51
|
Lentivirus-mediated PLCγ1 gene short-hairpin RNA suppresses tumor growth and metastasis of human gastric adenocarcinoma. Oncotarget 2016; 7:8043-54. [PMID: 26811493 PMCID: PMC4884974 DOI: 10.18632/oncotarget.6976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022] Open
Abstract
Targeted molecular therapy has gradually been a potential solution in cancer therapy. Other authors' and our previous studies have demonstrated that phosphoinositide-specific phospholipase γ (PLCγ) is involved in regulating tumor growth and metastasis. However, the molecular mechanism underlying PLCγ-dependent tumor growth and metastasis of gastric adenocarcinoma and whether PLCγ may be a potential target for tumor therapy in human gastric adenocarcinoma are not yet well determined. Here, we investigated the role of PLCγ inhibition in tumor growth and metastasis of human gastric adenocarcinoma using BGC-823 cell line and a nude mouse tumor xenograft model. The results manifested that the depletion of PLCγ1 by the transduction with lentivirus-mediated PLCγ1 gene short-hairpin RNA (shRNA) vector led to the decrease of tumor growth and metastasis of human gastric adenocarcinoma in vitro and in vivo. Furthermore, the Akt/Bad, Akt/S6, and ERK/Bad signal axes were involved in PLCγ1-mediated tumor growth and metastasis of human gastric adenocarcinoma. Therefore, the abrogation of PLCγ1 signaling by shRNA could efficaciously suppress human gastric adenocarcinoma tumor growth and metastasis, with important implication for validating PLCγ1 as a potential target for human gastric adenocarcinoma.
Collapse
|
52
|
A Small Molecule Inhibitor of PDK1/PLCγ1 Interaction Blocks Breast and Melanoma Cancer Cell Invasion. Sci Rep 2016; 6:26142. [PMID: 27199173 PMCID: PMC4873738 DOI: 10.1038/srep26142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/21/2016] [Indexed: 12/02/2022] Open
Abstract
Strong evidence suggests that phospholipase Cγ1 (PLCγ1) is a suitable target to counteract tumourigenesis and metastasis dissemination. We recently identified a novel signalling pathway required for PLCγ1 activation which involves formation of a protein complex with 3-phosphoinositide-dependent protein kinase 1 (PDK1). In an effort to define novel strategies to inhibit PLCγ1-dependent signals we tested here whether a newly identified and highly specific PDK1 inhibitor, 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5), could affect PDK1/PLCγ1 interaction and impair PLCγ1-dependent cellular functions in cancer cells. Here, we demonstrate that 2-O-Bn-InsP5 interacts specifically with the pleckstrin homology domain of PDK1 and impairs formation of a PDK1/PLCγ1 complex. 2-O-Bn-InsP5 is able to inhibit the epidermal growth factor-induced PLCγ1 phosphorylation and activity, ultimately resulting in impaired cancer cell migration and invasion. Importantly, we report that 2-O-Bn-InsP5 inhibits cancer cell dissemination in zebrafish xenotransplants. This work demonstrates that the PDK1/PLCγ1 complex is a potential therapeutic target to prevent metastasis and it identifies 2-O-Bn-InsP5 as a leading compound for development of anti-metastatic drugs.
Collapse
|
53
|
Prasetyanti PR, Capone E, Barcaroli D, D'Agostino D, Volpe S, Benfante A, van Hooff S, Iacobelli V, Rossi C, Iacobelli S, Medema JP, De Laurenzi V, Sala G. ErbB-3 activation by NRG-1β sustains growth and promotes vemurafenib resistance in BRAF-V600E colon cancer stem cells (CSCs). Oncotarget 2016; 6:16902-11. [PMID: 26160848 PMCID: PMC4627280 DOI: 10.18632/oncotarget.4642] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023] Open
Abstract
Approximately 5-10% of metastatic colorectal cancers harbor a BRAF-V600E mutation, which is correlated with resistance to EGFR-targeted therapies and worse clinical outcome. Vice versa, targeted inhibition of BRAF-V600E with the selective inhibitor PLX 4032 (Vemurafenib) is severely limited due to feedback re-activation of EGFR in these tumors. Mounting evidence indicates that upregulation of the ErbB-3 signaling axis may occur in response to several targeted therapeutics, including Vemurafenib, and NRG-1β-dependent re-activation of the PI3K/AKT survival pathway has been associated with therapy resistance. Here we show that colon CSCs express, next to EGFR and ErbB-2, also significant amounts of ErbB-3 on their membrane. This expression is functional as NRG-1β strongly induces AKT/PKB and ERK phosphorylation, cell proliferation, clonogenic growth and promotes resistance to Vemurafenib in BRAF-V600E mutant colon CSCs. This resistance was completely dependent on ErbB-3 expression, as evidenced by knockdown of ErbB-3. More importantly, resistance could be alleviated with therapeutic antibody blocking ErbB-3 activation, which impaired NRG-1β-driven AKT/PKB and ERK activation, clonogenic growth in vitro and tumor growth in xenograft models. In conclusion, our findings suggest that targeting ErbB-3 receptors could represent an effective therapeutic approach in BRAF-V600E mutant colon cancer.
Collapse
Affiliation(s)
- Pramudita R Prasetyanti
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands.,Cancer Genomics Center, The Netherlands
| | - Emily Capone
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Daniela Barcaroli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Daniela D'Agostino
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Silvia Volpe
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Antonina Benfante
- Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy
| | - Sander van Hooff
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands.,Cancer Genomics Center, The Netherlands
| | - Valentina Iacobelli
- Department of Gynecology and Obstetrics, La Sapienza University of Rome, Rome, Italy
| | - Cosmo Rossi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Stefano Iacobelli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy.,MediaPharma s.r.l., Chieti, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands.,Cancer Genomics Center, The Netherlands
| | - Vincenzo De Laurenzi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy
| | - Gianluca Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, University "G. d'Annunzio" Chieti-Pescara, Centro Studi sull'Invecchiamento, Ce.S.I., Chieti, Italy.,MediaPharma s.r.l., Chieti, Italy
| |
Collapse
|
54
|
Sengelaub CA, Navrazhina K, Ross JB, Halberg N, Tavazoie SF. PTPRN2 and PLCβ1 promote metastatic breast cancer cell migration through PI(4,5)P2-dependent actin remodeling. EMBO J 2015; 35:62-76. [PMID: 26620550 PMCID: PMC4717998 DOI: 10.15252/embj.201591973] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Altered abundance of phosphatidyl inositides (PIs) is a feature of cancer. Various PIs mark the identity of diverse membranes in normal and malignant cells. Phosphatidylinositol 4,5‐bisphosphate (PI(4,5)P2) resides predominantly in the plasma membrane, where it regulates cellular processes by recruiting, activating, or inhibiting proteins at the plasma membrane. We find that PTPRN2 and PLCβ1 enzymatically reduce plasma membrane PI(4,5)P2 levels in metastatic breast cancer cells through two independent mechanisms. These genes are upregulated in highly metastatic breast cancer cells, and their increased expression associates with human metastatic relapse. Reduction in plasma membrane PI(4,5)P2 abundance by these enzymes releases the PI(4,5)P2‐binding protein cofilin from its inactive membrane‐associated state into the cytoplasm where it mediates actin turnover dynamics, thereby enhancing cellular migration and metastatic capacity. Our findings reveal an enzymatic network that regulates metastatic cell migration through lipid‐dependent sequestration of an actin‐remodeling factor.
Collapse
Affiliation(s)
- Caitlin A Sengelaub
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Kristina Navrazhina
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Jason B Ross
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Nils Halberg
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, Rockefeller University, New York, NY, USA
| |
Collapse
|
55
|
Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell Signal 2015; 27:1789-98. [DOI: 10.1016/j.cellsig.2015.05.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023]
|
56
|
Gramolelli S, Weidner-Glunde M, Abere B, Viejo-Borbolla A, Bala K, Rückert J, Kremmer E, Schulz TF. Inhibiting the Recruitment of PLCγ1 to Kaposi's Sarcoma Herpesvirus K15 Protein Reduces the Invasiveness and Angiogenesis of Infected Endothelial Cells. PLoS Pathog 2015; 11:e1005105. [PMID: 26295810 PMCID: PMC4546648 DOI: 10.1371/journal.ppat.1005105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/22/2015] [Indexed: 11/28/2022] Open
Abstract
Kaposi’s sarcoma (KS), caused by Kaposi’s sarcoma herpesvirus (KSHV), is a highly vascularised tumour of endothelial origin. KSHV infected endothelial cells show increased invasiveness and angiogenesis. Here, we report that the KSHV K15 protein, which we showed previously to contribute to KSHV-induced angiogenesis, is also involved in KSHV-mediated invasiveness in a PLCγ1-dependent manner. We identified βPIX, GIT1 and cdc42, downstream effectors of PLCγ1 in cell migration, as K15 interacting partners and as contributors to KSHV-triggered invasiveness. We mapped the interaction between PLCγ1, PLCγ2 and their individual domains with two K15 alleles, P and M. We found that the PLCγ2 cSH2 domain, by binding to K15P, can be used as dominant negative inhibitor of the K15P-PLCγ1 interaction, K15P-dependent PLCγ1 phosphorylation, NFAT-dependent promoter activation and the increased invasiveness and angiogenic properties of KSHV infected endothelial cells. We increased the binding of the PLCγ2 cSH2 domain for K15P by substituting two amino acids, thereby creating an improved dominant negative inhibitor of the K15P-dependent PLCγ1 activation. Taken together, these results demonstrate a necessary role of K15 in the increased invasiveness and angiogenesis of KSHV infected endothelial cells and suggest the K15-PLCγ1 interaction as a possible new target for inhibiting the angiogenic and invasive properties of KSHV. Kaposi’s Sarcoma (KS), etiologically linked to Kaposi’s sarcoma herpesvirus (KSHV), is a tumour of endothelial origin characterised by angiogenesis and invasiveness. In vitro, KSHV infected endothelial cells display an increased invasiveness and high angiogenicity. Here we report that the KSHV protein K15, which increases the angiogenicity of endothelial cells, contributes to KSHV-mediated invasiveness by the recruitment and activation of the cellular protein PLCγ1 and its downstream effectors βPIX, GIT1 and cdc42. We explored the functional consequences of disrupting the K15-PLCγ1 interaction by using an isolated PLCγ2 cSH2 domain as a dominant negative inhibitor. This protein fragment, by interacting with K15, reduces K15-driven recruitment and activation of PLCγ1 in a dose-dependent manner. Moreover, the PCLγ2 cSH2 domain, when overexpressed in KSHV infected endothelial cells, reduces the angiogenesis and invasiveness induced by the virus. These findings highlight the role of the K15-PLCγ1 interaction in KSHV-mediated invasiveness and identify it as a possible therapeutic target.
Collapse
Affiliation(s)
- Silvia Gramolelli
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Magdalena Weidner-Glunde
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Bizunesh Abere
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | | | - Kiran Bala
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- * E-mail:
| |
Collapse
|
57
|
Gorai S, Bagdi PR, Borah R, Paul D, Santra MK, Khan AT, Manna D. Insights into the inhibitory mechanism of triazole-based small molecules on phosphatidylinositol-4,5-bisphosphate binding pleckstrin homology domain. Biochem Biophys Rep 2015; 2:75-86. [PMID: 29124147 PMCID: PMC5668642 DOI: 10.1016/j.bbrep.2015.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
Background Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is an important regulator of several cellular processes and a precursor for other second messengers which are involved in cell signaling pathways. Signaling proteins preferably interact with PI(4,5)P2 through its pleckstrin homology (PH) domain. Efforts are underway to design small molecule-based antagonist, which can specifically inhibit the PI(4,5)P2/PH-domain interaction to establish an alternate strategy for the development of drug(s) for phosphoinositide signaling pathways. Methods Surface plasmon resonance, molecular docking, circular dichroism, competitive Förster resonance energy transfer, isothermal titration calorimetric analyses and liposome pull down assay were used. Results In this study, we employed 1,2,3-triazol-4-yl methanol containing small molecule (CIPs) as antagonists for PI(4,5)P2/PH-domain interaction and determined their inhibitory effect by using competitive-surface plasmon resonance analysis (IC50 ranges from 53 to 159 nM for PI(4,5)P2/PLCδ1-PH domain binding assay). We also used phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2], PI(4,5)P2 specific PH-domains to determine binding selectivity of the compounds. Various physicochemical analyses showed that the compounds have weak affect on fluidity of the model membrane but, strongly interact with the phospholipase C δ1 (PLCδ1)-PH domains. The 1,2,3-triazol-4-yl methanol moiety and nitro group of the compounds are essential for their exothermic interaction with the PH-domains. Potent compound can efficiently displace PLCδ1-PH domain from plasma membrane to cytosol in A549 cells. Conclusions Overall, our studies demonstrate that these compounds interact with the PIP-binding PH-domains and inhibit their membrane recruitment. General significance These results suggest specific but differential binding of these compounds to the PLCδ1-PH domain and emphasize the role of their structural differences in binding parameters. These triazole-based compounds could be directly used/further developed as potential inhibitor for PH domain-dependent enzyme activity.
Collapse
Affiliation(s)
- Sukhamoy Gorai
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Prasanta Ray Bagdi
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Rituparna Borah
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Debasish Paul
- National Center for Cell Science, Pune 411007, Maharashtra, India
| | | | - Abu Taleb Khan
- Alia University, DN 18, 8th Floor, Sector V, Kolkata 700091, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
58
|
Arabshahi HJ, van Rensburg M, Pilkington LI, Jeon CY, Song M, Gridel LM, Leung E, Barker D, Vuica-Ross M, Volcho KP, Zakharenko AL, Lavrik OI, Reynisson J. A synthesis, in silico, in vitro and in vivo study of thieno[2,3-b]pyridine anticancer analogues. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00245a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The thieno[2,3-b]pyridines bind to TDP1 with the best analogue 9d with IC50 at 0.5 μM.
Collapse
Affiliation(s)
| | | | - Lisa I. Pilkington
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- Auckland Cancer Society Research Centre and Department of Molecular Medicine and Pathology
| | - Chae Yeon Jeon
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Mirae Song
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Ling-Mey Gridel
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre and Department of Molecular Medicine and Pathology
- University of Auckland
- New Zealand
| | - David Barker
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | | | - Konstantin P. Volcho
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk
- Russian Federation
- Novosibirsk State University
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine
- Siberian Branch of the Russian Academy of Sciences
- Novosibirsk
- Russian Federation
| | - Olga I. Lavrik
- Novosibirsk State University
- Novosibirsk
- Russian Federation
- Institute of Chemical Biology and Fundamental Medicine
- Siberian Branch of the Russian Academy of Sciences
| | - Jóhannes Reynisson
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| |
Collapse
|
59
|
Zhu D, Tan Y, Yang X, Qiao J, Yu C, Wang L, Li J, Zhang Z, Zhong L. Phospholipase C gamma 1 is a potential prognostic biomarker for patients with locally advanced and resectable oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2014; 43:1418-26. [PMID: 25085076 DOI: 10.1016/j.ijom.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/14/2014] [Accepted: 07/02/2014] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate the prognostic and predictive values of phospholipase C gamma 1 (PLCG1) expression in patients with locally advanced and resectable oral squamous cell carcinoma (OSCC), who were treated in a prospective, randomized, phase 3 trial evaluating standard treatment with surgery and postoperative radiation preceded or not by induction docetaxel, cisplatin, and 5-fluorouracil (TPF). Immunohistochemical staining for PLCG1 was performed on the biopsies of 232 out of 256 OSCC patients at clinical stage III/IVA; the PLCG1 positive score was determined by immunoreactive scoring system. The survival analysis was performed by Kaplan-Meier method; hazard ratios were calculated using the Cox proportional hazards model. Patients with a low PLCG1 expression had a significantly better overall survival (P=0.022), and a trend towards better disease-free survival (P=0.087), loco-regional recurrence-free survival (P=0.058), distant metastasis-free survival (P=0.053), and a high response rate to TPF induction chemotherapy with regard to clinical response (P=0.052) and pathological response (P=0.061), compared to those with high PLCG1 expression. Our results suggest that PLCG1 expression could be used as a prognostic biomarker for patients with advanced OSCC; however, it was not an adequate predictive biomarker for TPF induction chemotherapy.
Collapse
Affiliation(s)
- D Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Tan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Qiao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C Yu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Wang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Zhong
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
60
|
Yang J, Song X, Chen Y, Lu XA, Fu Y, Luo Y. PLCγ1-PKCγ signaling-mediated Hsp90α plasma membrane translocation facilitates tumor metastasis. Traffic 2014; 15:861-78. [PMID: 24899266 DOI: 10.1111/tra.12179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 12/29/2022]
Abstract
The 90-kDa heat shock protein (Hsp90α) has been identified on the surface of cancer cells, and is implicated in tumor invasion and metastasis, suggesting that it is a potentially important target for tumor therapy. However, the regulatory mechanism of Hsp90α plasma membrane translocation during tumor invasion remains poorly understood. Here, we show that Hsp90α plasma membrane expression is selectively upregulated upon epidermal growth factor (EGF) stimulation, which is a process independent of the extracellular matrix. Abrogation of EGF-mediated activation of phospholipase (PLCγ1) by its siRNA or inhibitor prevents the accumulation of Hsp90α at cell protrusions. Inhibition of the downstream effectors of PLCγ1, including Ca(2+) and protein kinase C (PKCγ), also blocks the membrane translocation of Hsp90α, while activation of PKCγ leads to increased levels of cell-surface Hsp90α. Moreover, overexpression of PKCγ increases extracellular vesicle release, on which Hsp90α is present. Furthermore, activation or overexpression of PKCγ promotes tumor cell motility in vitro and tumor metastasis in vivo, whereas a specific neutralizing monoclonal antibody against Hsp90α inhibits such effects, demonstrating that PKCγ-induced Hsp90α translocation is required for tumor metastasis. Taken together, our study provides a mechanistic basis for the role for the PLCγ1-PKCγ pathway in regulating Hsp90α plasma membrane translocation, which facilitates tumor cell motility and promotes tumor metastasis.
Collapse
Affiliation(s)
- Jian Yang
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, 100084, China; Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | |
Collapse
|
61
|
Murali A, Rajalingam K. Small Rho GTPases in the control of cell shape and mobility. Cell Mol Life Sci 2014; 71:1703-21. [PMID: 24276852 PMCID: PMC11113993 DOI: 10.1007/s00018-013-1519-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/28/2022]
Abstract
Rho GTPases are a class of evolutionarily conserved proteins comprising 20 members, which are predominantly known for their role in regulating the actin cytoskeleton. They are primarily regulated by binding of GTP/GDP, which is again controlled by regulators like GEFs, GAPs, and RhoGDIs. Rho GTPases are thus far well known for their role in the regulation of actin cytoskeleton and migration. Here we present an overview on the role of Rho GTPases in regulating cell shape and plasticity of cell migration. Finally, we discuss the emerging roles of ubiquitination and sumoylation in regulating Rho GTPases and cell migration.
Collapse
Affiliation(s)
- Arun Murali
- Cell Death Signaling Group, Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| | - Krishnaraj Rajalingam
- Cell Death Signaling Group, Institute of Biochemistry II, Goethe University Medical School, Frankfurt, Germany
| |
Collapse
|
62
|
|
63
|
Timsah Z, Ahmed Z, Lin CC, Melo FA, Stagg LJ, Leonard PG, Jeyabal P, Berrout J, O'Neil RG, Bogdanov M, Ladbury JE. Competition between Grb2 and Plcγ1 for FGFR2 regulates basal phospholipase activity and invasion. Nat Struct Mol Biol 2014; 21:180-8. [DOI: 10.1038/nsmb.2752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022]
|
64
|
Arabshahi HJ, Leung E, Barker D, Reynisson J. The development of thieno[2,3-b]pyridine analogues as anticancer agents applying in silico methods. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00320e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
65
|
Leung E, Hung JM, Barker D, Reynisson J. The effect of a thieno[2,3-b]pyridine PLC-γ inhibitor on the proliferation, morphology, migration and cell cycle of breast cancer cells. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00290j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
66
|
Brugnoli F, Grassilli S, Piazzi M, Palomba M, Nika E, Bavelloni A, Capitani S, Bertagnolo V. In triple negative breast tumor cells, PLC-β2 promotes the conversion of CD133high to CD133low phenotype and reduces the CD133-related invasiveness. Mol Cancer 2013; 12:165. [PMID: 24330829 PMCID: PMC3866498 DOI: 10.1186/1476-4598-12-165] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 12/03/2013] [Indexed: 02/04/2023] Open
Abstract
Background Beyond its possible correlation with stemness of tumor cells, CD133/prominin1 is considered an important marker in breast cancer, since it correlates with tumor size, metastasis and clinical stage of triple-negative breast cancers (TNBC), to date the highest risk breast neoplasia. Methods To study the correlation between the levels of CD133 expression and the biology of breast-derived cells, CD133low and CD133high cell subpopulations isolated from triple negative MDA-MB-231 cells were compared in terms of malignant properties and protein expression. Results High expression of CD133 characterizes cells with larger adhesion area, lower proliferation rate and reduced migration speed, indicative of a less undifferentiated phenotype. Conversely, when compared with CD133low cells, CD133high cells show higher invasive capability and increased expression of proteins involved in metastasis and drug-resistance of breast tumors. Among the signalling proteins examined, PLC-β2 expression inversely correlates with the levels of CD133 and has a role in inducing the CD133high cells to CD133low cells conversion, suggesting that, in TNBC cells, the de-regulation of this PLC isoform is responsible of the switch from an early to a mature tumoral phenotype also by reducing the expression of CD133. Conclusions Since CD133 plays a role in determining the invasiveness of CD133high cells, it may constitute an attractive target to reduce the metastatic potential of TNBC. In addition, our data showing that the forced up-regulation of PLC-β2 counteracts the invasiveness of CD133-positive MDA-MB-231 cells might contribute to identify unexplored key steps responsible for the TNBC high malignancy, to be considered for potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valeria Bertagnolo
- Signal Transduction Unit, Section of Anatomy and Histology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy.
| |
Collapse
|
67
|
EV20, a Novel Anti-ErbB-3 Humanized Antibody, Promotes ErbB-3 Down-Regulation and Inhibits Tumor Growth In Vivo. Transl Oncol 2013; 6:676-84. [PMID: 24466370 DOI: 10.1593/tlo.13475] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/20/2022] Open
Abstract
ErbB-3 (HER-3) receptor is involved in tumor progression and resistance to therapy. Development of specific inhibitors impairing the activity of ErbB-3 is an attractive tool for cancer therapeutics. MP-RM-1, a murine monoclonal antibody targeting human ErbB-3, has shown anticancer activity in preclinical models. With the aim to provide novel candidates for clinical use, we have successfully generated a humanized version of MP-RM-1. The humanized antibody, named EV20, abrogates both ligand-dependent and ligand-independent receptor signaling of several tumor cell types, strongly promotes ErbB-3 down-regulation, and efficiently and rapidly internalizes into tumor cells. Furthermore, treatment with EV20 significantly inhibits growth of xenografts originating from prostatic, ovarian, and pancreatic cancers as well as melanoma in nude mice. In conclusion, we provide a novel candidate for ErbB-3-targeted cancer therapy.
Collapse
|
68
|
Wong MS, Sidik SM, Mahmud R, Stanslas J. Molecular targets in the discovery and development of novel antimetastatic agents: current progress and future prospects. Clin Exp Pharmacol Physiol 2013; 40:307-19. [PMID: 23534409 DOI: 10.1111/1440-1681.12083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 01/08/2023]
Abstract
Tumour invasion and metastasis have been recognized as major causal factors in the morbidity and mortality among cancer patients. Many advances in the knowledge of cancer metastasis have yielded an impressive array of attractive drug targets, including enzymes, receptors and multiple signalling pathways. The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents. Several promising targets have been highlighted, including receptor tyrosine kinases, effector molecules involved in angiogenesis, matrix metalloproteinases (MMPs), urokinase plasminogen activator, adhesion molecules and their receptors, signalling pathways (e.g. phosphatidylinositol 3-kinase, phospholipase Cγ1, mitogen-activated protein kinases, c-Src kinase, c-Met kinases and heat shock protein. The discovery and development of potential novel therapeutics for each of the targets are also discussed in this review. Among these, the most promising agents that have shown remarkable clinical outcome are anti-angiogenic agents (e.g. bevacizumab). Newer agents, such as c-Met kinase inhibitors, are still undergoing preclinical studies and are yet to have their clinical efficacy proven. Some therapeutics, such as first-generation MMP inhibitors (MMPIs; e.g. marimastat) and more selective versions of them (e.g. prinomastat, tanomastat), have undergone clinical trials. Unfortunately, these drugs produced serious adverse effects that led to the premature termination of their development. In the future, third-generation MMPIs and inhibitors of signalling pathways and adhesion molecules could form valuable novel classes of drugs in the anticancer armamentarium to combat metastasis.
Collapse
Affiliation(s)
- Mei S Wong
- Pharmacotherapeutics Unit, Department of Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
69
|
Abstract
Phospholipases are enzymes that use phospholipids as substrate and are classified in three major classes A, C and D based on the reaction they catalyse. Phosphatidylinositol-specific Phospholipase C enzymes utilize phosphatidylinositol 4,5-bisphosphate as substrate and cleave the bond between the glycerol and the phosphate to produce important second messenger such as inositol trisphosphate and diacylglycerol. The Phospholipase C members are the most well-known phospholipases for their role in lipid signalling and cell proliferation and comprise 13 isoforms classified in 6 distinct sub-families. In particular, signalling activated by Phospholipase C γ, mostly activated by receptor and non-receptor tyrosine kinases, is well characterized in different cell systems. Increasing evidence suggest that Phospholipase C γ plays a key role in cell migration and invasion. Because of its role in cell growth and invasion, aberrant Phospholipase C γ signalling can contribute to carcinogenesis. A major challenge facing investigators who seek to target Phospholipase C γ directly is the fact that it is considered an "undruggable" protein. Indeed, isoform specificity and toxicity represents a big hurdle in the development of Phospholipase C γ small molecule inhibitors. Therefore, a future development in the field could be the identification of interacting partners as therapeutic targets that could be more druggable than Phospholipase C γ.
Collapse
Affiliation(s)
- Rossano Lattanzio
- Aging Research Centre, G. d'Annunzio University Foundation, 66013 Chieti, Italy.
| | | | | |
Collapse
|
70
|
Yang YR, Follo MY, Cocco L, Suh PG. The physiological roles of primary phospholipase C. Adv Biol Regul 2013; 53:232-241. [PMID: 24041464 DOI: 10.1016/j.jbior.2013.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
The roles of phosphoinositide-specific phospholipase C (PLC) have been extensively investigated in diverse cell lines and pathological conditions. Among the PLC isozmes, primary PLCs, PLC-β and PLC-γ, are directly activated by receptor activation, unlike other secondary PLCs (PLC-ɛ, PLC-δ1, and PLC-η1). PLC-β isozymes are activated by G protein couple receptor and PLC-γ isozymes are activated by receptor tyrosine kinase (RTK). Primary PLCs are differentially expressed in different tissues, suggesting their specific roles in diverse tissues and regulate a variety of physiological and pathophysiological functions. Thus, dysregulation of phospholipases contributes to a number of human diseases and primary PLCs have been identified as therapeutic targets for prevention and treatment of diseases. Here we review the roles of primary PLCs in physiology and their impact in pathology.
Collapse
Affiliation(s)
- Yong Ryoul Yang
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | |
Collapse
|
71
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
72
|
Raimondi C, Falasca M. Phosphoinositides signalling in cancer: focus on PI3K and PLC. Adv Biol Regul 2013; 52:166-82. [PMID: 22019900 DOI: 10.1016/j.advenzreg.2011.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022]
Affiliation(s)
- Claudio Raimondi
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Diabetes, Inositide Signalling Group, London E1 2AT, UK
| | | |
Collapse
|
73
|
Macrophages stimulate gastric and colorectal cancer invasion through EGFR Y(1086), c-Src, Erk1/2 and Akt phosphorylation and smallGTPase activity. Oncogene 2013; 33:2123-33. [PMID: 23644655 DOI: 10.1038/onc.2013.154] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/19/2022]
Abstract
The interactions between cancer cells and their microenvironment are crucial for malignant progression, as they modulate invasion-related activities. Tumor-associated macrophages are generally considered allies in the process of tumor progression in several types of cancer, although their role on gastric and colorectal carcinomas is still poorly understood. In this report, we studied the influence of primary human macrophages on gastric and colorectal cancer cells, considering invasion, motility/migration, proteolysis and activated intracellular signaling pathways. We demonstrated that macrophages stimulate cancer cell invasion, motility and migration, and that these effects depend on matrix metalloproteinase (MMP) activity and on the activation of epidermal growth factor receptor (EGFR) (at the residue Y(1086)), PLC-γ (phospholipase C-gamma) and Gab1 (GRB2-associated binding protein-1), as evidenced by siRNA (small interference RNA) experiments. Epidermal growth factor (EGF)-immunodepletion impaired macrophage-mediated cancer cell invasion and motility, suggesting that EGF is the pro-invasive and pro-motile factor produced by macrophages. Macrophages also induced gastric and colorectal cancer cell phosphorylation of Akt, c-Src and ERK1/2, and led to an increase of RhoA and Cdc42 activity. Interestingly, whereas macrophage-mediated cancer cell c-Src and ERK1/2 phosphorylation occurred downstream EGFR activation, Akt phosphorylation seems to be a parallel event, taking place in an EGFR-independent manner. The involvement of EGF, EGFR-downstream signaling partners and MMPs in macrophage-mediated invasion provides novel insights into the molecular crosstalk established between cancer cells and macrophages, opening new perspectives for the design of new and more efficient therapeutic strategies to counteract cancer cell invasion.
Collapse
|
74
|
Zhang F, Kaufman HL, Deng Y, Drabier R. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood. BMC Med Genomics 2013; 6 Suppl 1:S4. [PMID: 23369435 PMCID: PMC3552693 DOI: 10.1186/1755-8794-6-s1-s4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Breast cancer is worldwide the second most common type of cancer after lung cancer. Traditional mammography and Tissue Microarray has been studied for early cancer detection and cancer prediction. However, there is a need for more reliable diagnostic tools for early detection of breast cancer. This can be a challenge due to a number of factors and logistics. First, obtaining tissue biopsies can be difficult. Second, mammography may not detect small tumors, and is often unsatisfactory for younger women who typically have dense breast tissue. Lastly, breast cancer is not a single homogeneous disease but consists of multiple disease states, each arising from a distinct molecular mechanism and having a distinct clinical progression path which makes the disease difficult to detect and predict in early stages. RESULTS In the paper, we present a Support Vector Machine based on Recursive Feature Elimination and Cross Validation (SVM-RFE-CV) algorithm for early detection of breast cancer in peripheral blood and show how to use SVM-RFE-CV to model the classification and prediction problem of early detection of breast cancer in peripheral blood.The training set which consists of 32 health and 33 cancer samples and the testing set consisting of 31 health and 34 cancer samples were randomly separated from a dataset of peripheral blood of breast cancer that is downloaded from Gene Express Omnibus. First, we identified the 42 differentially expressed biomarkers between "normal" and "cancer". Then, with the SVM-RFE-CV we extracted 15 biomarkers that yield zero cross validation score. Lastly, we compared the classification and prediction performance of SVM-RFE-CV with that of SVM and SVM Recursive Feature Elimination (SVM-RFE). CONCLUSIONS We found that 1) the SVM-RFE-CV is suitable for analyzing noisy high-throughput microarray data, 2) it outperforms SVM-RFE in the robustness to noise and in the ability to recover informative features, and 3) it can improve the prediction performance (Area Under Curve) in the testing data set from 0.5826 to 0.7879. Further pathway analysis showed that the biomarkers are associated with Signaling, Hemostasis, Hormones, and Immune System, which are consistent with previous findings. Our prediction model can serve as a general model for biomarker discovery in early detection of other cancers. In the future, Polymerase Chain Reaction (PCR) is planned for validation of the ability of these potential biomarkers for early detection of breast cancer.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Academic and Institutional Resources and Technology, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Forensic and Investigative Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Howard L Kaufman
- Rush University Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of General Surgery and Immunology and Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Youping Deng
- Rush University Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine and Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Renee Drabier
- Department of Academic and Institutional Resources and Technology, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
75
|
Huang W, Barrett M, Hajicek N, Hicks S, Harden TK, Sondek J, Zhang Q. Small molecule inhibitors of phospholipase C from a novel high-throughput screen. J Biol Chem 2013; 288:5840-8. [PMID: 23297405 DOI: 10.1074/jbc.m112.422501] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phospholipase C (PLC) isozymes are important signaling molecules, but few small molecule modulators are available to pharmacologically regulate their function. With the goal of developing a general approach for identification of novel PLC inhibitors, we developed a high-throughput assay based on the fluorogenic substrate reporter WH-15. The assay is highly sensitive and reproducible: screening a chemical library of 6280 compounds identified three novel PLC inhibitors that exhibited potent activities in two separate assay formats with purified PLC isozymes in vitro. Two of the three inhibitors also inhibited G protein-coupled receptor-stimulated PLC activity in intact cell systems. These results demonstrate the power of the high-throughput assay for screening large collections of small molecules to identify novel PLC modulators. Potent and selective modulators of PLCs will ultimately be useful for dissecting the roles of PLCs in cellular processes, as well as provide lead compounds for the development of drugs to treat diseases arising from aberrant phospholipase activity.
Collapse
Affiliation(s)
- Weigang Huang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Genetically engineered animal models for in vivo target identification and validation in oncology. Methods Mol Biol 2013; 986:281-305. [PMID: 23436419 DOI: 10.1007/978-1-62703-311-4_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In vitro approaches using human cancer cell lines aimed to identify and validate oncology targets, have pinpointed a number of key targets and signalling pathways which control cell growth and cell death. However, tumors are more than insular masses of proliferating cancer cells. Instead they are complex tissues composed of multiple distinct cell types that participate in homotypic and heterotypic interactions and depend upon each other for their growth. Therefore, many targets in oncology need to be validated in the context of the whole animal. This review provides an overview on how animal models can be generated and used for target identification and validation in vivo.
Collapse
|
77
|
Sevrain CM, Haelters JP, Chantôme A, Couthon-Gourvès H, Gueguinou M, Potier-Cartereau M, Vandier C, Jaffrès PA. DiGalactosyl-Glycero-Ether Lipid: synthetic approaches and evaluation as SK3 channel inhibitor. Org Biomol Chem 2013; 11:4479-87. [DOI: 10.1039/c3ob40634b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
78
|
Mazzoletti M, Texidó G. In vivo target validation by inducible RNAi in human xenograft mouse models. Methods Mol Biol 2013; 986:325-337. [PMID: 23436421 DOI: 10.1007/978-1-62703-311-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Proper target selection and validation are crucial to the discovery of new anti-cancer agents. Since tumors depend on a suitable microenvironment for their growth, once a putative target has been identified, its validation should be performed whenever possible in vivo. This chapter deals with the generation of human xenograft mouse models genetically modified to induce the modulation of cancer-related genes as an approach to validate oncology targets.
Collapse
Affiliation(s)
- Marco Mazzoletti
- Pharmacology Department of BU Oncology, Nerviano Medical Sciences, Nerviano, MI, Italy
| | | |
Collapse
|
79
|
Datta K, Hyduke DR, Suman S, Moon BH, Johnson MD, Fornace AJ. Exposure to ionizing radiation induced persistent gene expression changes in mouse mammary gland. Radiat Oncol 2012; 7:205. [PMID: 23216862 PMCID: PMC3551737 DOI: 10.1186/1748-717x-7-205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 11/16/2012] [Indexed: 12/02/2022] Open
Abstract
Background Breast tissue is among the most sensitive tissues to the carcinogenic actions of ionizing radiation and epidemiological studies have linked radiation exposure to breast cancer. Currently, molecular understanding of radiation carcinogenesis in mammary gland is hindered due to the scarcity of in vivo long-term follow up data. We undertook this study to delineate radiation-induced persistent alterations in gene expression in mouse mammary glands 2-month after radiation exposure. Methods Six to eight week old female C57BL/6J mice were exposed to 2 Gy of whole body γ radiation and mammary glands were surgically removed 2-month after radiation. RNA was isolated and microarray hybridization performed for gene expression analysis. Ingenuity Pathway Analysis (IPA) was used for biological interpretation of microarray data. Real time quantitative PCR was performed on selected genes to confirm the microarray data. Results Compared to untreated controls, the mRNA levels of a total of 737 genes were significantly (p<0.05) perturbed above 2-fold of control. More genes (493 genes; 67%) were upregulated than the number of downregulated genes (244 genes; 33%). Functional analysis of the upregulated genes mapped to cell proliferation and cancer related canonical pathways such as ‘ERK/MAPK signaling’, ‘CDK5 signaling’, and ‘14-3-3-mediated signaling’. We also observed upregulation of breast cancer related canonical pathways such as ‘breast cancer regulation by Stathmin1’, and ‘HER-2 signaling in breast cancer’ in IPA. Interestingly, the downregulated genes mapped to fewer canonical pathways involved in cell proliferation. We also observed that a number of genes with tumor suppressor function (GPRC5A, ELF1, NAB2, Sema4D, ACPP, MAP2, RUNX1) persistently remained downregulated in response to radiation exposure. Results from qRT-PCR on five selected differentially expressed genes confirmed microarray data. The PCR data on PPP4c, ELF1, MAPK12, PLCG1, and E2F6 showed similar trend in up and downregulation as has been observed with the microarray. Conclusions Exposure to a clinically relevant radiation dose led to long-term activation of mammary gland genes involved in proliferative and metabolic pathways, which are known to have roles in carcinogenesis. When considered along with downregulation of a number of tumor suppressor genes, our study has implications for breast cancer initiation and progression after therapeutic radiation exposure.
Collapse
Affiliation(s)
- Kamal Datta
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 3970 Reservoir Rd, Washington, DC, NW 20057-1468, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Yehuda-Shnaidman E, Schwartz B. Mechanisms linking obesity, inflammation and altered metabolism to colon carcinogenesis. Obes Rev 2012; 13:1083-95. [PMID: 22937964 DOI: 10.1111/j.1467-789x.2012.01024.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to its prevalence, obesity is now considered a global epidemic. It is linked to increased risk of colorectal cancer, the third most common cancer and the second leading cause of death among adults in Western countries. Obese adipose tissue differs from lean adipose tissue in its immunogenic profile, body fat distribution and metabolic profile. Obese adipose tissue releases free fatty acids, adipokines and many pro-inflammatory chemokines. These factors are known to play a key role in regulating malignant transformation and cancer progression. Obese adipose tissue is infiltrated by macrophages that participate in inflammatory pathways activated within the tissue. Adipose tissue macrophages consist of two different phenotypes. M1 macrophages reside in obese adipose tissue and produce pro-inflammatory cytokines, and M2 macrophages reside in lean adipose tissue and produce anti-inflammatory cytokines, such as interleukin-10 (IL-10). The metabolic networks that confer tumour cells with their oncogenic properties, such as increased proliferation and the ability to avoid apoptosis are still not well understood. We review the interactions between adipocytes and immune cells that may alter the metabolism towards promotion of colorectal cancer.
Collapse
Affiliation(s)
- E Yehuda-Shnaidman
- Institute of Biochemistry, Food Science and Nutrition, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
81
|
Park JB, Lee CS, Jang JH, Ghim J, Kim YJ, You S, Hwang D, Suh PG, Ryu SH. Phospholipase signalling networks in cancer. Nat Rev Cancer 2012; 12:782-92. [PMID: 23076158 DOI: 10.1038/nrc3379] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipases (PLC, PLD and PLA) are essential mediators of intracellular and intercellular signalling. They can function as phospholipid-hydrolysing enzymes that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid and arachidonic acid. Lipid mediators generated by phospholipases regulate multiple cellular processes that can promote tumorigenesis, including proliferation, migration, invasion and angiogenesis. Although many individual phospholipases have been extensively studied, how phospholipases regulate diverse cancer-associated cellular processes and the interplay between different phospholipases have yet to be fully elucidated. A thorough understanding of the cancer-associated signalling networks of phospholipases is necessary to determine whether these enzymes can be targeted therapeutically.
Collapse
Affiliation(s)
- Jong Bae Park
- The Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do 410-769, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Szymanski PT, Muley P, Ahmed SA, Khalifa S, Fahmy H. Sarcophine-diol inhibits expression of COX-2, inhibits activity of cPLA2, enhances degradation of PLA2 and PLC(γ)1 and inhibits cell membrane permeability in mouse melanoma B16F10 cells. Mar Drugs 2012; 10:2166-2180. [PMID: 23170076 PMCID: PMC3497015 DOI: 10.3390/md10102166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/20/2012] [Accepted: 09/21/2012] [Indexed: 12/28/2022] Open
Abstract
Sarcophine-diol (SD) is a semi-synthetic derivative of sarcophine with a significant chemopreventive effect against non-melanoma skin cancer both in vitro and in vivo. Recently, we have studied the effect of SD on melanoma development using the mouse melanoma B₁₆F₁₀ cell line. In this study, our findings show that SD suppresses cell multiplication and diminishes membrane permeability for ethidium bromide (EB), a model marker used to measure cell permeability for Ca²⁺ ions. SD also decreases protein levels of COX-2, and increases degradation of phospholipases PLA₂ and PLC(γ)1 and diminishes enzymatic activity of the Ca²⁺-dependent cPLA₂. This lower membrane permeability for Ca²⁺-ions, associated with SD, is most likely due to the diminished content of lysophosphosphatidylcholine (lysoPC) within cell membranes caused by the effect of SD on PLA₂. The decrease in diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP₃) due to inhibition of PLC(γ)1, leads to the downregulation of Ca²⁺-dependent processes within the cell and also inhibits the formation of tumors. These findings support our previous data suggesting that SD may have significant potential in the treatment of melanoma.
Collapse
Affiliation(s)
- Pawel T. Szymanski
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA; (P.T.S.); (P.M.)
| | - Pratik Muley
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA; (P.T.S.); (P.M.)
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | | | - Hesham Fahmy
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA; (P.T.S.); (P.M.)
| |
Collapse
|
83
|
Lattanzio R, Marchisio M, La Sorda R, Tinari N, Falasca M, Alberti S, Miscia S, Ercolani C, Di Benedetto A, Perracchio L, Melucci E, Iacobelli S, Mottolese M, Natali PG, Piantelli M. Overexpression of activated phospholipase Cγ1 is a risk factor for distant metastases in T1-T2, N0 breast cancer patients undergoing adjuvant chemotherapy. Int J Cancer 2012; 132:1022-31. [PMID: 22847294 DOI: 10.1002/ijc.27751] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/18/2012] [Indexed: 01/05/2023]
Abstract
Phospholipase Cγ1 (PLCγ1) is highly expressed in several tumors. We have previously reported that both stable and inducible PLCγ1 down-regulation resulted in an almost complete inhibition of breast cancer-derived experimental lung metastasis formation. The aim of our study is to evaluate the association between the expression of PLCγ1 and of PLCγ1 phosphorylated at Tyr1253 (PLCγ1-pY1253) and at Tyr783 (PLCγ1-pY783) with the clinical outcome of patients with node negative, T1/T2 breast cancers. The study groups consisted of 292 (training set) and 122 (validation set) patients presenting with primary unilateral breast carcinoma (T1-T2), with no evidence of nodal involvement and distant metastases. PLCγ1, PLCγ1-pY1253 and PLCγ1-pY783 protein expression were assessed by immunohistochemistry on tissue microarrays and the results correlated with the clinical data using Kaplan-Meier curves and multivariate Cox regression analysis. Tumor cells while expressing variable proportions of cytoplasmic PLCγ1, express PLCγ1-pY1253 and PLCγ1-pY783 predominantly in the nucleus. High expression of PLCγ1, and of its activated forms, is associated with a worse clinical outcome in terms of incidence of distant metastases, and not of local relapse in T1-T2, N0 breast cancer patients undergone adjuvant chemotherapy. PLCγ1 over-expression appears to be a reliable predictive surrogate marker of development of metastases. Thus, targeting PLCγ1 pathways might represent a potential therapeutic approach for the prevention of metastatic disease in breast cancer.
Collapse
Affiliation(s)
- Rossano Lattanzio
- Department of Biomedical Sciences, University G. D'Annunzio, Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Tomas NM, Masur K, Piecha JC, Niggemann B, Zänker KS. Akt and phospholipase Cγ are involved in the regulation of growth and migration of MDA-MB-468 breast cancer and SW480 colon cancer cells when cultured with diabetogenic levels of glucose and insulin. BMC Res Notes 2012; 5:214. [PMID: 22554284 PMCID: PMC3393613 DOI: 10.1186/1756-0500-5-214] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/03/2012] [Indexed: 12/11/2022] Open
Abstract
Background Epidemiological studies revealed a strong correlation between the metabolic syndrome/diabetes mellitus type 2 (DM2) and higher incidence and faster progression of breast and colon cancer. However, the underlying molecular mechanisms are widely unknown. Akt and phospholipase Cγ (PLCγ) are involved in tyrosine kinase signaling and promote tumor cell growth and migration. Therefore, we examined regulatory functions and expression of Akt and PLCγ in a simplified in vitro diabetogenic model. Findings Protein expression was determined by western blot analysis in MDA-MB-468 breast cancer and SW480 colon cancer cells previously cultured under physiologic (5.5 mM) and diabetogenic (11 mM) glucose concentrations (without and with 100 ng/ml insulin). We studied the culture effects on proliferation and migration of these cells, especially after inhibiting Akt and PLCγ. We found that Akt expression was up-regulated with high glucose and insulin in both cell lines, whereas PLCγ expression was enhanced in colon cancer cells only. High levels of glucose and insulin increased cell proliferation and migration in both cell lines in vitro, mediated by Akt and PLCγ, as shown through the specific pharmacological inhibitors A6730 and U73122. Conclusions Our molecular data explain glucose- and insulin-induced changes in a cancer cell and help to understand what might trigger tumor cell proliferation and migration in DM2 patients, too.
Collapse
Affiliation(s)
- Nicola M Tomas
- Institute of Immunology and Experimental Oncology, Witten/Herdecke University, Stockumer Str, 10, D-58448, Witten, Germany.
| | | | | | | | | |
Collapse
|
85
|
Wang X, Barrett M, Sondek J, Harden TK, Zhang Q. Fluorescent phosphatidylinositol 4,5-bisphosphate derivatives with modified 6-hydroxy group as novel substrates for phospholipase C. Biochemistry 2012; 51:5300-6. [PMID: 22703043 DOI: 10.1021/bi300637h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The capacity to monitor spatiotemporal activity of phospholipase C (PLC) isozymes with a PLC-selective sensor would dramatically enhance understanding of the physiological function and disease relevance of these signaling proteins. Previous structural and biochemical studies defined critical roles for several of the functional groups of the endogenous substrate of PLC isozymes, phosphatidylinositol 4,5-bisphosphate (PIP(2)), indicating that these sites cannot be readily modified without compromising interactions with the lipase active site. However, the role of the 6-hydroxy group of PIP(2) for interaction and hydrolysis by PLC has not been explored, possibly due to challenges in synthesizing 6-hydroxy derivatives. Here, we describe an efficient route for the synthesis of novel, fluorescent PIP(2) derivatives modified at the 6-hydroxy group. Two of these derivatives were used in assays of PLC activity in which the fluorescent PIP(2) substrates were separated from their diacylglycerol products and reaction rates quantified by fluorescence. Both PIP(2) analogues effectively function as substrates of PLC-δ1, and the K(M) and V(max) values obtained with one of these are similar to those observed with native PIP(2) substrate. These results indicate that the 6-hydroxy group can be modified to develop functional substrates for PLC isozymes, thereby serving as the foundation for further development of PLC-selective sensors.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
86
|
Ma LW, Zhou ZT, He QB, Jiang WW. Phospholipase C-γ1 expression correlated with cancer progression of potentially malignant oral lesions. J Oral Pathol Med 2012; 42:47-52. [DOI: 10.1111/j.1600-0714.2012.01179.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
87
|
Lindholm EM, Kristian A, Nalwoga H, Krüger K, Nygård S, Akslen LA, Mælandsmo GM, Engebraaten O. Effect of antiangiogenic therapy on tumor growth, vasculature and kinase activity in basal- and luminal-like breast cancer xenografts. Mol Oncol 2012; 6:418-27. [PMID: 22521242 DOI: 10.1016/j.molonc.2012.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/23/2012] [Accepted: 03/22/2012] [Indexed: 01/24/2023] Open
Abstract
Several clinical trials have investigated the efficacy of bevacizumab in breast cancer, and even if growth inhibiting effects have been registered when antiangiogenic treatment is given in combination with chemotherapy no gain in overall survival has been observed. One reason for the lack of overall survival benefit might be that appropriate criteria for selection of patients likely to respond to antiangiogenic therapy in combination with chemotherapy, are not available. To determine factors of importance for antiangiogenic treatment response and/or resistance, two representative human basal- and luminal-like breast cancer xenografts were treated with bevacizumab and doxorubicin alone or in combination. In vivo growth inhibition, microvessel density (MVD) and proliferating tumor vessels (pMVD = proliferative microvessel density) were analysed, while kinase activity was determined using the PamChip Tyrosine kinase microarray system. Results showed that both doxorubicin and bevacizumab inhibited basal-like tumor growth significantly, but with a superior effect when given in combination. In contrast, doxorubicin inhibited luminal-like tumor growth most effectively, and with no additional benefit of adding antiangiogenic therapy. In agreement with the growth inhibition data, vascular characterization verified a more pronounced effect of the antiangiogenic treatment in the basal-like compared to the luminal-like tumors, demonstrating total inhibition of pMVD and a significant reduction in MVD at early time points (three days after treatment) and sustained inhibitory effects until the end of the experiment (day 18). In contrast, luminal-like tumors only showed significant effect on the vasculature at day 10 in the tumors having received both doxorubicin and bevacizumab. Kinase activity profiling in both tumor models demonstrated that the most effective treatment in vivo was accompanied with increased phosphorylation of kinase substrates of growth control and angiogenesis, like EGFR, VEGFR2 and PLCγ1. This may be a result of regulatory feedback mechanisms contributing to treatment resistance, and may suggest response markers of value for the prediction of antiangiogenic treatment efficacy.
Collapse
Affiliation(s)
- Evita M Lindholm
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Pb 4953 Nydalen, 0424 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Raimondi C, Chikh A, Wheeler AP, Maffucci T, Falasca M. A novel regulatory mechanism links PLCγ1 to PDK1. J Cell Sci 2012; 125:3153-63. [PMID: 22454520 DOI: 10.1242/jcs.100511] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK1) and phospholipase C (PLC)γ1 are two key enzymes in signal transduction that control several intracellular processes. Despite the fact that PLCγ1 has been investigated for several years, the mechanisms of activation of this enzyme are still not completely clear. Similarly, although PDK1 has been mostly investigated for its role in activation of Akt, a crucial enzyme in regulation of several cellular processes, it has become evident recently that the role of PDK1 in physiological and pathological conditions is not limited to Akt activation. Here we demonstrate that PDK1 regulates PLCγ1 activation in a mechanism involving association of the two enzymes and modulation of PLCγ1 tyrosine phosphorylation. We further show that this novel PDK1-PLCγ1 pathway is important for cancer cell invasion. The identification of a PDK1-PLCγ1 pathway reveals the existence of a previously undetected link between two of the most important enzymes in signal transduction. This is likely to have profound consequences for our understanding of several cellular functions that are dependent on phosphoinositides and controlled by PDK1 and PLCγ1.
Collapse
Affiliation(s)
- Claudio Raimondi
- Centre for Diabetes, Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | | | | | |
Collapse
|
89
|
Montalvo-Ortiz BL, Castillo-Pichardo L, Hernández E, Humphries-Bickley T, De la Mota-Peynado A, Cubano LA, Vlaar CP, Dharmawardhane S. Characterization of EHop-016, novel small molecule inhibitor of Rac GTPase. J Biol Chem 2012; 287:13228-38. [PMID: 22383527 DOI: 10.1074/jbc.m111.334524] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Rho GTPase Rac regulates actin cytoskeleton reorganization to form cell surface extensions (lamellipodia) required for cell migration/invasion during cancer metastasis. Rac hyperactivation and overexpression are associated with aggressive cancers; thus, interference of the interaction of Rac with its direct upstream activators, guanine nucleotide exchange factors (GEFs), is a viable strategy for inhibiting Rac activity. We synthesized EHop-016, a novel inhibitor of Rac activity, based on the structure of the established Rac/Rac GEF inhibitor NSC23766. Herein, we demonstrate that EHop-016 inhibits Rac activity in the MDA-MB-435 metastatic cancer cells that overexpress Rac and exhibits high endogenous Rac activity. The IC(50) of 1.1 μM for Rac inhibition by EHop-016 is ∼100-fold lower than for NSC23766. EHop-016 is specific for Rac1 and Rac3 at concentrations of ≤5 μM. At higher concentrations, EHop-016 inhibits the close homolog Cdc42. In MDA-MB-435 cells that demonstrate high active levels of the Rac GEF Vav2, EHop-016 inhibits the association of Vav2 with a nucleotide-free Rac1(G15A), which has a high affinity for activated GEFs. EHop-016 also inhibits the Rac activity of MDA-MB-231 metastatic breast cancer cells and reduces Rac-directed lamellipodia formation in both cell lines. EHop-016 decreases Rac downstream effects of PAK1 (p21-activated kinase 1) activity and directed migration of metastatic cancer cells. Moreover, at effective concentrations (<5 μM), EHop-016 does not affect the viability of transformed mammary epithelial cells (MCF-10A) and reduces viability of MDA-MB-435 cells by only 20%. Therefore, EHop-016 holds promise as a targeted therapeutic agent for the treatment of metastatic cancers with high Rac activity.
Collapse
Affiliation(s)
- Brenda L Montalvo-Ortiz
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Sevrain CM, Haelters JP, Chantôme A, Couthon-Gourvès H, Girault A, Vandier C, Jaffrès PA. Glyco-Phospho-Glycero Ether Lipids (GPGEL): synthesis and evaluation as small conductance Ca2+-activated K+ channel (SK3) inhibitors. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20207g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
91
|
Yang YR, Choi JH, Chang JS, Kwon HM, Jang HJ, Ryu SH, Suh PG. Diverse cellular and physiological roles of phospholipase C-γ1. Adv Biol Regul 2012; 52:138-151. [PMID: 21964416 DOI: 10.1016/j.advenzreg.2011.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Yong Ryoul Yang
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
92
|
Drzewiecka H, Jagodzinski PP. Trichostatin A reduced phospholipase C gamma-1 transcript and protein contents in MCF-7 breast cancer cells. Biomed Pharmacother 2011; 66:1-5. [PMID: 22257695 DOI: 10.1016/j.biopha.2011.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 09/06/2011] [Indexed: 01/07/2023] Open
Abstract
It has recently been demonstrated that phospholipase C gamma-1 (PLCγ1) activation may contribute to breast carcinoma cell motility and their metastasis. Employing MCF-7 breast cancer cells, we showed the effect of trichostatin A (TSA) on the cellular contents of the PLCγ1 molecule. Using reverse transcription, real-time quantitative PCR and western blot analysis, we demonstrated that TSA reduced the PLCγ1 transcript and protein levels in MCF-7 cells. We also found that TSA decreased the half-life of the PLCγ1 transcript from approximately 7hours to 5hours. Moreover, we observed that protein synthesis appears to be essential in the TSA reduction of PLCγ1 mRNA stability. Since PLCγ1 activation is considered a key factor in the initiation of events that increase malignant cell motility, our observations may support the validity of TSA in anticancer studies.
Collapse
Affiliation(s)
- H Drzewiecka
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781 Poznań, Poland
| | | |
Collapse
|
93
|
PLCγ is required for RhoGDI2-mediated cisplatin resistance in gastric cancer. Biochem Biophys Res Commun 2011; 414:575-80. [PMID: 21986528 DOI: 10.1016/j.bbrc.2011.09.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 01/23/2023]
Abstract
Rho GDP dissociation inhibitor 2 (RhoGDI2) is a regulator of the Rho family GTPases. Recent work from our laboratory suggests that RhoGDI2 expression potentially enhances resistance to cisplatin as well as promotes tumor growth and malignant progression in gastric cancer. In this study, we demonstrate that phospholipase C-gamma (PLCγ) is required for RhoGDI2-mediated cisplatin resistance and cancer cell invasion in gastric cancer. The levels of phosphorylated PLCγ are markedly enhanced in RhoGDI2-overexpressing SNU-484 cells and, by contrast, repressed in RhoGDI2-depleted MKN-28 cells. Depletion of PLCγ expression or inhibition of its activity not only significantly increases cisplatin-induced apoptosis but also suppresses the invasive ability of RhoGDI2-overexpressing SNU-484 cells. Taken together, our results suggest that PLCγ plays a key role in RhoGDI2-mediated cisplatin resistance and cell invasion in gastric cancer cells.
Collapse
|
94
|
Tomlinson DC, Knowles MA, Speirs V. Mechanisms of FGFR3 actions in endocrine resistant breast cancer. Int J Cancer 2011; 130:2857-66. [PMID: 21792889 DOI: 10.1002/ijc.26304] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/01/2011] [Indexed: 11/05/2022]
Abstract
Although endocrine therapy has dramatically improved the treatment of breast cancer therapeutic resistance and tumour recurrence occurs, even in estrogen receptor (ER) positive cases. Identifying and understanding the molecular mechanisms which underpin endocrine resistance is therefore important if future therapeutic strategies are to be developed. Members of the fibroblast growth factor (FGF) and fibroblast growth factor receptor (FGFR) families have been implicated in breast cancer development and progression. Our results demonstrate that culture of michigan cancer foundation - 1 (MCF)7 cells with FGF1 results in reduced sensitivity to tamoxifen in vitro. Furthermore, our tissue microarray expression data demonstrates that FGFR3 expression is increased in tamoxifen resistant breast tumours. To confirm that activation of FGFR3 reduced sensitivity to tamoxifen we used an inducible activation system and a constitutively active mutant of FGFR3 expressed in MCF7 cells. Activation of FGFR3 reduced sensitivity to tamoxifen and Fulvestrant but did not lead to phosphorylation of ER demonstrating that FGFR3 does not feedback to modulate ER activity. FGFR3 activation in MCF7 cells stimulated activation of the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signalling pathways, both of which have been implicated in tamoxifen resistance in breast cancer. Furthermore, our data indicates that activation of phospholipase C gamma is a key-signalling event regulating MAPK and PI3K activation and that its activation reduces sensitivity to tamoxifen. Therefore, we hypothesise that FGFRs could play an integral part, not only in breast cancer development but also in resistance to endocrine-therapy.
Collapse
Affiliation(s)
- D C Tomlinson
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, LS9 7TF, United Kingdom.
| | | | | |
Collapse
|
95
|
Sala G, Traini S, D'Egidio M, Vianale G, Rossi C, Piccolo E, Lattanzio R, Piantelli M, Tinari N, Natali PG, Muraro R, Iacobelli S. An ErbB-3 antibody, MP-RM-1, inhibits tumor growth by blocking ligand-dependent and independent activation of ErbB-3/Akt signaling. Oncogene 2011; 31:1275-86. [PMID: 21822299 DOI: 10.1038/onc.2011.322] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ErbB receptors, such as ErbB-1 and ErbB-2, have been intensely pursued as targets for cancer therapeutics. Although initially efficacious in a subset of patients, drugs targeting these receptors led invariably to resistance, which is often associated with reactivation of the ErbB-3-PI3K-Akt signaling. This may be overcome by an ErbB-3 ligand that abrogates receptor-mediated signaling. Toward this end, we have generated a mouse monoclonal antibody, MP-RM-1, against the extracellular domain (ECD) of ErbB-3 receptor. Assessment of human tumor cell lines, as well as early passage tumor cells revealed that MP-RM-1 effectively inhibited both NRG-1β-dependent and -independent ErbB-3 activation. The antagonizing effect of MP-RM-1 was of non-competitive type, as binding of [(125)I]-labeled NRG-1β to ErbB-3 was not influenced by the antibody. MP-RM-1 treatment led, in most instances, to decreased ErbB-3 expression. In addition, MP-RM-1 was able to inhibit the colony formation ability of tumor cells and tumor growth in two human tumor xenograft nude mouse models. Treatment with the antibody was associated with a decreased ErbB-3 and Akt phosphorylation and ErbB-3 expression in the excised tumor tissue. Collectively, these results indicate that MP-RM-1 has the potential to interfere with signaling by ErbB-3 and reinforce the notion that ErbB-3 could be a key target in cancer-drug design.
Collapse
Affiliation(s)
- G Sala
- MediaPharma s.r.l., Chieti, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Phillips-Mason PJ, Kaur H, Burden-Gulley SM, Craig SEL, Brady-Kalnay SM. Identification of phospholipase C gamma1 as a protein tyrosine phosphatase mu substrate that regulates cell migration. J Cell Biochem 2011; 112:39-48. [PMID: 20506511 DOI: 10.1002/jcb.22710] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The receptor protein tyrosine phosphatase PTPµ has a cell-adhesion molecule-like extracellular segment and a catalytically active intracellular segment. This structure gives PTPµ the ability to transduce signals in response to cell-cell adhesion. Full-length PTPµ is down-regulated in glioma cells by proteolysis which is linked to increased migration of these cells in the brain. To gain insight into the substrates PTPµ may be dephosphorylating to suppress glioma cell migration, we used a substrate trapping method to identify PTPµ substrates in tumor cell lines. We identified both PKCδ and PLCγ1 as PTPµ substrates. As PLCγ1 activation is linked to increased invasion of cancer cells, we set out to determine whether PTPµ may be upstream of PLCγ1 in regulating glioma cell migration. We conducted brain slice assays using U87-MG human glioma cells in which PTPµ expression was reduced by shRNA to induce migration. Treatment of the same cells with PTPµ shRNA and a PLCγ1 inhibitor prevented migration of the cells within the brain slice. These data suggest that PLCγ1 is downstream of PTPµ and that dephosphorylation of PLCγ1 is likely to be a major pathway through which PTPµ suppresses glioma cell migration.
Collapse
Affiliation(s)
- Polly J Phillips-Mason
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | | | |
Collapse
|
97
|
Kremer KN, Clift IC, Miamen AG, Bamidele AO, Qian NX, Humphreys TD, Hedin KE. Stromal cell-derived factor-1 signaling via the CXCR4-TCR heterodimer requires phospholipase C-β3 and phospholipase C-γ1 for distinct cellular responses. THE JOURNAL OF IMMUNOLOGY 2011; 187:1440-7. [PMID: 21705626 DOI: 10.4049/jimmunol.1100820] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The CXCR4 chemokine receptor is a G protein-coupled receptor that signals in T lymphocytes by forming a heterodimer with the TCR. CXCR4 and TCR functions are consequently highly cross regulated, affecting T cell immune activation, cytokine secretion, and T cell migration. The CXCR4-TCR heterodimer stimulates T cell migration and activation of the ERK MAPK and downstream AP-1-dependent cytokine transcription in response to stromal cell-derived factor-1 (SDF-1), the sole chemokine ligand of CXCR4. These responses require Gi-type G proteins as well as TCR ITAM domains and the ZAP70 tyrosine kinase, thus indicating that the CXCR4-TCR heterodimer signals to integrate G protein-coupled receptor-associated and TCR-associated signaling molecules in response to SDF-1. Yet, the phospholipase C (PLC) isozymes responsible for coupling the CXCR4-TCR heterodimer to distinct downstream cellular responses are incompletely characterized. In this study, we demonstrate that PLC activity is required for SDF-1 to induce ERK activation, migration, and CXCR4 endocytosis in human T cells. SDF-1 signaling via the CXCR4-TCR heterodimer uses PLC-β3 to activate the Ras-ERK pathway and increase intracellular calcium ion concentrations, whereas PLC-γ1 is dispensable for these outcomes. In contrast, PLC-γ1, but not PLC-β3, is required for SDF-1-mediated migration via a mechanism independent of LAT. These results increase understanding of the signaling mechanisms employed by the CXCR4-TCR heterodimer, characterize new roles for PLC-β3 and PLC-γ1 in T cells, and suggest that multiple PLCs may also be activated downstream of other chemokine receptors to distinctly regulate migration versus other signaling functions.
Collapse
Affiliation(s)
- Kimberly N Kremer
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Serão NVL, Delfino KR, Southey BR, Beever JE, Rodriguez-Zas SL. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival. BMC Med Genomics 2011; 4:49. [PMID: 21649900 PMCID: PMC3127972 DOI: 10.1186/1755-8794-4-49] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/07/2011] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival. METHODS A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers. RESULTS A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively) or with other cancers (10, 19, and 15 genes, respectively) and the rest (16, 4, and 10 genes, respectively) are novel associations. Pik3r1, E2f3, Akr1c3, Csf1, Jag2, Plcg1, Rpl37a, Sod2, Topors, Hras, Mdm2, Camk2g, Fstl1, Il13ra1, Mtap and Tp53 were associated with multiple survival events.Most genes (from 90 to 96%) were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for Syne1, Pdcd4, Ighg1, Tgfa, Pla2g7, and Paics. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. C2, Egfr, Prkcb, Igf2bp3, and Gdf10 had gender-dependent associations; Sox10, Rps20, Rab31, and Vav3 had race-dependent associations; Chi3l1, Prkcb, Polr2d, and Apool had therapy-dependent associations. Biological processes associated glioblastoma survival included morphogenesis, cell cycle, aging, response to stimuli, and programmed cell death. CONCLUSIONS Known biomarkers of glioblastoma survival were confirmed, and new general and clinical-dependent gene profiles were uncovered. The comparison of biomarkers across glioblastoma phases and functional analyses offered insights into the role of genes. These findings support the development of more accurate and personalized prognostic tools and gene-based therapies that improve the survival and quality of life of individuals afflicted by glioblastoma multiforme.
Collapse
Affiliation(s)
- Nicola VL Serão
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kristin R Delfino
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan E Beever
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
99
|
Kang JK, Chang CH, Nam HJ, Kim SK, Ahn KJ, Seok H, Park SJ, Kang YJ, Jo YS, Shong M, Kim H. Downregulation of erythropoietin receptor by overexpression of phospholipase C-gamma 1 is critical for decrease on focal adhesion in transformed cells. Cell Oncol (Dordr) 2011; 34:11-21. [DOI: 10.1007/s13402-010-0001-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2010] [Indexed: 10/18/2022] Open
|
100
|
Wang YC, Chen BS. A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Med Genomics 2011; 4:2. [PMID: 21211025 PMCID: PMC3027087 DOI: 10.1186/1755-8794-4-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/06/2011] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer deaths worldwide. Many studies have investigated the carcinogenic process and identified the biomarkers for signature classification. However, based on the research dedicated to this field, there is no highly sensitive network-based method for carcinogenesis characterization and diagnosis from the systems perspective. Methods In this study, a systems biology approach integrating microarray gene expression profiles and protein-protein interaction information was proposed to develop a network-based biomarker for molecular investigation into the network mechanism of lung carcinogenesis and diagnosis of lung cancer. The network-based biomarker consists of two protein association networks constructed for cancer samples and non-cancer samples. Results Based on the network-based biomarker, a total of 40 significant proteins in lung carcinogenesis were identified with carcinogenesis relevance values (CRVs). In addition, the network-based biomarker, acting as the screening test, proved to be effective in diagnosing smokers with signs of lung cancer. Conclusions A network-based biomarker using constructed protein association networks is a useful tool to highlight the pathways and mechanisms of the lung carcinogenic process and, more importantly, provides potential therapeutic targets to combat cancer.
Collapse
Affiliation(s)
- Yu-Chao Wang
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | |
Collapse
|