51
|
Faber K, Bullinger L, Ragu C, Garding A, Mertens D, Miller C, Martin D, Walcher D, Döhner K, Döhner H, Claus R, Plass C, Sykes SM, Lane SW, Scholl C, Fröhling S. CDX2-driven leukemogenesis involves KLF4 repression and deregulated PPARγ signaling. J Clin Invest 2012. [PMID: 23202735 DOI: 10.1172/jci64745] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aberrant expression of the homeodomain transcription factor CDX2 occurs in most cases of acute myeloid leukemia (AML) and promotes leukemogenesis, making CDX2, in principle, an attractive therapeutic target. Conversely, CDX2 acts as a tumor suppressor in colonic epithelium. The effectors mediating the leukemogenic activity of CDX2 and the mechanism underlying its context-dependent properties are poorly characterized, and strategies for interfering with CDX2 function in AML remain elusive. We report data implicating repression of the transcription factor KLF4 as important for the oncogenic activity of CDX2, and demonstrate that CDX2 differentially regulates KLF4 in AML versus colon cancer cells through a mechanism that involves tissue-specific patterns of promoter binding and epigenetic modifications. Furthermore, we identified deregulation of the PPARγ signaling pathway as a feature of CDX2-associated AML and observed that PPARγ agonists derepressed KLF4 and were preferentially toxic to CDX2+ leukemic cells. These data delineate transcriptional programs associated with CDX2 expression in hematopoietic cells, provide insight into the antagonistic duality of CDX2 function in AML versus colon cancer, and suggest reactivation of KLF4 expression, through modulation of PPARγ signaling, as a therapeutic modality in a large proportion of AML patients.
Collapse
Affiliation(s)
- Katrin Faber
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Targeting PPARγ Signaling Cascade for the Prevention and Treatment of Prostate Cancer. PPAR Res 2012; 2012:968040. [PMID: 23213321 PMCID: PMC3504464 DOI: 10.1155/2012/968040] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptor-gamma (PPARγ) is a member of the hormone-activated nuclear receptor superfamily. PPARγ can be activated by a diverse group of agents, such as endogenous polyunsaturated fatty acids, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), and thiazolidinedione (TZD) drugs. PPARγ induces antiproliferative, antiangiogenic, and prodifferentiation pathways in several tissue types, thus making it a highly useful target for downregulation of carcinogenesis. These TZD-derived novel therapeutic agents, alone or in combination with other anticancer drugs, have translational relevance in fostering effective strategies for cancer treatment. TZDs have been proven for antitumor activity in a wide variety of experimental cancer models, both in vitro and in vivo, by affecting the cell cycle, inducing cell differentiation and apoptosis, as well as by inhibiting tumor angiogenesis. Angiogenesis inhibition mechanisms of TZDs include direct inhibition of endothelial cell proliferation and migration, as well as reduction in tumor cell vascular endothelial growth factor production. In prostate cancer, PPARγ ligands such as troglitazone and 15d-PGJ2 have also shown to inhibit tumor growth. This paper will focus on current discoveries in PPARγ activation, targeting prostate carcinogenesis as well as the role of PPARγ as a possible anticancer therapeutic option. Here, we review PPARγ as an antitumor agent and summarize the antineoplastic effects of PPARγ agonists in prostate cancer.
Collapse
|
53
|
Mehta RG, Peng X, Roy S, Hawthorne M, Kalra A, Alimirah F, Mehta RR, Kopelovich L. PPARγ antagonist GW9662 induces functional estrogen receptor in mouse mammary organ culture: potential translational significance. Mol Cell Biochem 2012; 372:249-56. [PMID: 23001870 DOI: 10.1007/s11010-012-1466-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023]
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) plays a central role in regulating metabolism, including interaction with the estrogen receptor-α (ERα). Significantly, PPARγ activity can be modulated by small molecules to control cancer both in vitro and in vivo (Yin et al., Cancer Res 69:687-694, 2009). Here, we evaluated the effects of the PPARγ agonist GW7845 and the PPARγ antagonist GW9662 on DMBA-induced mammary alveolar lesions (MAL) in a mouse mammary organ culture. The results were as follows: (a) the incidence of MAL development was significantly inhibited by GW 7845 and GW 9662; (b) GW9662 but not GW7845, in the presence of estradiol, induced ER and PR expression in mammary glands and functional ERα in MAL; (c) while GW9662 inhibited expression of adipsin and ap2, GW 7845 enhanced expression of these PPARγ-response genes; and (d) Tamoxifen caused significant inhibition of GW9662 treated MAL, suggesting that GW9662 sensitizes MAL to antiestrogen treatment, presumably through rendering functional ERα and induction of PR. The induction of ERα by GW9662, including newer analogs, may permit use of anti-ER strategies to inhibit breast cancer in ER- patients.
Collapse
|
54
|
Jeong Y, Xie Y, Lee W, Bookout AL, Girard L, Raso G, Behrens C, Wistuba II, Gadzar AF, Minna JD, Mangelsdorf DJ. Research resource: Diagnostic and therapeutic potential of nuclear receptor expression in lung cancer. Mol Endocrinol 2012; 26:1443-54. [PMID: 22700587 PMCID: PMC3404298 DOI: 10.1210/me.2011-1382] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death. Despite a number of studies that have provided prognostic biomarkers for lung cancer, a paucity of reliable markers and therapeutic targets exist to diagnose and treat this aggressive disease. In this study we investigated the potential of nuclear receptors (NRs), many of which are well-established drug targets, as therapeutic markers in lung cancer. Using quantitative real-time PCR, we analyzed the expression of the 48 members of the NR superfamily in a human panel of 55 normal and lung cancer cell lines. Unsupervised cluster analysis of the NR expression profile segregated normal from tumor cell lines and grouped lung cancers according to type (i.e. small vs. non-small cell lung cancers). Moreover, we found that the NR signature was 79% accurate in diagnosing lung cancer incidence in smokers (n = 129). Finally, the evaluation of a subset of NRs (androgen receptor, estrogen receptor, vitamin D receptor, and peroxisome proliferator-activated receptor-γ) demonstrated the therapeutic potential of using NR expression to predict ligand-dependent growth responses in individual lung cancer cells. Preclinical evaluation of one of these receptors (peroxisome proliferator activated receptor-γ) in mouse xenografts confirmed that ligand-dependent inhibitory growth responses in lung cancer can be predicted based on a tumor's receptor expression status. Taken together, this study establishes NRs as theragnostic markers for predicting lung cancer incidence and further strengthens their potential as therapeutic targets for individualized treatment.
Collapse
Affiliation(s)
- Yangsik Jeong
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do 220-701, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Chang CH, Lin JW, Wu LC, Lai MS, Chuang LM, Chan KA. Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus. Hepatology 2012; 55:1462-72. [PMID: 22135104 DOI: 10.1002/hep.25509] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED The objective of this nationwide case-control study was to evaluate the risk of specific malignancy in diabetic patients who received thiazolidinediones (TZDs). A total of 606,583 type 2 diabetic patients, age 30 years and above, without a history of cancer were identified from the Taiwan National Health Insurance claims database during the period between January 1 2000 and December 31 2000. As of December 31 2007, patients with incident cancer of liver, colorectal, lung, and urinary bladder were included as cases and up to four age- and sex-matched controls were selected by risk-set sampling. Logistic regression models were applied to estimate the odds ratio (OR) and 95% confidence interval (CI) between TZDs and cancer incidence. A total of 10,741 liver cancer cases, 7,200 colorectal cancer cases, and 70,559 diabetic controls were included. A significantly lower risk of liver cancer incidence was found for any use of rosiglitazone (OR: 0.73, 95% CI: 0.65-0.81) or pioglitazone (OR: 0.83, 95% CI: 0.72-0.95), respectively. The protective effects were stronger for higher cumulative dosage and longer duration. For colorectal cancer, rosiglitazone, but not pioglitazone, was associated with a significantly reduced risk (OR: 0.86; 95% CI: 0.76-0.96). TZDs were not associated with lung and bladder cancer incidence, although a potential increased risk for bladder cancer with pioglitazone use ≥3 years could not be excluded (OR: 1.56; 95% CI: 0.51-4.74). CONCLUSION The use of pioglitazone and rosiglitazone is associated with a decreased liver cancer incidence in diabetic patients. The effects on occurrence of specific cancer types may be different for pioglitazone and rosiglitazone.
Collapse
Affiliation(s)
- Chia-Hsuin Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
56
|
Sahu RP, DaSilva SC, Rashid B, Martel KC, Jernigan D, Mehta SR, Mohamed DR, Rezania S, Bradish JR, Armstrong AB, Warren S, Konger RL. Mice lacking epidermal PPARγ exhibit a marked augmentation in photocarcinogenesis associated with increased UVB-induced apoptosis, inflammation and barrier dysfunction. Int J Cancer 2012; 131:E1055-66. [PMID: 22467332 DOI: 10.1002/ijc.27562] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/16/2012] [Indexed: 12/21/2022]
Abstract
Recent studies suggest that peroxisome proliferator-activated receptor gamma (PPARγ) agonists may have cancer chemopreventive activity. Other studies have shown that loss of epidermal PPARγ results in enhanced chemical carcinogenesis in mice via unknown mechanisms. However, ultraviolet B (UVB) exposure represents the primary etiological agent for skin cancer formation and the role of PPARγ in photobiology and photocarcinogenesis is unknown. In previous studies, we demonstrated that UVB irradiation of cells results in the formation of oxidized glycerophosphocholines that exhibit PPARγ ligand activity. We therefore hypothesized that PPARγ would prove to be a chemopreventive target in photocarcinogenesis. We first showed that UVB irradiation of mouse skin causes generation of PPARγ agonist species in vivo. We then generated SKH-1 hairless, albino mice deficient in epidermal Pparg (Pparg-/-(epi)) using a cytokeratin 14 driven Cre-LoxP strategy. Using a chronic model of UVB photocarcinogenesis, we next showed that Pparg-/-(epi) mice exhibit an earlier onset of tumor formation, increased tumor burden and tumor progression. Increased tumor burden in Pparg-/-(epi) mice was accompanied by a significant increase in epidermal hyperplasia and p53 positive epidermal cells in surrounding skin lacking tumors. After acute UVB irradiation, Pparg-/-(epi) mice exhibited an augmentation of both UVB-induced Caspase 3/7 activity and inflammation. Increased apoptosis and inflammation was also observed after treatment with the PPARγ antagonist GW9662. With chronic UVB irradiation, Pparg-/-(epi) mice exhibited a sustained increase in erythema and transepidermal water loss relative to wildtype littermates. This suggests that PPARγ agonists could have possible chemopreventive activity in non-melanoma skin cancer.
Collapse
Affiliation(s)
- Ravi P Sahu
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kapetanovic IM, Lyubimov AV, Kabirova EV, Kabirov KK, Rasay L, Swezey R, Green C, Kopelovich L. Effects of bacterial and presystemic nitroreductase metabolism of 2-chloro-5-nitro-N-phenylbenzamide on its mutagenicity and bioavailability. Chem Biol Interact 2012; 197:16-22. [PMID: 22450444 PMCID: PMC3357543 DOI: 10.1016/j.cbi.2012.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/02/2012] [Accepted: 03/03/2012] [Indexed: 12/30/2022]
Abstract
2-Chloro-5-nitro-N-phenylbenzamide (GW9662), a potent irreversible PPAR-γ antagonist, has shown promise as a cancer chemopreventive agent and is undergoing preclinical evaluations. Studies were initiated to assess its bacterial mutagenicity and pharmacokinetic profile in two animal species prior to subchronic oral toxicity evaluations and the results are reported here. GW9662 was mutagenic in both TA98 and TA100 bacterial strains with and without metabolic activation but was negative in the nitroreductase-deficient strains (TA98NR and TA100NR) also with and without metabolic activation, indicating that GW9662 mutagenicity is dependent on nitroreduction. The mutagenic activity was predominantly via a base-substitution mechanism. Following oral dosing in rats and dogs, the parent compound, GW9662, was virtually absent from plasma samples, but there was chromatographic evidence for the presence of metabolites in the plasma as a result of oral dosing. Metabolite identification studies showed that an amine metabolite ACPB (5-amino-2-chloro-N-phenylbenzamide), a product of nitro reduction, was the predominant species exhibiting large and persistent plasma levels. Thus systemic circulation of GW9662 has been attained largely in the form of its reduced metabolite, probably a product of gut bacterial metabolism. GW9662 was detectable in plasma of rats and dogs after intravenous dose albeit at low concentrations. Pharmacokinetic analysis following intravenous dosing in rats showed a rapid clearance and an extensive tissue distribution which could have accounted for the very low plasma levels. Of note, the amine metabolite was absent following intravenous dosing in both rats and dogs, confirming it being a product of presystemic metabolism. The potential utility of GW9662 as a chemopreventive agent, especially as an Estrogen Receptor-α (ER-α) inducer in an otherwise ER-α negative breast tissue, is of great interest. However, the results shown here suggest that additional animal toxicological and bioavailability studies are required to establish a role of GW9662 as a chemopreventive agent.
Collapse
Affiliation(s)
- Izet M Kapetanovic
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Giaginis C, Politi E, Alexandrou P, Sfiniadakis J, Kouraklis G, Theocharis S. Expression of peroxisome proliferator activated receptor-gamma (PPAR-γ) in human non-small cell lung carcinoma: correlation with clinicopathological parameters, proliferation and apoptosis related molecules and patients' survival. Pathol Oncol Res 2012; 18:875-83. [PMID: 22426809 DOI: 10.1007/s12253-012-9517-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 03/06/2012] [Indexed: 01/02/2023]
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has currently been considered as molecular target for the treatment of human metabolic disorders. PPAR-γ has also been implicated in the pathogenesis and progression of several types of cancer, being associated with cell differentiation, growth and apoptosis. The present study aimed to evaluate the clinical significance of PPAR-γ expression in non-small cell lung carcinoma (NSCLC). PPAR-γ protein expression was assessed immunohistochemically in tumoral samples of 67 NSCLC patients and was statistically analyzed in relation to clinicopathological parameters, proliferation and apoptosis related molecules and patients' survival. Positive PPAR-γ expression was prominent in 30 (45 %) out of 67 NSCLC cases. PPAR-γ positivity was more frequently observed in squamous cell lung carcinoma cases compared to lung adenocarcinoma ones (p = 0.048). PPAR-γ positivity was significantly associated with bcl-2 positivity (p = 0.016) and borderline with c-myc positivity (p = 0.052), whereas non associations with grade of differentiation, TNM stage, Ki-67, p53, bax proteins' expression and patients' survival were noted. In the subgroup of squamous cell lung carcinoma cases, PPAR-γ positivity was significantly associated with tumor size (p = 0.038), while in lung adenocarcinoma ones with histopathological grade of differentiation (p = 0.026). The present study supported evidence for possible participation of PPAR-γ in the biological mechanisms underlying the carcinogenic evolution of the lung. Although the survival prediction using PPAR-γ expression as a marker seems uncertain, the observed correlation with apoptosis related proteins reinforces the potential utility of PPAR-γ ligands as cell cycle modulators in future therapeutic approaches in lung cancer.
Collapse
Affiliation(s)
- Costantinos Giaginis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, 75 Mikras Asias Street, Athens, 11527, Greece.
| | | | | | | | | | | |
Collapse
|
59
|
T0901317 inhibits cisplatin-induced apoptosis in ovarian cancer cells [corrected]. Int J Gynecol Cancer 2012; 21:1350-6. [PMID: 21921802 DOI: 10.1097/igc.0b013e318228f558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To determine the function of T0901317 in combination treatment with cisplatin in ovarian cancer cells. METHODS We screened the effects of 3 nuclear hormone receptor ligands on cell viability in a panel of ovarian cancer cell lines. T0901317 regulation of apoptosis and cell cycle regulators was determined when applied as a single agent or in combination with cisplatin. RESULTS Surprisingly, the liver X receptor agonist T0901317 had no significant effects on a panel of 7 ovarian cancer cell lines as a single agent. T0901317 does, however, significantly decrease cisplatin efficacy in at least 3 ovarian cancer cell lines. T0901317 reduces cisplatin-induced apoptosis and reverses cisplatin-induced expression of cell cycle regulators. T0901317 seems to work in a liver X receptor-, pregnane X receptor-, and farnesoid X receptor-independent manner, as agonists of these nuclear hormone receptors did not show similar effects. Interestingly, in the A2780-cp drug-resistant cell line, the effect of T0901317 is lost, suggesting that the pathways stimulated by T0901317 to reduce cisplatin efficacy could be inherently active features of the selected resistance. CONCLUSIONS Together, these data suggest that T0901317 inhibits cisplatin in some ovarian cancer cells. These data provide an avenue to investigate when T0901317 may be acting to promote tumor survival and drug resistance through control of apoptosis and when it may be acting as an antitumor agent as has been previously reported.
Collapse
|
60
|
Campioli E, Batarseh A, Li J, Papadopoulos V. The endocrine disruptor mono-(2-ethylhexyl) phthalate affects the differentiation of human liposarcoma cells (SW 872). PLoS One 2011; 6:e28750. [PMID: 22205965 PMCID: PMC3244402 DOI: 10.1371/journal.pone.0028750] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/14/2011] [Indexed: 01/04/2023] Open
Abstract
Esters of phthalic acid (phthalates) are largely used in industrial plastics, medical devices, and pharmaceutical formulations. They are easily released from plastics into the environment and can be found in measurable levels in human fluids. Phthalates are agonists for peroxisome proliferator-activated receptors (PPARs), through which they regulate translocator protein (TSPO; 18 kDa) transcription in a tissue-specific manner. TSPO is a drug- and cholesterol-binding protein involved in mitochondrial respiration, steroid formation, and cell proliferation. TSPO has been shown to increase during differentiation and decrease during maturation in mouse adipocytes. The purpose of this study was to establish the effect of mono-(2-ethylhexyl) phthalate (MEHP) on the differentiation of human SW 872 preadipocyte cells, and examine the role of TSPO in the process. After 4 days of treatment with 10 µM MEHP, we observed changes in the transcription of acetyl-CoA carboxylase alpha, adenosine triphosphate citrate lyase, glucose transporters 1 and 4, and the S100 calcium binding protein B, all of which are markers of preadipocyte differentiation. These observed gene expression changes coincided with a decrease in cellular proliferation without affecting cellular triglyceride content. Taken together, these data suggest that MEHP exerts a differentiating effect on human preadipocytes. Interestingly, MEHP was able to temporarily increase TSPO mRNA levels through the PPAR-α and β/δ pathways. These results suggest that TSPO can be considered an important player in the differentiation process itself, or alternatively a factor whose presence is essential for adipocyte development.
Collapse
Affiliation(s)
- Enrico Campioli
- Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Amani Batarseh
- Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Jiehan Li
- Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Center and the Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
61
|
Youssef R, Hegazy RA, Fawzy MM, Abdel Halim DM, Nabil N, Sayed SS, Shaker OG. Peroxisome proliferator-activated receptor gamma, a possible culprit in mycosis fungoides: an immunohistochemical study. J Eur Acad Dermatol Venereol 2011; 26:1522-32. [PMID: 22112149 DOI: 10.1111/j.1468-3083.2011.04333.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND It still remains debatable whether peroxisome proliferator-activated receptor gamma (PPARγ) is pro- or antineoplastic, and its exact role in mycosis fungoides (MF) remains unclear. OBJECTIVE This prospective comparative study aimed to investigate the expression of PPARγ in MF and compare it with psoriatics and controls in a trial to deduce its possible role in MF. Also, we tried to clarify the relation between PPARγ and Bcl-2 in MF. METHODS Twenty MF patients, 20 psoriatic patients and 20 controls were included. All participants underwent a skin biopsy, and immunohistochemical staining for both PPARγ and Bcl-2 were performed. Western blot analysis was performed for detection of both PPARγ and Bcl-2. RESULTS The mean area per cent of PPARγ measured in the MF patients (57.1217±9.502417) was significantly higher (P<0.001) when compared with that of both the psoriatics (2.989±1.723) and controls (35.9357±8.1789). The mean area per cent of Bcl-2 in MF patients (9.3763±6.6328) was significantly higher (P<0.001) than that of both the psoriatics (2.35±1.35) and the controls (0.73105±0.5302)]. Our results were confirmed using the western blot analysis. We detected a highly significant positive correlation between the PPARγ and Bcl-2 mean area per cents in all patients. In our MF patients, both parameters were also positively correlated with the age of the patient, duration and stage of MF (P<0.05). CONCLUSION Our data suggest a possible role for PPARγ in the pathogenesis of MF possibly through several mechanisms, one of which might be conferring upon the lymphoma cells, a survival advantage at least partially through up regulating Bcl-2.
Collapse
Affiliation(s)
- R Youssef
- Department of Dermatology, Kasr AlAini Hospital, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | |
Collapse
|
62
|
Giaginis C, Klonaris C, Katsargyris A, Kouraklis G, Spiliopoulou C, Theocharis S. Correlation of Peroxisome Proliferator-Activated Receptor-gamma (PPAR-gamma) and Retinoid X Receptor-alpha (RXR-alpha) expression with clinical risk factors in patients with advanced carotid atherosclerosis. Med Sci Monit 2011; 17:CR381-91. [PMID: 21709632 PMCID: PMC3539575 DOI: 10.12659/msm.881849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background Peroxisome proliferator-activated Receptor-γ (PPAR-γ) and its nuclear partners, the Retinoid X Receptors (RXRs), have been recognized as crucial players in the pathogenesis of atherosclerosis. The present study aimed to assess the clinical significance of PPAR-γ and RXR-α expression in different cellular populations localized within advanced carotid atherosclerosis lesions. Material/Methods PPAR-γ and RXR-α expression was assessed by immunohistochemistry ïn 134 carotid atherosclerotic plaques obtained from an equal number of patients that underwent endarterectomy procedure for vascular repair, and was correlated with patients’ medical history, risk factors and medication intake. Results Increased incidence of low PPAR-γ expression in both macrophages and smooth muscle cells was noted in patients presenting coronary artery disease (p=0.032 and p=0.046, respectively). PPAR-γ expression in smooth muscle cells was borderline down-regulated in symptomatic compared to asymptomatic patients (p=0.061), reaching statistical significance when analyzing groups of patients with specific cerebrovascular events; amaurosis fugax (p=0.008), amaurosis fugax/stroke (p=0.020) or amaurosis fugax/transient ischemic attack patients (p=0.028) compared to asymptomatic patients. Low RXR-α expression in macrophages was more frequently observed in hypertensive (p=0.048) and hyperlipidemic patients (p=0.049). Increased incidence of low RXR-α expression in smooth muscle cells was also noted in patients presenting advanced carotid stenosis grade (p=0.015). Conclusions PPAR-γ and RXR-α expression down-regulation in macrophages and smooth muscle cells was associated with a more pronounced disease progression in patients with advanced carotid atherosclerotic lesions.
Collapse
Affiliation(s)
- Constantinos Giaginis
- Department of Forensic Medicine and Toxicology, University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
63
|
Liu JJ, Dai XJ, Xu Y, Liu PQ, Zhang Y, Liu XD, Fang ZG, Lin DJ, Xiao RZ, Huang RW, Huang HQ. Inhibition of Lymphoma Cell Proliferation by Peroxisomal Proliferator-Activated Receptor-γ Ligands via Wnt Signaling Pathway. Cell Biochem Biophys 2011; 62:19-27. [DOI: 10.1007/s12013-011-9253-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
64
|
Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, Fehlings MG, Tetzlaff W. A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma 2011; 28:1545-88. [PMID: 20146558 PMCID: PMC3143410 DOI: 10.1089/neu.2009.1149] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An increasing number of therapies for spinal cord injury (SCI) are emerging from the laboratory and seeking translation into human clinical trials. Many of these are administered as soon as possible after injury with the hope of attenuating secondary damage and maximizing the extent of spared neurologic tissue. In this article, we systematically review the available pre-clinical research on such neuroprotective therapies that are administered in a non-invasive manner for acute SCI. Specifically, we review treatments that have a relatively high potential for translation due to the fact that they are already used in human clinical applications, or are available in a form that could be administered to humans. These include: erythropoietin, NSAIDs, anti-CD11d antibodies, minocycline, progesterone, estrogen, magnesium, riluzole, polyethylene glycol, atorvastatin, inosine, and pioglitazone. The literature was systematically reviewed to examine studies in which an in-vivo animal model was utilized to assess the efficacy of the therapy in a traumatic SCI paradigm. Using these criteria, 122 studies were identified and reviewed in detail. Wide variations exist in the animal species, injury models, and experimental designs reported in the pre-clinical literature on the therapies reviewed. The review highlights the extent of investigation that has occurred in these specific therapies, and points out gaps in our knowledge that would be potentially valuable prior to human translation.
Collapse
Affiliation(s)
- Brian K Kwon
- University of British Columbia, Combined Neurosurgical and Orthopaedic Spine Program, Department of Orthopaedics, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Venkatachalam G, Kumar AP, Sakharkar KR, Thangavel S, Clement MV, Sakharkar MK. PPARγ disease gene network and identification of therapeutic targets for prostate cancer. J Drug Target 2011; 19:781-96. [DOI: 10.3109/1061186x.2011.568062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
66
|
Abstract
Type 2 diabetes mellitus and malignant tumors are frequent diseases worldwide. The incidence of these two diseases is growing continuously and causes serious health care problem. Population based epidemiologic studies show that the coexistence of type 2 diabetes and malignant tumors is more frequent than expected by the age-corrected incidence and prevalence of each disease. Epidemiologic studies and meta-analyses show that type 2 diabetes increases the risk and tumor specific mortality of certain cancers. The overlapping risk factors of the diseases suggest a relationship between type 2 diabetes and malignant tumors, with a significant role of obesity as a major risk factor. In the pathophysiology of type 2 diabetes there are several biological processes, which may explain the higher cancer risk in type 2 diabetes. In vitro experiments, and in vivo animal studies show that the mitotic effect of hyperinsulinemia plays an important role in the relationship of cancer and type 2 diabetes mellitus. Recent studies show that the different treatment modalities, antidiabetic drugs and their combinations used for the treatment of type 2 diabetes can modify cancer risk. The majority of the data show that metformin therapy decreases, while insulin secretagog drugs slightly increase the risk of certain types of cancers in type 2 diabetes. Metformin can decrease cell proliferation and induce apoptosis in certain cancer cell lines. Endogenous and exogenous (therapy induced) hyperinsulinemia may be mitogenic and may increase the risk of cancer in type 2 diabetes. Human studies showed that the analogue insulin glargin increases the risk of certain cancers. As a result of conceptual weaknesses in study design, data collection, and statistical methods the results of these studies are questionable. According to present knowledge, obtaining and maintaining optimal metabolic target values with the appropriate choice of treatment modality is the aim of treatment in type 2 diabetes. Presently, study results showing elevated mitogenic potential with some antidiabetic treatment modalities are not taken into account, when considering the choice of antidiabetic treatment in type 2 diabetic patients. In the care of patients with increased cancer risk, oncologic considerations should be taken into account. Well designed, prospective, clinical studies would be necessary to demonstrate the possible correlation between treatment modalities of type 2 diabetes and change of cancer risk in type 2 diabetes mellitus. Orv. Hetil., 2011, 152, 1144–1155.
Collapse
Affiliation(s)
- András Rosta
- Országos Onkológiai Intézet Budapest Ráth Gy. u. 5–9. 1122
| |
Collapse
|
67
|
Krupp M, Maass T, Marquardt JU, Staib F, Bauer T, König R, Biesterfeld S, Galle PR, Tresch A, Teufel A. The functional cancer map: a systems-level synopsis of genetic deregulation in cancer. BMC Med Genomics 2011; 4:53. [PMID: 21718500 PMCID: PMC3148554 DOI: 10.1186/1755-8794-4-53] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 06/30/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cancer cells are characterized by massive dysegulation of physiological cell functions with considerable disruption of transcriptional regulation. Genome-wide transcriptome profiling can be utilized for early detection and molecular classification of cancers. Accurate discrimination of functionally different tumor types may help to guide selection of targeted therapy in translational research. Concise grouping of tumor types in cancer maps according to their molecular profile may further be helpful for the development of new therapeutic modalities or open new avenues for already established therapies. METHODS Complete available human tumor data of the Stanford Microarray Database was downloaded and filtered for relevance, adequacy and reliability. A total of 649 tumor samples from more than 1400 experiments and 58 different tissues were analyzed. Next, a method to score deregulation of KEGG pathway maps in different tumor entities was established, which was then used to convert hundreds of gene expression profiles into corresponding tumor-specific pathway activity profiles. Based on the latter, we defined a measure for functional similarity between tumor entities, which yielded to phylogeny of tumors. RESULTS We provide a comprehensive, easy-to-interpret functional cancer map that characterizes tumor types with respect to their biological and functional behavior. Consistently, multiple pathways commonly associated with tumor progression were revealed as common features in the majority of the tumors. However, several pathways previously not linked to carcinogenesis were identified in multiple cancers suggesting an essential role of these pathways in cancer biology. Among these pathways were 'ECM-receptor interaction', 'Complement and Coagulation cascades', and 'PPAR signaling pathway'. CONCLUSION The functional cancer map provides a systematic view on molecular similarities across different cancers by comparing tumors on the level of pathway activity. This work resulted in identification of novel superimposed functional pathways potentially linked to cancer biology. Therefore, our work may serve as a starting point for rationalizing combination of tumor therapeutics as well as for expanding the application of well-established targeted tumor therapies.
Collapse
Affiliation(s)
- Markus Krupp
- Department of Medicine I, Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
There is a rising worldwide prevalence of diabetes, especially type 2 diabetes mellitus (T2DM), which is one of the most challenging health problems in the 21st century. The associated complications of diabetes, such as cardiovascular disease, peripheral vascular disease, stroke, diabetic neuropathy, amputations, renal failure, and blindness result in increasing disability, reduced life expectancy, and enormous health costs. T2DM is a polygenic disease characterized by multiple defects in insulin action in tissues and defects in pancreatic insulin secretion, which eventually leads to loss of pancreatic insulin-secreting cells. The treatment goals for T2DM patients are effective control of blood glucose, blood pressure, and lipids (if elevated) and, ultimately, to avert the serious complications associated with sustained tissue exposure to excessively high glucose concentrations. Prevention and control of diabetes with diet, weight control, and physical activity has been difficult. Treatment of T2DM has centered on increasing insulin levels, either by direct insulin administration or oral agents that promote insulin secretion, improving sensitivity to insulin in tissues, or reducing the rate of carbohydrate absorption from the gastrointestinal tract. This review presents comprehensive and up-to-date information on the mechanism(s) of action, efficacy, pharmacokinetics, pleiotropic effects, drug interactions, and adverse effects of the newer antidiabetic drugs, including (1) peroxisome proliferator-activated-receptor-γ agonists (thiazolidinediones, pioglitazone, and rosiglitazone); (2) the incretin, glucagon-like peptide-) receptor agonists (incretin-mimetics, exenatide. and liraglutide), (3) inhibitors of dipeptidyl-peptidase-4 (incretin enhancers, sitagliptin, and vildagliptin), (4) short-acting, nonsulfonylurea secretagogue, meglitinides (repaglinide and nateglinide), (5) amylin anlog-pramlintide, (6) α-glucosidase inhibitors (miglitol and voglibose), and (7) colesevelam (a bile acid sequestrant). In addition, information is presented on drug candidates in clinical trials, experimental compounds, and some plants used in the traditional treatment of diabetes based on experimental evidence. In the opinion of this reviewer, therapy based on orally active incretins and incretin mimetics with long duration of action that will be efficacious, preserve the β-cell number/function, and block the progression of diabetes will be highly desirable. However, major changes in lifestyle factors such as diet and, especially, exercise will also be needed if the growing burden of diabetes is to be contained.
Collapse
|
69
|
JLK1486, a Bis 8-Hydroxyquinoline-Substituted Benzylamine, Displays Cytostatic Effects in Experimental Gliomas through MyT1 and STAT1 Activation and, to a Lesser Extent, PPARγ Activation. Transl Oncol 2011; 4:126-37. [PMID: 21633668 DOI: 10.1593/tlo.10253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 12/28/2022] Open
Abstract
Gliomas account for 5% to 7% of all solid cancers in adults and up to 30% of solid cancers in children; glioblastomas are the most malignant type of glioma and often have dismal prognoses. The alkylating agent temozolomide provides the greatest chemotherapeutic benefits currently available; however, glioblastoma patients cannot be cured. Novel drugs that efficiently combat glioblastomas are therefore of great interest. We report here that JLK1486, an 8-hydroxyquinoline-substituted benzylamine, could represent a novel chemical scaffold to reach this goal. Indeed, JLK1486 mediated anticancer activity in vivo (through intravenous as well as oral routes of administrations) in an orthotopic xenograft model and displayed efficiency similar to that of temozolomide. The therapeutic benefits of JLK1486 seem to relate to its ability to activate various transcription factors (including Myt1, STAT1, and peroxisome proliferator-activated receptor γ) in glioma cells. These transcription factors are implicated in the control of glioma cell proliferation, and the resultant global effect of their activation by JLK1486 was cytostatic, not cytotoxic. Thus, the current study opens the door for the development of novel compounds to combat glioblastoma using 8-hydroxyquinoline benzylamine analogs.
Collapse
|
70
|
Peroxisome proliferator-activated receptor-γ in mobile tongue squamous cell carcinoma: associations with clinicopathological parameters and patients survival. J Cancer Res Clin Oncol 2011; 137:251-9. [PMID: 20390425 DOI: 10.1007/s00432-010-0882-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/01/2010] [Indexed: 01/01/2023]
Abstract
PURPOSE Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a ligand-activated transcription factor, implicated in various aspects of cancer biology, such as differentiation, proliferation, invasion and angiogenesis. The present study aimed to evaluate the clinical significance of PPAR-γ in mobile tongue squamous cell carcinoma (SCC). METHODS PPAR-γ protein expression was assessed immunohistochemically on 49 mobile tongue SCC tissue samples obtained from an equal number of patients. PPAR-γ expression and intensity of immunostaining were statistically analyzed in relation with clinicopathological characteristics, mitotic index and patients' survival. RESULTS Elevated PPAR-γ expression was more frequently observed in patients with reduced depth of invasion (P = 0.0111). Moderate/intense PPAR-γ staining intensity was more frequently observed in patients with no evidence of muscular infiltration (P = 0.0229) and reduced depth of invasion (P = 0.0176). Mobile tongue SCC patients presenting enhanced PPAR-γ expression had significantly longer overall and disease-free survival times compared to those with low PPAR-γ expression (log-rank test, P = 0.0162 and P = 0.0114, respectively). CONCLUSIONS PPAR-γ immunoreactivity in mobile tongue SCC was correlated with clinicopathological characteristics crucial for patients' management and prognosis. PPAR-γ may be considered as a useful prognostic marker in mobile tongue SCC and a potential therapeutic target for tongue cancer chemoprevention and treatment.
Collapse
|
71
|
Ghorbani A, Nazari M, Jeddi-Tehrani M, Zand H. The citrus flavonoid hesperidin induces p53 and inhibits NF-κB activation in order to trigger apoptosis in NALM-6 cells: involvement of PPARγ-dependent mechanism. Eur J Nutr 2011; 51:39-46. [PMID: 21445621 DOI: 10.1007/s00394-011-0187-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 02/15/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hesperidin, a flavanone present in citrus fruits, has been identified as a potent anticancer agent because of its proapoptotic and antiproliferative characteristics in some tumor cells. However, the precise mechanisms of action are not entirely understood. AIM The main purpose of this study is to investigate the involvement of peroxisome proliferator-activated receptor-gamma (PPARγ) in hesperidin's anticancer actions in human pre-B NALM-6 cells, which expresses wild-type p53. METHODS The effects of hesperidin on cell-cycle distribution, proliferation, and caspase-mediated apoptosis were examined in NALM-6 cells in the presence or absence of GW9662. The expression of peroxisome proliferator-activated receptor-gamma (PPARγ), p53, phospho-IκB, Bcl-2, Bax, and XIAP proteins were focused on using the immunoblotting assay. The transcriptional activities of PPARγ and nuclear factor-kappaB (NF-κB) were analyzed by the transcription factor assay kits. The expression of PPARγ and p53 was analyzed using the RT-PCR method. RESULTS Hesperidin induced the expression and transcriptional activity of PPARγ and promoted p53 accumulation and downregulated constitutive NF-κB activity in a PPARγ-dependent and PPARγ-independent manner. The growth-inhibitory effect of hesperidin was partially reduced when the cells preincubated with PPARγ antagonist prior to the exposure to hesperidin. CONCLUSIONS The findings of this study clearly demonstrate that hesperidin-mediated proapoptotic and antiproliferative actions are regulated via both PPARγ-dependent and PPARγ-independent pathways in NALM-6 cells. These data provide the first evidence that hesperidin could be developed as an agent against hematopoietic malignancies.
Collapse
Affiliation(s)
- Asghar Ghorbani
- National Institute and Faculty of Nutrition and Food Technology, Department of Basic Medical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box 19395-4741, Tehran, Iran
| | | | | | | |
Collapse
|
72
|
Cabarcas SM, Hurt EM, Farrar WL. Defining the molecular nexus of cancer, type 2 diabetes and cardiovascular disease. Curr Mol Med 2011; 10:744-55. [PMID: 20937021 DOI: 10.2174/156652410793384187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/26/2010] [Indexed: 12/12/2022]
Abstract
The metabolic syndrome is characterized by a state of metabolic dysfunction resulting in the development of several chronic diseases that are potentially deadly. These metabolic deregulations are complex and intertwined and it has been observed that many of the mechanisms and pathways responsible for diseases characterizing the metabolic syndrome such as type 2 diabetes and cardiovascular disease are linked with cancer development as well. Identification of molecular pathways common to these diverse diseases may prove to be a critical factor in disease prevention and development of potential targets for therapeutic treatments. This review focuses on several molecular pathways, including AMPK, PPARs and FASN that interconnect cancer development, type 2 diabetes and cardiovascular disease. AMPK, PPARs and FASN are crucial regulators involved in the maintenance of key metabolic processes necessary for proper homeostasis. It is critical to recognize and identify common pathways deregulated in interrelated diseases as it may provide further information and a much more global picture in regards to disease development and prevention. Thus, this review focuses on three key metabolic regulators, AMPK, PPARs and FASN, that may potentially serve as therapeutic targets.
Collapse
Affiliation(s)
- S M Cabarcas
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
73
|
Fu H, Zhang J, Pan J, Zhang Q, Lu Y, Wen W, Lubet RA, Szabo E, Chen R, Wang Y, Chen DR, You M. Chemoprevention of lung carcinogenesis by the combination of aerosolized budesonide and oral pioglitazone in A/J mice. Mol Carcinog 2011; 50:913-21. [PMID: 21374736 DOI: 10.1002/mc.20751] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/07/2011] [Accepted: 01/19/2011] [Indexed: 12/13/2022]
Abstract
Budesonide, a synthetic glucocorticoid used for treating asthma, and pioglitazone, a synthetic peroxisome proliferator-activated receptors γ ligand used for the treatment of diabetes, were evaluated for their combinational chemopreventive efficacy on mouse lung cancer using female A/J mice with benzo(a)pyrene used as the carcinogen. All chemopreventive treatments began 2-wk post-carcinogen treatment and continued daily for 20 wk. Budesonide was administered by the aerosol route using an improved aerosol delivery system. Pioglitazone was introduced by oral gavage. The characterization of drug distribution showed that budesonide introduced by aerosol delivery accumulated only in the lung. Budesonide alone reduced tumor load by 78% and pioglitazone alone reduced tumor load by 63%. By combining aerosolized budesonide with pioglitazone, the inhibition on tumor load was 90%. In vitro experiments using human cancer cells showed that budesonide and pioglitazone exhibited independent, additive inhibitory effects on cell growth. Our results provide evidence that aerosolized budesonide and oral pioglitazone could be a promising drug combination for lung cancer chemoprevention.
Collapse
Affiliation(s)
- Huijing Fu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Stable reporter cell lines for peroxisome proliferator-activated receptor γ (PPARγ)-mediated modulation of gene expression. Anal Biochem 2011; 414:77-83. [PMID: 21354099 DOI: 10.1016/j.ab.2011.02.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/18/2011] [Indexed: 12/12/2022]
Abstract
Activation of peroxisome proliferator-activated receptor γ (PPARγ) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement of PPARγ agonist and antagonist activity. Two reporter gene assays, PPARγ1 CALUX and PPARγ2 CALUX, were developed by stable transfection of U2OS cells with an expression vector for PPARγ1 or PPARγ2 and a pGL3-3xPPRE-tata-luc or pGL4-3xPPRE-tata-luc reporter construct, respectively. PPARγ1 CALUX and PPARγ2 CALUX cells showed similar concentration-dependent luciferase induction upon exposure to the PPARγ agonists rosiglitazone, troglitazone, pioglitazone, ciglitazone, netoglitazone, and 15-deoxy-Δ(12,14)-prostaglandin J(2). The potency to induce luciferase decreased in the following order: rosiglitazone>troglitazone=pioglitazone>netoglitazone>ciglitazone. A concentration-dependent decrease in the response to 50nM rosiglitazone was observed on the addition of PPARγ antagonist GW9662 or T0070907 in both PPARγ1 CALUX and PPARγ2 CALUX cells. The PPARα agonists WY14643 and fenofibrate failed to induce luciferase activity, confirming the specificity of these cell lines for PPARγ agonists. In conclusion, PPARγ1 CALUX and PPARγ2 CALUX cells provide a reliable and useful tool to screen (bio)chemicals for PPARγ agonist or antagonist activity.
Collapse
|
75
|
Specific thiazolidinediones inhibit ovarian cancer cell line proliferation and cause cell cycle arrest in a PPARγ independent manner. PLoS One 2011; 6:e16179. [PMID: 21283708 PMCID: PMC3025024 DOI: 10.1371/journal.pone.0016179] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/14/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Peroxisome Proliferator Activated Receptor gamma (PPARγ) agonists, such as the thiazolinediones (TZDs), have been studied for their potential use as cancer therapeutic agents. We investigated the effect of four TZDs--Rosiglitazone (Rosi), Ciglitazone (CGZ), Troglitazone (TGZ), and Pioglitazone (Pio)--on ovarian cancer cell proliferation, PPARγ expression and PPAR luciferase reporter activity. We explored whether TZDs act in a PPARγ dependent or independent manner by utilizing molecular approaches to inhibit or overexpress PPARγ activity. PRINCIPAL FINDINGS Treatment with CGZ or TGZ for 24 hours decreased proliferation in three ovarian cancer cell lines, Ovcar3, CaOv3, and Skov3, whereas Rosi and Pio had no effect. This decrease in Ovcar3 cell proliferation was due to a higher fraction of cells in the G(0)/G(1) stage of the cell cycle. CGZ and TGZ treatment increased apoptosis after 4 hours of treatment but not after 8 or 12 hours. Treatment with TGZ or CGZ increased PPARγ mRNA expression in Ovcar3 cells; however, protein levels were unchanged. Surprisingly, luciferase promoter assays revealed that none of the TZDs increased PPARγ activity. Overexpression of wild type PPARγ increased reporter activity. This was further augmented by TGZ, Rosi, and Pio indicating that these cells have the endogenous capacity to mediate PPARγ transactivation. To determine whether PPARγ mediates the TZD-induced decrease in proliferation, cells were treated with CGZ or TGZ in the absence or presence of a dominant negative (DN) or wild type overexpression PPARγ construct. Neither vector changed the TZD-mediated cell proliferation suggesting this effect of TZDs on ovarian cancer cells may be PPARγ independent. CONCLUSIONS CGZ and TGZ cause a decrease in ovarian cancer cell proliferation that is PPARγ independent. This concept is supported by the finding that a DN or overexpression of the wild type PPARγ did not affect the changes in cell proliferation and cell cycle.
Collapse
|
76
|
Tacon LJ, Prichard RS, Soon PSH, Robinson BG, Clifton-Bligh RJ, Sidhu SB. Current and emerging therapies for advanced adrenocortical carcinoma. Oncologist 2011; 16:36-48. [PMID: 21212436 DOI: 10.1634/theoncologist.2010-0270] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but aggressive malignancy with a poor prognosis. Complete surgical resection offers the only potential for cure; however, even after apparently successful excision, local or metastatic recurrence is frequent. Treatment options for advanced ACC are severely limited. Mitotane is the only recognized adrenolytic therapy available; however, response rates are modest and unpredictable whereas systemic toxicities are significant. Reported responses to conventional cytotoxic chemotherapy have also been disappointing, and the rarity of ACC had hampered the ability to undertake randomized clinical studies until the establishment of the First International Randomized Trial in Locally Advanced and Metastatic Adrenocortical Carcinoma. This yet-to-be reported study seeks to identify the most effective first- and second-line cytotoxic regimens. The past decade has also seen increasing research into the molecular pathogenesis of ACCs, with particular interest in the insulin-like growth factor signaling pathway. The widespread development of small molecule tyrosine kinase inhibitors in broader oncological practice is now allowing for the rational selection of targeted therapies to study in ACC. In this review, we discuss the currently available therapeutic options for patients with advanced ACC and detail the molecular rationale behind, and clinical evidence for, novel and emerging therapies.
Collapse
Affiliation(s)
- Lyndal J Tacon
- Cancer Genetics Unit, Hormones and Cancer Group, Kolling Institute of Medical Research, Department of Endocrinology, Royal North Shore Hospital, St. Leonards 2065 NSW Australia.
| | | | | | | | | | | |
Collapse
|
77
|
Wang Y, James M, Wen W, Lu Y, Szabo E, Lubet RA, You M. Chemopreventive Effects of Pioglitazone on Chemically Induced Lung Carcinogenesis in Mice. Mol Cancer Ther 2010; 9:3074-82. [DOI: 10.1158/1535-7163.mct-10-0510] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
78
|
Cyclic phosphatidic acid decreases proliferation and survival of colon cancer cells by inhibiting peroxisome proliferator-activated receptor γ. Prostaglandins Other Lipid Mediat 2010; 93:126-33. [PMID: 20932931 DOI: 10.1016/j.prostaglandins.2010.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/16/2010] [Accepted: 09/25/2010] [Indexed: 12/25/2022]
Abstract
Cyclic phosphatidic acid (cPA), a structural analog of lysophosphatidic acid (LPA), is one of the simplest phospholipids found in every cell type. cPA is a specific, high-affinity antagonist of peroxisome proliferator-activated receptor gamma (PPARγ); however, the molecular mechanism by which cPA inhibits cellular proliferation remains to be clarified. In this study, we found that inhibition of PPARγ prevents proliferation of human colon cancer HT-29 cells. cPA suppressed cell growth, and this effect was reversed by the addition of a PPARγ agonist. These results indicate that the physiological effects of cPA are partly due to PPARγ inhibition. Our results identify PPARγ as a molecular mediator of cPA activity in HT-29 cells, and suggest that cPA and the PPARγ pathway might be therapeutic targets in the treatment of colon cancer.
Collapse
|
79
|
Galli A, Ceni E, Mello T, Polvani S, Tarocchi M, Buccoliero F, Lisi F, Cioni L, Ottanelli B, Foresta V, Mastrobuoni G, Moneti G, Pieraccini G, Surrenti C, Milani S. Thiazolidinediones inhibit hepatocarcinogenesis in hepatitis B virus-transgenic mice by peroxisome proliferator-activated receptor gamma-independent regulation of nucleophosmin. Hepatology 2010; 52:493-505. [PMID: 20683949 DOI: 10.1002/hep.23669] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Antidiabetic thiazolidinediones (TZD) have in vitro antiproliferative effect in epithelial cancers, including hepatocellular carcinoma (HCC). The effective anticancer properties and the underlying molecular mechanisms of these drugs in vivo remain unclear. In addition, the primary biological target of TZD, the ligand-dependent transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), is up-regulated in HCC and seems to provide tumor-promoting responses. The aim of our study was to evaluate whether chronic administration of TZD may affect hepatic carcinogenesis in vivo in relation to PPARgamma expression and activity. The effect of TZD oral administration for 26 weeks was tested on tumor formation in PPARgamma-expressing and PPARgamma-deficient mouse models of hepatic carcinogenesis. Proteomic analysis was performed in freshly isolated hepatocytes by differential in gel electrophoresis and mass spectrometry analysis. Identified TZD targets were confirmed in cultured PPARgamma-deficient hepatocytes. TZD administration in hepatitis B virus (HBV)-transgenic mice (TgN[Alb1HBV]44Bri) reduced tumor incidence in the liver, inhibiting hepatocyte proliferation and increasing apoptosis. PPARgamma deletion in hepatocytes of HBV-transgenic mice (Tg[HBV]CreKOgamma) did not modify hepatic carcinogenesis but increased the TZD antitumorigenic effect. Proteomic analysis identified nucleophosmin (NPM) as a TZD target in PPARgamma-deficient hepatocytes. TZD inhibited NPM expression at protein and messenger RNA levels and decreased NPM promoter activity. TZD inhibition of NPM was associated with the induction of p53 phosphorylation and p21 expression. CONCLUSION These findings suggest that chronic administration of TZD has anticancer activity in the liver via inhibition of NPM expression and indicate that these drugs might be useful for HCC chemoprevention and treatment.
Collapse
Affiliation(s)
- Andrea Galli
- Gastroenterology Unit, Department of Clinical Pathophysiology, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Wang Y, Fang F, Wong CW. Troglitazone is an estrogen-related receptor alpha and gamma inverse agonist. Biochem Pharmacol 2010; 80:80-5. [PMID: 20298676 DOI: 10.1016/j.bcp.2010.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/07/2010] [Accepted: 03/09/2010] [Indexed: 01/16/2023]
Abstract
As a ligand for peroxisome proliferators-activated receptor gamma (PPAR gamma), troglitazone inhibits cell growth by mechanisms besides activating PPAR gamma. In this study, we found that troglitazone interfered with the interactions between estrogen-related receptor alpha and gamma (ERR alpha and ERR gamma) and their coactivator PPAR gamma coactivator-1 alpha (PGC-1 alpha) functioning as an inverse agonist. Additionally, troglitazone suppressed the expressions of PGC-1 alpha and its related member PGC-1 beta which are key regulators of mitochondrial function. Consequently, troglitazone reduced mitochondrial mass and suppressed the expressions of superoxide dismutases to elevate reactive oxygen species (ROS) production. The increase in ROS in turn induced the expression of cell cycle inhibitor p21(WAF1). We therefore propose that ERR alpha and ERR gamma are alternative targets of troglitazone important for mediating its growth suppressive effect.
Collapse
Affiliation(s)
- Yanfei Wang
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science City, Guangzhou 510663, China
| | | | | |
Collapse
|
81
|
Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer: a consensus report. Diabetes Care 2010; 33:1674-85. [PMID: 20587728 PMCID: PMC2890380 DOI: 10.2337/dc10-0666] [Citation(s) in RCA: 1403] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epidemiologic evidence suggests that cancer incidence is associated with diabetes as well as certain diabetes risk factors and diabetes treatments. This consensus statement of experts assembled jointly by the American Diabetes Association and the American Cancer Society reviews the state of science concerning 1) the association between diabetes and cancer incidence or prognosis, 2) risk factors common to both diabetes and cancer, 3) possible biologic links between diabetes and cancer risk, and 4) whether diabetes treatments influence risk of cancer or cancer prognosis. In addition, key unanswered questions for future research are posed.
Collapse
Affiliation(s)
- Edward Giovannucci
- Department of Nutrition, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Petrovic V, Costa RH, Lau LF, Raychaudhuri P, Tyner AL. Negative regulation of the oncogenic transcription factor FoxM1 by thiazolidinediones and mithramycin. Cancer Biol Ther 2010; 9:1008-16. [PMID: 20372080 DOI: 10.4161/cbt.9.12.11710] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Forkhead Box transcription factor FoxM1 regulates expression of genes that promote cell cycle progression, and it plays essential roles in the development of liver, lung, prostate and colorectal tumors. Thiazolidinediones (TZDs) activate the peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-activated nuclear receptor transcription factor. We found that treatment of the human hepatoma cell lines HepG2 and PLC/PRF/5 cells with TZDs leads to inhibition of FoxM1 gene expression. No PPARγ/retinoid X receptor (RXR) consensus DNA binding sites were detected in the FoxM1 promoter extending to -10 kb upstream, and knockdown of PPARγ had no impact on TZD mediated downregulation of FoxM1 expression. Previously, others showed that PPARγ agonists inhibit the expression and DNA-binding activity of the Sp1 transcription factor. Here we show that Sp1 binds to the FoxM1 promoter region and positively regulates FoxM1 transcription, while mithramycin, a chemotherapy drug that specifically binds GC rich sequences in the DNA and inhibits activities of Sp1, inhibits expression of FoxM1. Our data suggest that TZD mediated suppression of Sp1 is responsible for downregulation of FoxM1 gene expression. Inhibition of FoxM1 expression by TZDs provides a new mechanism for TZD mediated negative regulation of cancer cell growth. FoxM1 expression and activity in cancer cells can be targeted using PPARγ agonists or the anti-neoplastic antibiotic mithramycin.
Collapse
Affiliation(s)
- Vladimir Petrovic
- Department of Biochemistry & Molecular Genetics, University of Illinois, College of Medicine, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
83
|
Yu J, Shen B, Chu ESH, Teoh N, Cheung KF, Wu CW, Wang S, Lam CNY, Feng H, Zhao J, Cheng ASL, To KF, Chan HLY, Sung JJY. Inhibitory role of peroxisome proliferator-activated receptor gamma in hepatocarcinogenesis in mice and in vitro. Hepatology 2010; 51:2008-19. [PMID: 20512989 DOI: 10.1002/hep.23550] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Although peroxisome proliferator-activated receptor gamma (PPARgamma) agonist have been shown to inhibit hepatocellular carcinoma (HCC) development, the role of PPARgamma in hepatocarcinogenesis remains unclear. We investigated the therapeutic efficacy of PPARgamma against HCC. PPARgamma-deficient (PPARgamma(+/-)) and wild-type (PPARgamma(+/+)) littermates were used in a diethylnitrosamine (DEN)-induced HCC model and treated with PPARgamma agonist (rosiglitazone) or the vehicle alone for 8 months. The effects of PPARgamma on HCC cell growth and apoptosis were examined using PPARgamma-expressing adenovirus (Ad-PPARgamma). PPARgamma(+/-) mice were more susceptible to DEN-induced HCC than PPARgamma(+/+) mice (94% versus 62%, P < 0.05), and rosiglitazone significantly reduced the incidence of HCC in PPARgamma(+/+) mice (vehicle 62% versus treatment 24%, P < 0.01), but not in PPARgamma(+/-) mice, indicating that PPARgamma suppresses hepatocellular carcinogenesis. A pronounced expression of PPARgamma was observed in a HCC cell line (Hep3B) infected with Ad-PPARgamma. Such induction markedly suppressed HCC cell viability (P < 0.01). Further, Hep3B infection with Ad-PPARgamma revealed a decreased proportion of cells in S-phase (12.92% versus 11.58%, P < 0.05), with arrest at G(2)/M phase (38.2% versus 55.68%, P < 0.001), and there was concomitant phosphorylation of the key G(2)/M phase inhibitors cdc25C and cdc2. PPARgamma overexpression increased cell apoptosis (21.47% versus 35.02%, P < 0.01), mediated by both extrinsic (Fas and tumor necrosis factor-alpha) and intrinsic (caspase-9, caspase-3, caspase-7, and poly[ADP-ribose] polymerase) pathways. Moreover, PPARgamma directly induced a putative tumor suppressor gene, growth differentiation factor-15. CONCLUSION Loss of one PPARgamma allele is sufficient to enhance susceptibility to HCC. PPARgamma suppresses tumor cell growth through reducing cell proliferation and inducing G(2)/M phase arrest, apoptosis, and up-regulating growth differentiation factor-15. Thus, PPARgamma acts as a tumor-suppressor gene in the liver.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Balde ES, Andolfi A, Bruyère C, Cimmino A, Lamoral-Theys D, Vurro M, Damme MV, Altomare C, Mathieu V, Kiss R, Evidente A. Investigations of fungal secondary metabolites with potential anticancer activity. JOURNAL OF NATURAL PRODUCTS 2010; 73:969-71. [PMID: 20415482 DOI: 10.1021/np900731p] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fourteen metabolites, isolated from phytopathogenic and toxigenic fungi, were evaluated for their in vitro antigrowth activity for six distinct cancer cell lines, using the MTT colorimetric assay. Bislongiquinolide (1) and dihydrotrichodimerol (5), which belong to the bisorbicillinoid structural class, displayed significant growth inhibitory activity against the six cancer cell lines studied, while the remaining compounds displayed weak or no activity. The data show that 1 and 5 have similar growth inhibitory activities with respect to those cancer cell lines that display certain levels of resistance to pro-apoptotic stimuli or those that are sensitive to apoptosis. Quantitative videomicroscopy analysis revealed that 1 and 5 exert their antiproliferative effect through cytostatic and not cytotoxic activity. The preliminary results from the current study have stimulated further structure-activity investigations with respect to the growth inhibitory activity of compounds belonging to the bisorbicillinoid group.
Collapse
Affiliation(s)
- ElHadj Saidou Balde
- Laboratoire de Toxicologie and Laboratoire de Chimie Analytique, Toxicologie et Chimie Physique Appliquee, Institut de Pharmacie, Universite Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 2010; 72:247-72. [PMID: 20148675 DOI: 10.1146/annurev-physiol-021909-135917] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity.
Collapse
Affiliation(s)
- Pengxiang Huang
- Department of Pharmacology, and Center for Molecular Design, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
86
|
SHP (small heterodimer partner) suppresses the transcriptional activity and nuclear localization of Hedgehog signalling protein Gli1. Biochem J 2010; 427:413-22. [PMID: 20175750 DOI: 10.1042/bj20091445] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gli (glioma-associated oncogene homologue) proteins act as terminal effectors of the Hedgehog signalling pathway, which is implicated in the development of many human malignancies. Gli activation is important for cell proliferation and anti-apoptosis in various cancers. Several studies have suggested that nuclear receptors have anti-cancer effects by inhibiting the activation of various oncoproteins. However, the involvement of nuclear receptors on the Hedgehog/Gli signalling pathway is poorly defined. In the present study we identified SHP (small heterodimer partner) as a nuclear receptor that decreased the expression of Gli target genes by repressing the transcriptional activity of Gli1. The inhibitory effect of SHP was associated with the inhibition of Gli1 nuclear localization via protein-protein interaction. Finally, SHP overexpression decreased the expression of Gli target genes and SHP knockdown increased the expression of these genes. Taken together, these results suggest that SHP can play a negative role in Hedgehog/Gli1 signalling.
Collapse
|
87
|
Meta-analysis of adrenocortical tumour genomics data: novel pathogenic pathways revealed. Oncogene 2010; 29:3163-72. [DOI: 10.1038/onc.2010.80] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
88
|
Röhrl C, Kaindl U, Koneczny I, Hudec X, Baron DM, König JS, Marian B. Peroxisome-proliferator-activated receptors γ and β/δ mediate vascular endothelial growth factor production in colorectal tumor cells. J Cancer Res Clin Oncol 2010; 137:29-39. [PMID: 20221637 DOI: 10.1007/s00432-010-0856-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 02/19/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND Peroxisome-proliferator-activated receptors (PPARs) are nuclear receptors for fatty acids and their derivatives. PPAR subtypes PPARγ and PPARβ/δ are suspected to modulate cancer development in the colon, but their exact role is still discussed controversially. METHODS The present study investigated the impact of PPARγ and PPARβ/δ on vascular endothelial growth factor (VEGF) and cyclooxygenase 2 (COX-2) expressions induced by synthetic and physiological agonists in the colorectal tumor cell lines SW480 and HT29 using reporter gene assays, qRT-PCR and ELISA. RESULTS Activation of both PPARγ and PPARβ/δ induced expression of VEGF mRNA and protein in a PPAR-dependent way. The PPARγ agonists ciglitazone and PGJ(2) were the most effective inducers with up to ninefold and threefold increases in VEGF mRNA in SW480 and HT29 cultures, respectively. VEGF secretion was doubled in both cell lines. The PPARβ/δ agonists GW501516 and PGI(2) caused stimulations of only 1.5-fold in both cell lines. In addition, all PPAR agonists induced COX-2 mRNA and secretion of the COX-2 product PGE(2) in HT29 cells. However, this effect was not blocked by knock-down of PPAR expression nor was it essential for VEGF expression as shown by the lack of effect of the COX-2 inhibitor SC236. CONCLUSION In summary, our results identify both PPARγ and PPARβ/δ as an alternative COX-independent mechanism of VEGF induction in colorectal tumor cells.
Collapse
Affiliation(s)
- Clemens Röhrl
- Department of Medicine 1, Clinic for Internal Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
89
|
Pozzi A, Popescu V, Yang S, Mei S, Shi M, Puolitaival SM, Caprioli RM, Capdevila JH. The anti-tumorigenic properties of peroxisomal proliferator-activated receptor alpha are arachidonic acid epoxygenase-mediated. J Biol Chem 2010; 285:12840-50. [PMID: 20178979 DOI: 10.1074/jbc.m109.081554] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prevalence and mortality make cancer a health challenge in need of effective and better tolerated therapeutic approaches, with tumor angiogenesis identified as a promising target for drug development. The epoxygenase products, the epoxyeicosatrienoic acids, are pro-angiogenic, and down-regulation of their biosynthesis by peroxisomal proliferator-activated receptor alpha (PPARalpha) ligands reduces tumor angiogenesis and growth. Endothelial cells lacking a Cyp2c44 epoxygenase, a PPARalpha target, show reduced proliferative and tubulogenic activities that are reversed by the enzyme's metabolites. In a mouse xenograft model of tumorigenesis, disruption of the host Cyp2c44 gene causes marked reductions in tumor volume, mass, and vascularization. The relevance of these studies to human cancer is indicated by the demonstration that: (a) activation of human PPARalpha down-regulates endothelial cell CYP2C9 epoxygenase expression and blunts proliferation and tubulogenesis, (b) in a PPARalpha-humanized mouse model, activation of the receptor inhibits tumor angiogenesis and growth, and (c) the CYP2C9 epoxygenase is expressed in the vasculature of human tumors. The identification of anti-angiogenic/anti-tumorigenic properties of PPARalpha points to a role for the receptor and its epoxygenase regulatory target in the pathophysiology of cancer, and for its ligands as candidates for the development of a new generation of safer and better tolerated anti-cancer drugs.
Collapse
Affiliation(s)
- Ambra Pozzi
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Peroxisome proliferator-activated receptor (PPAR): balance for survival in parasitic infections. J Biomed Biotechnol 2010; 2010:828951. [PMID: 20169106 PMCID: PMC2821783 DOI: 10.1155/2010/828951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/10/2009] [Indexed: 01/04/2023] Open
Abstract
Parasitic infections induce a magnitude of host responses. At the opposite ends of the spectrum are those that ensure the host's needs to eliminate the invaders and to minimize damage to its own tissues. This review analyzes how parasites would manipulate immunity by activating the immunosuppressive nuclear factor, peroxisome proliferator-activated receptors (PPARs) with type 2 cytokines and free fatty acids from arachidonic acid metabolism. PPARs limit the action of type 1 immunity, in which classically activated macrophages act through the production of proinflammatory signals, to spare the parasites. They also favor the development of alternately activated macrophages which control inflammation so the host would not be destroyed. Possibly, the nuclear factors hold a pivotal role in the establishment of chronic infection by delicately balancing the pro- and anti-inflammatory signaling mechanisms and their ligands may be used as combination therapeutics to limit host pathology.
Collapse
|
91
|
Abstract
Curcumin is the active ingredient of turmeric. It is widely used as a kitchen spice and food colorant throughout India, Asia and the Western world. Curcumin is a major constituent of curry powder, to which it imparts its characteristic yellow colour. For over 4000 years, curcumin has been used in traditional Asian and African medicine to treat a wide variety of ailments. There is a strong current public interest in naturally occurring plant-based remedies and dietary factors related to health and disease. Curcumin is non-toxic to human subjects at high doses. It is a complex molecule with multiple biological targets and different cellular effects. Recently, its molecular mechanisms of action have been extensively investigated. It has anti-inflammatory, antioxidant and anti-cancer properties. Under some circumstances its effects can be contradictory, with uncertain implications for human treatment. While more studies are warranted to further understand these contradictions, curcumin holds promise as a disease-modifying and chemopreventive agent. We review the evidence for the therapeutic potential of curcumin from in vitro studies, animal models and human clinical trials.
Collapse
|
92
|
Walser TC, Yanagawa J, Garon E, Lee JM, Dubinett SM. Tumor Microenvironment. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
93
|
Menendez JA. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1801:381-91. [PMID: 19782152 DOI: 10.1016/j.bbalip.2009.09.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 08/24/2009] [Accepted: 09/14/2009] [Indexed: 12/16/2022]
Abstract
Evolving evidence suggest that metabolic requirements for cell proliferation are identical in all normal and cancer cells. HER2 oncogene-overexpressors, a highly aggressive subtype of human cancer cells, constitute one of the best examples of how malignant cells maximize their ability to acquire and metabolize nutrients in a manner conductive to proliferation rather than efficient ATP production. HER2-overexpressors optimize their requirements of rapid cancer cell growth by fine-tuning a double [lipogenic/lipolytic]-edged metabolic sword. On the one edge, HER2 oncogene overexpression triggers redundant signaling cascades to ensure that all the major enzymes involved in de novo fatty acid (FA) synthesis will facilitate aerobic glycolysis instead of oxidative phosphorylation for energy production (Warburg effect). HER2 also establishes a positive bidirectional relationship with the key lipogenic enzyme Fatty Acid Synthase (FASN) that rapidly senses and respond to any disturbance in the flux of lipogenic substrates (e.g. NADPH and acetyl-CoA) and lipogenesis end-products (i.e. palmitate). On the other edge, HER2 overexpression arranges detoxifying mechanisms by upregulating PPARgamma, a well established positive regulator role of adipogenesis and lipid storage in cell types with active lipid metabolism. PPARgamma establishes a lipogenesis/lipolysis joining-point that enables HER2-positive cancer cells to avoid endogenous palmitate toxicity while securing palmitate into fat stores to avoid palmitate feedback on FASN functioning. The ability of HER2 to supercharge lipogenesis (by activating regulatory circuits that activate and fuel the lipogenic enzyme FASN) while averting lipotoxicity (by promoting conversion and storage of excess FAs to triglycerides in a PPARgamma-dependent manner) supports the notion that best adapted cancer phenotypes are addicted to oncogenic lipid metabolism for cell proliferation and survival. It is conceptually attractive to assume that we can crash HER2-driven rapid cell proliferation by inhibiting "motor refueling" (upon blockade of lipogenic enzymes), by losing the "lipolytic brake" (upon blockade of PPARgamma) and/or by sticking the "lipogenic gas pedal" (upon supplementation with dietary FAs).
Collapse
Affiliation(s)
- Javier A Menendez
- Catalan Institute of Oncology (ICO)-Health Services Division of Catalonia, Dr. Josep Trueta University Hospital of Girona, Girona, Catalonia, Spain.
| |
Collapse
|
94
|
Affiliation(s)
- Shine Chang
- Reprint requests should be sent to Shine Chang at 1155 Pressler – Unit 1365, Houston, Texas, 77030 or
| | - Candice L. Collie
- Department of Epidemiology, Division of Cancer Prevention & Population Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas,
| |
Collapse
|
95
|
Penza M, Jeremic M, Montani C, Unkila M, Caimi L, Mazzoleni G, Di Lorenzo D. Alternatives to animal experimentation for hormonal compounds research. GENES AND NUTRITION 2009; 4:165-72. [PMID: 19468777 DOI: 10.1007/s12263-009-0124-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 05/07/2009] [Indexed: 11/28/2022]
Abstract
Alternatives to animal testing and the identification of reliable methods that may decrease the need for animals are currently the subject of intense investigation worldwide. Alternative testing procedures are particularly important for synthetic and natural chemicals that exert their biological actions through binding nuclear receptors, called nuclear receptors-interacting compounds (NR-ICs), for which research is increasingly emphasizing the limits of several models in the accurate estimation of the physiological consequences of exposure to these compounds. In particular, estrogen receptor interacting compounds (ER-ICs) have a great impact on human health from the therapeutic, nutritional, and toxicological point of view due to the highly permissive nature of the estrogen receptors towards a large number of natural and synthetic compounds. Similar to in vitro systems, recently generated animal models (e.g., animal models generated for the study of estrogen receptor ligands) may fulfill the 3R principles: refine, reduce, and replace. If used correctly, NR-regulated models, such as reporter mice, xenopus, or zebrafish, and models obtained by somatic gene transfer in reporter systems, combined with imaging technologies, may contribute to strongly decreasing the overall number of animals required for NR-IC testing and research. With these models, flexible and highly standardized parameters and reporter marker quantification can be obtained. Here, we highlight the need for the substitution of currently used testing models with more appropriate ones that can reproduce the features and reactivity of specific mammalian target tissue/organs. We consider the promotion of this advancement a research priority bearing scientific, economic, social, and ethical relevance.
Collapse
Affiliation(s)
- M Penza
- Laboratory of Biotechnology, Department of Laboratory Medicine, Civic Hospital of Brescia, Piazzale Spedali Civili 1, A.O. Spedali Civili di Brescia, 25123, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
96
|
Liu JJ, Hu T, Wu XY, Wang CZ, Xu Y, Zhang Y, Xiao RZ, Lin DJ, Huang RW, Liu Q. Peroxisome Proliferator-Activated Receptor-γ Agonist Rosiglitazone– Induced Apoptosis in Leukemia K562 Cells and Its Mechanisms of Action. Int J Toxicol 2009; 28:123-31. [PMID: 19482836 DOI: 10.1177/1091581809335312] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigates the ability of a synthetic PPAR-γ agonist, rosiglitazone (RGZ), to induce apoptosis in leukemia K562 cells. The results revealed that RGZ (>40 mmol/L) inhibits the growth of K562 cells and causes apoptosis in a time and dose-dependent manner. Apoptosis is observed clearly by Hoechst 33258 staining. Western blotting analysis demonstrates the cleavage of caspase-3 zymogen protein with the appearance of its 17-kD subunit and a dose-dependent cleavage of poly (ADP-ribose) polymerase. Furthermore, RGZ treatment down-regulates anti-apoptotic protein Bcl-2 and up-regulates pro-apoptotic protein Bax in a dosedependent manner after the cells are treated for 48 hours. Telomerase activity is decreased concurrently in a dosedependent manner. We therefore conclude that RGZ induces apoptosis in K562 cells in vitro, and that RGZ-induced apoptosis in K562 cells is highly correlated with activation of caspase-3, decreasing telomerase activity, down-regulation of the anti-apoptotic protein Bcl-2, and up-regulation of the pro-apoptotic protein Bax.
Collapse
Affiliation(s)
- Jia-Jun Liu
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ting Hu
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xiang-Yuan Wu
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Chun-Zhi Wang
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yan Xu
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yong Zhang
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ruo-Zhi Xiao
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Dong-Jun Lin
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ren-Wei Huang
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Qiang Liu
- From the Third Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|