital Using the Normalization Process Theory: Survey Study. JMIR Hum Factors 2023; 10:e47390. [PMID: 37801353 PMCID: PMC10589830 DOI: 10.2196/47390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/13/2023] [Accepted: 08/12/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The high failure rate of innovation projects motivates us to understand the perceptions about resistances and barriers of the main stakeholders to improving success rates. OBJECTIVE This study aims to analyze the readiness for change in the implementation of a 3D printing project in a Catalan tertiary hospital prior to its implementation. METHODS We used a web-based, voluntary, and anonymous survey using the Normalization Measurement Development questionnaire (NoMAD) to gather views and perceptions from a selected group of health care professionals at Germans Trias i Pujol University Hospital. RESULTS In this study, 58 professionals, including heads of service (n=30, 51%), doctors (n=18, 31%), nurses (n=7, 12%), and support staff (n=3, 5%), responded to the questionnaire. All groups saw the value of the project and were willing to enroll and support it. Respondents reported the highest scores (out of 5) in cognitive participation (mean 4.45, SD 0.04), coherence (mean 3.72, SD 0.13), and reflective monitoring (mean 3.80, SD 0.25). The weakest score was in collective action (mean 3.52, SD 0.12). There were no statistically significant differences in scores among professions in the survey. CONCLUSIONS The 3D printing project implementation should pay attention to preparing, defining, sharing, and supporting the operational work involved in its use and implementation. It should also understand, assess, and communicate the ways in which the new set of practices can affect the users and others around them. We suggest that health officers and politicians consider this experience as a solid ground toward the development of a more efficient health innovation system and as a catalyst for transformation.
Collapse
Affiliation(s)
- Francesc López Seguí
- Research Group on Innovation, Health Economics and Digital Transformation, Institut Germans Trias i Pujol, Badalona, Spain
- Hospital Germans Trias i Pujol, Institut Català de la Salut, Badalona, Spain
- Chair in ICT and Health, Centre for Health and Social Care Research, University of Vic - Central University of Catalonia, Vic, Spain
| | - Joan Cos Codina
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Laura Ricou Ríos
- Research Group on Innovation, Health Economics and Digital Transformation, Institut Germans Trias i Pujol, Badalona, Spain
- Hospital Germans Trias i Pujol, Institut Català de la Salut, Badalona, Spain
| | - María Isabel Martínez Segura
- Research Group on Innovation, Health Economics and Digital Transformation, Institut Germans Trias i Pujol, Badalona, Spain
- Hospital Germans Trias i Pujol, Institut Català de la Salut, Badalona, Spain
| | - Laura Miró Mezquita
- Research Group on Innovation, Health Economics and Digital Transformation, Institut Germans Trias i Pujol, Badalona, Spain
- Hospital Germans Trias i Pujol, Institut Català de la Salut, Badalona, Spain
| | - Raquel Escrich Navarro
- Research Group on Innovation, Health Economics and Digital Transformation, Institut Germans Trias i Pujol, Badalona, Spain
- Hospital Germans Trias i Pujol, Institut Català de la Salut, Badalona, Spain
| | - Meritxell Davins Riu
- Research Group on Innovation, Health Economics and Digital Transformation, Institut Germans Trias i Pujol, Badalona, Spain
- Hospital Germans Trias i Pujol, Institut Català de la Salut, Badalona, Spain
| | - Oriol Estrada Cuxart
- Research Group on Innovation, Health Economics and Digital Transformation, Institut Germans Trias i Pujol, Badalona, Spain
- Hospital Germans Trias i Pujol, Institut Català de la Salut, Badalona, Spain
| | - German Anashkin Kachalin
- Research Group on Innovation, Health Economics and Digital Transformation, Institut Germans Trias i Pujol, Badalona, Spain
| | - Daniel Moreno-Martínez
- Research Group on Innovation, Health Economics and Digital Transformation, Institut Germans Trias i Pujol, Badalona, Spain
- Hospital Germans Trias i Pujol, Institut Català de la Salut, Badalona, Spain
| |
Collapse
|
67
|
Cho RY, Byun SH, Park SY, On SW, Kim JC, Yang BE. Patient-specific plates for facial fracture surgery: A retrospective case series. J Dent 2023; 137:104650. [PMID: 37544353 DOI: 10.1016/j.jdent.2023.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023] Open
Abstract
OBJECTIVES Surgeons often encounter challenges when treating maxillofacial fractures using conventional methods that involve trimming or bending ready-made titanium plates for open reduction and internal fixation (ORIF) since it can be time-consuming, imprecise, and inconvenient. This retrospective case series aimed to introduce a novel bone reduction method that utilizes virtual planning, patient-specific surgical guides, and titanium plates. METHODS Seven patients with mandibular symphysis or subcondylar fractures resulting from facial trauma underwent cone-beam computed tomography (CBCT) or facial CT scans, and their medical histories were documented. Virtual surgery was conducted based on three-dimensional (3D) stereolithography images derived from CT scans using the FaceGide software (MegaGen, Daegu, Korea). ORIF was performed using patient-specific surgical guides and plates that were designed, printed, and milled. Radiographic, clinical, and occlusal evaluations were conducted at two weeks and six weeks postoperatively. Subsequently, 3D images from virtual surgery and postoperative CT scans were compared. RESULTS The comparison of 3D virtual surgery and postoperative images revealed minimal surface differences of less than 1 mm. T-scan evaluations indicated that there were no statistically significant differences between the two- and six-week postoperative assessments. Favorable clinical outcomes were observed. CONCLUSION This novel method demonstrated stable outcomes in terms of occlusion and healing, with no notable complications. Consequently, this approach may serve as a viable alternative to conventional methods. CLINICAL SIGNIFICANCE Facial fracture surgery that utilizes patient-specific surgical guides and plates within a digital workflow can facilitate meticulous surgical planning, reducing the risk of complications and minimizing operation time.
Collapse
Affiliation(s)
- Ran-Yeong Cho
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea; Department of Artificial Intelligence and Robotics in Dentistry, Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea
| | - Soo-Hwan Byun
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea; Department of Artificial Intelligence and Robotics in Dentistry, Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sang-Yoon Park
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea; Department of Artificial Intelligence and Robotics in Dentistry, Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sung-Woon On
- Department of Artificial Intelligence and Robotics in Dentistry, Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Division of Oral and Maxillofacial Surgery, Department of Dentistry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong 18450, Republic of Korea
| | - Jong-Cheol Kim
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea; Mir Dental Hospital, Daegu 41940, Republic of Korea
| | - Byoung-Eun Yang
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea; Department of Artificial Intelligence and Robotics in Dentistry, Graduate School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
68
|
Anwajler B, Zdybel E, Tomaszewska-Ciosk E. Innovative Polymer Composites with Natural Fillers Produced by Additive Manufacturing (3D Printing)-A Literature Review. Polymers (Basel) 2023; 15:3534. [PMID: 37688160 PMCID: PMC10489793 DOI: 10.3390/polym15173534] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, plastics recycling has become one of the leading environmental and waste management issues. Along with the main advantage of plastics, which is undoubtedly their long life, the problem of managing their waste has arisen. Recycling is recognised as the preferred option for waste management, with the aim of reusing them to create new products using 3D printing. Additive manufacturing (AM) is an emerging and evolving rapid tooling technology. With 3D printing, it is possible to achieve lightweight structures with high dimensional accuracy and reduce manufacturing costs for non-standard geometries. Currently, 3D printing research is moving towards the production of materials not only of pure polymers but also their composites. Bioplastics, especially those that are biodegradable and compostable, have emerged as an alternative for human development. This article provides a brief overview of the possibilities of using thermoplastic waste materials through the application of 3D printing, creating innovative materials from recycled and naturally derived materials, i.e., biomass (natural reinforcing fibres) in 3D printing. The materials produced from them are ecological, widely available and cost-effective. Research activities related to the production of bio-based materials have gradually increased over the last two decades, with the aim of reducing environmental problems. This article summarises the efforts made by researchers to discover new innovative materials for 3D printing.
Collapse
Affiliation(s)
- Beata Anwajler
- Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland
| | - Ewa Zdybel
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 25 Norwida Street, 50-375 Wroclaw, Poland; (E.Z.); (E.T.-C.)
| | - Ewa Tomaszewska-Ciosk
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, 25 Norwida Street, 50-375 Wroclaw, Poland; (E.Z.); (E.T.-C.)
| |
Collapse
|
69
|
Mahara G, Tian C, Xu X, Wang W. Revolutionising health care: Exploring the latest advances in medical sciences. J Glob Health 2023; 13:03042. [DOI: • doi: 10.7189/jogh.13.03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023] Open
Affiliation(s)
- Gehendra Mahara
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Cuihong Tian
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaojia Xu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Department of Infection Control, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangzhou, China
| | - Wei Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
70
|
Mahara G, Tian C, Xu X, Wang W. Revolutionising health care: Exploring the latest advances in medical sciences. J Glob Health 2023; 13:03042. [PMID: 37539846 PMCID: PMC10401902 DOI: 10.7189/jogh.13.03042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Affiliation(s)
- Gehendra Mahara
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Cuihong Tian
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaojia Xu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Department of Infection Control, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangzhou, China
| | - Wei Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Center for Precision Health, Edith Cowan University, Perth, Australia
- Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
71
|
Zhou S, Liu S, Wang Y, Li W, Wang J, Wang X, Wang S, Chen W, Lv H. Advances in the Study of Bionic Mineralized Collagen, PLGA, Magnesium Ionomer Materials, and Their Composite Scaffolds for Bone Defect Treatment. J Funct Biomater 2023; 14:406. [PMID: 37623651 PMCID: PMC10455784 DOI: 10.3390/jfb14080406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The healing of bone defects after a fracture remains a key issue to be addressed. Globally, more than 20 million patients experience bone defects annually. Among all artificial bone repair materials that can aid healing, implantable scaffolds made from a mineralized collagen (MC) base have the strongest bionic properties. The MC/PLGA scaffold, created by adding Poly (lactic-co-glycolic acid) copolymer (PLGA) and magnesium metal to the MC substrate, plays a powerful role in promoting fracture healing because, on the one hand, it has good biocompatibility similar to that of MC; on the other hand, the addition of PLGA provides the scaffold with an interconnected porous structure, and the addition of magnesium allows the scaffold to perform anti-inflammatory, osteogenic, and angiogenic activities. Using the latest 3D printing technology for scaffold fabrication, it is possible to model the scaffold in advance according to the requirement and produce a therapeutic scaffold suitable for various bone-defect shapes with less time and effort, which can promote bone tissue healing and regeneration to the maximum extent. This study reviews the material selection and technical preparation of MC/PLGA scaffolds, and the progress of their research on bone defect treatment.
Collapse
Affiliation(s)
- Shuai Zhou
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Shihang Liu
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Yan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Wenjing Li
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 30 Shuangqing Road, Beijing 100084, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, No. 30 Shuangqing Road, Beijing 100084, China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Hongzhi Lv
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China; (S.Z.); (S.L.); (Y.W.); (W.L.)
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No. 139 Ziqiang Road, Shijiazhuang 050051, China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| |
Collapse
|
72
|
Yaneva A, Shopova D, Bakova D, Mihaylova A, Kasnakova P, Hristozova M, Semerdjieva M. The Progress in Bioprinting and Its Potential Impact on Health-Related Quality of Life. Bioengineering (Basel) 2023; 10:910. [PMID: 37627795 PMCID: PMC10451845 DOI: 10.3390/bioengineering10080910] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The intensive development of technologies related to human health in recent years has caused a real revolution. The transition from conventional medicine to personalized medicine, largely driven by bioprinting, is expected to have a significant positive impact on a patient's quality of life. This article aims to conduct a systematic review of bioprinting's potential impact on health-related quality of life. A literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive literature search was undertaken using the PubMed, Scopus, Google Scholar, and ScienceDirect databases between 2019 and 2023. We have identified some of the most significant potential benefits of bioprinting to improve the patient's quality of life: personalized part production; saving millions of lives; reducing rejection risks after transplantation; accelerating the process of skin tissue regeneration; homocellular tissue model generation; precise fabrication process with accurate specifications; and eliminating the need for organs donor, and thus reducing patient waiting time. In addition, these advances in bioprinting have the potential to greatly benefit cancer treatment and other research, offering medical solutions tailored to each individual patient that could increase the patient's chance of survival and significantly improve their overall well-being. Although some of these advancements are still in the research stage, the encouraging results from scientific studies suggest that they are on the verge of being integrated into personalized patient treatment. The progress in bioprinting has the power to revolutionize medicine and healthcare, promising to have a profound impact on improving the quality of life and potentially transforming the field of medicine and healthcare.
Collapse
Affiliation(s)
- Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria;
| | - Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University, 4000 Plovdiv, Bulgaria
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria; (D.B.); (A.M.); (P.K.); (M.H.); (M.S.)
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria; (D.B.); (A.M.); (P.K.); (M.H.); (M.S.)
| | - Petya Kasnakova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria; (D.B.); (A.M.); (P.K.); (M.H.); (M.S.)
| | - Maria Hristozova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria; (D.B.); (A.M.); (P.K.); (M.H.); (M.S.)
| | - Maria Semerdjieva
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria; (D.B.); (A.M.); (P.K.); (M.H.); (M.S.)
| |
Collapse
|
73
|
Kucharska-Jastrząbek A, Chmal-Fudali E, Rudnicka D, Kosińska B. Effect of Sterilization on Bone Implants Based on Biodegradable Polylactide and Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5389. [PMID: 37570096 PMCID: PMC10420107 DOI: 10.3390/ma16155389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Medical devices intended for implantation must be, in accordance with the legal provisions in force in the European Union, sterile. The effect of sterilization on the structural and thermal properties of implants, made by 3D printing from biodegradable polylactide and hydroxyapatite in a proportion of 9/1 by weight, was evaluated. The implants were sterilized using three different methods, i.e., steam sterilization, ethylene oxide sterilization, and electron beam radiation sterilization. As a result of the assessment of the structural properties of the implants after sterilization, a change in the molecular weight of the raw material of the designed implants was found after each of the performed sterilization methods, while maintaining similar characteristics of the thermal properties and functional groups present.
Collapse
Affiliation(s)
| | - Edyta Chmal-Fudali
- Institute of Security Technologies “MORATEX”, Marii Sklodowskiej-Curie 3 Street, 90-505 Lodz, Poland; (A.K.-J.); (D.R.); (B.K.)
| | | | | |
Collapse
|
74
|
Verykokou S, Ioannidis C, Angelopoulos C. CBCT-Based Design of Patient-Specific 3D Bone Grafts for Periodontal Regeneration. J Clin Med 2023; 12:5023. [PMID: 37568425 PMCID: PMC10419991 DOI: 10.3390/jcm12155023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this article is to define and implement a methodology for the 3D design of customized patient-specific scaffolds (bone grafts) for the regeneration of periodontal tissues. The prerequisite of the proposed workflow is the three-dimensional (3D) structure of the periodontal defect, i.e., the 3D model of the hard tissues (alveolar bone and teeth) around the periodontal damage, which is proposed to be generated via a segmentation and 3D editing methodology using cone beam computed tomography (CBCT) data. Two types of methodologies for 3D periodontal scaffold (graft) design are described: (i) The methodology of designing periodontal defect customized block grafts and (ii) the methodology of designing extraction socket preservation customized grafts. The application of the proposed methodology for the generation of a 3D model of the hard tissues around periodontal defects of a patient using a CBCT scan and the 3D design of the two aforementioned types of scaffolds for personalized periodontal regenerative treatment shows promising results. The outputs of this work will be used as the basis for the 3D printing of bioabsorbable scaffolds of personalized treatment against periodontitis, which will simultaneously be used as sustained-release drug carriers.
Collapse
Affiliation(s)
- Styliani Verykokou
- Laboratory of Photogrammetry, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Charalabos Ioannidis
- Laboratory of Photogrammetry, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Christos Angelopoulos
- Department of Oral Diagnosis and Radiology, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
75
|
Yuste I, Luciano FC, Anaya BJ, Sanz-Ruiz P, Ribed-Sánchez A, González-Burgos E, Serrano DR. Engineering 3D-Printed Advanced Healthcare Materials for Periprosthetic Joint Infections. Antibiotics (Basel) 2023; 12:1229. [PMID: 37627649 PMCID: PMC10451995 DOI: 10.3390/antibiotics12081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
The use of additive manufacturing or 3D printing in biomedicine has experienced fast growth in the last few years, becoming a promising tool in pharmaceutical development and manufacturing, especially in parenteral formulations and implantable drug delivery systems (IDDSs). Periprosthetic joint infections (PJIs) are a common complication in arthroplasties, with a prevalence of over 4%. There is still no treatment that fully covers the need for preventing and treating biofilm formation. However, 3D printing plays a major role in the development of novel therapies for PJIs. This review will provide a deep understanding of the different approaches based on 3D-printing techniques for the current management and prophylaxis of PJIs. The two main strategies are focused on IDDSs that are loaded or coated with antimicrobials, commonly in combination with bone regeneration agents and 3D-printed orthopedic implants with modified surfaces and antimicrobial properties. The wide variety of printing methods and materials have allowed for the manufacture of IDDSs that are perfectly adjusted to patients' physiognomy, with different drug release profiles, geometries, and inner and outer architectures, and are fully individualized, targeting specific pathogens. Although these novel treatments are demonstrating promising results, in vivo studies and clinical trials are required for their translation from the bench to the market.
Collapse
Affiliation(s)
- Iván Yuste
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Francis C. Luciano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Brayan J. Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Pablo Sanz-Ruiz
- Orthopaedic and Trauma Department, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
- Department of Surgery, Faculty of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Almudena Ribed-Sánchez
- Hospital Pharmacy Unit, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
- Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
76
|
Valchanov P, Dukov N, Pavlov S, Kontny A, Dikova T. 3D Printing, Histological, and Radiological Analysis of Nanosilicate-Polysaccharide Composite Hydrogel as a Tissue-Equivalent Material for Complex Biological Bone Phantom. Gels 2023; 9:547. [PMID: 37504427 PMCID: PMC10379613 DOI: 10.3390/gels9070547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
Nanosilicate-polysaccharide composite hydrogels are a well-studied class of materials in regenerative medicine that combine good 3D printability, staining, and biological properties, making them an excellent candidate material for complex bone scaffolds. The aim of this study was to develop a hydrogel suitable for 3D printing that has biological and radiological properties similar to those of the natural bone and to develop protocols for their histological and radiological analysis. We synthesized a hydrogel based on alginate, methylcellulose, and laponite, then 3D printed it into a series of complex bioscaffolds. The scaffolds were scanned with CT and CBCT scanners and exported as DICOM datasets, then cut into histological slides and stained using standard histological protocols. From the DICOM datasets, the average value of the voxels in Hounsfield Units (HU) was calculated and compared with natural trabecular bone. In the histological sections, we tested the effect of standard histological stains on the hydrogel matrix in the context of future cytological and histological analysis. The results confirmed that an alginate/methylcellulose/laponite-based composite hydrogel can be used for 3D printing of complex high fidelity three-dimensional scaffolds. This opens an avenue for the development of dynamic biological physical phantoms for bone tissue engineering and the development of new CT-based imaging algorithms for the needs of radiology and radiation therapy.
Collapse
Affiliation(s)
- Petar Valchanov
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Nikolay Dukov
- Department of Medical Equipment, Electronic and Information Technologies in Healthcare, Faculty of Public Health, Medical University of Varna, 9002 Varna, Bulgaria
| | - Stoyan Pavlov
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Andreas Kontny
- Depatment of Anatomy and Cell Biology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Tsanka Dikova
- Department of Dental Material Science and Prosthetic Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria
| |
Collapse
|
77
|
Fahimian BP, Liu W, Skinner L, Yu AS, Phillips T, Steers JM, DeMarco J, Fraass BA, Kamrava M. 3D printing in brachytherapy: A systematic review of gynecological applications. Brachytherapy 2023; 22:446-460. [PMID: 37024350 DOI: 10.1016/j.brachy.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 04/08/2023]
Abstract
PURPOSE To provide a systematic review of the applications of 3D printing in gynecological brachytherapy. METHODS Peer-reviewed articles relating to additive manufacturing (3D printing) from the 34 million plus biomedical citations in National Center for Biotechnology Information (NCBI/PubMed), and 53 million records in Web of Science (Clarivate) were queried for 3D printing applications. The results were narrowed sequentially to, (1) all literature in 3D printing with final publications prior to July 2022 (in English, and excluding books, proceedings, and reviews), and then to applications in, (2) radiotherapy, (3) brachytherapy, (4) gynecological brachytherapy. Brachytherapy applications were reviewed and grouped by disease site, with gynecological applications additionally grouped by study type, methodology, delivery modality, and device type. RESULTS From 47,541 3D printing citations, 96 publications met the inclusion criteria for brachytherapy, with gynecological clinical applications compromising the highest percentage (32%), followed by skin and surface (19%), and head and neck (9%). The distribution of delivery modalities was 58% for HDR (Ir-192), 35% for LDR (I-125), and 7% for other modalities. In gynecological brachytherapy, studies included design of patient specific applicators and templates, novel applicator designs, applicator additions, quality assurance and dosimetry devices, anthropomorphic gynecological applicators, and in-human clinical trials. Plots of year-to-year growth demonstrate a rapid nonlinear trend since 2014 due to the improving accessibility of low-cost 3D printers. Based on these publications, considerations for clinical use are provided. CONCLUSIONS 3D printing has emerged as an important clinical technology enabling customized applicator and template designs, representing a major advancement in the methodology for implantation and delivery in gynecological brachytherapy.
Collapse
Affiliation(s)
- Benjamin P Fahimian
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA.
| | - Wu Liu
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Tiffany Phillips
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jennifer M Steers
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - John DeMarco
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Benedick A Fraass
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mitchell Kamrava
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
78
|
Soh CL, Pandiaraja M, Powar MP. 3D-Printing Applications in Ostomy Device Creation and Complex Intestinal Fistula Management: A Scoping Review. Surg J (N Y) 2023; 9:e97-e106. [PMID: 37876379 PMCID: PMC10522416 DOI: 10.1055/s-0043-1775748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/26/2023] [Indexed: 10/26/2023] Open
Abstract
Background This scoping review aims to provide a summary of the use of three-dimensional (3D) printing in colorectal surgery for the management of complex intestinal fistula and ostomy creation. Methods A systematic database search was conducted of original articles that explored the use of 3D printing in colorectal surgery in EMBASE, MEDLINE, Cochrane database, and Google Scholar, from inception to March 2022. Original articles and case reports that discussed 3D printing in colorectal surgery relating to complex intestinal fistulae and ostomies were identified and analyzed. Results There were 8 articles identified which discussed the use of 3D printing in colorectal surgery, of which 2 discussed ostomy creation, 4 discussed complex fistulae management, and 2 discussed patient models. Conclusion 3D printing has a promising role in terms of management of these conditions and can improve outcomes in terms of recovery, fluid loss, and function with no increase in complications. The use of 3D printing is still in its early stages of development in colorectal surgery. Further research in the form of randomized control trials to improve methodological robustness will reveal its true potential.
Collapse
Affiliation(s)
- Chien Lin Soh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Michael P. Powar
- Cambridge Colorectal Unit, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| |
Collapse
|
79
|
McCloskey AP, Bracken L, Vasey N, Ehtezazi T. 3D printing - an alternative strategy for pediatric medicines. Expert Rev Clin Pharmacol 2023; 16:613-616. [PMID: 37408478 DOI: 10.1080/17512433.2023.2233416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Affiliation(s)
- Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University
| | - Louise Bracken
- Paediatric Medicines Research Unit, Alder Hey Children's NHS Foundation Trust Liverpool
| | - Nicola Vasey
- The Great North Children's Hospital Newcastle-Upon-Tyne
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University
| |
Collapse
|
80
|
Stojković JR, Turudija R, Vitković N, Górski F, Păcurar A, Pleşa A, Ianoşi-Andreeva-Dimitrova A, Păcurar R. An Experimental Study on the Impact of Layer Height and Annealing Parameters on the Tensile Strength and Dimensional Accuracy of FDM 3D Printed Parts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4574. [PMID: 37444886 DOI: 10.3390/ma16134574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
This study investigates the impact of annealing time, temperature, and layer height on the tensile strength and dimensional change of three 3D printing materials (PLA, PETG, and carbon fiber-reinforced PETG). Samples with varying layer heights (0.1 mm, 0.2 mm, and 0.3 mm) were annealed at temperatures ranging from 60-100 °C for 30, 60, and 90 min. Tensile tests were conducted, and regression models were developed to analyze the effects of these parameters on tensile strength. The models exhibited high accuracy, with a maximum deviation of only 5% from measured validation values. The models showed that layer height has a significantly bigger influence on tensile strength than annealing time and temperature. Optimal combinations of parameters were identified for each material, with PLA performing best at 0.1 mm/60 min/90 °C and PETG and PETGCF achieving optimal tensile strength at 0.1 mm/90 min/60 °C. PETGCF demonstrated smallest dimensional change after annealing and had the best modulus of elasticity of all the materials. The study employed experimental testing and regression models to assess the results across multiple materials under consistent conditions, contributing valuable insights to the ongoing discussion on the influence of annealing in 3D-printed parts.
Collapse
Affiliation(s)
- Jelena R Stojković
- Faculty of Mechanical Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia
| | - Rajko Turudija
- Faculty of Mechanical Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia
| | - Nikola Vitković
- Faculty of Mechanical Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia
| | - Filip Górski
- Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 STR, 61-138 Poznan, Poland
| | - Ancuţa Păcurar
- Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
| | - Alin Pleşa
- Department of Mechatronics and Machine Dynamics, Faculty of Automotive, Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
| | - Alexandru Ianoşi-Andreeva-Dimitrova
- Department of Mechatronics and Machine Dynamics, Faculty of Automotive, Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
| | - Răzvan Păcurar
- Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
| |
Collapse
|
81
|
Popescu D, Baciu F, Vlăsceanu D, Marinescu R, Lăptoiu D. Investigations on the Fatigue Behavior of 3D-Printed and Thermoformed Polylactic Acid Wrist-Hand Orthoses. Polymers (Basel) 2023; 15:2737. [PMID: 37376386 DOI: 10.3390/polym15122737] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Additively manufactured wrist-hand orthoses (3DP-WHOs) offer several advantages over traditional splints and casts, but their development based on a patient's 3D scans currently requires advanced engineering skills, while also recording long manufacturing times as they are commonly built in a vertical position. A proposed alternative involves 3D printing the orthoses as a flat model base and then thermoforming them to fit the patient's forearm. This manufacturing approach is faster, cost-effective and allows easier integration of flexible sensors as an example. However, it is unknown whether these flat-shaped 3DP-WHOs offer similar mechanical resistance as the 3D-printed hand-shaped orthoses, with a lack of research in this area being revealed by the literature review. To evaluate the mechanical properties of 3DP-WHOs produced using the two approaches, three-point bending tests and flexural fatigue tests were conducted. The results showed that both types of orthoses had similar stiffness up to 50 N, but the vertically built orthoses failed at a maximum load of 120 N, while the thermoformed orthoses could withstand up to 300 N with no damages observed. The integrity of the thermoformed orthoses was maintained after 2000 cycles at 0.5 Hz and ±2.5 mm displacement. It was observed that the minimum force occurring during fatigue tests was approximately -95 N. After 1100-1200 cycles, it reached -110 N and remained constant. The outcomes of this study are expected to enhance the trust that hand therapists, orthopedists, and patients have in using thermoformable 3DP-WHOs.
Collapse
Affiliation(s)
- Diana Popescu
- Department of Robotics and Production Systems, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Florin Baciu
- Department of Strength of Materials, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Daniel Vlăsceanu
- Department of Strength of Materials, Faculty of Industrial Engineering and Robotics, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Rodica Marinescu
- Department of Orthopedics, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Dan Lăptoiu
- Department of Orthopedics, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
82
|
Al-Nimry SS, Daghmash RM. Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery. Pharmaceutics 2023; 15:1597. [PMID: 37376046 DOI: 10.3390/pharmaceutics15061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) are considered to be a novel smart injection system that causes significantly low skin invasion upon puncturing, due to the micron-sized dimensions that pierce into the skin painlessly. This allows transdermal delivery of numerous therapeutic molecules, such as insulin and vaccines. The fabrication of MNs is carried out through conventional old methods such as molding, as well as through newer and more sophisticated technologies, such as three-dimensional (3D) printing, which is considered to be a superior, more accurate, and more time- and production-efficient method than conventional methods. Three-dimensional printing is becoming an innovative method that is used in education through building intricate models, as well as being employed in the synthesis of fabrics, medical devices, medical implants, and orthoses/prostheses. Moreover, it has revolutionary applications in the pharmaceutical, cosmeceutical, and medical fields. Having the capacity to design patient-tailored devices according to their dimensions, along with specified dosage forms, has allowed 3D printing to stand out in the medical field. The different techniques of 3D printing allow for the production of many types of needles with different materials, such as hollow MNs and solid MNs. This review covers the benefits and drawbacks of 3D printing, methods used in 3D printing, types of 3D-printed MNs, characterization of 3D-printed MNs, general applications of 3D printing, and transdermal delivery using 3D-printed MNs.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Rawand M Daghmash
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
83
|
Valls-Esteve A, Lustig-Gainza P, Adell-Gomez N, Tejo-Otero A, Englí-Rueda M, Julian-Alvarez E, Navarro-Sureda O, Fenollosa-Artés F, Rubio-Palau J, Krauel L, Munuera J. A state-of-the-art guide about the effects of sterilization processes on 3D-printed materials for surgical planning and medical applications: A comparative study. Int J Bioprint 2023; 9:756. [PMID: 37555083 PMCID: PMC10406103 DOI: 10.18063/ijb.756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 08/10/2023] Open
Abstract
Surgeons use different medical devices in the surgery, such as patient-specific anatomical models, cutting and positioning guides, or implants. These devices must be sterilized before being used in the operation room. There are many sterilization processes available, with autoclave, hydrogen peroxide, and ethylene oxide being the most common in hospital settings. Each method has both advantages and disadvantages in terms of mechanics, chemical interaction, and post-treatment accuracy. The aim of the present study is to evaluate the dimensional and mechanical effect of the most commonly used sterilization techniques available in clinical settings, i.e., Autoclave 121, Autoclave 134, and hydrogen peroxide (HPO), on 11 of the most used 3D-printed materials fabricated using additive manufacturing technologies. The results showed that the temperature (depending on the sterilization method) and the exposure time to that temperature influence not only the mechanical behavior but also the original dimensioning planned on the 3D model. Therefore, HPO is a better overall option for most of the materials evaluated. Finally, based on the results of the study, a recommendation guide on sterilization methods per material, technology, and clinical application is presented.
Collapse
Affiliation(s)
- Arnau Valls-Esteve
- Innovation Department, Hospital Sant Joan de Déu,
Esplugues de Llobregat, Spain
- Medicina i Recerca Translacional, Facultat de Medicina i
Ciències de la Salut, Universitat de Barcelona, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
| | | | - Nuria Adell-Gomez
- Innovation Department, Hospital Sant Joan de Déu,
Esplugues de Llobregat, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
| | - Aitor Tejo-Otero
- Centre CIM, Universitat Politècnica de Catalunya
(CIM UPC), Barcelona, Spain
| | - Marti Englí-Rueda
- Innovation Department, Hospital Sant Joan de Déu,
Esplugues de Llobregat, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
| | | | - Osmeli Navarro-Sureda
- Sterilization Department, Hospital Sant Joan de Déu,
Universitat de Barcelona, Spain
| | - Felip Fenollosa-Artés
- Centre CIM, Universitat Politècnica de Catalunya
(CIM UPC), Barcelona, Spain
- Department of Mechanical Engineering, School of Engineering
of Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Barcelona,
Spain
| | - Josep Rubio-Palau
- Medicina i Recerca Translacional, Facultat de Medicina i
Ciències de la Salut, Universitat de Barcelona, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
- Department of Pediatric Surgery, Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
- Maxillofacial Unit, Department of Pediatric Surgery,
Hospital Sant Joan de Déu, Universitat de Barcelona, Spain
| | - Lucas Krauel
- Medicina i Recerca Translacional, Facultat de Medicina i
Ciències de la Salut, Universitat de Barcelona, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
- Department of Pediatric Surgery, Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
| | - Josep Munuera
- Medicina i Recerca Translacional, Facultat de Medicina i
Ciències de la Salut, Universitat de Barcelona, Spain
- 3D for Health Unit (3D4H), Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
- Department of Diagnostic Imaging, Hospital Sant Joan de
Déu, Universitat de Barcelona, Spain
| |
Collapse
|
84
|
Johnston A, Callanan A. Recent Methods for Modifying Mechanical Properties of Tissue-Engineered Scaffolds for Clinical Applications. Biomimetics (Basel) 2023; 8:205. [PMID: 37218791 PMCID: PMC10204517 DOI: 10.3390/biomimetics8020205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
The limited regenerative capacity of the human body, in conjunction with a shortage of healthy autologous tissue, has created an urgent need for alternative grafting materials. A potential solution is a tissue-engineered graft, a construct which supports and integrates with host tissue. One of the key challenges in fabricating a tissue-engineered graft is achieving mechanical compatibility with the graft site; a disparity in these properties can shape the behaviour of the surrounding native tissue, contributing to the likelihood of graft failure. The purpose of this review is to examine the means by which researchers have altered the mechanical properties of tissue-engineered constructs via hybrid material usage, multi-layer scaffold designs, and surface modifications. A subset of these studies which has investigated the function of their constructs in vivo is also presented, followed by an examination of various tissue-engineered designs which have been clinically translated.
Collapse
Affiliation(s)
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, UK;
| |
Collapse
|
85
|
Doolaanea A, Latif N, Singh S, Kumar M, Safa'at MF, Alfatama M, Edros R, Bhatia A. A Review on Physicochemical Properties of Polymers Used as Filaments in 3D-Printed Tablets. AAPS PharmSciTech 2023; 24:116. [PMID: 37160772 DOI: 10.1208/s12249-023-02570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Three-dimensional (3D) printing technology has presently been explored widely in the field of pharmaceutical research to produce various conventional as well as novel dosage forms such as tablets, capsules, oral films, pellets, subcutaneous implants, scaffolds, and vaginal rings. The use of this innovative method is a good choice for its advanced technologies and the ability to make tailored medicine specifically for individual patient. There are many 3D printing systems that are used to print tablets, implants, and vaginal rings. Among the available systems, the fused deposition modeling (FDM) is widely utilized. The FDM has been regarded as the best choice of printer as it shows high potential in the production of tablets as a unit dose in 3D printing medicine manufacturing. In order to design a 3D-printed tablet or other dosage forms, the physicochemical properties of polymers play a vital role. One should have proper knowledge about the polymer's properties so that one can select appropriate polymers in order to design 3D-printed dosage form. This review highlighted the various physicochemical properties of polymers that are currently used as filaments in 3D printing. In this manuscript, the authors also discussed various systems that are currently adopted in the 3D printing.
Collapse
Affiliation(s)
- AbdAlmonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia.
- IKOP SdnBhd, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia.
| | - NurFaezah Latif
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia
| | - Shubham Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | | | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Besut, Terengganu, Malaysia
| | - Raihana Edros
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
86
|
Valls-Esteve A, Adell-Gómez N, Pasten A, Barber I, Munuera J, Krauel L. Exploring the Potential of Three-Dimensional Imaging, Printing, and Modeling in Pediatric Surgical Oncology: A New Era of Precision Surgery. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050832. [PMID: 37238380 DOI: 10.3390/children10050832] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Pediatric surgical oncology is a technically challenging field that relies on CT and MRI as the primary imaging tools for surgical planning. However, recent advances in 3D reconstructions, including Cinematic Rendering, Volume Rendering, 3D modeling, Virtual Reality, Augmented Reality, and 3D printing, are increasingly being used to plan complex cases bringing new insights into pediatric tumors to guide therapeutic decisions and prognosis in different pediatric surgical oncology areas and locations including thoracic, brain, urology, and abdominal surgery. Despite this, challenges to their adoption remain, especially in soft tissue-based specialties such as pediatric surgical oncology. This work explores the main innovative imaging reconstruction techniques, 3D modeling technologies (CAD, VR, AR), and 3D printing applications through the analysis of three real cases of the most common and surgically challenging pediatric tumors: abdominal neuroblastoma, thoracic inlet neuroblastoma, and a bilateral Wilms tumor candidate for nephron-sparing surgery. The results demonstrate that these new imaging and modeling techniques offer a promising alternative for planning complex pediatric oncological cases. A comprehensive analysis of the advantages and limitations of each technique has been carried out to assist in choosing the optimal approach.
Collapse
Affiliation(s)
- Arnau Valls-Esteve
- Innovation Department, SJD Barcelona Children's Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- 3D for Health Unit (3D4H), SJD Barcelona Children's Hospital, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Núria Adell-Gómez
- Innovation Department, SJD Barcelona Children's Hospital, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- 3D for Health Unit (3D4H), SJD Barcelona Children's Hospital, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Albert Pasten
- Pediatric Surgical Oncology Unit, Department of Pediatric Surgery, SJD Barcelona Children's Hospital, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Ignasi Barber
- Department of Diagnostic Imaging, SJD Barcelona Children's Hospital, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Josep Munuera
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- 3D for Health Unit (3D4H), SJD Barcelona Children's Hospital, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Department of Diagnostic Imaging, SJD Barcelona Children's Hospital, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Lucas Krauel
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- 3D for Health Unit (3D4H), SJD Barcelona Children's Hospital, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology Unit, Department of Pediatric Surgery, SJD Barcelona Children's Hospital, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
87
|
Dogan D, Erdem U, Bozer BM, Turkoz MB, Yıldırım G, Metin AU. Resorbable membrane design: In vitro characterization of silver doped-hydroxyapatite-reinforced XG/PEI semi-IPN composite. J Mech Behav Biomed Mater 2023; 142:105887. [PMID: 37141744 DOI: 10.1016/j.jmbbm.2023.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
In this study, the production and characterization of silver-doped hydroxyapatite (AgHA) reinforced Xanthan gum (XG) and Polyethyleneimine (PEI) reinforced semi-interpenetrating polymer network (IPN) biocomposite, known to be used as bone cover material for therapeutic purposes in bone tissue, were performed. XG/PEI IPN films containing 2AgHA nanoparticles were produced by simultaneous condensation and ionic gelation. Characteristics of 2AgHA-XG/PEI nanocomposite film were evaluated by structural, morphological (SEM, XRD, FT-IR, TGA, TM, and Raman) and biological activity analysis (degradation, MTT, genotoxicity, and antimicrobial activity) techniques. In the physicochemical characterization, it was determined that 2AgHA nanoparticles were homogeneously dispersed in the XG/PEI-IPN membrane at high concentration and the thermal and mechanical stability of the formed film were high. The nanocomposites showed high antibacterial activity against Acinetobacter Baumannii (A.Baumannii), Staphylococcus aureus (S.aureus), and Streptococcus mutans (S.mutans). L929 exhibited good biocompatibility for fibroblast cells and was determined to support the formation of MCC cells. It was shown that a resorbable 2AgHA-XG/PEI composite material was obtained with a high degradation rate and 64% loss of mass at the end of the 7th day. Physico-chemically developed biocompatible and biodegradable XG-2AgHA/PEI nanocomposite semi-IPN films possessed an important potential for the treatment of defects in bone tissue as an easily applicable bone cover. Besides, it was noted that 2AgHA-XG/PEI biocomposite could increase cell viability, especially in dental-bone treatments for coating, filling, and occlusion.
Collapse
Affiliation(s)
- Deniz Dogan
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| | - Umit Erdem
- Kirikkale University, Scientific and Tech. Research Center, Kirikkale, 71450, Turkey.
| | - Busra M Bozer
- Hitit University, Scientific Technical App. and Research Center, Corum, 19030, Turkey
| | - Mustafa B Turkoz
- Karabuk University, Faculty of Engineering, Electric and Electronics Engineering, Karabuk, 78050, Turkey
| | - Gurcan Yıldırım
- Abant Izzet Baysal University, Faculty of Engineering, Mechanical Engineering, Bolu, 14280, Turkey
| | - Aysegul U Metin
- Kirikkale University, Faculty of Science, Department of Chemistry, 71450, Turkey
| |
Collapse
|
88
|
Espadinha-Cruz P, Neves A, Matos F, Godina R. Development of a maturity model for additive manufacturing: A conceptual model proposal. Heliyon 2023; 9:e16099. [PMID: 37234647 PMCID: PMC10205518 DOI: 10.1016/j.heliyon.2023.e16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Additive manufacturing (AM) is an emerging area with the potential to modify present business models in the near future. In contrast with conventional manufacturing (CM), AM allows the development of a product from a smaller amount of raw material, while allowing an improvement in properties in terms of weight and functionality. Its production flexibility and creativity in terms of materials have enabled not only the industry to use this technology, but also has been used in healthcare (e.g., in the production of human tissue) and by the final consumer. Despite the invaluable opportunities that this technology could provide, the uncertainties concerning its future developments and impacts on business models remain. New business models in AM will convey the need to: specialize the workforce in the design of new parts produced locally or remotely; regulation in the use and sharing of intellectual property rights by partner companies or between users; regulate the possibility of reverse engineering of highly customized products; etc. The present research proposes a conceptual maturity model to support the phases of evolution of AM in the industry, in supply chains, and in terms of open business models.
Collapse
Affiliation(s)
- Pedro Espadinha-Cruz
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Laboratório Associado de Sistemas Inteligentes, LASI, 4800-058 Guimarães, Portugal
| | - Angela Neves
- Department of Mechanical Engineering, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Florinda Matos
- Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Estudos sobre a Mudança Socioeconómica e o Território (DINÂMIA’CET), 1649-026 Lisboa, Portugal
| | - Radu Godina
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Laboratório Associado de Sistemas Inteligentes, LASI, 4800-058 Guimarães, Portugal
| |
Collapse
|
89
|
Nejamkin P, Clausse M, Landivar F, Lorenzutti MA, Cavilla V, Viviani P, Alvarez LI, Del Sole MJ. Development and evaluation of an anatomically designed and 3D printed device to enhance orotracheal intubation success in rabbits by inexperienced veterinarians. Vet Anaesth Analg 2023; 50:273-279. [PMID: 36967327 DOI: 10.1016/j.vaa.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVE To assess whether the use of a three-dimensional (3D) printed device enhances the success rate of orotracheal intubation in rabbits. STUDY DESIGN Prospective, crossover randomized controlled trial. ANIMALS A total of six mixed-breed rabbits. METHODS A device to guide the endotracheal tube was designed based on computed tomography images and then manufactured using 3D printing. Rabbits were randomly assigned for intubation by two inexperienced veterinarians using the blind (BLI), borescope- (BOR) or device- (DEV) guided techniques. Success rate, number of attempts, time to success, injury scores and propofol dose were recorded and compared. Significance was considered when p < 0.05. RESULTS Success rate was higher in DEV (58.3%) than in BLI (8.3%) (p < 0.023), but not different from that in BOR (41.6%). Total time until successful intubation was lower in DEV (45 ± 23 seconds) and BOR (85 ± 62 seconds) than in BLI (290 seconds; p < 0.006). Time for the successful attempt was lower for DEV (35 ± 10 seconds) and BOR (74 ± 43 seconds) than in BLI (290 seconds; p < 0.0001). The propofol dose required was lower for DEV (2.3 ± 1.2 mg kg-1) than for BLI (3.4 ± 1.6 mg kg-1) (p < 0.031), but not different from BOR (2.4 ± 0.9 mg kg-1). Number of attempts and oxygen desaturation events were not different among techniques (p < 0.051 and p < 0.326, respectively). Injury scores [median (range)] before and after attempts were different in BLI [0 versus 1 (0-3), p < 0.005] and BOR [0 (0-1) versus 1 (0-3), p < 0.002] but not in DEV [0 (0-2) versus 0 (0-3), p < 0.109]. CONCLUSIONS AND CLINICAL RELEVANCE The device facilitated orotracheal intubation with a time similar to the borescope-guided technique but faster than the traditional blind technique.
Collapse
Affiliation(s)
- Pablo Nejamkin
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, MEVET, Tandil, BA, Argentina; CIVETAN, UNCPBA-CONICET, Tandil, BA, Argentina.
| | - María Clausse
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, MEVET, Tandil, BA, Argentina; CIVETAN, UNCPBA-CONICET, Tandil, BA, Argentina
| | - Florencia Landivar
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, MEVET, Tandil, BA, Argentina
| | - Matías A Lorenzutti
- Facultad de Ciencias Agropecuarias, IRNASUS CONICET - Universidad Católica de Córdoba, CB, Argentina
| | - Verónica Cavilla
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, MEVET, Tandil, BA, Argentina
| | - Paula Viviani
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, MEVET, Tandil, BA, Argentina; Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Luis I Alvarez
- CIVETAN, UNCPBA-CONICET, Tandil, BA, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, FISFARVET, Tandil, BA, Argentina
| | - María J Del Sole
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Facultad de Ciencias Veterinarias, MEVET, Tandil, BA, Argentina
| |
Collapse
|
90
|
Ming Z, Tang X, Liu J, Ruan B. Advancements in Research on Constructing Physiological and Pathological Liver Models and Their Applications Utilizing Bioprinting Technology. Molecules 2023; 28:molecules28093683. [PMID: 37175094 PMCID: PMC10180184 DOI: 10.3390/molecules28093683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
In recent decades, significant progress has been made in liver tissue engineering through the use of 3D bioprinting technology. This technology offers the ability to create personalized biological structures with precise geometric design capabilities. The complex and multifaceted nature of liver diseases underscores the need for advanced technologies to accurately mimic the physiological and mechanical characteristics, as well as organ-level functions, of liver tissue in vitro. Bioprinting stands out as a superior option over traditional two-dimensional cell culture models and animal models due to its stronger biomimetic advantages. Through the use of bioprinting, it is possible to create liver tissue with a level of structural and functional complexity that more closely resembles the real organ, allowing for more accurate disease modeling and drug testing. As a result, it is a promising tool for restoring and replacing damaged tissue and organs in the field of liver tissue engineering and drug research. This article aims to present a comprehensive overview of the progress made in liver tissue engineering using bioprinting technology to provide valuable insights for researchers. The paper provides a detailed account of the history of liver tissue engineering, highlights the current 3D bioprinting methods and bioinks that are widely used, and accentuates the importance of existing in vitro liver tissue models based on 3D bioprinting and their biomedical applications. Additionally, the article explores the challenges faced by 3D bioprinting and predicts future trends in the field. The progress of 3D bioprinting technology is poised to bring new approaches to printing liver tissue in vitro, while offering powerful tools for drug development, testing, liver disease modeling, transplantation, and regeneration, which hold great academic and practical significance.
Collapse
Affiliation(s)
- Zibei Ming
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xinyu Tang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Jing Liu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Banfeng Ruan
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| |
Collapse
|
91
|
Valls-Esteve A, Tejo-Otero A, Lustig-Gainza P, Buj-Corral I, Fenollosa-Artés F, Rubio-Palau J, Barber-Martinez de la Torre I, Munuera J, Fondevila C, Krauel L. Patient-Specific 3D Printed Soft Models for Liver Surgical Planning and Hands-On Training. Gels 2023; 9:gels9040339. [PMID: 37102951 PMCID: PMC10138006 DOI: 10.3390/gels9040339] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Background: Pre-surgical simulation-based training with three-dimensional (3D) models has been intensively developed in complex surgeries in recent years. This is also the case in liver surgery, although with fewer reported examples. The simulation-based training with 3D models represents an alternative to current surgical simulation methods based on animal or ex vivo models or virtual reality (VR), showing reported advantages, which makes the development of realistic 3D-printed models an option. This work presents an innovative, low-cost approach for producing patient-specific 3D anatomical models for hands-on simulation and training. Methods: The article reports three paediatric cases presenting complex liver tumours that were transferred to a major paediatric referral centre for treatment: hepatoblastoma, hepatic hamartoma and biliary tract rhabdomyosarcoma. The complete process of the additively manufactured liver tumour simulators is described, and the different steps for the correct development of each case are explained: (1) medical image acquisition; (2) segmentation; (3) 3D printing; (4) quality control/validation; and (5) cost. A digital workflow for liver cancer surgical planning is proposed. Results: Three hepatic surgeries were planned, with 3D simulators built using 3D printing and silicone moulding techniques. The 3D physical models showed highly accurate replications of the actual condition. Additionally, they proved to be more cost-effective in comparison with other models. Conclusions: It is demonstrated that it is possible to manufacture accurate and cost-effective 3D-printed soft surgical planning simulators for treating liver cancer. The 3D models allowed for proper pre-surgical planning and simulation training in the three cases reported, making it a valuable aid for surgeons.
Collapse
Affiliation(s)
- Arnau Valls-Esteve
- Innovation Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Aitor Tejo-Otero
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
| | - Pamela Lustig-Gainza
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
| | - Irene Buj-Corral
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Felip Fenollosa-Artés
- Centre CIM, Universitat Politècnica de Catalunya (CIM UPC), Carrer de Llorens i Artigas, 12, 08028 Barcelona, Spain
- Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain
| | - Josep Rubio-Palau
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology Unit, Pediatric Surgery Department, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Maxillofacial Unit, Department of Pediatric Surgery, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | | | - Josep Munuera
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Department of Diagnostic Imaging, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Constantino Fondevila
- Hepatopancreatobiliary Surgery and Transplantation, General and Digestive Surgery, Metabolic and Digestive Diseases Institute (ICMDM), Hospital Clínic, CIBERehd, IDIBAPS, University of Barcelona, 08950 Esplugues de Llobregat, Spain
| | - Lucas Krauel
- Medicina i Recerca Translacional, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
- 3D Unit (3D4H), Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
- Pediatric Surgical Oncology Unit, Pediatric Surgery Department, Hospital Sant Joan de Déu, Universitat de Barcelona, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
92
|
Mendonça CJA, Gasoto SC, Belo IM, Setti JAP, Soni JF, Júnior BS. Application of 3D Printing Technology in the Treatment of Hoffa's Fracture Nonunion. Rev Bras Ortop 2023; 58:303-312. [PMID: 37252303 PMCID: PMC10212646 DOI: 10.1055/s-0042-1750760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/28/2022] [Indexed: 11/06/2022] Open
Abstract
Objective To evaluate a proposed three-dimensional (3D) printing process of a biomodel developed with the aid of fused deposition modeling (FDM) technology based on computed tomography (CT) scans of an individual with nonunion of a coronal femoral condyle fracture (Hoffa's fracture). Materials and Methods Thus, we used CT scans, which enable the evaluation of the 3D volumetric reconstruction of the anatomical model, as well as of the architecture and bone geometry of sites with complex anatomy, such as the joints. In addition, it enables the development of the virtual surgical planning (VSP) in a computer-aided design (CAD) software. This technology makes it possible to print full-scale anatomical models that can be used in surgical simulations for training and in the choice of the best placement of the implant according to the VSP. In the radiographic evaluation of the osteosynthesis of the Hoffa's fracture nonunion, we assessed the position of the implant in the 3D-printed anatomical model and in the patient's knee. Results The 3D-printed anatomical model showed geometric and morphological characteristics similar to those of the actual bone. The position of the implants in relation to the nonunion line and anatomical landmarks showed great accuracy in the comparison of the patient's knee with the 3D-printed anatomical model. Conclusion The use of the virtual anatomical model and the 3D-printed anatomical model with the additive manufacturing (AM) technology proved to be effective and useful in planning and performing the surgical treatment of Hoffa's fracture nonunion. Thus, it showed great accuracy in the reproducibility of the virtual surgical planning and the 3D-printed anatomical model.
Collapse
Affiliation(s)
- Celso Júnio Aguiar Mendonça
- Unidade do Sistema Musculoesquelético, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Paraná, Brasil
- Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
| | - Sidney Carlos Gasoto
- Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
| | - Ivan Moura Belo
- Programa de Pós-Graduação em Engenharia Biomédica, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
| | - João Antônio Palma Setti
- Programa de Pós-Graduação em Engenharia Biomédica, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
| | - Jamil Faissal Soni
- Unidade do Sistema Musculoesquelético, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Paraná, Brasil
- Hospital Universitário Cajuru, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brasil
| | - Bertoldo Schneider Júnior
- Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
- Programa de Pós-Graduação em Engenharia Biomédica, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
| |
Collapse
|
93
|
Influence of the Printing Orientation on Parallelism, Distance, and Wall Thickness of Adjacent Cylinders of 3D-Printed Surgical Guides. PROSTHESIS 2023. [DOI: 10.3390/prosthesis5010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This in-vitro study aimed to evaluate the influence of the printing orientation on parallelism, distance, and thickness between adjacent cylinders of 3D-printed surgical guides. CAD software was used to design a surgical guide with two adjacent parallel cylinders (reference); the design was saved as standard tessellation software (STL) and 63 samples were printed using three different orientations (0, 45, and 90 degrees). A metrology digital microscope was used to measure the distance, the angle and the thickness of the guides cylinders. Afterwards, the printed guides were scanned and cloud comparison software was used to compare STL files from the printed guides against the reference CAD model. One-way analysis of variance and Tukey test were used for multiple comparisons between groups and significance was p < 0.05. The printing orientation affected the distance between cylinders, the parallelism and the wall thickness. In addition, there were global deviations in all printing orientations. Printing with 90 degrees orientation produced almost-parallel cylinders but walls thicker than the reference model; all the cylinders converged toward the coronal but printing at 0 degrees produced the closest distance to the reference value. Within the limitations of this experimental in-vitro study it can be concluded that all the printing orientations influence the angle, the distance, and the thickness between adjacent cylinders of a surgical guide. Printing at 90 degrees produces the best global correspondence with the master model.
Collapse
|
94
|
Sandmair MN, Kleber C, Ströbele DA, von See C. AFM Analysis of a Three-Point Flexure Tested, 3D Printing Definitive Restoration Material for Dentistry. J Funct Biomater 2023; 14:jfb14030152. [PMID: 36976076 PMCID: PMC10056548 DOI: 10.3390/jfb14030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Background: Three-dimensional printing is a rapidly developing technology across all industries. In medicine recent developments include 3D bioprinting, personalized medication and custom prosthetics and implants. To ensure safety and long-term usability in a clinical setting, it is essential to understand material specific properties. This study aims to analyze possible surface changes of a commercially available and approved DLP 3D printed definitive restoration material for dentistry after three-point flexure testing. Furthermore, this study explores whether Atomic Force Microscopy (AFM) is a feasible method for examination of 3D printed dental materials in general. This is a pilot study, as there are currently no studies that analyze 3D printed dental materials using an AFM. Methods: The present study consisted of a pretest followed by the main test. The resulting break force of the preliminary test was used to determine the force used in the main test. The main test consisted of atomic force microscopy (AFM) surface analysis of the test specimen followed by a three-point flexure procedure. After bending, the same specimen was analyzed with the AFM again, to observe possible surface changes. Results: The mean root mean square (RMS) roughness of the segments with the most stress was 20.27 nm (±5.16) before bending, while it was 26.48 nm (±6.67) afterward. The corresponding mean roughness (Ra) values were 16.05 nm (±4.25) and 21.19 nm (±5.71) Conclusions: Under three-point flexure testing, the surface roughness increased significantly. The p-value for RMS roughness was p = 0.003, while it was p = 0.006 for Ra. Furthermore, this study showed that AFM surface analysis is a suitable procedure to investigate surface changes in 3D printed dental materials.
Collapse
Affiliation(s)
- Maximilian N. Sandmair
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
- Correspondence: (M.N.S.); (C.v.S.)
| | - Christoph Kleber
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Dragan A. Ströbele
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Constantin von See
- Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
- Correspondence: (M.N.S.); (C.v.S.)
| |
Collapse
|
95
|
Application of 3D Printing in Bone Grafts. Cells 2023; 12:cells12060859. [PMID: 36980200 PMCID: PMC10047278 DOI: 10.3390/cells12060859] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The application of 3D printing in bone grafts is gaining in importance and is becoming more and more popular. The choice of the method has a direct impact on the preparation of the patient for surgery, the probability of rejection of the transplant, and many other complications. The aim of the article is to discuss methods of bone grafting and to compare these methods. This review of literature is based on a selective literature search of the PubMed and Web of Science databases from 2001 to 2022 using the search terms “bone graft”, “bone transplant”, and “3D printing”. In addition, we also reviewed non-medical literature related to materials used for 3D printing. There are several methods of bone grafting, such as a demineralized bone matrix, cancellous allograft, nonvascular cortical allograft, osteoarticular allograft, osteochondral allograft, vascularized allograft, and an autogenic transplant using a bone substitute. Currently, autogenous grafting, which involves removing the patient’s bone from an area of low aesthetic importance, is referred to as the gold standard. 3D printing enables using a variety of materials. 3D technology is being applied to bone tissue engineering much more often. It allows for the treatment of bone defects thanks to the creation of a porous scaffold with adequate mechanical strength and favorable macro- and microstructures. Bone tissue engineering is an innovative approach that can be used to repair multiple bone defects in the process of transplantation. In this process, biomaterials are a very important factor in supporting regenerative cells and the regeneration of tissue. We have years of research ahead of us; however, it is certain that 3D printing is the future of transplant medicine.
Collapse
|
96
|
Schulz MC, Holtzhausen S, Nies B, Heinemann S, Muallah D, Kroschwald L, Paetzold-Byhain K, Lauer G, Sembdner P. Three-Dimensional Plotted Calcium Phosphate Scaffolds for Bone Defect Augmentation—A New Method for Regeneration. J Pers Med 2023; 13:jpm13030464. [PMID: 36983646 PMCID: PMC10058839 DOI: 10.3390/jpm13030464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
For sinus grafting, different methods and materials are available. One possible shortcoming of particulate bone grafts is either overfilling or augmenting the planned implant area insufficiently. To overcome this risk and to determine the implant position prior augmentation, we present an approach using three-dimensional printed scaffolds. A patient with a remaining anterior dentition and bilateral severely atrophied posterior maxilla was seeking oral rehabilitation. The cone beam computed tomography (CBCT) showed residual bone heights between one and two millimeters. Following the three-dimensional reconstruction of the CBCT data, the positions of the implants were determined in areas 16 and 26. Three-dimensional scaffolds adapted to the topography of the sinus were virtually designed and printed using a calcium phosphate cement paste. Bilateral sinus floor augmentation applying the printed scaffolds with an interconnecting porosity followed. After nine months, a satisfying integration of the scaffolds was obvious. At the re-entry, vital bone with sufficient blood supply was found. One implant could be placed in positions 16 and 26, respectively. After five months, the implants could be uncovered and were provided with a temporary denture. The application of three-dimensionally printed scaffolds from calcium phosphate cement paste seems to be a promising technique to graft the severely atrophied posterior maxilla for the placement of dental implants.
Collapse
Affiliation(s)
- Matthias C. Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Osianderstraße 2-8, 72076 Tübingen, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-7071-2986-174
| | - Stefan Holtzhausen
- Institute of Machine Elements and Machine Design, Chair of Virtual Product Development, Technische Universität Dresden, 01062 Dresden, Germany
| | - Berthold Nies
- INNOTERE GmbH, Meissner Str. 191, 01445 Radebeul, Germany
| | | | - David Muallah
- Department of Oral and Maxillofacial Surgery, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Lysann Kroschwald
- Department of Oral and Maxillofacial Surgery, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Kristin Paetzold-Byhain
- Institute of Machine Elements and Machine Design, Chair of Virtual Product Development, Technische Universität Dresden, 01062 Dresden, Germany
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Philipp Sembdner
- Institute of Machine Elements and Machine Design, Chair of Virtual Product Development, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
97
|
Cheng J, Wang ZF, Yao WF, Liu JW, Lu Y, Wang Q, Cai XJ. Comparison of 3D printing model to 3D virtual reconstruction and 2D imaging for the clinical education of interns in hepatocellular carcinoma: a randomized controlled study. J Gastrointest Oncol 2023; 14:325-333. [PMID: 36915461 PMCID: PMC10007920 DOI: 10.21037/jgo-23-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
Background The clinical education of interns on hepatocellular carcinoma (HCC) is both crucial and difficult in China, even if the education reform has advanced constantly over the years. The value of specific 3D printing model (3DPM) in clinical education of HCC is uncertain, and relevant literatures are very few. This study aimed to explore the effects of a patient-specific 3D printing liver model on the clinical education of HCC. Methods Three laparoscopic hepatectomies were collected. For each case, a 3D virtual reconstruction (3DVR) and 3DPM were created using multi-detector computed tomography (MDCT) data, respectively. A total of 62 interns were randomly assigned to each group (3DPM, 3DVR, and MDCT groups) through a table of random numbers for random grouping. Following lecture-based HCC education, interns in each group selected a corresponding model of HCC. All interns were tested on the hepatic tumor locations, the vessels adjacent to them, surgical planning, and test time using the centesimal system score within 90 min. A questionnaire investigation on the degree of satisfaction, interest, and helpfulness for improving the comprehension ability of liver anatomy and 3D spatial structures was also recorded. The 3DPM group were compared with both 3DVR and MDCT group by theoretical examination scores and questionnaire survey satisfaction to evaluate the effects of 3DPM on the interns' clinical education in HCC. Results All the interns completed the test and questionnaire. The 3DPM group gained significantly higher scores on the following test contents: indicating the correct tumor location (3DPM vs. 3DVR, MDCT: 36.7±4.8 vs. 33.2±5.8, 26.8±10.0, P=0.03, P<0.01, respectively), accurately identifying the relationship between the tumor and vessels (3DPM vs. 3DVR, MDCT: 37.1±4.6 vs. 31.6±3.7, 30.0±5.8, P<0.01, P<0.01, respectively), and designing appropriate surgical plans (3DPM vs. 3DVR, MDCT: 8±2.7 vs. 4.9±2.7, 5.9±3.8, P<0.01, P=0.04, respectively). The 3DPM group showed a higher degree of satisfaction (86.2%), interest (92.1%), and helpfulness (80.5%) for improving the comprehension ability of liver anatomy and 3D spatial structures. Conclusions The clinical teaching by utilizing 3DPM can significantly improve the professional theoretical level, strengthen clinical thinking and comprehensive ability, and improve the teaching effects of HCC for medical interns.
Collapse
Affiliation(s)
- Jian Cheng
- Zhejiang University School of Medicine, Department of General Surgery, Sir Run Run Shaw Hospital, Hangzhou, China.,General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhi-Fei Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wei-Feng Yao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jun-Wei Liu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yi Lu
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qiang Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiu-Jun Cai
- Zhejiang University School of Medicine, Department of General Surgery, Sir Run Run Shaw Hospital, Hangzhou, China
| |
Collapse
|
98
|
Shopova D, Yaneva A, Bakova D, Mihaylova A, Kasnakova P, Hristozova M, Sbirkov Y, Sarafian V, Semerdzhieva M. (Bio)printing in Personalized Medicine—Opportunities and Potential Benefits. Bioengineering (Basel) 2023; 10:bioengineering10030287. [PMID: 36978678 PMCID: PMC10045778 DOI: 10.3390/bioengineering10030287] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The global development of technologies now enters areas related to human health, with a transition from conventional to personalized medicine that is based to a significant extent on (bio)printing. The goal of this article is to review some of the published scientific literature and to highlight the importance and potential benefits of using 3D (bio)printing techniques in contemporary personalized medicine and also to offer future perspectives in this research field. The article is prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Web of Science, PubMed, Scopus, Google Scholar, and ScienceDirect databases were used in the literature search. Six authors independently performed the search, study selection, and data extraction. This review focuses on 3D bio(printing) in personalized medicine and provides a classification of 3D bio(printing) benefits in several categories: overcoming the shortage of organs for transplantation, elimination of problems due to the difference between sexes in organ transplantation, reducing the cases of rejection of transplanted organs, enhancing the survival of patients with transplantation, drug research and development, elimination of genetic/congenital defects in tissues and organs, and surgery planning and medical training for young doctors. In particular, we highlight the benefits of each 3D bio(printing) applications included along with the associated scientific reports from recent literature. In addition, we present an overview of some of the challenges that need to be overcome in the applications of 3D bioprinting in personalized medicine. The reviewed articles lead to the conclusion that bioprinting may be adopted as a revolution in the development of personalized, medicine and it has a huge potential in the near future to become a gold standard in future healthcare in the world.
Collapse
Affiliation(s)
- Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University, 4000 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +359-887417078
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Petya Kasnakova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Maria Hristozova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University, 4000 Plovdiv, Bulgaria
| | - Mariya Semerdzhieva
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| |
Collapse
|
99
|
Waqar A, Othman I, Pomares JC. Impact of 3D Printing on the Overall Project Success of Residential Construction Projects Using Structural Equation Modelling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20053800. [PMID: 36900821 PMCID: PMC10000831 DOI: 10.3390/ijerph20053800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/04/2023]
Abstract
After a decade of research and development, 3D printing is now an established technique in the construction sector, complete with its own set of accepted standards. The use of 3D printing in construction might potentially improve the outcome of the project as a whole. However, traditional strategies are often used in the residential construction industry in Malaysia, which causes serious public safety and health issues along with a negative impact on the environment. In the context of project management, overall project success (OPS) has five dimensions, such as cost, time, quality, safety, and environment. Understanding the role of 3D printing in relation to OPS dimensions in Malaysian residential construction projects would allow construction professionals to adopt 3D printing more easily. The aim of the study was to find the impact of 3D construction printing on OPS while considering the implications for all five dimensions. Fifteen professionals were interviewed to first evaluate and summarise the impact factors of 3D printing using the current literature. Then, a pilot survey was conducted, and the results were checked using exploratory factor analysis (EFA). The feasibility of 3D printing in the building sector was investigated by surveying industry experts. Partial least squares structural equation modelling was used to investigate and validate the fundamental structure and linkages between 3D printing and OPS (PLS-SEM). A strong correlation was found between 3D printing in residential projects and OPS. Highly positive implications are indicated by the environmental and safety dimensions of OPS. Malaysian decision-makers may look to the outcomes of introducing 3D printing into the residential construction industry as a modern method for increasing environmental sustainability, public health and safety, reducing cost and time, and increasing the quality of construction work. With this study's findings in hand, construction engineering management in Malaysia's residential building sector might benefit from a deeper understanding of how 3D printing is used for improving environmental compliance, public health and safety, and project scope.
Collapse
Affiliation(s)
- Ahsan Waqar
- Department of Civil & Environmental Engineering, University Technology PETRONAS, Seri Iskandar 32610, Malaysia
| | - Idris Othman
- Department of Civil & Environmental Engineering, University Technology PETRONAS, Seri Iskandar 32610, Malaysia
| | | |
Collapse
|
100
|
Development and In-Silico and Ex-Vivo Validation of a Software for a Semi-Automated Segmentation of the Round Window Niche to Design a Patient Specific Implant to Treat Inner Ear Disorders. J Imaging 2023; 9:jimaging9020051. [PMID: 36826970 PMCID: PMC9965310 DOI: 10.3390/jimaging9020051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The aim of this study was to develop and validate a semi-automated segmentation approach that identifies the round window niche (RWN) and round window membrane (RWM) for use in the development of patient individualized round window niche implants (RNI) to treat inner ear disorders. Twenty cone beam computed tomography (CBCT) datasets of unilateral temporal bones of patients were included in the study. Defined anatomical landmarks such as the RWM were used to develop a customized 3D Slicer™ plugin for semi-automated segmentation of the RWN. Two otolaryngologists (User 1 and User 2) segmented the datasets manually and semi-automatically using the developed software. Both methods were compared in-silico regarding the resulting RWM area and RWN volume. Finally, the developed software was validated ex-vivo in N = 3 body donor implantation tests with additively manufactured RNI. The independently segmented temporal bones of the different Users showed a strong consistency in the volume of the RWN and the area of the RWM. The volume of the semi-automated RWN segmentations were 48 ± 11% smaller on average than the manual segmentations and the area of the RWM of the semi-automated segmentations was 21 ± 17% smaller on average than the manual segmentation. All additively manufactured implants, based on the semi-automated segmentation method could be implanted successfully in a pressure-tight fit into the RWN. The implants based on the manual segmentations failed to fit into the RWN and this suggests that the larger manual segmentations were over-segmentations. This study presents a semi-automated approach for segmenting the RWN and RWM in temporal bone CBCT scans that is efficient, fast, accurate, and not dependent on trained users. In addition, the manual segmentation, often positioned as the gold-standard, actually failed to pass the implantation validation.
Collapse
|