51
|
Wang H, Dong J, Li G, Tan Y, Zhao H, Zhang L, Wang Y, Hu Z, Cao X, Shi F, Zhang S. The small protein MafG plays a critical role in MC3T3-E1 cell apoptosis induced by simulated microgravity and radiation. Biochem Biophys Res Commun 2021; 555:175-181. [PMID: 33819748 DOI: 10.1016/j.bbrc.2021.03.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Microgravity and radiation exposure-induced bone damage is one of the most significant alterations in astronauts after long-term spaceflight. However, the underlying mechanism is still largely unknown. Recent ground-based simulation studies have suggested that this impairment is likely mediated by increased production of reactive oxygen species (ROS) during spaceflight. The small Maf protein MafG is a basic-region leucine zipper-type transcription factor, and it globally contributes to regulation of antioxidant and metabolic networks. Our research investigated the role of MafG in the process of apoptosis induced by simulated microgravity and radiation in MC3T3-E1 cells. We found that simulated microgravity or radiation alone decreased MafG expression and elevated apoptosis in MC3T3-E1 cells, and combined simulated microgravity and radiation treatment aggravated apoptosis. Meanwhile, under normal conditions, increased ROS levels facilitated apoptosis and downregulated the expression of MafG in MC3T3-E1 cells. Overexpression of MafG decreased apoptosis induced by simulated microgravity and radiation. These findings provide new insight into the mechanism of bone damage induced by microgravity and radiation during space flight.
Collapse
Affiliation(s)
- Honghui Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China; State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 100094, Beijing, China
| | - Jingjing Dong
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China; Rehabilitation Physiotherapy Department, Lintong Rehabilitation and Recuperation Center, PLA Joint Logistic Support Force, 710600, Xi'an, Shaanxi, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 100094, Beijing, China
| | - Hai Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 100094, Beijing, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
52
|
Nutritional Orthopedics and Space Nutrition as Two Sides of the Same Coin: A Scoping Review. Nutrients 2021; 13:nu13020483. [PMID: 33535596 PMCID: PMC7912880 DOI: 10.3390/nu13020483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/19/2023] Open
Abstract
Since the Moon landing, nutritional research has been charged with the task of guaranteeing human health in space. In addition, nutrition applied to Orthopedics has developed in recent years, driven by the need to improve the efficiency of the treatment path by enhancing the recovery after surgery. As a result, nutritional sciences have specialized into two distinct fields of research: Nutritional Orthopedics and Space Nutrition. The former primarily deals with the nutritional requirements of old patients in hospitals, whereas the latter focuses on the varied food challenges of space travelers heading to deep space. Although they may seem disconnected, they both investigate similar nutritional issues. This scoping review shows what these two disciplines have in common, highlighting the mutual features between (1) pre-operative vs. pre-launch nutritional programs, (2) hospital-based vs. space station nutritional issues, and (3) post-discharge vs. deep space nutritional resilience. PubMed and Google Scholar were used to collect documents published from 1950 to 2020, from which 44 references were selected on Nutritional Orthopedics and 44 on Space Nutrition. Both the orthopedic patient and the astronaut were found to suffer from food insecurity, malnutrition, musculoskeletal involution, flavor/pleasure issues, fluid shifts, metabolic stresses, and isolation/confinement. Both fields of research aid the planning of demand-driven food systems and advanced nutritional approaches, like tailored diets with nutrients of interest (e.g., vitamin D and calcium). The nutritional features of orthopedic patients on Earth and of astronauts in space are undeniably related. Consequently, it is important to initiate close collaborations between orthopedic nutritionists and space experts, with the musculoskeletal-related dedications playing as common fuel.
Collapse
|
53
|
Space Biology Research and Biosensor Technologies: Past, Present, and Future. BIOSENSORS-BASEL 2021; 11:bios11020038. [PMID: 33572823 PMCID: PMC7912197 DOI: 10.3390/bios11020038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/02/2022]
Abstract
In light of future missions beyond low Earth orbit (LEO) and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined in order to develop protective countermeasures. Although many biological experiments have been performed in space since the 1960s, most have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, and have utilized a broad range of technologies. However, given the constraints of the deep space environment, upcoming deep space biological missions will be largely limited to microbial organisms and plant seeds using miniaturized technologies. Small satellites such as CubeSats are capable of querying relevant space environments using novel, miniaturized instruments and biosensors. CubeSats also provide a low-cost alternative to larger, more complex missions, and require minimal crew support, if any. Several have been deployed in LEO, but the next iterations of biological CubeSats will travel beyond LEO. They will utilize biosensors that can better elucidate the effects of the space environment on biology, allowing humanity to return safely to deep space, venturing farther than ever before.
Collapse
|
54
|
Hibernation as a Tool for Radiation Protection in Space Exploration. Life (Basel) 2021; 11:life11010054. [PMID: 33466717 PMCID: PMC7828799 DOI: 10.3390/life11010054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
With new and advanced technology, human exploration has reached outside of the Earth's boundaries. There are plans for reaching Mars and the satellites of Jupiter and Saturn, and even to build a permanent base on the Moon. However, human beings have evolved on Earth with levels of gravity and radiation that are very different from those that we have to face in space. These issues seem to pose a significant limitation on exploration. Although there are plausible solutions for problems related to the lack of gravity, it is still unclear how to address the radiation problem. Several solutions have been proposed, such as passive or active shielding or the use of specific drugs that could reduce the effects of radiation. Recently, a method that reproduces a mechanism similar to hibernation or torpor, known as synthetic torpor, has started to become possible. Several studies show that hibernators are resistant to acute high-dose-rate radiation exposure. However, the underlying mechanism of how this occurs remains unclear, and further investigation is needed. Whether synthetic hibernation will also protect from the deleterious effects of chronic low-dose-rate radiation exposure is currently unknown. Hibernators can modulate their neuronal firing, adjust their cardiovascular function, regulate their body temperature, preserve their muscles during prolonged inactivity, regulate their immune system, and most importantly, increase their radioresistance during the inactive period. According to recent studies, synthetic hibernation, just like natural hibernation, could mitigate radiation-induced toxicity. In this review, we see what artificial hibernation is and how it could help the next generation of astronauts in future interplanetary missions.
Collapse
|
55
|
Mohanta TK, Mishra AK, Mohanta YK, Al-Harrasi A. Space Breeding: The Next-Generation Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:771985. [PMID: 34777452 PMCID: PMC8579881 DOI: 10.3389/fpls.2021.771985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/04/2021] [Indexed: 05/03/2023]
Abstract
Since the beginning of space exploration, researchers have been exploring the role of microgravity, cosmic radiation, and other aspects of the space environment on plant growth and development. To create superior crop varieties and achieve noticeable success in the space environment, several types of research have been conducted thus far. Space-grown plants have been exposed to cosmic radiation and microgravity, which has led to the generation of crop varieties with diverse genotypes and phenotypes arising from different cellular, subcellular, genomic, chromosomal, and biochemical changes. DNA damage and chromosomal aberrations due to cosmic radiation are the major factors responsible for genetic polymorphism and the generation of crops with modified genetic combinations. These changes can be used to produce next-generation crop varieties capable of surviving diverse environmental conditions. This review aims to elucidate the detailed molecular mechanisms and genetic mutations found in plants used in recent space crop projects and how these can be applied in space breeding programmes in the future.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- *Correspondence: Tapan Kumar Mohanta, ;
| | | | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Science, University of Science and Technology, Ri-Bhoi, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Ahmed Al-Harrasi,
| |
Collapse
|
56
|
Smartphone-Based Portable Bioluminescence Imaging System Enabling Observation at Various Scales from Whole Mouse Body to Organelle. SENSORS 2020; 20:s20247166. [PMID: 33327525 PMCID: PMC7764933 DOI: 10.3390/s20247166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/29/2022]
Abstract
Current smartphones equipped with high-sensitivity and high-resolution sensors in the camera can respond to the needs of low-light imaging, streaming acquisition, targets of various scales, etc. Therefore, a smartphone has great potential as an imaging device even in the scientific field and has already been introduced into biomolecular imaging using fluorescence tags. However, owing to the necessity of an excitation light source, fluorescence methods impair its mobility. Bioluminescence does not require illumination; therefore, imaging with a smartphone camera is compact and requires minimal devices, thus making it suitable for personal and portable imaging devices. Here, we report smartphone-based methods to observe biological targets in various scales using bioluminescence. In particular, we demonstrate, for the first time, that bioluminescence can be observed in an organelle in a single living cell using a smartphone camera by attaching a detachable objective lens. Through capturing color changes with the camera, changes in the amount of target molecules was detected using bioluminescent indicators. The combination of bioluminescence and a mobile phone makes possible a compact imaging system without an external light source and expands the potential of portable devices.
Collapse
|
57
|
Rutter L, Barker R, Bezdan D, Cope H, Costes SV, Degoricija L, Fisch KM, Gabitto MI, Gebre S, Giacomello S, Gilroy S, Green SJ, Mason CE, Reinsch SS, Szewczyk NJ, Taylor DM, Galazka JM, Herranz R, Muratani M. A New Era for Space Life Science: International Standards for Space Omics Processing. PATTERNS (NEW YORK, N.Y.) 2020; 1:100148. [PMID: 33336201 PMCID: PMC7733874 DOI: 10.1016/j.patter.2020.100148] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Space agencies have announced plans for human missions to the Moon to prepare for Mars. However, the space environment presents stressors that include radiation, microgravity, and isolation. Understanding how these factors affect biology is crucial for safe and effective crewed space exploration. There is a need to develop countermeasures, to adapt plants and microbes for nutrient sources and bioregenerative life support, and to limit pathogen infection. Scientists across the world are conducting space omics experiments on model organisms and, more recently, on humans. Optimal extraction of actionable scientific discoveries from these precious datasets will only occur at the collective level with improved standardization. To address this shortcoming, we established ISSOP (International Standards for Space Omics Processing), an international consortium of scientists who aim to enhance standard guidelines between space biologists at a global level. Here we introduce our consortium and share past lessons learned and future challenges related to spaceflight omics.
Collapse
Affiliation(s)
- Lindsay Rutter
- Transborder Medical Research Center and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Daniela Bezdan
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, Tubingen, Germany
| | - Henry Cope
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Sylvain V. Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Kathleen M. Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mariano I. Gabitto
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA
| | - Samrawit Gebre
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Stefan J. Green
- Genome Research Core, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sigrid S. Reinsch
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Nathaniel J. Szewczyk
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH 45701, USA
| | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan M. Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Masafumi Muratani
- Transborder Medical Research Center and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
58
|
Repair Kinetics of DNA Double Strand Breaks Induced by Simulated Space Radiation. Life (Basel) 2020; 10:life10120341. [PMID: 33321941 PMCID: PMC7763067 DOI: 10.3390/life10120341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Radiation is unavoidable in space. Energetic particles in space radiation are reported to induce cluster DNA damage that is difficult to repair. In this study, normal human fibroblasts were irradiated with components of space radiation such as proton, helium, or carbon ion beams. Immunostaining for γ-H2AX and 53BP1 was performed over time to evaluate the kinetics of DNA damage repair. Our data clearly show that the repair kinetics of DNA double strand breaks (DSBs) induced by carbon ion irradiation, which has a high linear energy transfer (LET), are significantly slower than those of proton and helium ion irradiation. Mixed irradiation with carbon ions, followed by helium ions, did not have an additive effect on the DSB repair kinetics. Interestingly, the mean γ-H2AX focus size was shown to increase with LET, suggesting that the delay in repair kinetics was due to damage that is more complex. Further, the 53BP1 focus size also increased in an LET-dependent manner. Repair of DSBs, characterized by large 53BP1 foci, was a slow process within the biphasic kinetics of DSB repair, suggesting non-homologous end joining with error-prone end resection. Our data suggest that the biological effects of space radiation may be significantly influenced by the dose as well as the type of radiation exposure.
Collapse
|
59
|
Prasad B, Grimm D, Strauch SM, Erzinger GS, Corydon TJ, Lebert M, Magnusson NE, Infanger M, Richter P, Krüger M. Influence of Microgravity on Apoptosis in Cells, Tissues, and Other Systems In Vivo and In Vitro. Int J Mol Sci 2020; 21:E9373. [PMID: 33317046 PMCID: PMC7764784 DOI: 10.3390/ijms21249373] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
All life forms have evolved under the constant force of gravity on Earth and developed ways to counterbalance acceleration load. In space, shear forces, buoyance-driven convection, and hydrostatic pressure are nullified or strongly reduced. When subjected to microgravity in space, the equilibrium between cell architecture and the external force is disturbed, resulting in changes at the cellular and sub-cellular levels (e.g., cytoskeleton, signal transduction, membrane permeability, etc.). Cosmic radiation also poses great health risks to astronauts because it has high linear energy transfer values that evoke complex DNA and other cellular damage. Space environmental conditions have been shown to influence apoptosis in various cell types. Apoptosis has important functions in morphogenesis, organ development, and wound healing. This review provides an overview of microgravity research platforms and apoptosis. The sections summarize the current knowledge of the impact of microgravity and cosmic radiation on cells with respect to apoptosis. Apoptosis-related microgravity experiments conducted with different mammalian model systems are presented. Recent findings in cells of the immune system, cardiovascular system, brain, eyes, cartilage, bone, gastrointestinal tract, liver, and pancreas, as well as cancer cells investigated under real and simulated microgravity conditions, are discussed. This comprehensive review indicates the potential of the space environment in biomedical research.
Collapse
Affiliation(s)
- Binod Prasad
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Gilmar Sidnei Erzinger
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC 89219-710, Brazil; (S.M.S.); (G.S.E.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (D.G.); (T.J.C.)
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
- Space Biology Unlimited SAS, 24 Cours de l’Intendance, 33000 Bordeaux, France
| | - Nils E. Magnusson
- Diabetes and Hormone Diseases, Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark;
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Friedrich-Alexander University, Staudtstraße 5, 91058 Erlangen, Germany; (B.P.); (M.L.)
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (M.I.); (M.K.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
60
|
Wang B, Yasuda H. Relative Biological Effectiveness of High LET Particles on the Reproductive System and Fetal Development. Life (Basel) 2020; 10:E298. [PMID: 33233778 PMCID: PMC7699951 DOI: 10.3390/life10110298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
During a space mission, astronauts are inevitably exposed to space radiation, mainly composed of the particles having high values of linear energy transfer (LET), such as protons, helium nuclei, and other heavier ions. Those high-LET particles could induce severer health damages than low-LET particles such as photons and electrons. While it is known that the biological effectiveness of a specified type of radiation depends on the distribution of dose in time, type of the cell, and the biological endpoint in respect, there are still large uncertainties regarding the effects of high-LET particles on the reproductive system, gamete, embryo, and fetal development because of the limitation of relevant data from epidemiological and experimental studies. To safely achieve the planned deep space missions to the moon and Mars that would involve young astronauts having reproductive functions, it is crucial to know exactly the relevant radiological effects, such as infertility of the parent and various diseases of the child, and then to conduct proper countermeasures. Thus, in this review, the authors present currently available information regarding the relative biological effectiveness (RBE) of high-LET particles on the deterministic effects related to the reproductive system and embryonic/fetal development for further discussions about the safety of being pregnant after or during a long-term interplanetary mission.
Collapse
Affiliation(s)
- Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Hiroshi Yasuda
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
61
|
Takahashi A, Yamanouchi S, Takeuchi K, Takahashi S, Tashiro M, Hidema J, Higashitani A, Adachi T, Zhang S, Guirguis FNL, Yoshida Y, Nagamatsu A, Hada M, Takeuchi K, Takahashi T, Sekitomi Y. Combined Environment Simulator for Low-Dose-Rate Radiation and Partial Gravity of Moon and Mars. Life (Basel) 2020; 10:life10110274. [PMID: 33172150 PMCID: PMC7694743 DOI: 10.3390/life10110274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022] Open
Abstract
Deep space exploration by humans has become more realistic, with planned returns to the Moon, travel to Mars, and beyond. Space radiation with a low dose rate would be a constant risk for space travelers. The combined effects of space radiation and partial gravity such as on the Moon and Mars are unknown. The difficulty for such research is that there are no good simulating systems on the ground to investigate these combined effects. To address this knowledge gap, we developed the Simulator of the environments on the Moon and Mars with Neutron irradiation and Gravity change (SwiNG) for in vitro experiments using disposable closed cell culture chambers. The device simulates partial gravity using a centrifuge in a three-dimensional clinostat. Six samples are exposed at once to neutrons at a low dose rate (1 mGy/day) using Californium-252 in the center of the centrifuge. The system is compact including two SwiNG devices in the incubator, one with and one without radiation source, with a cooling function. This simulator is highly convenient for ground-based biological experiments because of limited access to spaceflight experiments. SwiNG can contribute significantly to research on the combined effects of space radiation and partial gravity.
Collapse
Affiliation(s)
- Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
- Correspondence: ; Tel.: +81-27-220-7917
| | - Sakuya Yamanouchi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Kazuomi Takeuchi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Shogo Takahashi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Jun Hidema
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
| | - Takuya Adachi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Shenke Zhang
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Fady Nagy Lotfy Guirguis
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; (S.Y.); (M.T.); (T.A.); (S.Z.); (F.N.L.G.); (Y.Y.)
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Kunihito Takeuchi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Tohru Takahashi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
| | - Yuji Sekitomi
- Matsuo Industries, Inc., 27-1, Ida, Kitasaki-machi, Obu, Aichi 474-0001, Japan; (K.T.); (S.T.); (K.T.); (T.T.); (Y.S.)
- Material Solutions Center, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
62
|
Blakely EA. The 20th Gray lecture 2019: health and heavy ions. Br J Radiol 2020; 93:20200172. [PMID: 33021811 PMCID: PMC8519642 DOI: 10.1259/bjr.20200172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Particle radiobiology has contributed new understanding of radiation safety and underlying mechanisms of action to radiation oncology for the treatment of cancer, and to planning of radiation protection for space travel. This manuscript will highlight the significance of precise physical and biologically effective dosimetry to this translational research for the benefit of human health.This review provides a brief snapshot of the evolving scientific basis for, and the complex current global status, and remaining challenges of hadron therapy for the treatment of cancer. The need for particle radiobiology for risk planning in return missions to the Moon, and exploratory deep-space missions to Mars and beyond are also discussed. METHODS Key lessons learned are summarized from an impressive collective literature published by an international cadre of multidisciplinary experts in particle physics, radiation chemistry, medical physics of imaging and treatment planning, molecular, cellular, tissue radiobiology, biology of microgravity and other stressors, theoretical modeling of biophysical data, and clinical results with accelerator-produced particle beams. RESULTS Research pioneers, many of whom were Nobel laureates, led the world in the discovery of ionizing radiations originating from the Earth and the Cosmos. Six radiation pioneers led the way to hadron therapy and the study of charged particles encountered in outer space travel. Worldwide about 250,000 patients have been treated for cancer, or other lesions such as arteriovenous malformations in the brain between 1954 and 2019 with charged particle radiotherapy, also known as hadron therapy. The majority of these patients (213,000) were treated with proton beams, but approximately 32,000 were treated with carbon ion radiotherapy. There are 3500 patients who have been treated with helium, pions, neon or other ions. There are currently 82 facilities operating to provide ion beam clinical treatments. Of these, only 13 facilities located in Asia and Europe are providing carbon ion beams for preclinical, clinical, and space research. There are also numerous particle physics accelerators worldwide capable of producing ion beams for research, but not currently focused on treating patients with ion beam therapy but are potentially available for preclinical and space research. Approximately, more than 550 individuals have traveled into Lower Earth Orbit (LEO) and beyond and returned to Earth. CONCLUSION Charged particle therapy with controlled beams of protons and carbon ions have significantly impacted targeted cancer therapy, eradicated tumors while sparing normal tissue toxicities, and reduced human suffering. These modalities still require further optimization and technical refinements to reduce cost but should be made available to everyone in need worldwide. The exploration of our Universe in space travel poses the potential risk of exposure to uncontrolled charged particles. However, approaches to shield and provide countermeasures to these potential radiation hazards in LEO have allowed an amazing number of discoveries currently without significant life-threatening medical consequences. More basic research with components of the Galactic Cosmic Radiation field are still required to assure safety involving space radiations and combined stressors with microgravity for exploratory deep space travel. ADVANCES IN KNOWLEDGE The collective knowledge garnered from the wealth of available published evidence obtained prior to particle radiation therapy, or to space flight, and the additional data gleaned from implementing both endeavors has provided many opportunities for heavy ions to promote human health.
Collapse
|
63
|
Yamanouchi S, Rhone J, Mao JH, Fujiwara K, Saganti PB, Takahashi A, Hada M. Simultaneous Exposure of Cultured Human Lymphoblastic Cells to Simulated Microgravity and Radiation Increases Chromosome Aberrations. Life (Basel) 2020; 10:E187. [PMID: 32927618 PMCID: PMC7555395 DOI: 10.3390/life10090187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/22/2022] Open
Abstract
During space travel, humans are continuously exposed to two major environmental stresses, microgravity (μG) and space radiation. One of the fundamental questions is whether the two stressors are interactive. For over half a century, many studies were carried out in space, as well as using devices that simulated μG on the ground to investigate gravity effects on cells and organisms, and we have gained insights into how living organisms respond to μG. However, our knowledge on how to assess and manage human health risks in long-term mission to the Moon or Mars is drastically limited. For example, little information is available on how cells respond to simultaneous exposure to space radiation and μG. In this study, we analyzed the frequencies of chromosome aberrations (CA) in cultured human lymphoblastic TK6 cells exposed to X-ray or carbon ion under the simulated μG conditions. A higher frequency of both simple and complex types of CA were observed in cells exposed to radiation and μG simultaneously compared to CA frequency in cells exposed to radiation only. Our study shows that the dose response data on space radiation obtained at the 1G condition could lead to the underestimation of astronauts' potential risk for health deterioration, including cancer. This study also emphasizes the importance of obtaining data on the molecular and cellular responses to irradiation under μG conditions.
Collapse
Affiliation(s)
- Sakuya Yamanouchi
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan;
| | - Jordan Rhone
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; (J.R.); (P.B.S.)
| | - Jian-Hua Mao
- Biological Systems & Engineering Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA;
| | - Keigi Fujiwara
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Premkumar B. Saganti
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; (J.R.); (P.B.S.)
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; (J.R.); (P.B.S.)
| |
Collapse
|
64
|
The Effect of Low Temperatures on Environmental Radiation Damage in Living Systems: Does Hypothermia Show Promise for Space Travel? Int J Mol Sci 2020; 21:ijms21176349. [PMID: 32882991 PMCID: PMC7504535 DOI: 10.3390/ijms21176349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022] Open
Abstract
Low-temperature treatments (i.e., hypothermia) may be one way of regulating environmental radiation damage in living systems. With this in mind, hibernation under hypothermic conditions has been proposed as a useful approach for long-term human space flight. However, the underlying mechanisms of hypothermia-induced radioresistance are as yet undetermined, and the conventional risk assessment of radiation exposure during hibernation remains insufficient for estimating the effects of chronic exposure to galactic cosmic rays (GCRs). To promote scientific discussions on the application of hibernation in space travel, this literature review provides an overview of the progress to date in the interdisciplinary research field of radiation biology and hypothermia and addresses possible issues related to hypothermic treatments as countermeasures against GCRs. At present, there are concerns about the potential effects of chronic radiation exposure on neurological disorders, carcinogenesis, ischemia heat failures, and infertility in astronauts; these require further study. These concerns may be resolved by comparing and integrating data gleaned from experimental and epidemiological studies.
Collapse
|