51
|
Veloso ES, Gonçalves INN, Silveira TL, Espirito Santo JT, Figueiredo LV, Varaschin MS, Cassali GD, Del Puerto HL, Ferreira E. ZEB and Snail expression indicates epithelial-mesenchymal transition in canine melanoma. Res Vet Sci 2020; 131:7-14. [PMID: 32278962 DOI: 10.1016/j.rvsc.2020.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/15/2022]
Abstract
Melanoma progression is associated with the epithelial-mesenchymal transition (EMT) when tumor cells reduce E-cadherin and increase N-cadherin expression resulting in an escape from the microenvironment via loss of cellular adhesion and gain of motility. Transcription factor proteins Snail and ZEB trigger EMT by repression of epithelial markers and activation of mesenchymal properties. This study evaluated E-cadherin, N-cadherin, Snail, ZEB1 and ZEB2 expression by IHC and investigated their relationship with morphological characteristics in cutaneous and oral canine melanoma. Results from melanoma cases demonstrated E-cadherin expression in 45% (9/20) of oral and 58% (22/38) of cutaneous tumors, while N-cadherin expression was observed in 95% (18/19) of oral and 92% (34/37) of cutaneous melanoma. Cytoplasmic and nuclear N-cadherin expression was positively correlated with ZEB1 expression, while the cell membrane N-cadherin expression was positively correlated with ZEB2. In addition, an increase in nuclear N-cadherin expression was associated with reduced Snail expression in cutaneous melanoma and an increase in Snail expression in oral melanoma, indicating that the correlation between N-cadherin and Snail expression is coincident with tumor location. Our data suggest that ZEB family protein is associated with N-cadherin translocation from cell membrane to the cytoplasm and nuclei, and may act as important transcription factors of EMT regulation in canine melanoma.
Collapse
Affiliation(s)
- Emerson Soares Veloso
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | - Tatiany Luiza Silveira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | - Larissa Vieira Figueiredo
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | | | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Helen Lima Del Puerto
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Enio Ferreira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|
52
|
Gururaja Rao S, Patel NJ, Singh H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front Physiol 2020; 11:96. [PMID: 32116799 PMCID: PMC7034325 DOI: 10.3389/fphys.2020.00096] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Ion channels are integral membrane proteins present on the plasma membrane as well as intracellular membranes. In the human genome, there are more than 400 known genes encoding ion channel proteins. Ion channels are known to regulate several cellular, organellar, and physiological processes. Any mutation or disruption in their function can result in pathological disorders, both common or rare. Ion channels present on the plasma membrane are widely acknowledged for their role in various biological processes, but in recent years, several studies have pointed out the importance of ion channels located in intracellular organelles. However, ion channels located in intracellular organelles are not well-understood in the context of physiological conditions, such as the generation of cellular excitability and ionic homeostasis. Due to the lack of information regarding their molecular identity and technical limitations of studying them, intracellular organelle ion channels have thus far been overlooked as potential therapeutic targets. In this review, we focus on a novel class of intracellular organelle ion channels, Chloride Intracellular Ion Channels (CLICs), mainly documented for their role in cardiovascular, neurophysiology, and tumor biology. CLICs have a single transmembrane domain, and in cells, they exist in cytosolic as well as membranous forms. They are predominantly present in intracellular organelles and have recently been shown to be localized to cardiomyocyte mitochondria as well as exosomes. In fact, a member of this family, CLIC5, is the first mitochondrial chloride channel to be identified on the molecular level in the inner mitochondrial membrane, while another member, CLIC4, is located predominantly in the outer mitochondrial membrane. In this review, we discuss this unique class of intracellular chloride channels, their role in pathologies, such as cardiovascular, cancer, and neurodegenerative diseases, and the recent developments concerning their usage as theraputic targets.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Neel J Patel
- Department of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
53
|
A non-proliferative role of pyrimidine metabolism in cancer. Mol Metab 2020; 35:100962. [PMID: 32244187 PMCID: PMC7096759 DOI: 10.1016/j.molmet.2020.02.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background Nucleotide metabolism is a critical pathway that generates purine and pyrimidine molecules for DNA replication, RNA synthesis, and cellular bioenergetics. Increased nucleotide metabolism supports uncontrolled growth of tumors and is a hallmark of cancer. Agents inhibiting synthesis and incorporation of nucleotides in DNA are widely used as chemotherapeutics to reduce tumor growth, cause DNA damage, and induce cell death. Thus, the research on nucleotide metabolism in cancer is primarily focused on its role in cell proliferation. However, in addition to proliferation, the role of purine molecules is established as ligands for purinergic signals. However, so far, the role of the pyrimidines has not been discussed beyond cell growth. Scope of the review In this review we present the key evidence from recent pivotal studies supporting the notion of a non-proliferative role for pyrimidine metabolism (PyM) in cancer, with a special focus on its effect on differentiation in cancers from different origins. Major conclusion In leukemic cells, the pyrimidine catabolism induces terminal differentiation toward monocytic lineage to check the aberrant cell proliferation, whereas in some solid tumors (e.g., triple negative breast cancer and hepatocellular carcinoma), catalytic degradation of pyrimidines maintains the mesenchymal-like state driven by epithelial-to-mesenchymal transition (EMT). This review further broadens this concept to understand the effect of PyM on metastasis and, ultimately, delivers a rationale to investigate the involvement of the pyrimidine molecules as oncometabolites. Overall, understanding the non-proliferative role of PyM in cancer will lead to improvement of the existing antimetabolites and to development of new therapeutic options.
Collapse
|
54
|
Gagliardi M, Cotella D, Santoro C, Corà D, Barlev NA, Piacentini M, Corazzari M. Aldo-keto reductases protect metastatic melanoma from ER stress-independent ferroptosis. Cell Death Dis 2019; 10:902. [PMID: 31780644 PMCID: PMC6883066 DOI: 10.1038/s41419-019-2143-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
The incidence of melanoma is increasing over the years with a still poor prognosis and the lack of a cure able to guarantee an adequate survival of patients. Although the new immuno-based coupled to target therapeutic strategy is encouraging, the appearance of targeted/cross-resistance and/or side effects such as autoimmune disorders could limit its clinical use. Alternative therapeutic strategies are therefore urgently needed to efficiently kill melanoma cells. Ferroptosis induction and execution were evaluated in metastasis-derived wild-type and oncogenic BRAF melanoma cells, and the process responsible for the resistance has been dissected at molecular level. Although efficiently induced in all cells, in an oncogenic BRAF- and ER stress-independent way, most cells were resistant to ferroptosis execution. At molecular level we found that: resistant cells efficiently activate NRF2 which in turn upregulates the early ferroptotic marker CHAC1, in an ER stress-independent manner, and the aldo-keto reductases AKR1C1 ÷ 3 which degrades the 12/15-LOX-generated lipid peroxides thus resulting in ferroptotic cell death resistance. However, inhibiting AKRs activity/expression completely resensitizes resistant melanoma cells to ferroptosis execution. Finally, we found that the ferroptotic susceptibility associated with the differentiation of melanoma cells cannot be applied to metastatic-derived cells, due to the EMT-associated gene expression reprogramming process. However, we identified SCL7A11 as a valuable marker to predict the susceptibility of metastatic melanoma cells to ferroptosis. Our results identify the use of pro-ferroptotic drugs coupled to AKRs inhibitors as a new valuable strategy to efficiently kill human skin melanoma cells.
Collapse
Affiliation(s)
- Mara Gagliardi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Diego Cotella
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Claudio Santoro
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy.,Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Davide Corà
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy.,Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Nickolai A Barlev
- Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia.,Laboratory of Intracellular Signaling, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy. .,Laboratory of Molecular Medicine, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russia.
| | - Marco Corazzari
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy. .,Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy. .,Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
55
|
Zhou Y, Song KY, Giubellino A. The Role of MET in Melanoma and Melanocytic Lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2138-2148. [PMID: 31476283 DOI: 10.1016/j.ajpath.2019.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/28/2019] [Accepted: 08/15/2019] [Indexed: 01/03/2023]
Abstract
Melanoma is the leading cause of death due to cutaneous malignancy and its incidence is on the rise. Several signaling pathways, including receptor tyrosine kinases, have been recognized to have an etiopathogenetic role in the development and progression of precursor melanocytic lesions and malignant melanoma. Among those, the hepatocyte growth factor/MET (HGF/MET) axis is emerging as a critical player not only in the tumor itself but also in the immune microenvironment in which the tumor grows and advances in its development. Moreover, the activation of this pathway has emerged as a paradigm of tumor resistance to modern targeted therapies, and the assessment of its expression in patients' samples may be a valuable biomarker of tumor progression and response to targeted therapy. Here we summarize our current understanding of this important receptor tyrosine kinase in normal melanocyte proliferation/motility, in tumor progression and metastasis, its genetic alterations in certain subtype of melanocytic lesions, and how its pathway has been explored for the development of selective inhibitors.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| | - Kyu Young Song
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
56
|
Gómez-Abenza E, Ibáñez-Molero S, García-Moreno D, Fuentes I, Zon LI, Mione MC, Cayuela ML, Gabellini C, Mulero V. Zebrafish modeling reveals that SPINT1 regulates the aggressiveness of skin cutaneous melanoma and its crosstalk with tumor immune microenvironment. J Exp Clin Cancer Res 2019; 38:405. [PMID: 31519199 PMCID: PMC6743187 DOI: 10.1186/s13046-019-1389-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is the most lethal form of skin cancer and while incidence rates are declining for most cancers, they have been steadily rising for SKCM. Serine protease inhibitor, kunitz-type, 1 (SPINT1) is a type II transmembrane serine protease inhibitor that has been shown to be involved in the development of several types of cancer, such as squamous cell carcinoma and colorectal cancer. METHODS We used the unique advantages of the zebrafish to model the impact of Spint1a deficiency in early transformation, progression and metastatic invasion of SKCM together with in silico analysis of the occurrence and relevance of SPINT1 genetic alterations of the SKCM TCGA cohort. RESULTS We report here a high prevalence of SPINT1 genetic alterations in SKCM patients and their association with altered tumor immune microenvironment and poor patient survival. The zebrafish model reveals that Spint1a deficiency facilitates oncogenic transformation, regulates the tumor immune microenvironment crosstalk, accelerates the onset of SKCM and promotes metastatic invasion. Notably, Spint1a deficiency is required at both cell autonomous and non-autonomous levels to enhance invasiveness of SKCM. CONCLUSIONS These results reveal a novel therapeutic target for SKCM.
Collapse
Affiliation(s)
- Elena Gómez-Abenza
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Sofía Ibáñez-Molero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Inmaculada Fuentes
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA USA
| | - Maria C. Mione
- Laboratory of Experimental Cancer Biology, Cibio, University of Trento, Trento, Italy
| | - María L. Cayuela
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Chiara Gabellini
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
- Present Address: Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, Pisa, Italy
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| |
Collapse
|
57
|
Kircher DA, Trombetti KA, Silvis MR, Parkman GL, Fischer GM, Angel SN, Stehn CM, Strain SC, Grossmann AH, Duffy KL, Boucher KM, McMahon M, Davies MA, Mendoza MC, VanBrocklin MW, Holmen SL. AKT1 E17K Activates Focal Adhesion Kinase and Promotes Melanoma Brain Metastasis. Mol Cancer Res 2019; 17:1787-1800. [PMID: 31138602 PMCID: PMC6726552 DOI: 10.1158/1541-7786.mcr-18-1372] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 02/03/2023]
Abstract
Alterations in the PI3K/AKT pathway occur in up to 70% of melanomas and are associated with disease progression. The three AKT paralogs are highly conserved but data suggest they have distinct functions. Activating mutations of AKT1 and AKT3 occur in human melanoma but their role in melanoma formation and metastasis remains unclear. Using an established melanoma mouse model, we evaluated E17K, E40K, and Q79K mutations in AKT1, AKT2, and AKT3 and show that mice harboring tumors expressing AKT1E17K had the highest incidence of brain metastasis and lowest mean survival. Tumors expressing AKT1E17K displayed elevated levels of focal adhesion factors and enhanced phosphorylation of focal adhesion kinase (FAK). AKT1E17K expression in melanoma cells increased invasion and this was reduced by pharmacologic inhibition of either AKT or FAK. These data suggest that the different AKT paralogs have distinct roles in melanoma brain metastasis and that AKT and FAK may be promising therapeutic targets. IMPLICATIONS: This study suggests that AKT1E17K promotes melanoma brain metastasis through activation of FAK and provides a rationale for the therapeutic targeting of AKT and/or FAK to reduce melanoma metastasis.
Collapse
Affiliation(s)
- David A Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Kirby A Trombetti
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Mark R Silvis
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Gennie L Parkman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Grant M Fischer
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie N Angel
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Christopher M Stehn
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Sean C Strain
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Allie H Grossmann
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Keith L Duffy
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Kenneth M Boucher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle C Mendoza
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah.
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
58
|
Ni Y, Zhang Z, Chen G, Long W, Tong L, Zeng J. Integrated analyses identify potential prognostic markers for uveal melanoma. Exp Eye Res 2019; 187:107780. [PMID: 31469983 DOI: 10.1016/j.exer.2019.107780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 01/02/2023]
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults, which has a high rate of metastases and can induce vision loss and even death to the patients. To identify suitable prognostic markers of UM for the early detection or prognosis prediction would be an essential step toward successful management of the disease. Herein, we extracted the mRNA expression data along with the clinical information from The Cancer Genome Atlas (TCGA) database. A total of eight co-expression modules were constructed by 5,000 genes based on the weighted gene co-expression network analysis (WGCNA). We found the blue and yellow modules were significantly associated with clinical stage. The Cox regression analyses found the blue, yellow, green and brown modules were significantly associated with overall survival (OS), while the blue, yellow, brown, green and pink modules were significantly associated with recurrence-free survival (RFS). Furthermore, the hallmark pathway enrichment analyses found the genes encompassed in the blue, yellow, and brown modules were significantly enriched in critical pathways involved in tumorigenesis and progression process, such as EMT and KRAS pathways. The hub-genes in these three modules were visualized by Cytoscape software and further validated by an external Gene Expression Omnibus (GEO) dataset. Besides, the OS and RFS predicting signatures were constructed based on the validated hub-genes according to the LASSO Cox regression model. The UM patients were assigned to low-/high-risk population. The survival analyses indicated high-risk patients mostly had bad OS/RFS rate compared with the low-risk population. The receiver operating characteristic (ROC) curve proved the stability and superiority of the two signatures. To sum up, our findings provide a framework of co-expression network of UM and identify a series of biomarkers, which will benefit from improving the prognosis prediction of UM patients.
Collapse
Affiliation(s)
- Yao Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Genghang Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Liyang Tong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
59
|
Gil J, Betancourt LH, Pla I, Sanchez A, Appelqvist R, Miliotis T, Kuras M, Oskolas H, Kim Y, Horvath Z, Eriksson J, Berge E, Burestedt E, Jönsson G, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Horvatovich P, Murillo JR, Sugihara Y, Welinder C, Wieslander E, Lee B, Lindberg H, Pawłowski K, Kwon HJ, Doma V, Timar J, Karpati S, Szasz AM, Németh IB, Nishimura T, Corthals G, Rezeli M, Knudsen B, Malm J, Marko-Varga G. Clinical protein science in translational medicine targeting malignant melanoma. Cell Biol Toxicol 2019; 35:293-332. [PMID: 30900145 PMCID: PMC6757020 DOI: 10.1007/s10565-019-09468-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.
Collapse
Affiliation(s)
- Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Tasso Miliotis
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Translational Science, Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magdalena Kuras
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Henriette Oskolas
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Zsolt Horvath
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Jonatan Eriksson
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Ethan Berge
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Elisabeth Burestedt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, SUS, Lund, Sweden
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Jimmy Rodriguez Murillo
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Yutaka Sugihara
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Elisabet Wieslander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Henrik Lindberg
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Krzysztof Pawłowski
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ho Jeong Kwon
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Viktoria Doma
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Jozsef Timar
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Sarolta Karpati
- Department of Dermatology, Semmelweis University, Budapest, Hungary
| | - A Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Cancer Center, Semmelweis University, Budapest, 1083, Hungary
- MTA-TTK Momentum Oncology Biomarker Research Group, Hungarian Academy of Sciences, Budapest, 1117, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, H-6720, Hungary
| | - Toshihide Nishimura
- Clinical Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo, Japan
| | - Garry Corthals
- Van't Hoff Institute of Molecular Sciences, 1090 GS, Amsterdam, The Netherlands
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Beatrice Knudsen
- Biomedical Sciences and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo, Japan
| |
Collapse
|
60
|
Mannavola F, Tucci M, Felici C, Passarelli A, D'Oronzo S, Silvestris F. Tumor-derived exosomes promote the in vitro osteotropism of melanoma cells by activating the SDF-1/CXCR4/CXCR7 axis. J Transl Med 2019; 17:230. [PMID: 31324252 PMCID: PMC6642540 DOI: 10.1186/s12967-019-1982-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Bone metastases occur rarely in patients suffering from malignant melanoma, although their onset severely worsens both prognosis and quality of life. Extracellular vesicles (EVs) including exosomes (Exos) are active players in melanoma progression involved in the formation of the pre-metastatic niche. Methods Trans-well assays explored the basal migratory and invasive potential of four melanoma cell lines and investigated their different propensity to be attracted toward the bone. Exosomes were purified from cell supernatants by ultracentrifugation and explored in their ability to influence the bone tropism of melanoma cells. The molecular machinery activated during this process was investigated by RT-PCR, droplet digital-PCR, flow-cytometry and Western blot, while loss of function studies with dedicated siRNAs defined the single contribute of CXCR4 and CXCR7 molecules. Results Melanoma cells revealed a variable propensity to be attracted toward bone fragments. Gene profiling of both osteotropic and not-osteotropic cells did not show a different expression of those genes notoriously correlated to chemotaxis and bone metastasis. However, bone conditioned medium significantly increased CXCR4, CXCR7 and PTHrP expression solely to osteotropic cells, while their Exos were able to revert the original poor bone tropism of not-osteotropic cells through CXCR7 up-regulation. Silencing experiments also demonstrated that membrane expression of CXCR7 is required by melanoma cells to promote their chemotaxis toward SDF-1 gradients. Conclusions Our data correlated the osteotropism of melanoma cells to the activation of the SDF-1/CXCR4/CXCR7 axis following the exposition of tumor cells to bone-derived soluble factors. Also, we demonstrated in vitro that tumor-derived Exos can reprogram the innate osteotropism of melanoma cells by up-regulating membrane CXCR7. These results may have a potential translation to future identification of druggable targets for the treatment of skeletal metastases from malignant melanoma. Electronic supplementary material The online version of this article (10.1186/s12967-019-1982-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Mannavola
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11-70124, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11-70124, Bari, Italy.
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11-70124, Bari, Italy
| | - Anna Passarelli
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11-70124, Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11-70124, Bari, Italy
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', P.za Giulio Cesare, 11-70124, Bari, Italy
| |
Collapse
|
61
|
Xiao Z, Chen M, Yang J, Yang C, Lü X, Tian H, Liu C. [MTBP regulates migration and invasion of prostate cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:6-12. [PMID: 30692060 DOI: 10.12122/j.issn.1673-4254.2019.01.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the role of MTBP in regulating the migration and invasion of human prostate cancer cells. METHODS The baseline expressions of MTBP in 3 different human prostate cancer cells lines (22RV1, DU145 and Lncap) were detected using Western blotting. The cells were transfected with a small interfering RNA (siRNA) for MTBP knockdown or MTBP plasmid for MTBP overexpression, and 48 h later, the cells were examined for MTBP expression with Western blotting; the changes in the migration abilities of the cells were evaluated using wound healing assay and Transwell assay, and the cell invasiveness was assessed using Matrigel Transwell assay. The expression of E-cadherin protein, a marker of epithelial mesenchymal transition (EMT), was detected using Western blotting. RESULTS MTBP expression was the highest in DU145 cells followed by Lncap cells, and was the lowest in 22RV1 cells, indicating a positive correlation of MTBP expression with the level of malignancy of human prostate cancer cells. Transfection of the cells with siRNA or MTBP plasmids efficiently lowered or enhanced the expressions of MTBP in human prostate cancer cells. Wound healing assay showed that inhibition of MTBP expression decreased the migration ability of the prostate cancer cells, and MTBP overexpression significantly promoted the migration of the cells (P < 0.01). Transwell assay showed that MTBP knockdown significantly lowered the migration and invasion ability of the cells, while MTBP overexpression markedly increased the number of migrating and invading cells (P < 0.01); Western blotting results showed that MTBP knockdown increased the expression of E-cadherin protein, and MTBP overexpression decreased E-cadherin expression in the prostate cancer cells. CONCLUSIONS MTBP overexpression promotes the migration and invasion of human prostate cancer cells possibly relation to the induction of EMT.
Collapse
Affiliation(s)
- Zhuoyu Xiao
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Mingkun Chen
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jiankun Yang
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Cheng Yang
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xianyuan Lü
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Hu Tian
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Cundong Liu
- Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
62
|
Cirsiliol Suppressed Epithelial to Mesenchymal Transition in B16F10 Malignant Melanoma Cells through Alteration of the PI3K/Akt/NF-κB Signaling Pathway. Int J Mol Sci 2019; 20:ijms20030608. [PMID: 30708951 PMCID: PMC6386903 DOI: 10.3390/ijms20030608] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma is a highly aggressive form of skin cancer which has a propensity for metastasis. Epithelial mesenchymal transition (EMT) plays a primordial role in the progression of metastatic disease. Metastatic melanoma is resistant to conventional therapies. Hence, researchers have been exploring alternative approaches, including the utility of bioactive phytochemicals to manage metastatic disease. In the present study, we investigated the potential of cirsiliol, a flavonoid isolated from Centaurea jacea L., in modulating the aggressive behavior of B16F10 metastatic melanoma cells, including EMT, and associated molecular mechanisms of action. Cirsiliol was found to be effective in restraining the colony formation and migration of fibronectin-induced B16F10 metastatic melanoma cells. Cirsiliol inhibited the activity and expression of matrix metalloproteinase-9 (MMP-9). Cirsiliol also suppressed the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (also known as Akt)/nuclear factor-κB (NF-κB) signaling pathway which, in turn, caused upregulation of E-cadherin and downregulation of N-cadherin, Snail and Twist. Based on these results, cirsiliol may be considered a promising compound against EMT in the therapeutic management of malignant melanoma.
Collapse
|
63
|
Paschke L, Jopek K, Szyszka M, Tyczewska M, Malendowicz LK, Rucinski M. ZFP91 zinc finger protein expression pattern in normal tissues and cancers. Oncol Lett 2019; 17:3599-3606. [PMID: 30867803 DOI: 10.3892/ol.2019.9963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
Zinc finger protein 91 (ZFP91) gene has been recently acknowledged to possess oncogenic properties. To date, its expression has been examined only in a handful of human organs and cancer types. The aim of the present study was to characterize, for the first time, the ZFP91 expression pattern in a range of human tissues and cancer types. ZFP91 mRNA expression was examined using Cancer Survey cDNA sets. Utilized cDNA samples represented 15 human organs and 17 cancer types. ZFP91 mRNA expression was the highest in the testes and lymph nodes. It was downregulated in testis cancer, lymphoma and thyroid cancer, and upregulated in prostate cancer. Among the analyzed cancer types, ZFP91 expression was markedly elevated in sarcomas and melanoma. On a protein level, a large-scale reverse phase protein array was employed providing samples from 11 organ types and from cancers derived from these organs. ZFP91 protein expression was revealed to be generally stable across the tested samples and was only moderately elevated in breast, ovarian and pancreatic cancers. To the best of our knowledge, this is the first study to thoroughly analyze the ZFP91 expression pattern in human tissues and cancers. The obtained results provide the foundation for further work aiming to reveal its full biological significance.
Collapse
Affiliation(s)
- Lukasz Paschke
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marta Szyszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marianna Tyczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Ludwik K Malendowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
64
|
Liu J, Wang C, Ma X, Tian Y, Wang C, Fu Y, Luo Y. High expression of CCR5 in melanoma enhances epithelial-mesenchymal transition and metastasis via TGFβ1. J Pathol 2019; 247:481-493. [PMID: 30474221 DOI: 10.1002/path.5207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Chemokine receptors are highly expressed in various cancers and play crucial roles in tumor progression. However, their expression patterns and functions in melanoma are unclear. The present study aimed to identify the chemokine receptors that play critical roles in melanoma progression and unravel the underlying molecular mechanisms. We found that CCR5 was more abundant in melanoma cells than normal cells and was positively associated with tumor malignancy in clinical patients. Animal experiments suggested that CCR5 deficiency in B16/F10 or A375 cells suppressed primary tumor growth and lung metastasis, whereas CCR5 overexpression in B16/F0 cells enhanced primary tumor growth and lung metastasis. CCR5 played a critical role in proliferation and migration of melanoma cells in vitro. Importantly, CCR5 was required for maintenance of the mesenchymal phenotype of metastatic melanoma cells. Mechanistically, CCR5 positively regulated expression of TGFβ1, which in turn induced epithelial-mesenchymal transition and migration via PI3K/AKT/GSK3β signaling. Collectively, our results establish a critical role of CCR5 expressed by melanoma cells in cancer progression and reveal the novel mechanisms controlling this process, which suggests the prognostic value of CCR5 in melanoma patients and provides novel insights into CCR5-targeted strategies for melanoma treatment. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jie Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Caihong Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Xuhui Ma
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Yang Tian
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Chunying Wang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, PR China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, PR China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, PR China
| |
Collapse
|
65
|
Karras P, Riveiro-Falkenbach E, Cañón E, Tejedo C, Calvo TG, Martínez-Herranz R, Alonso-Curbelo D, Cifdaloz M, Perez-Guijarro E, Gómez-López G, Ximenez-Embun P, Muñoz J, Megias D, Olmeda D, Moscat J, Ortiz-Romero PL, Rodríguez-Peralto JL, Soengas MS. p62/SQSTM1 Fuels Melanoma Progression by Opposing mRNA Decay of a Selective Set of Pro-metastatic Factors. Cancer Cell 2019; 35:46-63.e10. [PMID: 30581152 DOI: 10.1016/j.ccell.2018.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/27/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Modulators of mRNA stability are not well understood in melanoma, an aggressive tumor with complex changes in the transcriptome. Here we report the ability of p62/SQSTM1 to extend mRNA half-life of a spectrum of pro-metastatic factors. These include FERMT2 and other transcripts with no previous links to melanoma. Transcriptomic, proteomic, and interactomic analyses, combined with validation in clinical biopsies and mouse models, identified a selected set of RNA-binding proteins (RBPs) recruited by p62, with IGF2BP1 as a key partner. This p62-RBP interaction distinguishes melanoma from other tumors where p62 controls autophagy or oxidative stress. The relevance of these data is emphasized by follow-up analyses of patient prognosis revealing p62 and FERMT2 as adverse determinants of disease-free survival.
Collapse
Affiliation(s)
- Panagiotis Karras
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Erica Riveiro-Falkenbach
- Hospital Universitario 12 de Octubre, Instituto Investigación i+12, Medical School, Universidad Complutense, Madrid, Spain
| | - Estela Cañón
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Raúl Martínez-Herranz
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Direna Alonso-Curbelo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Metehan Cifdaloz
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Eva Perez-Guijarro
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | | | | | | | - Diego Megias
- Confocal Microscopy Unit, CNIO, Madrid 28029, Spain
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pablo L Ortiz-Romero
- Hospital Universitario 12 de Octubre, Instituto Investigación i+12, Medical School, Universidad Complutense, Madrid, Spain
| | - Jose L Rodríguez-Peralto
- Hospital Universitario 12 de Octubre, Instituto Investigación i+12, Medical School, Universidad Complutense, Madrid, Spain.
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain.
| |
Collapse
|
66
|
Saito S, Lin YC, Nakamura Y, Eckner R, Wuputra K, Kuo KK, Lin CS, Yokoyama KK. Potential application of cell reprogramming techniques for cancer research. Cell Mol Life Sci 2019; 76:45-65. [PMID: 30283976 PMCID: PMC6326983 DOI: 10.1007/s00018-018-2924-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/15/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023]
Abstract
The ability to control the transition from an undifferentiated stem cell to a specific cell fate is one of the key techniques that are required for the application of interventional technologies to regenerative medicine and the treatment of tumors and metastases and of neurodegenerative diseases. Reprogramming technologies, which include somatic cell nuclear transfer, induced pluripotent stem cells, and the direct reprogramming of specific cell lineages, have the potential to alter cell plasticity in translational medicine for cancer treatment. The characterization of cancer stem cells (CSCs), the identification of oncogene and tumor suppressor genes for CSCs, and the epigenetic study of CSCs and their microenvironments are important topics. This review summarizes the application of cell reprogramming technologies to cancer modeling and treatment and discusses possible obstacles, such as genetic and epigenetic alterations in cancer cells, as well as the strategies that can be used to overcome these obstacles to cancer research.
Collapse
Affiliation(s)
- Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita, Tochigi, 329-1571, Japan
- College of Engineering, Nihon University, Koriyama, Fukushima, 963-8642, Japan
| | - Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Richard Eckner
- Department of Biochemistry and Molecular Biology, Rutgers, New Jersey Medical School-Rutgers, The State University of New Jersey, Newark, NJ, 07101, USA
| | - Kenly Wuputra
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Faculty of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
67
|
Wang H, Zhang YG, Ma J, Li JC, Zhang J, Yu YQ. Invasiveness-triggered state transition in malignant melanoma cells. J Cell Physiol 2018; 234:5354-5361. [PMID: 30478974 DOI: 10.1002/jcp.27405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/21/2018] [Indexed: 11/05/2022]
Abstract
Cancer cells are considered to have high morphological heterogeneity in human melanoma tissue. Here, we report that epithelial cancer cells are dominant in different development stages of human melanoma tissues. The cellular and molecular mechanisms that maintain melanoma cells in the epithelial state are further investigated in the A2058 cell line. We find that micropore (8 µm) transwell invasion, but not superficial migration in the scratch assay, can induce remarkable morphological changes between epithelial and mesenchymal melanoma cells within 4 days. The morphological switch is associated with dynamic changes of epithelial-mesenchymal transition (EMT) hallmarks E-cadherin and vimentin. Further immunoflurencent staining and co-immunoprecipitation assay showed the uncoupling of the M3 muscarinic acetylcholine receptor (mAChR) and the p75 neurotrophin receptor (p75NTR) in epithelial melanoma cells. Specific knockdown of M3 mAChR by small interfering RNA (siRNA) significantly abrogates the transition of spindle-shaped mesenchymal cells to epithelial cells. Collectively, we report a cellular model of invasiveness-triggered state transition (ITST) in which melanoma cell invasion can induce morphological changes between epithelial and mesenchymal cells. ITST is one of the biological basis for maintaining metastatic melanoma cells in the epithelial state. Furthermore, M3 mAChR receptor-mediated ITST provides a novel therapeutic strategy to inhibit the development of malignant melanoma.
Collapse
Affiliation(s)
- Huan Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.,Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan-Guo Zhang
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun-Chang Li
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Yao-Qing Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
68
|
Preisner F, Leimer U, Sandmann S, Zoernig I, Germann G, Koellensperger E. Impact of Human Adipose Tissue-Derived Stem Cells on Malignant Melanoma Cells in An In Vitro Co-culture Model. Stem Cell Rev Rep 2018; 14:125-140. [PMID: 29064018 DOI: 10.1007/s12015-017-9772-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study focuses on the interactions of human adipose tissue-derived stem cells (ADSCs) and malignant melanoma cells (MMCs) with regard to future cell-based skin therapies. The aim was to identify potential oncological risks as ADSCs could unintentionally be sited within the proximity of the tumor microenvironment of MMCs. An indirect co-culture model was used to analyze interactions between ADSCs and four different established melanoma cell lines (G-361, SK-Mel-5, MeWo and A2058) as well as two low-passage primary melanoma cell cultures (M1 and M2). Doubling time, migration and invasion, angiogenesis, quantitative real-time PCR of 229 tumor-associated genes and multiplex protein assays of 20 chemokines and growth factors and eight matrix metalloproteinases (MMPs) were evaluated. Co-culture with ADSCs significantly increased migration capacity of G-361, SK-Mel-5, A2058, MeWo and M1 and invasion capacity of G-361, SK-Mel-5 and A2058 melanoma cells. Furthermore, conditioned media from all ADSC-MMC-co-cultures induced tube formation in an angiogenesis assay in vitro. Gene expression analysis of ADSCs and MMCs, especially of low-passage melanoma cell cultures, revealed an increased expression of various genes with tumor-promoting activities, such as CXCL12, PTGS2, IL-6, and HGF upon ADSC-MMC-co-culture. In this context, a significant increase (up to 5,145-fold) in the expression of numerous tumor-associated proteins could be observed, e.g. several pro-angiogenic factors, such as VEGF, IL-8, and CCL2, as well as different matrix metalloproteinases, especially MMP-2. In conclusion, the current report clearly demonstrates that a bi-directional crosstalk between ADSCs and melanoma cells can enhance different malignant properties of melanoma cells in vitro.
Collapse
Affiliation(s)
- Fabian Preisner
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Uwe Leimer
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Stefanie Sandmann
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Inka Zoernig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 460, 60120, Heidelberg, Germany
| | - Guenter Germann
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Eva Koellensperger
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany.
| |
Collapse
|
69
|
Kaochar S, Dong J, Torres M, Rajapakshe K, Nikolos F, Davis CM, Ehli EA, Coarfa C, Mitsiades N, Poulaki V. ICG-001 Exerts Potent Anticancer Activity Against Uveal Melanoma Cells. Invest Ophthalmol Vis Sci 2018; 59:132-143. [PMID: 29332125 PMCID: PMC5769500 DOI: 10.1167/iovs.17-22454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Uveal melanoma (UM) is uniformly refractory to all available systemic chemotherapies, thus creating an urgent need for novel therapeutics. In this study, we investigated the sensitivity of UM cells to ICG-001, a small molecule reported to suppress the Wnt/β-catenin–mediated transcriptional program. Methods We used a panel of UM cell lines to examine the effects of ICG-001 on cellular proliferation, migration, and gene expression. In vivo efficacy of ICG-001 was evaluated in a UM xenograft model. Results ICG-001 exerted strong antiproliferative activity against UM cells, leading to cell cycle arrest, apoptosis, and inhibition of migration. Global gene expression profiling revealed strong suppression of genes associated with cell cycle proliferation, DNA replication, and G1/S transition. Gene set enrichment analysis revealed that ICG-001 suppressed Wnt, mTOR, and MAPK signaling. Strikingly, ICG-001 suppressed the expression of genes associated with UM aggressiveness, including CDH1, CITED1, EMP1, EMP3, SDCBP, and SPARC. Notably, the transcriptomic footprint of ICG-001, when applied to a UM patient dataset, was associated with better clinical outcome. Lastly, ICG-001 exerted anticancer activity against a UM tumor xenograft in mice. Conclusions Using in vitro and in vivo experiments, we demonstrate that ICG-001 has strong anticancer activity against UM cells and suppresses transcriptional programs critical for the cancer cell. Our results suggest that ICG-001 holds promise and should be examined further as a novel therapeutic agent for UM.
Collapse
Affiliation(s)
- Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Jianrong Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Marie Torres
- Department of Ophthalmology, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Fotis Nikolos
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Christel M Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, United States
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, United States
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States
| | - Nicholas Mitsiades
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States
| | - Vasiliki Poulaki
- Department of Ophthalmology, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States.,Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
70
|
Wu X, Wang Y, Yu T, Nie E, Hu Q, Wu W, Zhi T, Jiang K, Wang X, Lu X, Li H, Liu N, Zhang J, You Y. Blocking MIR155HG/miR-155 axis inhibits mesenchymal transition in glioma. Neuro Oncol 2018; 19:1195-1205. [PMID: 28371892 DOI: 10.1093/neuonc/nox017] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background MIR155 host gene (MIR155HG) is a long noncoding RNA that has been considered as the primary micro (mi)RNA of miR-155. MIR155HG plays an essential role in hematopoiesis, inflammation, and tumorigenesis. Our study investigated the clinical significance, biological function, mechanisms, and small-molecule inhibitors of the MIR155HG/miR-155 axis in glioma. Methods We analyzed the expression of the MIR155HG/miR-155 axis and the correlation with glioma grade and patient survival using 2 different glioma gene expression datasets. Biological significance was elucidated through a series of in vitro and in vivo experiments. Furthermore, we conducted a high-throughput screening for small molecules to identify a potential inhibitor of the MIR155HG/miR-155 axis. Results Increased MIR155HG was associated with glioma grade, mesenchymal transition, and poor prognosis. Functionally, MIR155HG reduction by small interfering RNA inhibited cell proliferation, migration, invasion, and orthotopic glioma growth by repressing the generation of its derivatives miR-155-5p and miR-155-3p. Bioinformatics and luciferase reporter assays revealed that protocadherin 9 and protocadherin 7, which act as tumor suppressors by inhibiting the Wnt/β-catenin pathway, were direct targets of miR-155-5p and miR-155-3p, respectively. Finally, we identified NSC141562 as a potent small-molecule inhibitor of the MIR155HG/miR-155 axis. Conclusions Our results demonstrate that the MIR155HG/miR-155 axis plays a critical role in facilitating glioma progression and serves as a prognostic factor for patient survival in glioblastoma. High-throughput screening indicated that the MIR155HG/miR-155 axis inhibitor NSC141562 may be a useful candidate anti-glioma drug.
Collapse
Affiliation(s)
- Xuechao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Er Nie
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Qi Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Tongle Zhi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Kuan Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiaojie Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hailin Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
71
|
Kosnopfel C, Sinnberg T, Sauer B, Busch C, Niessner H, Schmitt A, Forchhammer S, Grimmel C, Mertens PR, Hailfinger S, Dunn SE, Garbe C, Schittek B. YB-1 Expression and Phosphorylation Regulate Tumorigenicity and Invasiveness in Melanoma by Influencing EMT. Mol Cancer Res 2018; 16:1149-1160. [PMID: 29743296 DOI: 10.1158/1541-7786.mcr-17-0528] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 11/16/2022]
Abstract
Cutaneous melanoma represents one of the most aggressive human tumor entities possessing a high tendency to metastasize. Cancer cells frequently exploit a highly conserved developmental program, the epithelial-to-mesenchymal transition (EMT), to gain migratory and invasive properties promoting their metastatic spread. Cytoplasmic localization of the oncogenic transcription and translation factor Y-box binding protein 1 (YB-1) is a powerful inducer of EMT in breast carcinoma cells. Interestingly, EMT-like processes have also been observed in cutaneous melanoma despite its neural crest origin. Here, increased expression of YB-1 negatively affects patient survival in malignant melanoma and promotes melanoma cell tumorigenicity both in vitro and in vivo Intriguingly, this effect seems to be mainly mediated by cytoplasmic YB-1 that does not exhibit phosphorylation at serine-102 (S102). Moreover, S102 unphosphorylated YB-1 enhances the migratory and invasive potential of human melanoma cells in two-dimensional (2D) and three-dimensional (3D) culture systems and facilitates acquisition of a mesenchymal-like invasive phenotype in the chick embryo model. Collectively, these data demonstrate that the cytoplasmic activity of YB-1 stimulates tumorigenicity and metastatic potential of melanoma cells by promoting EMT-like properties.Implications: This study reveals for the first time that YB-1 efficiently drives tumorigenicity and invasiveness of melanoma cells in its S102 unphosphorylated cytoplasmic state and that YB-1 expression represents a negative prognostic factor in primary melanoma patients. Mol Cancer Res; 16(7); 1149-60. ©2018 AACR.
Collapse
Affiliation(s)
- Corinna Kosnopfel
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Sauer
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Christian Busch
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
- Dermateam, Winterthur, Switzerland
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Anja Schmitt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Stephan Forchhammer
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Cornelia Grimmel
- FACS Core Facility, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Stephan Hailfinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sandra E Dunn
- Phoenix Molecular Designs, Vancouver, British Columbia, Canada
| | - Claus Garbe
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
72
|
Bagati A, Bianchi-Smiraglia A, Moparthy S, Kolesnikova K, Fink EE, Lipchick BC, Kolesnikova M, Jowdy P, Polechetti A, Mahpour A, Ross J, Wawrzyniak JA, Yun DH, Paragh G, Kozlova NI, Berman AE, Wang J, Liu S, Nemeth MJ, Nikiforov MA. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1. Cell Rep 2018; 20:2820-2832. [PMID: 28930679 DOI: 10.1016/j.celrep.2017.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Lineage-specific regulation of tumor progression by the same transcription factor is understudied. We find that levels of the FOXQ1 transcription factor, an oncogene in carcinomas, are decreased during melanoma progression. Moreover, in contrast to carcinomas, FOXQ1 suppresses epithelial-to-mesenchymal transition, invasion, and metastasis in melanoma cells. We find that these lineage-specific functions of FOXQ1 largely depend on its ability to activate (in carcinomas) or repress (in melanoma) transcription of the N-cadherin gene (CDH2). We demonstrate that FOXQ1 interacts with nuclear β-catenin and TLE proteins, and the β-catenin/TLE ratio, which is higher in carcinoma than melanoma cells, determines the effect of FOXQ1 on CDH2 transcription. Accordingly, other FOXQ1-dependent phenotypes can be manipulated by altering nuclear β-catenin or TLE proteins levels. Our data identify FOXQ1 as a melanoma suppressor and establish a mechanism underlying its inverse lineage-specific transcriptional regulation of transformed phenotypes.
Collapse
Affiliation(s)
- Archis Bagati
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Sudha Moparthy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kateryna Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Masha Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Peter Jowdy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Anthony Polechetti
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amin Mahpour
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jason Ross
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Joseph A Wawrzyniak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dong Hyun Yun
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA; Department of Dermatology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Albert E Berman
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
73
|
Summary of expression of SPARC protein in cutaneous vascular neoplasms and mimickers. Ann Diagn Pathol 2018; 34:151-154. [DOI: 10.1016/j.anndiagpath.2018.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/12/2018] [Indexed: 02/04/2023]
|
74
|
Xu T, Ma M, Chi Z, Si L, Sheng X, Cui C, Dai J, Yu S, Yan J, Yu H, Wu X, Tang H, Yu J, Kong Y, Guo J. High G2 and S-phase expressed 1 expression promotes acral melanoma progression and correlates with poor clinical prognosis. Cancer Sci 2018; 109:1787-1798. [PMID: 29660787 PMCID: PMC5989838 DOI: 10.1111/cas.13607] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/23/2018] [Accepted: 04/08/2018] [Indexed: 02/07/2023] Open
Abstract
G2 and S‐phase expressed 1 (GTSE1) regulates cell cycle progression in human cancers. However, its significance and mechanism of action in acral melanoma (AM) remain unknown. In the present study, we found that GTSE1 expression was upregulated in advanced stage/metastatic AM tissues and metastatic cell lines, and correlated with higher stage (P = .028) and poor disease‐free survival (DFS) in patients with AM (P = .003). Cox regression assays validated GTSE1 expression to be an independent prognostic factor of DFS for patients with AM (P = .004). Ectopic expression of GTSE1 enhanced primary AM cell proliferation, invasion, and migration. Loss‐of‐function in GTSE1 attenuated metastatic AM cell proliferation and metastatic ability in vitro and in vivo. We additionally observed that inhibition of migration and invasion occurred concomitantly with a GTSE1 knockdown‐mediated increase in E‐cadherin and decreases in N‐cadherin and Slug. We further showed that integrin subunit alpha 2 (ITGA2) interacts with GTSE1 and is a downstream effector of GTSE1. Further, ITGA2 levels were positively correlated with GTSE1 expression in human AM tissues. Ectopic ITGA2 expression rescued siGTSE1‐mediated inhibition of migration and invasion, thereby restoring epithelial‐to‐mesenchymal transition (EMT). In conclusion, GTSE1 expression promotes AM progression and correlates with clinical outcomes of patients with AM, and may represent a promising therapeutic target to suppress AM progression.
Collapse
Affiliation(s)
- Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sifan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Junya Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiayi Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
75
|
Huang YX, Song H, Tao Y, Shao XB, Zeng XS, Xu XL, Qi JL, Sun JF. Ovostatin 2 knockdown significantly inhibits the growth, migration, and tumorigenicity of cutaneous malignant melanoma cells. PLoS One 2018; 13:e0195610. [PMID: 29684087 PMCID: PMC5912766 DOI: 10.1371/journal.pone.0195610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We previously identified ovostatin 2 (OVOS2) as a new candidate gene for cutaneous malignant melanoma (CMM) in a Chinese population. In this study, we aimed to investigate the exact role of OVOS2 in cell proliferation, invasion, and tumorigenesis of melanoma A375 cells. METHODS The downregulation of OVOS2 expression was performed using lentiviral vectors with specific shRNA. The effects of OVOS2 expression on cell proliferation, cell cycle, cell migration, cell invasion, and potential of tumorigenesis were further investigated. RESULTS The downregulation of OVOS2 significantly suppressed the proliferation of A375 cells and led to a G2/M phase block. The transwell cell migration assay showed that the reduced expression of OVOS2 also significantly inhibited the transmigration of A375 cells. The western blot results showed downregulated expression of p-FAK, p-AKT, and p-ERK. This was accompanied by the upregulated epithelial phenotypes E-cadherin and β-catenin, and downregulated expression of mesenchymal phenotype N-cadherin after OVOS2 knockdown. The transplantation tumor experiment in BALB/C nude mouse showed that after an observation period of 32 days, the growth speed and weight of the transplanted tumors were significantly suppressed in the BALB/c nude mice subcutaneously injected with OVOS2 knocked-down A375 cells. CONCLUSION The inhibition of OVOS2 had significant suppressive effects on the proliferation, motility, and migration capabilities of A375 cells, suggesting a crucial promotive role of OVOS2 in the pathogenesis and progression of CMM. The involved mechanisms are at least partly associated with the overactivation of FAK/MAPK/ERK and FAK/PI3K/AKT signals.
Collapse
Affiliation(s)
- Ying-Xue Huang
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Hao Song
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
| | - Yue Tao
- Drum Tower Hospital, Medical School of Nanjing University, Nanjing, P. R. China
| | - Xue-Bao Shao
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
| | - Xue-Si Zeng
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
| | - Xiu-Lian Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Jian-Fang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, P. R. China
| |
Collapse
|
76
|
Gong F, Guo Y, Niu Y, Jin J, Zhang X, Shi X, Zhang L, Li R, Chen L, Ma RZ. Epigenetic silencing of TET2 and TET3 induces an EMT-like process in melanoma. Oncotarget 2018; 8:315-328. [PMID: 27852070 PMCID: PMC5352122 DOI: 10.18632/oncotarget.13324] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/04/2016] [Indexed: 12/02/2022] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) is a critical step in the progression of cancer. Malignant melanoma, a cancer developed from pigmented melanocytes, metastasizes through an EMT-like process. Ten-eleven translocation (TET) enzymes, catalyzing the conversion of 5-methylcytosine (5mC) to 5-hydroxylmethylcytosine (5-hmC), are down regulated in melanoma. However, their roles in the progression and the EMT-like process of melanoma are not fully understood. Here we report that DNA methylation induced silencing of TET2 and TET3 are responsible for the EMT-like process and the metastasis of melanoma. TET2 and TET3 are down regulated in the TGF-β1-induced EMT-like process, and the knocking down of TET2 or TET3 induced this EMT-like process. A DNA demethylating agent antagonized the TGF-β-induced suppression of TET2 and TET3. Furthermore, a ChIP analysis indicated that enhanced recruitment of DNMT3A (DNA Methyltransferase 3A) is the mechanism by which TGF-β induces the silencing of TET2 and TET3. Finally, the overexpression of the TET2 C-terminal sequence partially rescues the TGF-β1-induced EMT-like process in vitro and inhibits tumor growth and metastasis in vivo. Hence, our data suggest an epigenetic circuitry that mediates the EMT activated by TGF-β. As an effector, DNMT3A senses the TGF-β signal and silences TET2 and TET3 promoters to induce the EMT-like process and metastasis in melanoma.
Collapse
Affiliation(s)
- Fuxing Gong
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Zhengzhou City Key Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou 450044, China.,University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Guo
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqian Niu
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Jiawei Jin
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan Zhang
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoqian Shi
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of the Chinese Academy of Sciences, Beijing 100101, China
| | - Limeng Zhang
- Zhengzhou City Key Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Runting Li
- Zhengzhou City Key Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Longxin Chen
- Zhengzhou City Key Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Runlin Z Ma
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Zhengzhou City Key Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou 450044, China.,University of the Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
77
|
Yi Y, Wang Z, Sun Y, Chen J, Zhang B, Wu M, Li T, Hu L, Zeng J. The EMT-related transcription factor snail up-regulates FAPα in malignant melanoma cells. Exp Cell Res 2018; 364:160-167. [PMID: 29410133 DOI: 10.1016/j.yexcr.2018.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
FAPα is a cell surface serine protease, mainly expressed in tumor stromal fibroblasts in more than 90% of human epithelial carcinomas. Due to its almost no expression in normal tissues and its tumor-promoting effects, FAPα has been studied as a novel potential target for antitumor therapy. However, the regulation mechanism on FAPα expression is poorly understood. In this study, we found that overexpression of snail significantly increased the mRNA and protein expression levels of FAPα in malignant melanoma B16 and SK-MEL-28 cells. Overexpression of snail increased FAPα promoter activity remarkably. Snail could directly bind to FAPα promoter to regulate FAPα expression. Moreover, snail expression was positively correlated to FAPα expression in human cutaneous malignant melanoma. Furthermore, knockdown of FAPα markedly reduced snail-induced cell migration. Overall, our findings provide a novel regulation mechanism on FAPα expression and highlight the role of snail/FAPα axis as a novel target for melanoma treatment.
Collapse
Affiliation(s)
- Yanmei Yi
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China.
| | - Zhaotong Wang
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Junhu Chen
- Department of Biological Products Surveillance and Evaluation, Institute of Biological Products and Materia Medica, Guangzhou 510440, Guangdong, China
| | - Biao Zhang
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Minhua Wu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Tianyu Li
- Department of Surgery, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Li Hu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jun Zeng
- Department of Medical Genetics & Cell Biology, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| |
Collapse
|
78
|
Jayachandran A, Prithviraj P, Lo PH, Walkiewicz M, Anaka M, Woods BL, Tan B, Behren A, Cebon J, McKeown SJ. Identifying and targeting determinants of melanoma cellular invasion. Oncotarget 2018; 7:41186-41202. [PMID: 27172792 PMCID: PMC5173051 DOI: 10.18632/oncotarget.9227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/22/2016] [Indexed: 01/04/2023] Open
Abstract
Epithelial-to-mesenchymal transition is a critical process that increases the malignant potential of melanoma by facilitating invasion and dissemination of tumor cells. This study identified genes involved in the regulation of cellular invasion and evaluated whether they can be targeted to inhibit melanoma invasion. We identified Peroxidasin (PXDN), Netrin 4 (NTN4) and GLIS Family Zinc Finger 3 (GLIS3) genes consistently elevated in invasive mesenchymal-like melanoma cells. These genes and proteins were highly expressed in metastatic melanoma tumors, and gene silencing led to reduced melanoma invasion in vitro. Furthermore, migration of PXDN, NTN4 or GLIS3 siRNA transfected melanoma cells was inhibited following transplantation into the embryonic chicken neural tube compared to control siRNA transfected melanoma cells. Our study suggests that PXDN, NTN4 and GLIS3 play a functional role in promoting melanoma cellular invasion, and therapeutic approaches directed toward inhibiting the action of these proteins may reduce the incidence or progression of metastasis in melanoma patients.
Collapse
Affiliation(s)
- Aparna Jayachandran
- Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Victoria, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Victoria, Australia.,The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Prashanth Prithviraj
- Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Victoria, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| | - Pu-Han Lo
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Victoria, Australia
| | - Marzena Walkiewicz
- Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Victoria, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Victoria, Australia
| | - Matthew Anaka
- Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Victoria, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| | - Briannyn L Woods
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| | - BeeShin Tan
- Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Victoria, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Victoria, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Victoria, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Victoria, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Victoria, Australia.,Department of Medicine, University of Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Victoria, Australia
| | - Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, Australia
| |
Collapse
|
79
|
Cifdaloz M, Osterloh L, Graña O, Riveiro-Falkenbach E, Ximénez-Embún P, Muñoz J, Tejedo C, Calvo TG, Karras P, Olmeda D, Miñana B, Gómez-López G, Cañon E, Eyras E, Guo H, Kappes F, Ortiz-Romero PL, Rodríguez-Peralto JL, Megías D, Valcárcel J, Soengas MS. Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1. Nat Commun 2017; 8:2249. [PMID: 29269732 PMCID: PMC5740069 DOI: 10.1038/s41467-017-02353-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
Melanomas are well-known for their altered mRNA expression profiles. Yet, the specific contribution of mRNA binding proteins (mRBPs) to melanoma development remains unclear. Here we identify a cluster of melanoma-enriched genes under the control of CUGBP Elav-like family member 1 (CELF1). CELF1 was discovered with a distinct prognostic value in melanoma after mining the genomic landscape of the 692 known mRBPs across different cancer types. Genome-wide transcriptomic, proteomic, and RNA-immunoprecipitation studies, together with loss-of-function analyses in cell lines, and histopathological evaluation in clinical biopsies, revealed an intricate repertoire of CELF1-RNA interactors with minimal overlap with other malignancies. This systems approach uncovered the oncogene DEK as an unexpected target and downstream effector of CELF1. Importantly, CELF1 and DEK were found to represent early-induced melanoma genes and adverse indicators of overall patient survival. These results underscore novel roles of CELF1 in melanoma, illustrating tumor type-restricted functions of RBPs in cancer.
Collapse
Affiliation(s)
- Metehan Cifdaloz
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Lisa Osterloh
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | | | - Erica Riveiro-Falkenbach
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | | | | | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Panagiotis Karras
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Belén Miñana
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | | | - Estela Cañon
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Eduardo Eyras
- Department of Experimental and Health Sciences, Universidad Pompeu Fabra, Barcelona, 08002, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Haihong Guo
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, No. 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park (SIP), Suzhou, 215123, China
| | - Pablo L Ortiz-Romero
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | - Jose L Rodríguez-Peralto
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, (CNIO), Madrid, 28029, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
80
|
Voena C, Varesio LM, Zhang L, Menotti M, Poggio T, Panizza E, Wang Q, Minero VG, Fagoonee S, Compagno M, Altruda F, Monti S, Chiarle R. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1. Oncotarget 2017; 7:33316-30. [PMID: 27119231 PMCID: PMC5078097 DOI: 10.18632/oncotarget.8955] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/29/2016] [Indexed: 11/25/2022] Open
Abstract
A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy.
Collapse
Affiliation(s)
- Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy.,Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lydia M Varesio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Liye Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Matteo Menotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Teresa Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Elena Panizza
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Qi Wang
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Valerio G Minero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Sharmila Fagoonee
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Mara Compagno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy.,Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy.,Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
81
|
low neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nat Commun 2017; 8:1988. [PMID: 29215016 PMCID: PMC5719420 DOI: 10.1038/s41467-017-01573-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 09/29/2017] [Indexed: 01/22/2023] Open
Abstract
Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic capacity. According to the “phenotype switching” model, the aggressive nature of melanoma cells results from their intrinsic potential to dynamically switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state. Here we identify the low affinity neurotrophin receptor CD271 as a key effector of phenotype switching in melanoma. CD271 plays a dual role in this process by decreasing proliferation, while simultaneously promoting invasiveness. Dynamic modification of CD271 expression allows tumor cells to grow at low levels of CD271, to reduce growth and invade when CD271 expression is high, and to re-expand at a distant site upon decrease of CD271 expression. Mechanistically, the cleaved intracellular domain of CD271 controls proliferation, while the interaction of CD271 with the neurotrophin receptor Trk-A modulates cell adhesiveness through dynamic regulation of a set of cholesterol synthesis genes relevant for patient survival. The aggressive nature of melanoma cells relies on their ability to switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state; however, the mechanisms governing this switch are unclear. Here, using in vivo models of human melanoma, the authors show that CD271 is a key regulator of phenotype switching and metastasis formation.
Collapse
|
82
|
Kashani-Sabet M, Nosrati M, Miller JR, Sagebiel RW, Leong SPL, Lesniak A, Tong S, Lee SJ, Kirkwood JM. Prospective Validation of Molecular Prognostic Markers in Cutaneous Melanoma: A Correlative Analysis of E1690. Clin Cancer Res 2017; 23:6888-6892. [PMID: 28790109 PMCID: PMC5690823 DOI: 10.1158/1078-0432.ccr-17-1317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/20/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Abstract
Purpose: To validate the prognostic impact of combined expression levels of three markers (SPP1, RGS1, and NCOA3) in melanoma specimens from patients enrolled in the E1690 clinical trial of high-dose or low-dose IFNα-2b versus observation.Experimental Design: Tissue was available from 248 patients. Marker expression was determined by digital imaging of immunohistochemically stained slides. The prognostic impact of each marker was first assessed by recording its expression value relative to the median. A multimarker index was then developed to combine marker expression levels by counting for each patient the number of markers with high expression. The impact of the multimarker index on relapse-free survival (RFS) and overall survival (OS) was assessed using Kaplan-Meier analysis, and both univariate and multivariate Cox regression analyses.Results: By Kaplan-Meier analysis, high multimarker expression scores were significantly predictive of RFS (P < 0.001) and OS (P < 0.001). Stepwise multivariate Cox regression analysis with backward elimination that included routine clinical and histologic prognostic factors revealed high multimarker expression scores and tumor thickness as the only factors significantly and independently predicting RFS and OS. Stepwise multivariate Cox regression analyses that also included treatment type and number of positive lymph nodes generated identical results for both RFS and OS. In the molecularly defined low-risk subgroup, patients treated with high-dose IFN had a significantly improved RFS compared with patients in the other two subgroups (P < 0.05).Conclusions: These results validate the independent impact of combined expression levels of SPP1, RGS1, and NCOA3 on survival of melanoma in a prospectively collected cohort. Clin Cancer Res; 23(22); 6888-92. ©2017 AACR.
Collapse
Affiliation(s)
- Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California.
| | - Mehdi Nosrati
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California
| | - James R Miller
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California
| | - Richard W Sagebiel
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California
| | - Stanley P L Leong
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California
| | - Andrew Lesniak
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Schuyler Tong
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California
| | - Sandra J Lee
- Dana-Farber Cancer Institute, Boston, Massachusetts
- ECOG-ACRIN Melanoma Committee, Philadelphia, Pennsylvania
| | - John M Kirkwood
- ECOG-ACRIN Melanoma Committee, Philadelphia, Pennsylvania
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
83
|
Rodríguez-Cerdeira C, Molares-Vila A, Carnero-Gregorio M, Corbalán-Rivas A. Recent advances in melanoma research via "omics" platforms. J Proteomics 2017; 188:152-166. [PMID: 29138111 DOI: 10.1016/j.jprot.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 02/09/2023]
Abstract
Melanoma has a high mortality rate and metastatic melanoma is highly resistant to conventional therapies. "Omics" fields such as proteomics and microRNA and exosome studies have provided new knowledge to complement the information generated by genomic studies. This work aimed to review the current status of biomarker discovery for melanoma through multi-"omics" platforms. A few sets of novel microRNAs and proteins are described, some of them with important implications in suppressing melanoma at different stages. Upregulation of genes involved in angiogenesis, immunosuppressive factors, modification of stroma, capture of melanoma cells in lymph nodes and factors responsible for tumour cell recruitment have been identified in exosomes, among molecules with other functions. A remarkable series of proteins involved in epithelial-mesenchymal/mesenchymal-epithelial transitions, inflammation, motility, proliferation and progression processes, centrosome amplification, aneuploidy, inhibition of CD8+ effector T-cells, and metastasis in general were identified. Genomic and protein-protein interactions or metabolome levels were not analysed. Proteomics tools such as Orbitrap shotgun mass spectrometry or deep mining proteomic analysis utilizing high-resolution reversed phase nanoseparation in combination with mass spectrometry are also discussed. The application of these tools together with bioinformatics approaches applied to the clinical setting will enable the implementation of personalized medicine in the near future.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Dermatology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, Vigo, Spain.
| | - Alberto Molares-Vila
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Analytical & Food Chemistry, Universidade de Vigo (UVIGO), Spain
| | - Miguel Carnero-Gregorio
- Efficiency, Quality and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics & Immunology, Universidade de Vigo (UVIGO), Spain
| | - Alberte Corbalán-Rivas
- Nursery Department, Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, A Coruña, Spain
| |
Collapse
|
84
|
Romano G, Kwong LN. miRNAs, Melanoma and Microenvironment: An Intricate Network. Int J Mol Sci 2017; 18:ijms18112354. [PMID: 29112174 PMCID: PMC5713323 DOI: 10.3390/ijms18112354] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022] Open
Abstract
miRNAs are central players in cancer biology and they play a pivotal role in mediating the network communication between tumor cells and their microenvironment. In melanoma, miRNAs can impair or facilitate a wide array of processes, and here we will focus on: the epithelial to mesenchymal transition (EMT), the immune milieu, and metabolism. Multiple miRNAs can affect the EMT process, even at a distance, for example through exosome-mediated mechanisms. miRNAs also strongly act on some components of the immune system, regulating the activity of key elements such as antigen presenting cells, and can facilitate an immune evasive/suppressive phenotype. miRNAs are also involved in the regulation of metabolic processes, specifically in response to hypoxic stimuli where they can mediate the metabolic switch from an oxidative to a glycolytic metabolism. Overall, this review discusses and summarizes recent findings on miRNA regulation in the melanoma tumor microenvironment, analyzing their potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Gabriele Romano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
85
|
Autilio C, Paolillo C, Lavieri MM, Pocino K, De Paolis E, Di Stasio E, Marchetti P, Gian Carlo CA, Capoluongo E. PAX3d mRNA over 2.76 copies/µL in the bloodstream predicts cutaneous malignant melanoma relapse. Oncotarget 2017; 8:85479-85491. [PMID: 29156734 PMCID: PMC5689624 DOI: 10.18632/oncotarget.20177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate if our molecular algorithm, based on tumor circulating transcripts, may predict relapse risk in cutaneous malignant melanoma (CMM). RESULTS The multi-marker panel was able to differentiate patients with CMM from HC with high diagnostic sensitivity and specificity, especially for MITF-m and TGFB2 (91-100%) whose levels decreased during follow-up of recurrence-free patients, and remained stable in the case of relapse. PAX3d higher than 2.76 copies/µL emerged as a promising biomarker [specificity = 75-93% and negative predictive value = 75-98%] to stratify subjects at high risk of CMM recurrence independently of age, gender and AJCC staging [OD = 9.5(3.2-28.0), p < 0.001]. The survival analysis confirmed PAX3d performance in relapse prediction with significant differences in recurrence risk 12 months after the basal time-point (p = 0.008). MATERIALS AND METHODS Peripheral blood was collected from 111 CMM patients and from 87 healthy controls (HC) randomly selected. Each specimen was examined by qRT-PCR analysis for the expression of 3 tumor-related transcripts (PAX3d, MITF-m and TGFB2) at diagnosis, and at the following 6 and 12 months during clinical monitoring. CONCLUSIONS We demonstrated the usefulness of our molecular algorithm to indirectly detect circulating melanoma cells in blood, along with PAX3d capability to assess patients' progression and relapse prediction.
Collapse
Affiliation(s)
- Chiara Autilio
- Institute of Clinical Biochemistry, Laboratory of Clinical Molecular Diagnostics, Fondazione Policlinico “A. Gemelli”, Catholic University of the Sacred Heart, Rome, Italy
| | - Carmela Paolillo
- Institute of Clinical Biochemistry, Laboratory of Clinical Molecular Diagnostics, Fondazione Policlinico “A. Gemelli”, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Krizia Pocino
- Institute of Clinical Biochemistry, Laboratory of Clinical Molecular Diagnostics, Fondazione Policlinico “A. Gemelli”, Catholic University of the Sacred Heart, Rome, Italy
| | - Elisa De Paolis
- Institute of Clinical Biochemistry, Laboratory of Clinical Molecular Diagnostics, Fondazione Policlinico “A. Gemelli”, Catholic University of the Sacred Heart, Rome, Italy
| | - Enrico Di Stasio
- Laboratory of Clinical Biochemistry, Fondazione Policlinico “A. Gemelli”, Rome, Italy
| | | | | | - Ettore Capoluongo
- Institute of Clinical Biochemistry, Laboratory of Clinical Molecular Diagnostics, Fondazione Policlinico “A. Gemelli”, Catholic University of the Sacred Heart, Rome, Italy
- Laboratory of Advanced Molecular Diagnostics (DIMA), Istituto Dermopatico dell’Immacolata, Fondazione Luigi Maria Monti, IRCCS, Rome, Italy
- “Molipharma Srl” a Spinoff of Catholic University, Campobasso, Italy
| |
Collapse
|
86
|
Kinslechner K, Schörghofer D, Schütz B, Vallianou M, Wingelhofer B, Mikulits W, Röhrl C, Hengstschläger M, Moriggl R, Stangl H, Mikula M. Malignant Phenotypes in Metastatic Melanoma are Governed by SR-BI and its Association with Glycosylation and STAT5 Activation. Mol Cancer Res 2017; 16:135-146. [PMID: 28974560 DOI: 10.1158/1541-7786.mcr-17-0292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023]
Abstract
Metastatic melanoma is hallmarked by elevated glycolytic flux and alterations in cholesterol homeostasis. The contribution of cholesterol transporting receptors for the maintenance of a migratory and invasive phenotype is not well defined. Here, the scavenger receptor class B type I (SCARB1/SR-BI), a high-density lipoprotein (HDL) receptor, was identified as an estimator of melanoma progression in patients. We further aimed to identify the SR-BI-controlled gene expression signature and its related cellular phenotypes. On the basis of whole transcriptome analysis, it was found that SR-BI knockdown, but not functional inhibition of its cholesterol-transporting capacity, perturbed the metastasis-associated epithelial-to-mesenchymal transition (EMT) phenotype. Furthermore, SR-BI knockdown was accompanied by decreased migration and invasion of melanoma cells and reduced xenograft tumor growth. STAT5 is an important mediator of the EMT process and loss of SR-BI resulted in decreased glycosylation, reduced DNA binding, and target gene expression of STAT5. When human metastatic melanoma clinical specimens were analyzed for the abundance of SR-BI and STAT5 protein, a positive correlation was found. Finally, a novel SR-BI-regulated gene profile was determined, which discriminates metastatic from nonmetastatic melanoma specimens indicating that SR-BI drives gene expression contributing to growth at metastatic sites. Overall, these results demonstrate that SR-BI is a highly expressed receptor in human metastatic melanoma and is crucial for the maintenance of the metastatic phenotype.Implications: High SR-BI expression in melanoma is linked with increased cellular glycosylation and hence is essential for a metastasis-specific expression signature. Mol Cancer Res; 16(1); 135-46. ©2017 AACR.
Collapse
Affiliation(s)
- Katharina Kinslechner
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - David Schörghofer
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Birgit Schütz
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Maria Vallianou
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Bettina Wingelhofer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Vienna, Medical University of Vienna, Vienna, Austria
| | - Clemens Röhrl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Mario Mikula
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
87
|
Interaction network of coexpressed mRNA, miRNA, and lncRNA activated by TGF‑β1 regulates EMT in human pulmonary epithelial cell. Mol Med Rep 2017; 16:8045-8054. [PMID: 28983614 PMCID: PMC5779888 DOI: 10.3892/mmr.2017.7653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/15/2017] [Indexed: 11/05/2022] Open
Abstract
Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), play increasingly important roles in pathological processes involved in disease development. However, whether mRNAs interact with miRNAs and lncRNAs to form an interacting regulatory network in diseases remains unknown. In this study, the interaction of coexpressed mRNAs, miRNAs and lncRNAs during tumor growth factor-β1-activated (TGF-β1) epithelial-mesenchymal transition (EMT) was systematically analyzed in human alveolar epithelial cells. For EMT regulation, 24 mRNAs, 11 miRNAs and 33 lncRNAs were coexpressed, and interacted with one another. The interaction among coexpressed mRNAs, miRNAs and lncRNAs were further analyzed, and the results showed the lack of competing endogenous RNAs (ceRNAs) among them. The mutual regulation may be correlated with other modes, such as histone modification and transcription factor recruitment. However, the possibility of ceRNA existence cannot be ignored because of the generally low abundance of lncRNAs and frequent promiscuity of protein-RNA interactions. Thus, conclusions need further experimental identification and validation. In this context, disrupting many altered disease pathways remains one of the challenges in obtaining effective pathway-based therapy. The reason being that one specific mRNA, miRNA or lncRNA may target multiple genes that are potentially implicated in a disease. Nevertheless, the results of the present study provide basic mechanistic information, possible biomarkers and novel treatment strategies for diseases, particularly pulmonary tumor and fibrosis.
Collapse
|
88
|
Murtas D, Maxia C, Diana A, Pilloni L, Corda C, Minerba L, Tomei S, Piras F, Ferreli C, Perra MT. Role of epithelial–mesenchymal transition involved molecules in the progression of cutaneous melanoma. Histochem Cell Biol 2017; 148:639-649. [DOI: 10.1007/s00418-017-1606-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 12/25/2022]
|
89
|
Zhang X, Wang L, Zeng X, Fujita T, Liu W. Runx3 inhibits melanoma cell migration through regulation of cell shape change. Cell Biol Int 2017; 41:1048-1055. [PMID: 28699302 DOI: 10.1002/cbin.10824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/05/2017] [Indexed: 01/10/2023]
Abstract
The transcription factor Runx3 is a known tumor suppressor gene, and its expression is frequently lost in melanoma. However, the potential contribution of the loss of Runx3 expression to melanoma development and progression remains unclear. In this in vitro study, we demonstrated that ectopic Runx3 re-expression in B16-F10 melanoma cells changed the cell shape from elongated and branched to spread and unbranched, which enhanced stress fiber formation, increased the number of mature and fibrillar focal adhesions, and up-regulated fibronectin expression. In association with the cell shape change, the Runx3 re-expression in B16-F10 melanoma cells inhibited cell migration. Moreover, the phenotype of the Runx3 induced cell shape change was partially resembled when the melanoma cells were cultured on a fibronectin-coated coverslip, suggesting that fibronectin may mediate the Runx3 induced cell shape change of the melanoma cells. Taken together, our findings suggest that Runx3 may regulate cell shape to inhibit melanoma cell migration partly through enhancing stress fiber formation and ECM protein production. Our present study provides further evidence for the idea that cell shape change is potentially correlated with melanoma development and progression.
Collapse
Affiliation(s)
- Xin Zhang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Linghui Wang
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Takashi Fujita
- Department of Pharmaceutical Sciences, Molecular Toxicology Lab, Ritsumeikan University, Shiga 525-8577, Japan
| | - Wenguang Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
90
|
Brachelente C, Cappelli K, Capomaccio S, Porcellato I, Silvestri S, Bongiovanni L, De Maria R, Verini Supplizi A, Mechelli L, Sforna M. Transcriptome Analysis of Canine Cutaneous Melanoma and Melanocytoma Reveals a Modulation of Genes Regulating Extracellular Matrix Metabolism and Cell Cycle. Sci Rep 2017; 7:6386. [PMID: 28743863 PMCID: PMC5526991 DOI: 10.1038/s41598-017-06281-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Interactions between tumor cells and tumor microenvironment are considered critical in carcinogenesis, tumor invasion and metastasis. To examine transcriptome changes and to explore the relationship with tumor microenvironment in canine cutaneous melanocytoma and melanoma, we extracted RNA from formalin-fixed, paraffin-embedded (FFPE) specimens and analyzed them by means of RNA-seq for transcriptional analysis. Melanocytoma and melanoma samples were compared to detect differential gene expressions and significant enriched pathways were explored to reveal functional relations between differentially expressed genes. The study demonstrated a differential expression of 60 genes in melanomas compared to melanocytomas. The differentially expressed genes cluster in the extracellular matrix-receptor interaction, protein digestion and absorption, focal adhesion and PI3K-Akt (phosphoinositide 3-kinase/protein kinase B) signaling pathways. Genes encoding for several collagen proteins were more commonly differentially expressed. Results of the RNA-seq were validated by qRT-PCR and protein expression of some target molecules was investigated by means of immunohistochemistry. We hypothesize that the developing melanoma actively promotes collagen metabolism and extracellular matrix remodeling as well as enhancing cell proliferation and survival contributing to disease progression and metastasis. In this study, we also detected unidentified genes in human melanoma expression studies and uncover new candidate drug targets for further testing in canine melanoma.
Collapse
Affiliation(s)
| | - Katia Cappelli
- Department of Veterinary Medicine, 06126, Perugia, Italy
| | | | | | | | - Laura Bongiovanni
- Faculty of Veterinary Medicine, 64100, Teramo, Italy
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | - Luca Mechelli
- Department of Veterinary Medicine, 06126, Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, 06126, Perugia, Italy
| |
Collapse
|
91
|
Micalizzi DS, Haber DA, Maheswaran S. Cancer metastasis through the prism of epithelial-to-mesenchymal transition in circulating tumor cells. Mol Oncol 2017; 11:770-780. [PMID: 28544498 PMCID: PMC5496489 DOI: 10.1002/1878-0261.12081] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/23/2022] Open
Abstract
Metastasis of epithelial cancer cells to distant sites is a particularly critical stage of cancer progression that typically marks the incurability of the disease. It is governed by a complex series of events including invasion and intravasation of tumor cells into the stroma and blood, respectively. Epithelial-to-mesenchymal transition (EMT), a phenotypic change marked by the loss of epithelial characteristics and the acquisition of invasive mesenchymal properties, is implicated in the dissemination of tumor cells. Circulating tumor cells (CTCs), the precursors of metastasis, can be used to interrogate the contribution of EMT in metastasis and therapeutic responses. The analysis of these CTCs and in particular the presence of inter- and intrapatient heterogeneity for markers of EMT has provided new insights into the metastatic process. This review will focus on epithelial-mesenchymal plasticity in CTCs and its potential clinical implications.
Collapse
Affiliation(s)
- Douglas S. Micalizzi
- Massachusetts General Hospital Cancer CenterHarvard Medical SchoolCharlestownMAUSA
- Department of MedicineHarvard Medical SchoolCharlestownMAUSA
| | - Daniel A. Haber
- Massachusetts General Hospital Cancer CenterHarvard Medical SchoolCharlestownMAUSA
- Department of MedicineHarvard Medical SchoolCharlestownMAUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer CenterHarvard Medical SchoolCharlestownMAUSA
- Department of SurgeryHarvard Medical SchoolCharlestownMAUSA
| |
Collapse
|
92
|
Ruffini F, Levati L, Graziani G, Caporali S, Atzori MG, D'Atri S, Lacal PM. Platelet-derived growth factor-C promotes human melanoma aggressiveness through activation of neuropilin-1. Oncotarget 2017; 8:66833-66848. [PMID: 28977999 PMCID: PMC5620139 DOI: 10.18632/oncotarget.18706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Despite recent progress in advanced melanoma therapy, identification of signalling pathways involved in melanoma switch from proliferative to invasive states is still crucial to uncover new therapeutic targets for improving the outcome of metastatic disease. Neuropilin-1 (NRP-1), a co-receptor for vascular endothelial growth factor-A (VEGF-A) tyrosine kinase receptors (VEGFRs), has been suggested to play a relevant role in melanoma progression. NRP-1 can be activated by VEGF-A also in the absence of VEGFRs, triggering specific signal transduction pathways (e.g. p130Cas phosphorylation). Since melanoma cells co-expressing high levels of NRP-1 and platelet derived growth factor-C (PDGF-C) show a highly invasive behaviour and PDGF-C shares homology with VEGF-A, in this study we have investigated whether PDGF-C directly interacts with NRP-1 and promotes melanoma aggressiveness. Results demonstrate that PDGF-C specifically binds in vitro to NRP-1. In melanoma cells expressing NRP-1 but lacking PDGFRα, PDGF-C stimulates extra-cellular matrix (ECM) invasion and induces p130Cas phosphorylation. Blockade of PDGF-C function by neutralizing antibodies or reduction of its secretion by specific siRNA inhibit ECM invasion and vasculogenic mimicry. Moreover, PDGF-C silencing significantly down-modulates the expression of Snail, a transcription factor involved in tumour invasiveness that is highly expressed in NRP-1 positive melanoma cells. In conclusion, our results demonstrate for the first time a direct activation of NRP-1 by PDGF-C and strongly suggest that autocrine and/or paracrine stimulation of NRP-1 by PDGF-C might contribute to the acquisition of a metastatic phenotype by melanoma cells.
Collapse
Affiliation(s)
- Federica Ruffini
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy
| | - Lauretta Levati
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Simona Caporali
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy
| | | | - Stefania D'Atri
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, "Istituto Dermopatico dell'Immacolata"-IRCCS, Rome, Italy
| |
Collapse
|
93
|
Zou Q, Yang Z, Li D, Liu Z, Yuan Y. Association of chloride intracellular channel 4 and Indian hedgehog proteins with survival of patients with pancreatic ductal adenocarcinoma. Int J Exp Pathol 2017; 97:422-429. [PMID: 28205343 DOI: 10.1111/iep.12213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/18/2016] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related mortality. Novel molecular biomarkers need to be identified for personalized medicine and to improve survival. The aim of this study was to examine chloride intracellular channel 4 (CLIC4) and Indian Hedgehog (Ihh) expression in benign and malignant lesions of the pancreas and to examine the eventual association between CLIC4 and Ihh expression, with clinicopathological features and prognosis of pancreatic cancer. A retrospective study of specimens collected from January 2000 to December 2011 at the Department of Pathology of the Second and Third Xiangya Hospitals, Central South University was undertaken to explore this question. Immunohistochemistry of CLIC4 and Ihh was performed with EnVision™ in 106 pancreatic ductal adenocarcinoma specimens, 35 paracancer samples (2 cm away from the tumour, when possible or available), 55 benign lesions and 13 normal tissue samples. CLIC4 and Ihh expression in pancreatic ductal adenocarcinoma were significantly higher than in paracancer tissue and benign lesions (CLIC4: P = 0.009 and Ihh: P < 0.0001; CLIC4: P = 0.0004 and Ihh: P = 0.0001 respectively). CLIC4 and Ihh expression was negative in normal pancreatic tissues. The expression of CLIC4 and Ihh was associated significantly with tumour grade, lymph node metastasis, tumour invasion and poor overall survival. Thus CLIC4 and Ihh could serve as biological markers for the progression, metastasis and/or invasiveness of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhulin Yang
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daiqiang Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziru Liu
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
94
|
Yan S, Holderness BM, Li Z, Seidel GD, Gui J, Fisher JL, Ernstoff MS. Epithelial-Mesenchymal Expression Phenotype of Primary Melanoma and Matched Metastases and Relationship with Overall Survival. Anticancer Res 2017; 36:6449-6456. [PMID: 27919967 DOI: 10.21873/anticanres.11243] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 11/10/2022]
Abstract
E-Cadherin and N-cadherin are important components of epithelial-mesenchymal transition (EMT). The majority of studies on EMT in melanoma have been performed with cultured cell lines or pooled melanoma samples. The goal of our study was to evaluate the expression of E-cadherin and N-cadherin in matched tissue samples from primary and metastatic sites of melanoma and to determine the correlation with survival outcome. We analyzed tissues from 42 melanoma primary lesions and their corresponding metastases, as well as 53 benign nevi, for expression levels of E-cadherin and N-cadherin using immunohistochemical methods. There were heterogenous expression patterns of E- and N-cadherin in both primary and metastatic melanomas. Overall, metastatic tumor showed a decrease in E-cadherin expression and an increase in N-cadherin expression compared to the primary tumor, although the difference did not reach statistical significance (p=0.24 and 0.28 respectively). A switch of membranous expression from E-cadherin to N-cadherin from primary to metastatic melanoma was seen in eight patients (19%). Aberrant E-cadherin expression (defined as negative to weak membranous E-cadherin or positive nuclear E-cadherin expression) was more frequently observed in metastatic than in primary melanomas (p=0.03). Multivariate analysis showed that absence of N-cadherin expression in primary melanomas and the presence of aberrant E-cadherin expression in primary melanomas and metastatic melanomas was associated with a significantly worse overall survival. Our data support the importance of E-cadherin and N-cadherin proteins in melanoma progression and patient survival.
Collapse
Affiliation(s)
- Shaofeng Yan
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, U.S.A
| | - Britt M Holderness
- Department of Hematology/Oncology, Dartmouth Hitchcock Medical Center, Lebanon, NH, U.S.A
| | - Zhongze Li
- Biostatistics Shared Resource, Geisel School of Medicine at Dartmouth, Lebanon, NH, U.S.A
| | - Gregory D Seidel
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, U.S.A
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, U.S.A
| | - Jan L Fisher
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, U.S.A
| | - Marc S Ernstoff
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, U.S.A.
| |
Collapse
|
95
|
Abdou AG, Asaad N, Kandil M, Shabaan M, Shams A. Significance of stromal-1 and stromal-2 signatures and biologic prognostic model in diffuse large B-cell lymphoma. Cancer Biol Med 2017; 14:151-161. [PMID: 28607806 PMCID: PMC5444927 DOI: 10.20892/j.issn.2095-3941.2017.0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective : Diffuse Large B Cell Lymphoma (DLBCL) is a heterogeneous group of tumors with different biological and clinical characteristics that have diverse clinical outcomes and response to therapy. Stromal-1 signature of tumor microenvironment of DLBCL represents extracellular matrix deposition and histiocytic infiltrate, whereas stromal-2 represents angiogenesis that could affect tumor progression. Methods : The aim of the present study is to assess the significance of stromal-1 signature using SPARC-1 and stromal-2 signature using CD31 expression and then finally to construct biologic prognostic model (BPM) in 60 cases of DLBCL via immunohistochemistry. Results : Microvessel density (P<0.05) and SPARC percentage of expression (P<0.001) were higher in DLBCL, including germinal and nongerminal cases, compared with reactive follicular hyperplasia. High microvessel density was significantly associated with splenic involvement (P=0.008), high mitotic count (P=0.045), and presence of capsular invasion (P=0.035). Percentage of SPARC expression was significantly associated with splenic involvement (P=0.03). Constructing BPM showed that 42 cases (70%) were of low biologic score (0–1) and 18 cases (30%) were of high biologic score (2–3). Low BPM cases showed less probability for splenic involvement (P=0.04) and a higher rate of complete response to therapy compared with high score cases (P=0.08).
Conclusions : The DLBCL microenvironment could modulate tumor progression behavior since angiogenesis and SPARC positive stromal cells promote dissemination by association with spleen involvement and capsular invasion. Biologic prognostic models, including modified BPM, which considered cell origin of DLBCL and stromal signature pathways, could determine DLBCL progression and response to therapy.
Collapse
Affiliation(s)
- Asmaa Gaber Abdou
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom 325001, Egypt
| | - Nancy Asaad
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom 325001, Egypt
| | - Mona Kandil
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom 325001, Egypt
| | - Mohammed Shabaan
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom 325001, Egypt
| | - Asmaa Shams
- Pathology Department, Faculty of Medicine, Menoufia University, Shebein Elkom 325001, Egypt
| |
Collapse
|
96
|
Fisetin, a dietary flavonoid, augments the anti-invasive and anti-metastatic potential of sorafenib in melanoma. Oncotarget 2016; 7:1227-41. [PMID: 26517521 PMCID: PMC4811456 DOI: 10.18632/oncotarget.6237] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/11/2015] [Indexed: 01/07/2023] Open
Abstract
Melanoma is the most aggressive and deadly form of cutaneous neoplasm due to its propensity to metastasize. Oncogenic BRAF drives sustained activation of the BRAF/MEK/ERK (MAPK) pathway and cooperates with PI3K/AKT/mTOR (PI3K) signaling to induce epithelial to mesenchymal transition (EMT), leading to cell invasion and metastasis. Therefore, targeting these pathways is a promising preventive/therapeutic strategy. We have shown that fisetin, a flavonoid, reduces human melanoma cell invasion by inhibiting EMT. In addition, fisetin inhibited melanoma cell proliferation and tumor growth by downregulating the PI3K pathway. In this investigation, we aimed to determine whether fisetin can potentiate the anti-invasive and anti-metastatic effects of sorafenib in BRAF-mutated melanoma. We found that combination treatment (fisetin + sorafenib) more effectively reduced the migration and invasion of BRAF-mutated melanoma cells both in vitro and in raft cultures compared to individual agents. Combination treatment also effectively inhibited EMT as observed by a decrease in N-cadherin, vimentin and fibronectin and an increase in E-cadherin both in vitro and in xenograft tumors. Furthermore, combination therapy effectively inhibited Snail1, Twist1, Slug and ZEB1 protein expression compared to monotherapy. The expression of MMP-2 and MMP-9 in xenograft tumors was further reduced in combination treatment compared to individual agents. Bioluminescent imaging of athymic mice, intravenously injected with stably transfected CMV-luciferase-ires-puromycin. T2A.EGFP-tagged A375 melanoma cells, demonstrated fewer lung metastases following combination treatment versus monotherapy. Our findings demonstrate that fisetin potentiates the anti-invasive and anti-metastatic effects of sorafenib. Our data suggest that fisetin may be a worthy adjuvant chemotherapy for the management of melanoma.
Collapse
|
97
|
Adler NR, Haydon A, McLean CA, Kelly JW, Mar VJ. Metastatic pathways in patients with cutaneous melanoma. Pigment Cell Melanoma Res 2016; 30:13-27. [PMID: 27900851 DOI: 10.1111/pcmr.12544] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/15/2016] [Indexed: 12/21/2022]
Abstract
Metastasis represents the end product of an elaborate biological process, which is determined by a complex interplay between metastatic tumour cells, host factors and homoeostatic mechanisms. Cutaneous melanoma can metastasize haematogenously or lymphogenously. The three predominant models that endeavour to explain the patterns of melanoma progression are the stepwise spread model, the simultaneous spread model and the model of differential spread. The time course to the development of metastases differs between the different metastatic routes. There are several clinical and histopathological risk factors for the different metastatic pathways. In particular, patient sex and the anatomical location of the primary tumour influence patterns of disease progression. There is limited existing evidence regarding the relationship between tumour mutation status, other diagnostic and prognostic biomarkers and the metastatic pathways of primary cutaneous melanoma. This knowledge gap needs to be addressed to better identify patients at high risk of disease recurrence and personalize surveillance strategies.
Collapse
Affiliation(s)
- Nikki R Adler
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Vic, Australia.,School of Public Health and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Vic, Australia
| | - Andrew Haydon
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Vic, Australia.,Department of Medical Oncology, Alfred Hospital, Melbourne, Vic, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, Vic, Australia
| | - John W Kelly
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Vic, Australia
| | - Victoria J Mar
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Vic, Australia.,School of Public Health and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Vic, Australia.,Skin and Cancer Foundation, Carlton, Vic, Australia
| |
Collapse
|
98
|
Andrews MC, Cursons J, Hurley DG, Anaka M, Cebon JS, Behren A, Crampin EJ. Systems analysis identifies miR-29b regulation of invasiveness in melanoma. Mol Cancer 2016; 15:72. [PMID: 27852308 PMCID: PMC5112703 DOI: 10.1186/s12943-016-0554-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Background In many cancers, microRNAs (miRs) contribute to metastatic progression by modulating phenotypic reprogramming processes such as epithelial-mesenchymal plasticity. This can be driven by miRs targeting multiple mRNA transcripts, inducing regulated changes across large sets of genes. The miR-target databases TargetScan and DIANA-microT predict putative relationships by examining sequence complementarity between miRs and mRNAs. However, it remains a challenge to identify which miR-mRNA interactions are active at endogenous expression levels, and of biological consequence. Methods We developed a workflow to integrate TargetScan and DIANA-microT predictions into the analysis of data-driven associations calculated from transcript abundance (RNASeq) data, specifically the mutual information and Pearson’s correlation metrics. We use this workflow to identify putative relationships of miR-mediated mRNA repression with strong support from both lines of evidence. Applying this approach systematically to a large, published collection of unique melanoma cell lines – the Ludwig Melbourne melanoma (LM-MEL) cell line panel – we identified putative miR-mRNA interactions that may contribute to invasiveness. This guided the selection of interactions of interest for further in vitro validation studies. Results Several miR-mRNA regulatory relationships supported by TargetScan and DIANA-microT demonstrated differential activity across cell lines of varying matrigel invasiveness. Strong negative statistical associations for these putative regulatory relationships were consistent with target mRNA inhibition by the miR, and suggest that differential activity of such miR-mRNA relationships contribute to differences in melanoma invasiveness. Many of these relationships were reflected across the skin cutaneous melanoma TCGA dataset, indicating that these observations also show graded activity across clinical samples. Several of these miRs are implicated in cancer progression (miR-211, -340, -125b, −221, and -29b). The specific role for miR-29b-3p in melanoma has not been well studied. We experimentally validated the predicted miR-29b-3p regulation of LAMC1 and PPIC and LASP1, and show that dysregulation of miR-29b-3p or these mRNA targets can influence cellular invasiveness in vitro. Conclusions This analytic strategy provides a comprehensive, systems-level approach to identify miR-mRNA regulation in high-throughput cancer data, identifies novel putative interactions with functional phenotypic relevance, and can be used to direct experimental resources for subsequent experimental validation. Computational scripts are available: http://github.com/uomsystemsbiology/LMMEL-miR-miner Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0554-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miles C Andrews
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph Cursons
- Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel G Hurley
- Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew Anaka
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jonathan S Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia. .,Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia.
| | - Edmund J Crampin
- Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia. .,Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science, University of Melbourne, Parkville, VIC, 3010, Australia. .,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia. .,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
99
|
Satow R, Nakamura T, Kato C, Endo M, Tamura M, Batori R, Tomura S, Murayama Y, Fukami K. ZIC5 Drives Melanoma Aggressiveness by PDGFD-Mediated Activation of FAK and STAT3. Cancer Res 2016; 77:366-377. [PMID: 27671679 DOI: 10.1158/0008-5472.can-16-0991] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/27/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022]
Abstract
Insights into mechanisms of drug resistance could extend the efficacy of cancer therapy. To probe mechanisms in melanoma, we performed siRNA screening of genes that mediate the development of neural crest cells, from which melanocytes are derived. Here, we report the identification of ZIC5 as a mediator of melanoma drug resistance. ZIC5 is a transcriptional suppressor of E-cadherin expressed highly in human melanoma. ZIC5 enhanced melanoma cell proliferation, survival, drug resistance, in vivo growth and metastasis. Microarray analysis revealed that ZIC5 downstream signaling included PDGFD and FAK activation, which contributes to drug resistance by enhancing STAT3 activation. Silencing of ZIC5 or PDGFD enhanced the apoptotic effects of BRAF inhibition and blocked survival of melanoma cells resistant to BRAF inhibitors. Furthermore, inhibition of FAK or STAT3 suppressed expression of ZIC5, which was positively regulated by PDGFD, FAK, and STAT3 in a positive feedback loop. Taken together, our results identify ZIC5 and PDGFD as candidate therapeutic targets to overcome drug resistance in melanoma. Cancer Res; 77(2); 366-77. ©2016 AACR.
Collapse
Affiliation(s)
- Reiko Satow
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Hachioji-shi, Tokyo, Japan
| | - Tomomi Nakamura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Chiaki Kato
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Miku Endo
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Mana Tamura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Ryosuke Batori
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Shiori Tomura
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Yumi Murayama
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, Hachioji-shi, Tokyo, Japan. .,AMED-CREST, Japan Agency for Medical Research and Development, Hachioji-shi, Tokyo, Japan
| |
Collapse
|
100
|
Agarwalla P, Mukherjee S, Sreedhar B, Banerjee R. Glucocorticoid receptor-mediated delivery of nano gold-withaferin conjugates for reversal of epithelial-to-mesenchymal transition and tumor regression. Nanomedicine (Lond) 2016; 11:2529-46. [PMID: 27622735 DOI: 10.2217/nnm-2016-0224] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIM To explore the potential of glucocorticoid receptor-targeted nano-gold formulation as antitumor drug sensitizing agent. MATERIALS & METHODS Simultaneous conjugation of gold nanoparticle with thiol-modified dexamethasone, a synthetic glucocorticoid and anticancer drug withaferin A afforded stable gold nanoparticle-modifed dexamethasone-withaferin A nanoconjugate. RESULTS This metallic nanoparticle formulation showed glucocorticoid receptor-dependent cancer cell selective cytotoxicity, inhibited growth of aggressive mouse melanoma tumor, reduced mice mortality, while reversing epithelial-to-mesenchymal transition in tumor cells. Same treatment also leads to near-complete downregulation of ABCG2 drug transporter in tumor-associated cells thus attributing it to its drug sensitizing ability. CONCLUSION The presently synthesized nanoconjugate holds a great promise to sensitize cancer cells to chemotherapeutics and induce epithelial-to-mesenchymal transition reversal in tumor cells preventing metastasis.
Collapse
Affiliation(s)
- Pritha Agarwalla
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110 001, India
| | - Sudip Mukherjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110 001, India
| | - Bojja Sreedhar
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India
| | - Rajkumar Banerjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific & Innovative Research (AcSIR), 2 Rafi Marg, New Delhi 110 001, India
| |
Collapse
|