51
|
Audsley KM, McDonnell AM, Waithman J. Cross-Presenting XCR1 + Dendritic Cells as Targets for Cancer Immunotherapy. Cells 2020; 9:cells9030565. [PMID: 32121071 PMCID: PMC7140519 DOI: 10.3390/cells9030565] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
The use of dendritic cells (DCs) to generate effective anti-tumor T cell immunity has garnered much attention over the last thirty-plus years. Despite this, limited clinical benefit has been demonstrated thus far. There has been a revival of interest in DC-based treatment strategies following the remarkable patient responses observed with novel checkpoint blockade therapies, due to the potential for synergistic treatment. Cross-presenting DCs are recognized for their ability to prime CD8+ T cell responses to directly induce tumor death. Consequently, they are an attractive target for next-generation DC-based strategies. In this review, we define the universal classification system for cross-presenting DCs, and the vital role of this subset in mediating anti-tumor immunity. Furthermore, we will detail methods of targeting these DCs both ex vivo and in vivo to boost their function and drive effective anti-tumor responses.
Collapse
Affiliation(s)
- Katherine M. Audsley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Correspondence: (K.M.A.); (A.M.M.); (J.W.); Tel.: +61-08-6319-1198 (K.M.A); +61-08-6319-1744 (J.W.)
| | - Alison M. McDonnell
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- National Centre for Asbestos Related Diseases, The University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia
- Correspondence: (K.M.A.); (A.M.M.); (J.W.); Tel.: +61-08-6319-1198 (K.M.A); +61-08-6319-1744 (J.W.)
| | - Jason Waithman
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- Correspondence: (K.M.A.); (A.M.M.); (J.W.); Tel.: +61-08-6319-1198 (K.M.A); +61-08-6319-1744 (J.W.)
| |
Collapse
|
52
|
Cueto FJ, Del Fresno C, Sancho D. DNGR-1, a Dendritic Cell-Specific Sensor of Tissue Damage That Dually Modulates Immunity and Inflammation. Front Immunol 2020; 10:3146. [PMID: 32117205 PMCID: PMC7018937 DOI: 10.3389/fimmu.2019.03146] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/27/2019] [Indexed: 11/13/2022] Open
Abstract
DNGR-1 (encoded by CLEC9A) is a C-type lectin receptor (CLR) with an expression profile that is mainly restricted to type 1 conventional dendritic cells (cDC1s) both in mice and humans. This delimited expression pattern makes it appropriate for defining a cDC1 signature and for therapeutic targeting of this population, promoting immunity in mouse models. Functionally, DNGR-1 binds F-actin, which is confined within the intracellular space in healthy cells, but is exposed when plasma membrane integrity is compromised, as happens in necrosis. Upon F-actin binding, DNGR-1 signals through SYK and mediates cross-presentation of dead cell-associated antigens. Cross-presentation to CD8+ T cells promoted by DNGR-1 during viral infections is key for cross-priming tissue-resident memory precursors in the lymph node. However, in contrast to other closely related CLRs such as Dectin-1, DNGR-1 does not activate NFκB. Instead, recent findings show that DNGR-1 can activate SHP-1 to limit inflammation triggered by heterologous receptors, which results in reduced production of inflammatory chemokines and neutrophil recruitment into damaged tissues in both sterile and infectious processes. Hence, DNGR-1 reduces immunopathology associated with tissue damage, promoting disease tolerance to safeguard tissue integrity. How DNGR-1 signals are conditioned by the microenvironment and the detailed molecular mechanisms underlying DNGR-1 function have not been elucidated. Here, we review the expression pattern and structural features of DNGR-1, and the biological relevance of the detection of tissue damage through this CLR.
Collapse
Affiliation(s)
- Francisco J Cueto
- Laboratory of Immunobiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Carlos Del Fresno
- Laboratory of Immunobiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - David Sancho
- Laboratory of Immunobiology, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
53
|
Ribonucleic Acid Engineering of Dendritic Cells for Therapeutic Vaccination: Ready 'N Able to Improve Clinical Outcome? Cancers (Basel) 2020; 12:cancers12020299. [PMID: 32012714 PMCID: PMC7072269 DOI: 10.3390/cancers12020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Targeting and exploiting the immune system has become a valid alternative to conventional options for treating cancer and infectious disease. Dendritic cells (DCs) take a central place given their role as key orchestrators of immunity. Therapeutic vaccination with autologous DCs aims to stimulate the patient's own immune system to specifically target his/her disease and has proven to be an effective form of immunotherapy with very little toxicity. A great amount of research in this field has concentrated on engineering these DCs through ribonucleic acid (RNA) to improve vaccine efficacy and thereby the historically low response rates. We reviewed in depth the 52 clinical trials that have been published on RNA-engineered DC vaccination, spanning from 2001 to date and reporting on 696 different vaccinated patients. While ambiguity prevents reliable quantification of effects, these trials do provide evidence that RNA-modified DC vaccination can induce objective clinical responses and survival benefit in cancer patients through stimulation of anti-cancer immunity, without significant toxicity. Succinct background knowledge of RNA engineering strategies and concise conclusions from available clinical and recent preclinical evidence will help guide future research in the larger domain of DC immunotherapy.
Collapse
|
54
|
Huyghe L, Van Parys A, Cauwels A, Van Lint S, De Munter S, Bultinck J, Zabeau L, Hostens J, Goethals A, Vanderroost N, Verhee A, Uzé G, Kley N, Peelman F, Vandekerckhove B, Brouckaert P, Tavernier J. Safe eradication of large established tumors using neovasculature-targeted tumor necrosis factor-based therapies. EMBO Mol Med 2020; 12:e11223. [PMID: 31912630 PMCID: PMC7709889 DOI: 10.15252/emmm.201911223] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Systemic toxicities have severely limited the clinical application of tumor necrosis factor (TNF) as an anticancer agent. Activity‐on‐Target cytokines (AcTakines) are a novel class of immunocytokines with improved therapeutic index. A TNF‐based AcTakine targeted to CD13 enables selective activation of the tumor neovasculature without any detectable toxicity in vivo. Upregulation of adhesion markers supports enhanced T‐cell infiltration leading to control or elimination of solid tumors by, respectively, CAR T cells or a combination therapy with CD8‐targeted type I interferon AcTakine. Co‐treatment with a CD13‐targeted type II interferon AcTakine leads to very rapid destruction of the tumor neovasculature and complete regression of large, established tumors. As no tumor markers are needed, safe and efficacious elimination of a broad range of tumor types becomes feasible.
Collapse
Affiliation(s)
- Leander Huyghe
- Cytokine Receptor Laboratory, VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Alexander Van Parys
- Cytokine Receptor Laboratory, VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anje Cauwels
- Cytokine Receptor Laboratory, VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sandra Van Lint
- Cytokine Receptor Laboratory, VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Stijn De Munter
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Jennyfer Bultinck
- Cytokine Receptor Laboratory, VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Jeroen Hostens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - An Goethals
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nele Vanderroost
- Cytokine Receptor Laboratory, VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annick Verhee
- Cytokine Receptor Laboratory, VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gilles Uzé
- CNRS UMR 5235, University of Montpellier, Montpellier, France
| | - Niko Kley
- Orionis Biosciences, Boston, MA, USA
| | - Frank Peelman
- VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Peter Brouckaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- Cytokine Receptor Laboratory, VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Orionis Biosciences, Boston, MA, USA
| |
Collapse
|
55
|
Kohli K, Pillarisetty VG. Dendritic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1273:29-38. [PMID: 33119874 DOI: 10.1007/978-3-030-49270-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) of the immune system. They capture foreign antigens and can present them to lymphocytes, that is, T cells and B cells, to activate them. DCs are the most potent of all immune cells at inducing the adaptive immune system. Thus, the presence of DCs at the anatomical site of the immune challenge is imperative for the immune system to mount an effective immune response. From the anatomical site of the immune challenge, DCs cargo antigens to the draining lymph nodes, specialized immune organs where adaptive immunity is generated. DCs are heterogeneous as a type of immune cell, and various subsets of DCs have been reported and their functions described. In this chapter, we discuss various aspects of DC development and function. We further discuss how various tumor microenvironments can affect DC development, function, and migration, thus evading a strong adaptive immune response.
Collapse
Affiliation(s)
- Karan Kohli
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
56
|
Type I Interferons and Cancer: An Evolving Story Demanding Novel Clinical Applications. Cancers (Basel) 2019; 11:cancers11121943. [PMID: 31817234 PMCID: PMC6966569 DOI: 10.3390/cancers11121943] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 01/05/2023] Open
Abstract
The first report on the antitumor effects of interferon α/β (IFN-I) in mice was published 50 years ago. IFN-α were the first immunotherapeutic drugs approved by the FDA for clinical use in cancer. However, their clinical use occurred at a time when most of their mechanisms of action were still unknown. These cytokines were being used as either conventional cytostatic drugs or non-specific biological response modifiers. Specific biological activities subsequently ascribed to IFN-I were poorly considered for their clinical use. Notably, a lot of the data in humans and mice underlines the importance of endogenous IFN-I, produced by both immune and tumor cells, in the control of tumor growth and in the response to antitumor therapies. While many oncologists consider IFN-I as “dead drugs”, recent studies reveal new mechanisms of action with potential implications in cancer control and immunotherapy response or resistance, suggesting novel rationales for their usage in target and personalized anti-cancer treatments. In this Perspectives Article, we focus on the following aspects: (1) the added value of IFN-I for enhancing the antitumor impact of standard anticancer treatments (chemotherapy and radiotherapy) and new therapeutic approaches, such as check point inhibitors and epigenetic drugs; (2) the role of IFN-I in the control of cancer stem cells growth and its possible implications for the development of novel antitumor therapies; and (3) the role of IFN-I in the development of cancer vaccines and the intriguing therapeutic possibilities offered by in situ delivery of ex vivo IFN-stimulated dendritic cells.
Collapse
|
57
|
Lecocq Q, De Vlaeminck Y, Hanssens H, D'Huyvetter M, Raes G, Goyvaerts C, Keyaerts M, Devoogdt N, Breckpot K. Theranostics in immuno-oncology using nanobody derivatives. Am J Cancer Res 2019; 9:7772-7791. [PMID: 31695800 PMCID: PMC6831473 DOI: 10.7150/thno.34941] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/11/2019] [Indexed: 12/25/2022] Open
Abstract
Targeted therapy and immunotherapy have become mainstream in cancer treatment. However, only patient subsets benefit from these expensive therapies, and often responses are short‐lived or coincide with side effects. A growing modality in precision oncology is the development of theranostics, as this enables patient selection, treatment and monitoring. In this approach, labeled compounds and an imaging technology are used to diagnose patients and select the best treatment option, whereas for therapy, related compounds are used to target cancer cells or the tumor stroma. In this context, nanobodies and nanobody-directed therapeutics have gained interest. This interest stems from their high antigen specificity, small size, ease of labeling and engineering, allowing specific imaging and design of therapies targeting antigens on tumor cells, immune cells as well as proteins in the tumor environment. This review provides a comprehensive overview on the state-of-the-art regarding the use of nanobodies as theranostics, and their importance in the emerging field of personalized medicine.
Collapse
|
58
|
Abstract
New therapies that promote antitumour immunity have been recently developed. Most of these immunomodulatory approaches have focused on enhancing T-cell responses, either by targeting inhibitory pathways with immune checkpoint inhibitors, or by targeting activating pathways, as with chimeric antigen receptor T cells or bispecific antibodies. Although these therapies have led to unprecedented successes, only a minority of patients with cancer benefit from these treatments, highlighting the need to identify new cells and molecules that could be exploited in the next generation of immunotherapy. Given the crucial role of innate immune responses in immunity, harnessing these responses opens up new possibilities for long-lasting, multilayered tumour control.
Collapse
|
59
|
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 2019; 20:7-24. [PMID: 31467405 DOI: 10.1038/s41577-019-0210-z] [Citation(s) in RCA: 1444] [Impact Index Per Article: 288.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses. As such, there is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs, as well as the generation of DC-based vaccines. A better understanding of the diversity and functions of DC subsets and of how these are shaped by the tumour microenvironment could lead to improved therapies for cancer. Here we will outline how different DC subsets influence immunity and tolerance in cancer settings and discuss the implications for both established cancer treatments and novel immunotherapy strategies.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco J Cueto
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Adriana M Mujal
- Department of Pathology, University of California, San Francisco, CA, USA.,Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,University Clinic, University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, CA, USA
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
60
|
Lee YS, Radford KJ. The role of dendritic cells in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:123-178. [PMID: 31810552 DOI: 10.1016/bs.ircmb.2019.07.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy harnesses the ability of the immune system to recognize and eliminate cancer. The potent ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses underpins the successful generation of anti-tumor immune responses. DCs are a heterogeneous leukocyte population comprised of distinct subsets that drive specific types of immune responses. Understanding how DCs induce tumor immune responses and the mechanisms adopted by tumors to evade DC surveillance is essential to render immunotherapies more effective. This review discusses current knowledge of the roles played by different DC subsets in human cancer and how these might be manipulated as new immunotherapeutics to improve CD8+ T cell-mediated immune responses, with a particular focus on the conventional type 1 DCs (cDC1).
Collapse
Affiliation(s)
- Yoke Seng Lee
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Kristen J Radford
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
61
|
Lu C, Klement JD, Ibrahim ML, Xiao W, Redd PS, Nayak-Kapoor A, Zhou G, Liu K. Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes. J Immunother Cancer 2019; 7:157. [PMID: 31228946 PMCID: PMC6589175 DOI: 10.1186/s40425-019-0635-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/11/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Type I interferons (IFN-I) have recently emerged as key regulators of tumor response to chemotherapy and immunotherapy. However, IFN-I function in cytotoxic T lymphocytes (CTLs) in the tumor microenvironment is largely unknown. METHODS Tumor tissues and CTLs of human colorectal cancer patients were analyzed for interferon (alpha and beta) receptor 1 (IFNAR1) expression. IFNAR1 knock out (IFNAR-KO), mixed wild type (WT) and IFNAR1-KO bone marrow chimera mice, and mice with IFNAR1 deficiency only in T cells (IFNAR1-TKO) were used to determine IFN-I function in T cells in tumor suppression. IFN-I target genes in tumor-infiltrating and antigen-specific CTLs were identified and functionally analyzed. RESULTS IFNAR1 expression level is significantly lower in human colorectal carcinoma tissue than in normal colon tissue. IFNAR1 protein is also significantly lower on CTLs from colorectal cancer patients than those from healthy donors. Although IFNAR1-KO mice exhibited increased susceptibility to methylcholanthrene-induced sarcoma, IFNAR1-sufficient tumors also grow significantly faster in IFNAR1-KO mice and in mice with IFNAR1 deficiency only in T cells (IFNAR1-TKO), suggesting that IFN-I functions in T cells to enhance host cancer immunosurveillance. Strikingly, tumor-infiltrating CTL levels are similar between tumor-bearing WT and IFNAR1-KO mice. Competitive reconstitution of mixed WT and IFNAR1-KO bone marrow chimera mice further determined that IFNAR1-deficient naïve CTLs exhibit no deficiency in response to vaccination to generate antigen-specific CTLs as compared to WT CTLs. Gene expression profiling determined that Gzmb expression is down-regulated in tumor-infiltrating CTLs of IFNAR1-KO mice as compared to WT mice, and in antigen-specific IFNAR1-KO CTLs as compared to WT CTLs in vivo. Mechanistically, we determined that IFN-I activates STAT3 that binds to the Gzmb promoter to activate Gzmb transcription in CTLs. CONCLUSION IFN-I induces STAT3 activation to activate Gzmb expression to enhance CTL effector function to suppress tumor development. Human colorectal carcinoma may use down-regulation of IFNAR1 on CTLs to suppress CTL effector function to evade host cancer immunosurveillance.
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Wei Xiao
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Asha Nayak-Kapoor
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, 30912, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
62
|
Sprooten J, Agostinis P, Garg AD. Type I interferons and dendritic cells in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:217-262. [PMID: 31810554 DOI: 10.1016/bs.ircmb.2019.06.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) facilitate cancer immunosurveillance, antitumor immunity and antitumor efficacy of conventional cell death-inducing therapies (chemotherapy/radiotherapy) as well as immunotherapy. Moreover, it is clear that dendritic cells (DCs) play a significant role in aiding type I IFN-driven immunity. Owing to these antitumor properties several immunotherapies involving, or inducing, type I IFNs have received considerable clinical attention, e.g., recombinant IFNα2 or agonists targeting pattern recognition receptor (PRR) pathways like Toll-like receptors (TLRs), cGAS-STING or RIG-I/MDA5/MAVS. A series of preclinical and clinical evidence concurs that the success of anticancer therapy hinges on responsiveness of both cancer cells and DCs to type I IFNs. In this article, we discuss this link between type I IFNs and DCs in the context of cancer biology, with particular attention to mechanisms behind type I IFN production, their impact on DC driven anticancer immunity, and the implications of this for cancer immunotherapy, including DC-based vaccines.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
63
|
Enhanced Antitumor Immune Response in 2'-5' Oligoadenylate Synthetase-Like 1- (OASL1-) Deficient Mice upon Cisplatin Chemotherapy and Radiotherapy. J Immunol Res 2019; 2019:7596786. [PMID: 31049360 PMCID: PMC6462330 DOI: 10.1155/2019/7596786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Type I interferon (IFN-I) plays a critical role in the antitumor immune response. In our previous study, we showed that IFN-I-inducible 2′-5′ oligoadenylate synthetase-like 1 (OASL1) negatively regulated IFN-I production upon tumor challenge similar to that of viral infection. Thus, OASL1-deficient (Oasl1−/−) mice were more resistant to implanted tumor growth than wild-type (WT) mice. In this study, we investigated whether targeting or suppressing OASL1 could show synergistic effects on tumor clearance with conventional cancer therapies (such as chemotherapy and radiotherapy) using Oasl1−/− mice and a transplantable lung metastatic tumor cell model. Upon treatment with the anticancer drug cisplatin, we found that Oasl1−/− mice showed enhanced resistance to injected tumors compared to untreated Oasl1−/− mice. Similarly, irradiated Oasl1−/− mice showed better resistance to tumor challenge than untreated Oasl1−/− mice. Additionally, we found that Oasl1−/− mice applied with both types of the cancer therapies contained more cytotoxic effector cells, such as CD8+ T cells and NK cells, and produced more cytotoxic effector cytokine IFN-γ as well as IFN-I in their tumor-containing lungs compared to untreated Oasl1−/− mice. Collectively, these results show that targeting OASL1 together with conventional cancer therapies could be an effective strategy to enhance treatment efficacy.
Collapse
|
64
|
Cancel JC, Crozat K, Dalod M, Mattiuz R. Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How? Front Immunol 2019; 10:9. [PMID: 30809220 PMCID: PMC6379659 DOI: 10.3389/fimmu.2019.00009] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are endowed with a unique potency to prime T cells, as well as to orchestrate their expansion, functional polarization and effector activity in non-lymphoid tissues or in their draining lymph nodes. The concept of harnessing DC immunogenicity to induce protective responses in cancer patients was put forward about 25 years ago and has led to a multitude of DC-based vaccine trials. However, until very recently, objective clinical responses were below expectations. Conventional type 1 DCs (cDC1) excel in the activation of cytotoxic lymphocytes including CD8+ T cells (CTLs), natural killer (NK) cells, and NKT cells, which are all critical effector cell types in antitumor immunity. Efforts to investigate whether cDC1 might orchestrate immune defenses against cancer are ongoing, thanks to the recent blossoming of tools allowing their manipulation in vivo. Here we are reporting on these studies. We discuss the mouse models used to genetically deplete or manipulate cDC1, and their main caveats. We present current knowledge on the role of cDC1 in the spontaneous immune rejection of tumors engrafted in syngeneic mouse recipients, as a surrogate model to cancer immunosurveillance, and how this process is promoted by type I interferon (IFN-I) effects on cDC1. We also discuss cDC1 implication in promoting the protective effects of immunotherapies in mouse preclinical models, especially for adoptive cell transfer (ACT) and immune checkpoint blockers (ICB). We elaborate on how to improve this process by in vivo reprogramming of certain cDC1 functions with off-the-shelf compounds. We also summarize and discuss basic research and clinical data supporting the hypothesis that the protective antitumor functions of cDC1 inferred from mouse preclinical models are conserved in humans. This analysis supports potential applicability to cancer patients of the cDC1-targeting adjuvant immunotherapies showing promising results in mouse models. Nonetheless, further investigations on cDC1 and their implications in anti-cancer mechanisms are needed to determine whether they are the missing key that will ultimately help switching cold tumors into therapeutically responsive hot tumors, and how precisely they mediate their protective effects.
Collapse
Affiliation(s)
- Jean-Charles Cancel
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Karine Crozat
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Marc Dalod
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Raphaël Mattiuz
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| |
Collapse
|
65
|
Cauwels A, Van Lint S, Catteeuw D, Pang S, Paul F, Rogge E, Verhee A, Prinz M, Kley N, Uzé G, Tavernier J. Targeting interferon activity to dendritic cells enables in vivo tolerization and protection against EAE in mice. J Autoimmun 2019; 97:70-76. [DOI: 10.1016/j.jaut.2018.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 10/27/2022]
|
66
|
Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E, Melero I. Cytokines in clinical cancer immunotherapy. Br J Cancer 2019; 120:6-15. [PMID: 30413827 PMCID: PMC6325155 DOI: 10.1038/s41416-018-0328-y] [Citation(s) in RCA: 687] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Cytokines are soluble proteins that mediate cell-to-cell communication. Based on the discovery of the potent anti-tumour activities of several pro-inflammatory cytokines in animal models, clinical research led to the approval of recombinant interferon-alpha and interleukin-2 for the treatment of several malignancies, even if efficacy was only modest. These early milestones in immunotherapy have been followed by the recent addition to clinical practice of antibodies that inhibit immune checkpoints, as well as chimeric antigen receptor T cells. A renewed interest in the anti-tumour properties of cytokines has led to an exponential increase in the number of clinical trials that explore the safety and efficacy of cytokine-based drugs, not only as single agents, but also in combination with other immunomodulatory drugs. These second-generation drugs under clinical development include known molecules with novel mechanisms of action, new targets, and fusion proteins that increase half-life and target cytokine activity to the tumour microenvironment or to the desired effector immune cells. In addition, the detrimental activity of immunosuppressive cytokines can be blocked by antagonistic antibodies, small molecules, cytokine traps or siRNAs. In this review, we provide an overview of the novel trends in the cytokine immunotherapy field that are yielding therapeutic agents for clinical trials.
Collapse
Affiliation(s)
- Pedro Berraondo
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.
| | - Miguel F Sanmamed
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - María C Ochoa
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Iñaki Etxeberria
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - Maria A Aznar
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
| | - José Luis Pérez-Gracia
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - María E Rodríguez-Ruiz
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mariano Ponz-Sarvise
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Eduardo Castañón
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Immunology and Immunotherapy Program, Center for Applied Medical Research, CIMA, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Pamplona, Spain.
- Department of Oncology and immunology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
67
|
Nuhn L, De Koker S, Van Lint S, Zhong Z, Catani JP, Combes F, Deswarte K, Li Y, Lambrecht BN, Lienenklaus S, Sanders NN, David SA, Tavernier J, De Geest BG. Nanoparticle-Conjugate TLR7/8 Agonist Localized Immunotherapy Provokes Safe Antitumoral Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803397. [PMID: 30276880 DOI: 10.1002/adma.201803397] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/20/2018] [Indexed: 05/17/2023]
Abstract
Localized therapeutic modalities that subvert the tumor microenvironment from immune-suppressive to pro-immunogenic can elicit systemic antitumor immune responses that induce regression of directly treated as well as nontreated distal tumors. A key toward generating robust antitumor T cell responses is the activation of dendritic cells (DCs) in the tumor microenvironment. Treatment with agonists triggering various pattern recognition receptors is very efficient to activate DCs, yet suffers from the induction of serious immune-related adverse effects, which is closely linked to their unfavorable PK/PD profile causing systemic immune activation and cytokine release. Here, it is reported that nanoparticle conjugation of a highly potent TLR7/8 agonist restricts immune activation to the tumor bed and its sentinel lymph nodes without hampering therapeutic antitumor efficacy. On a mechanistic level, it is confirmed that localized treatment with a nanoparticle-conjugated TLR7/8 agonist leads to potent activation of DCs in the sentinel lymph nodes and promotes proliferation of tumor antigen-specific CD8 T cells. Furthermore, therapeutic improvement upon combination with anti-PDL1 checkpoint inhibition and Flt3L, a growth factor that expands and mobilizes DCs from the bone marrow, is demonstrated. The findings provide a rational base for localized tumor engineering by nanomedicine strategies that provide spatial control over immune-activation.
Collapse
Affiliation(s)
- Lutz Nuhn
- Department of Pharmaceutics, Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Stefaan De Koker
- Cytokine Receptor Laboratory, Flanders Institute of Biotechnology, VIB-UGent Center for Medical Biotechnology, Faculty of Medicine and Health Sciences, Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Sandra Van Lint
- Cytokine Receptor Laboratory, Flanders Institute of Biotechnology, VIB-UGent Center for Medical Biotechnology, Faculty of Medicine and Health Sciences, Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Zifu Zhong
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory of Gene Therapy, Cancer Research Institute (CRIG), Ghent University, 9820, Merelbeke, Belgium
| | - João Portela Catani
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory of Gene Therapy, Cancer Research Institute (CRIG), Ghent University, 9820, Merelbeke, Belgium
| | - Francis Combes
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory of Gene Therapy, Cancer Research Institute (CRIG), Ghent University, 9820, Merelbeke, Belgium
| | - Kim Deswarte
- VIB Center for Inflammation Research, Department of Respiratory Medicine, Ghent University, 9052, Ghent, Belgium
| | - Yupeng Li
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bart N Lambrecht
- VIB Center for Inflammation Research, Department of Respiratory Medicine, Ghent University, 9052, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, 3015, GD, Rotterdam, The Netherlands
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hanover Medical School, Hanover, Germany
- Institute of Immunology, Hanover Medical School, Hanover, Germany
| | - Niek N Sanders
- Faculty of Veterinary Medicine, Department of Nutrition, Genetics, and Ethology, Laboratory of Gene Therapy, Cancer Research Institute (CRIG), Ghent University, 9820, Merelbeke, Belgium
| | - Sunil A David
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jan Tavernier
- Cytokine Receptor Laboratory, Flanders Institute of Biotechnology, VIB-UGent Center for Medical Biotechnology, Faculty of Medicine and Health Sciences, Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Cancer Research Institute Ghent (CRIG), Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
68
|
Saxena M, Balan S, Roudko V, Bhardwaj N. Towards superior dendritic-cell vaccines for cancer therapy. Nat Biomed Eng 2018; 2:341-346. [PMID: 30116654 PMCID: PMC6089533 DOI: 10.1038/s41551-018-0250-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Vladimir Roudko
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
69
|
Abolhalaj M, Askmyr D, Sakellariou CA, Lundberg K, Greiff L, Lindstedt M. Profiling dendritic cell subsets in head and neck squamous cell tonsillar cancer and benign tonsils. Sci Rep 2018; 8:8030. [PMID: 29795118 PMCID: PMC5966442 DOI: 10.1038/s41598-018-26193-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) have a key role in orchestrating immune responses and are considered important targets for immunotherapy against cancer. In order to develop effective cancer vaccines, detailed knowledge of the micromilieu in cancer lesions is warranted. In this study, flow cytometry and human transcriptome arrays were used to characterize subsets of DCs in head and neck squamous cell tonsillar cancer and compare them to their counterparts in benign tonsils to evaluate subset-selective biomarkers associated with tonsillar cancer. We describe, for the first time, four subsets of DCs in tonsillar cancer: CD123+ plasmacytoid DCs (pDC), CD1c+, CD141+, and CD1c-CD141- myeloid DCs (mDC). An increased frequency of DCs and an elevated mDC/pDC ratio were shown in malignant compared to benign tonsillar tissue. The microarray data demonstrates characteristics specific for tonsil cancer DC subsets, including expression of immunosuppressive molecules and lower expression levels of genes involved in development of effector immune responses in DCs in malignant tonsillar tissue, compared to their counterparts in benign tonsillar tissue. Finally, we present target candidates selectively expressed by different DC subsets in malignant tonsils and confirm expression of CD206/MRC1 and CD207/Langerin on CD1c+ DCs at protein level. This study descibes DC characteristics in the context of head and neck cancer and add valuable steps towards future DC-based therapies against tonsillar cancer.
Collapse
Affiliation(s)
- Milad Abolhalaj
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - David Askmyr
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | - Lennart Greiff
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden.
| |
Collapse
|