51
|
Isik OA, Cizmecioglu O. Rafting on the Plasma Membrane: Lipid Rafts in Signaling and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:87-108. [PMID: 36648750 DOI: 10.1007/5584_2022_759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The plasma membrane is not a uniform phospholipid bilayer; it has specialized membrane nano- or microdomains called lipid rafts. Lipid rafts are small cholesterol and sphingolipid-rich plasma membrane islands. Although their existence was long debated, their presence in the plasma membrane of living cells is now well accepted with the advent of super-resolution imaging techniques. It is interesting to note that lipid rafts function to compartmentalize receptors and their regulators and substantially modulate cellular signaling. In this review, we will examine the role of lipid rafts and caveolae-lipid raft-like microdomains with a distinct 3D morphology-in cellular signaling. Moreover, we will investigate how raft compartmentalized signaling regulates diverse physiological processes such as proliferation, apoptosis, immune signaling, and development. Also, the deregulation of lipid raft-mediated signaling during tumorigenesis and metastasis will be explored.
Collapse
Affiliation(s)
- Ozlem Aybuke Isik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
52
|
Anbari K, Amiri MM, Heidari-Soureshjani S, Sherwin CM, Kasiri K. A Systematic Review and Meta-analysis on the Role of Statins in the Prevention of Mortality Following Pancreatic Cancer. Anticancer Agents Med Chem 2023; 23:2073-2082. [PMID: 37622694 DOI: 10.2174/1871520623666230824095226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Pancreatic cancer (PC) is a type of cancer with a high incidence and case-fatality rate. OBJECTIVE This study aimed to evaluate the role of statins in preventing mortality following PC based on scientific evidence with systematic review and meta-analysis method. METHODS This meta-analysis considered studies published from 1980 till the end of 2022 in ISI Web of Science, Scopus, PubMed, Cochrane, Science Direct, Google Scholar, and Embase databases. Funnel diagrams and Begg's and Egger's tests were used to assess the publication bias. RESULTS In general, this meta-analysis has included 19 studies (13 cohort studies, 4 case-control, and 2 randomized clinical trials (RCTs)) and a total of 100,888 patients with PC. The risk of mortality of PC in statin users in total was 0.86 (95% CI: 0.80 - 0.92, P-value <0.001); in the case-control studies, it was equal to 0.53 (0.34-0.83); in the cohort studies, it was equal to 0.87 (0.82-0.92, P-value <0.001); in RCTs, it was equal to 1.19 (0.99-1.42, P-value <0.001); in studies with good quality score category, it was equal to 0.92 (0.86-0.99, P-value <0.001), and in articles of the moderate quality score category, it was equal to 0.73 (0.64-0.84, P-value <0.001). The results of statistical tests indicated the existence of publication bias (Begg's test (P-value = 0.002) and Egger's test (P-value = 0.004)). CONCLUSION Statins reduce the risk of mortality in patients with PC. However, no significant relation has been observed in RCTs. Therefore, it is necessary to be cautious in interpreting the results.
Collapse
Affiliation(s)
- Khatereh Anbari
- Department of Community Medicine, School of Medicine, Social Determinant of Health Research Center, Lorestan University of Medical Science, Khorramabad, Iran
| | - Mehdi Mohammadian Amiri
- Department of Emergency Medicine, School of Medicine, Babol University of Medical Sciences, Mazandaran, Iran
| | | | - Catherine Mt Sherwin
- Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital, One Children's Plaza, Dayton, Ohio, USA
| | - Karamali Kasiri
- Department of Pediatrics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
53
|
Subedi L, Pandey P, Khadka B, Shim JH, Cho SS, Kweon S, Byun Y, Kim KT, Park JW. Enhancement of the anticancer effect of atorvastatin-loaded nanoemulsions by improving oral absorption via multivalent intestinal transporter-targeting lipids. Drug Deliv 2022; 29:3397-3413. [DOI: 10.1080/10717544.2022.2149896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Prashant Pandey
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seho Kweon
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|
54
|
Chen TC, Huang CW, Lo CY, Chen CN, Chang SF, Chen YY. Suppression of SREBP-1 Expression by Simvastatin Decreases Visfatin-Induced Chemoresistance to Sunitinib in Human Renal Carcinoma 786-O Cells. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111890. [PMID: 36431025 PMCID: PMC9695258 DOI: 10.3390/life12111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
The resistance of renal cell carcinoma (RCC) to sunitinib impedes the success of chemotherapy in cancer treatment. Although several sunitinib resistance mechanisms have been proposed, little is known concerning the impact of obesity and adipokines in RCC cells. The upregulation of sterol-regulatory element-binding protein-1 (SREBP-1) has been reported to modulate the progression of tumor cells. The present study investigated the effect of visfatin on sunitinib-induced cytotoxicity in RCC cells through SREBP-1 expression. We found that visfatin-induced Akt and p70S6K activation increased SREBP-1 expression in 786-O cells. The visfatin-induced SREBP-1 mRNA and protein levels were attenuated through the inactivation of Akt and p70S6K by pharmacological inhibitors. In addition, the SREBP-1 knockdown using siRNA enhanced the cytotoxic effects of sunitinib. Our results also revealed the roles of simvastatin in attenuating the effects of visfatin on 786-O cells by inhibiting the production of reactive oxygen species. In particular, simvastatin co-treatment increased the cell cytotoxicity of sunitinib in visfatin-treated 786-O cells, which were associated with down-regulation of SREBP-1 expression. Our results suggest an important role of SREBP-1 in visfatin-induced drug resistance of RCC cells to sunitinib. The cytotoxic mechanism of simvastatin on RCC cells may provide a new strategy to improve therapeutic outcomes for the RCC treatment.
Collapse
Affiliation(s)
- Te-Chuan Chen
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chen-Wei Huang
- Department of Food Science, National Chiayi University, Chiayi 600, Taiwan
| | - Chih-Yu Lo
- Department of Food Science, National Chiayi University, Chiayi 600, Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 613, Taiwan
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
- Correspondence:
| |
Collapse
|
55
|
Ediriweera MK. Use of cholesterol metabolism for anti-cancer strategies. Drug Discov Today 2022; 27:103347. [PMID: 36087905 DOI: 10.1016/j.drudis.2022.103347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
Abstract
Irregularities in cholesterol metabolism occur in a range of human cancers. Cholesterol precursors and derivatives support tumorigenesis and weaken immune responses. Intriguing preclinical and clinical findings demonstrate that cholesterol biosynthesis inhibition achieved by targeting major events and metabolites in cholesterol metabolism is an ideal anti-tumor strategy. Investigations addressing the effects of β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase (HMGCR), 2,3-oxidosqualene cyclase (OSC), squalene synthase (SQS), liver X receptors (LXR), and cholesterol trafficking and esterification inhibition on cancer progression have shown encouraging results. Notably, manipulation of cholesterol metabolism strengthens the function of immune cells in the tumor microenvironment (TME). In this review, I discuss the role of cholesterol metabolism in cancer progression and the latest research related to cholesterol metabolism-based anti-cancer therapies and intend to bring this stylish biochemistry topic to the Sri Lankan research landscape.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| |
Collapse
|
56
|
Jayalath VH, Clark R, Lajkosz K, Fazelzad R, Fleshner NE, Klotz LH, Hamilton RJ. Statin Use and Survival Among Men Receiving Androgen-Ablative Therapies for Advanced Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5:e2242676. [PMID: 36449294 PMCID: PMC9713611 DOI: 10.1001/jamanetworkopen.2022.42676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
IMPORTANCE Epidemiological evidence supports a role for statins in improving survival in advanced prostate cancer, particularly among men receiving androgen-ablative therapies. OBJECTIVE To study the association between statin use and survival among men with prostate cancer receiving androgen deprivation therapy (ADT) or androgen receptor axis-targeted therapies (ARATs). DATA SOURCES This systemic review and meta-analysis used sources from MEDLINE, EMBASE, Epub Ahead of Print, Cochrane Clinical Trials, Cochrane Systematic Reviews, and Web of Science from inception to September 6, 2022. STUDY SELECTION Observational studies reporting associations of concurrent statin use and survival outcomes (in hazard ratios [HRs]). DATA EXTRACTION AND SYNTHESIS Two authors independently abstracted all data. Summary estimates pooled multivariable HRs with 95% CIs using the generic inverse variance method with random-effects modeling. A priori specified subgroup and sensitivity analyses were undertaken, and heterogeneity, study quality, and publication bias were evaluated. Confidence in the evidence was assessed using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) approach. MAIN OUTCOMES AND MEASURES Overall mortality and prostate cancer-specific mortality (PCSM). RESULTS Twenty-five cohorts of 119 878 men (65 488 statin users [55%]) with more than 74 416 deaths were included. Concurrent statin use was associated with a 27% reduction in the risk of overall mortality (HR, 0.73 [95% CI, 0.66-0.82]; I2 = 83%) and a 35% reduction in the risk of PCSM (HR, 0.65 [95% CI, 0.58-0.73]; I2 = 74%), with substantial heterogeneity in both estimates. Subgroup analyses identified a PCSM advantage associated with statins for men receiving ARATs compared with ADT alone (HR, 0.40 [95% CI, 0.30-0.55] vs 0.68 [95% CI, 0.60-0.76]; P = .002 for difference). Confidence in the evidence was rated low for both outcomes. CONCLUSIONS AND RELEVANCE The findings of this meta-analysis show that concurrent statin use was associated with reduced overall mortality and PCSM among men receiving androgen-ablative therapies for advanced prostate cancer. These findings are limited by the observational nature of the data and residual unexplained interstudy heterogeneity. Randomized clinical trials are warranted to validate these results.
Collapse
Affiliation(s)
- Viranda H. Jayalath
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Roderick Clark
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Women’s College Research Institute, Toronto, Ontario, Canada
- Division of Surgical Oncology-Urology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Katherine Lajkosz
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Rouhi Fazelzad
- Library Services, University Health Network, Toronto, Ontario, Canada
| | - Neil E. Fleshner
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Surgical Oncology-Urology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Laurence H. Klotz
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Urology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Robert J. Hamilton
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Surgical Oncology-Urology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| |
Collapse
|
57
|
van Leeuwen JE, Ba-Alawi W, Branchard E, Cruickshank J, Schormann W, Longo J, Silvester J, Gross PL, Andrews DW, Cescon DW, Haibe-Kains B, Penn LZ, Gendoo DMA. Computational pharmacogenomic screen identifies drugs that potentiate the anti-breast cancer activity of statins. Nat Commun 2022; 13:6323. [PMID: 36280687 PMCID: PMC9592602 DOI: 10.1038/s41467-022-33144-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/02/2022] [Indexed: 12/25/2022] Open
Abstract
Statins, a family of FDA-approved cholesterol-lowering drugs that inhibit the rate-limiting enzyme of the mevalonate metabolic pathway, have demonstrated anticancer activity. Evidence shows that dipyridamole potentiates statin-induced cancer cell death by blocking a restorative feedback loop triggered by statin treatment. Leveraging this knowledge, we develop an integrative pharmacogenomics pipeline to identify compounds similar to dipyridamole at the level of drug structure, cell sensitivity and molecular perturbation. To overcome the complex polypharmacology of dipyridamole, we focus our pharmacogenomics pipeline on mevalonate pathway genes, which we name mevalonate drug-network fusion (MVA-DNF). We validate top-ranked compounds, nelfinavir and honokiol, and identify that low expression of the canonical epithelial cell marker, E-cadherin, is associated with statin-compound synergy. Analysis of remaining prioritized hits led to the validation of additional compounds, clotrimazole and vemurafenib. Thus, our computational pharmacogenomic approach identifies actionable compounds with pathway-specific activities.
Collapse
Affiliation(s)
- Jenna E. van Leeuwen
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Wail Ba-Alawi
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Emily Branchard
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Jennifer Cruickshank
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Wiebke Schormann
- grid.17063.330000 0001 2157 2938Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5 Canada
| | - Joseph Longo
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Jennifer Silvester
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Peter L. Gross
- grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8 Canada
| | - David W. Andrews
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON M4N 3M5 Canada
| | - David W. Cescon
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 1A1 Canada
| | - Benjamin Haibe-Kains
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto, ON M5S 3G4 Canada ,grid.419890.d0000 0004 0626 690XOntario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, ON M5G 0A3 Canada
| | - Linda Z. Penn
- grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7 Canada ,grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Deena M. A. Gendoo
- grid.6572.60000 0004 1936 7486Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, Birmingham, B15 2TT UK ,grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
58
|
Silver A, Feier D, Ghosh T, Rahman M, Huang J, Sarkisian MR, Deleyrolle LP. Heterogeneity of glioblastoma stem cells in the context of the immune microenvironment and geospatial organization. Front Oncol 2022; 12:1022716. [PMID: 36338705 PMCID: PMC9628999 DOI: 10.3389/fonc.2022.1022716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma (GBM) is an extremely aggressive and incurable primary brain tumor with a 10-year survival of just 0.71%. Cancer stem cells (CSCs) are thought to seed GBM's inevitable recurrence by evading standard of care treatment, which combines surgical resection, radiotherapy, and chemotherapy, contributing to this grim prognosis. Effective targeting of CSCs could result in insights into GBM treatment resistance and development of novel treatment paradigms. There is a major ongoing effort to characterize CSCs, understand their interactions with the tumor microenvironment, and identify ways to eliminate them. This review discusses the diversity of CSC lineages present in GBM and how this glioma stem cell (GSC) mosaicism drives global intratumoral heterogeneity constituted by complex and spatially distinct local microenvironments. We review how a tumor's diverse CSC populations orchestrate and interact with the environment, especially the immune landscape. We also discuss how to map this intricate GBM ecosystem through the lens of metabolism and immunology to find vulnerabilities and new ways to disrupt the equilibrium of the system to achieve improved disease outcome.
Collapse
Affiliation(s)
- Aryeh Silver
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Diana Feier
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Tanya Ghosh
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Jianping Huang
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Matthew R. Sarkisian
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Loic P. Deleyrolle
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,*Correspondence: Loic P. Deleyrolle,
| |
Collapse
|
59
|
Farhan HA, Yaseen IF, Alomar M, Lenihan D, Dent S, Lyon AR. Global pattern of cardiovascular disease management in patients with cancer and impact of COVID-19 on drug selection: IRAQ—IC-OS survey-based study. Front Cardiovasc Med 2022; 9:979631. [PMID: 36211547 PMCID: PMC9532627 DOI: 10.3389/fcvm.2022.979631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundRegional variations in cardiovascular disease (CVD) and CVD management are well known. However, there is limited information on geographical variations in the discipline of Cardio-Oncology, including both the nature of CVD in patients with cancer and its management. Furthermore, during the recent COVID-19 pandemic, CV care for patients was disrupted resulting in an unknown impact on cardio-oncology services.ObjectiveThe aim of this study was to identify the regional variations in the management of CVD among patients with cancer and the impact of the COVID-19 pandemic on the selection of cardiovascular drugs in cardio-oncology.MethodsAn online survey was conducted by the Iraq Chapter of the International Cardio-Oncology Society (IC-OS). The survey was shared with cardiologists and oncologists in all seven continents to identify whether regional variations exist in cardio-oncology daily practice.ResultsFrom April to July 2021, 140 participants responded to the survey, including cardiologists (72.9%) and oncologists (27.1%). Most of the respondents were from the Middle East (26.4%), North America (25%), Latin America and the Caribbean (25%), and Europe (20.7%). Baseline CV risk assessment in patients with cancer using the HFA/IC-OS score was reported in 75.7% of respondents (78.4% cardiologists and 68.4% oncologists). Hypertension was the most common CVD treated by the survey respondents globally (52.1%) unlike in Europe where heart failure was the most prominent CVD (51.7%). The blood pressure cutoff value to initiate hypertension management is >140/90 mmHg globally (72.9%), but in North America (48.6%) it was >130/80 mmHg. In the Middle East, 43.2% of respondents do not use cardioprotective medication. During the COVID-19 pandemic, 10.7% of respondents changed their practice, such as switching from prescribing ACEI to ARB. Apixaban is the main anticoagulant used in patients with cancer (32.9%); however, in cancer patients with COVID-19 infection, the majority used enoxaparin (31.4%).ConclusionMore than three-quarters of cardiologists and oncologists responding to the survey are using HFA/IC-OS proformas. The survey showed regional variations in the management of CVD on different continents. The use of cardioprotective agents was limited in some regions including the Middle East. COVID-19 pandemic impacted daily practice on the selection and switching of cardiovascular drugs including ACEI/ARB and the choice of anticoagulants.
Collapse
Affiliation(s)
- Hasan Ali Farhan
- Scientific Council of Cardiology, Iraqi Board for Medical Specializations, Baghdad, Iraq
- Baghdad Heart Center, Baghdad Teaching Hospital, Medical City, Baghdad, Iraq
| | - Israa Fadhil Yaseen
- Baghdad Heart Center, Baghdad Teaching Hospital, Medical City, Baghdad, Iraq
- *Correspondence: Israa Fadhil Yaseen
| | - Mohammed Alomar
- University of South Florida, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Daniel Lenihan
- International Cardio-Oncology Society, Tampa, FL, United States
| | - Susan Dent
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, United States
| | - Alexander R. Lyon
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- Cardio-Oncology Service, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
60
|
Targeting Mutant p53 for Cancer Treatment: Moving Closer to Clinical Use? Cancers (Basel) 2022; 14:cancers14184499. [PMID: 36139658 PMCID: PMC9496879 DOI: 10.3390/cancers14184499] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is largely caused by genetic alterations such as mutations in a group of genes known as cancer driver genes. Many of the key advances in cancer treatment in recent years have involved blocking these driver genes using a new generation of anti-cancer drugs. Although p53 is the most frequently mutated gene in human cancers, historically, it has proved difficult to develop drugs against it. However, recently, several new drugs have become available for neutralizing the cancer-promoting effects of mutant p53. The aim of this article is to discuss the most promising of these drugs, especially those that are being investigated in clinical trials. Abstract Mutant p53 is one of the most attractive targets for new anti-cancer drugs. Although traditionally regarded as difficult to drug, several new strategies have recently become available for targeting the mutant protein. One of the most promising of these involves the use of low molecular weight compounds that promote refolding and reactivation of mutant p53 to its wild-type form. Several such reactivating drugs are currently undergoing evaluation in clinical trials, including eprenetapopt (APR-246), COTI-2, arsenic trioxide and PC14586. Of these, the most clinically advanced for targeting mutant p53 is eprenetapopt which has completed phase I, II and III clinical trials, the latter in patients with mutant TP53 myelodysplastic syndrome. Although no data on clinical efficacy are currently available for eprenetapopt, preliminary results suggest that the drug is relatively well tolerated. Other strategies for targeting mutant p53 that have progressed to clinical trials involve the use of drugs promoting degradation of the mutant protein and exploiting the mutant protein for the development of anti-cancer vaccines. With all of these ongoing trials, we should soon know if targeting mutant p53 can be used for cancer treatment. If any of these trials show clinical efficacy, it may be a transformative development for the treatment of patients with cancer since mutant p53 is so prevalent in this disease.
Collapse
|
61
|
Yin X, Xu R, Song J, Ruze R, Chen Y, Wang C, Xu Q. Lipid metabolism in pancreatic cancer: emerging roles and potential targets. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1234-1256. [PMID: 36107801 PMCID: PMC9759769 DOI: 10.1002/cac2.12360] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/05/2022] [Accepted: 08/05/2022] [Indexed: 01/25/2023]
Abstract
Pancreatic cancer is one of the most serious health issues in developed and developing countries, with a 5-year overall survival rate currently <9%. Patients typically present with advanced disease due to vague symptoms or lack of screening for early cancer detection. Surgical resection represents the only chance for cure, but treatment options are limited for advanced diseases, such as distant metastatic or locally progressive tumors. Although adjuvant chemotherapy has improved long-term outcomes in advanced cancer patients, its response rate is low. So, exploring other new treatments is urgent. In recent years, increasing evidence has shown that lipid metabolism can support tumorigenesis and disease progression as well as treatment resistance through enhanced lipid synthesis, storage, and catabolism. Therefore, a better understanding of lipid metabolism networks may provide novel and promising strategies for early diagnosis, prognosis estimation, and targeted therapy for pancreatic cancer patients. In this review, we first enumerate and discuss current knowledge about the advances made in understanding the regulation of lipid metabolism in pancreatic cancer. In addition, we summarize preclinical studies and clinical trials with drugs targeting lipid metabolic systems in pancreatic cancer. Finally, we highlight the challenges and opportunities for targeting lipid metabolism pathways through precision therapies in pancreatic cancer.
Collapse
Affiliation(s)
- Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijing100023P. R China
| |
Collapse
|
62
|
Preta G. Role of Lactone and Acid Forms in the Pleiotropic Effects of Statins. Pharmaceutics 2022; 14:pharmaceutics14091899. [PMID: 36145647 PMCID: PMC9503516 DOI: 10.3390/pharmaceutics14091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Giulio Preta
- Institute of Biochemistry, Life Science Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
63
|
MYCN and Metabolic Reprogramming in Neuroblastoma. Cancers (Basel) 2022; 14:cancers14174113. [PMID: 36077650 PMCID: PMC9455056 DOI: 10.3390/cancers14174113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroblastoma is a pediatric cancer responsible for approximately 15% of all childhood cancer deaths. Aberrant MYCN activation, as a result of genomic MYCN amplification, is a major driver of high-risk neuroblastoma, which has an overall survival rate of less than 50%, despite the best treatments currently available. Metabolic reprogramming is an integral part of the growth-promoting program driven by MYCN, which fuels cell growth and proliferation by increasing the uptake and catabolism of nutrients, biosynthesis of macromolecules, and production of energy. This reprogramming process also generates metabolic vulnerabilities that can be exploited for therapy. In this review, we present our current understanding of metabolic reprogramming in neuroblastoma, focusing on transcriptional regulation as a key mechanism in driving the reprogramming process. We also highlight some important areas that need to be explored for the successful development of metabolism-based therapy against high-risk neuroblastoma.
Collapse
|
64
|
Kaulanjan K, Lavigne D, Saad F, Karakiewicz PI, Flammia RS, Kluth LA, Mandel P, Chun FKH, Taussky D, Hoeh B. Impact of Statin Use on Localized Prostate Cancer Outcomes after Radiation Therapy: Long-Term Follow-Up. Cancers (Basel) 2022; 14:cancers14153606. [PMID: 35892865 PMCID: PMC9331711 DOI: 10.3390/cancers14153606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Statins represent a promising class of agents to improve clinical outcomes of prostate cancer patients treated with radiotherapy, but the results of numerous studies are contradictory. We aimed to assess the impact of statin use on biochemical recurrence in a large database of patients of different risk groups undergoing different modalities of radiation therapy. We evaluated 3555 patients treated with curative external beam radiotherapy, low-dose-rate seed brachytherapy, or external beam radiotherapy plus high-dose-rate brachytherapy. We found no improvement in biochemical recurrence-free survival in statin users, regardless of radiotherapy modality. Our study underlines the need to search for biomarkers that predict an additive effect of statins and determine which patients treated with radiotherapy may benefit from statins as an anticancer drug. Abstract The impact of statin use on localized prostate cancer (PCa) remains controversial, especially for patients treated with radiation therapy. We assessed the impact of statin use on biochemical recurrence (BCR) in patients treated for PCa with different modalities of radiation therapy. We evaluated 3555 patients undergoing radiation therapy between January 2001 and January 2022. The impact of statin use on BCR was analyzed for three treatment groups: external beam radiotherapy (EBRT), low-dose-rate seed brachytherapy (LDR), and EBRT plus high-dose-rate brachytherapy (EBRT + HDR). Median follow-up was 52 months among 1208 patients treated with EBRT, 1679 patients treated with LDR, and 599 patients treated with EBRT + HDR. A total of 1544 (43%) patients were taking a statin at the time of treatment, and 497 (14%) patients were in the D’Amico high-risk group. Only intermediate-risk patients treated with LDR fared better with statin use in univariate analysis (p = 0.025). This association was not significant in multivariate analysis (HR 0.44, 95% CI 0.18–1.10, p = 0.06). Statin use was not associated with a reduced risk of BCR in patients treated with radiation therapy. In the era of precision medicine, further investigation is needed to assess the benefit of statins in well-defined patients.
Collapse
Affiliation(s)
- Kevin Kaulanjan
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada;
- Department of Urology, Université des Antilles, CHU de Guadeloupe, 97110 Pointe-à-Pitre, France
- Correspondence:
| | - Danny Lavigne
- Department of Radiation Oncology, Centre hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.L.); (D.T.)
| | - Fred Saad
- Institut du Cancer de Montréal (ICM), Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada;
- Department of Surgery, Division of Urology, Centre hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada;
| | - Pierre I. Karakiewicz
- Department of Surgery, Division of Urology, Centre hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada;
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, QC H2X 0A9, Canada; (R.S.F.); (B.H.)
| | - Rocco Simone Flammia
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, QC H2X 0A9, Canada; (R.S.F.); (B.H.)
- Department of Maternal-Child and Urological Sciences, Sapienza Rome University, Policlinico Umberto I Hospital, 00148 Rome, Italy
| | - Luis Alex Kluth
- Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60318 Frankfurt am Main, Germany; (L.A.K.); (P.M.); (F.K.-H.C.)
| | - Philipp Mandel
- Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60318 Frankfurt am Main, Germany; (L.A.K.); (P.M.); (F.K.-H.C.)
| | - Felix K. -H. Chun
- Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60318 Frankfurt am Main, Germany; (L.A.K.); (P.M.); (F.K.-H.C.)
| | - Daniel Taussky
- Department of Radiation Oncology, Centre hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.L.); (D.T.)
| | - Benedikt Hoeh
- Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, QC H2X 0A9, Canada; (R.S.F.); (B.H.)
- Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60318 Frankfurt am Main, Germany; (L.A.K.); (P.M.); (F.K.-H.C.)
| |
Collapse
|
65
|
Santoni M, Monteiro FSM, Massari F, Abahssain H, Aurilio G, Molina-Cerrillo J, Myint ZW, Zabalza IO, Battelli N, Grande E. Statins and renal cell carcinoma: Antitumor activity and influence on cancer risk and survival. Crit Rev Oncol Hematol 2022; 176:103731. [PMID: 35718065 DOI: 10.1016/j.critrevonc.2022.103731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Statins are commonly prescribed to reduce plasma cholesterol levels and risk of cardiovascular events and mortality. Statin exposure may have cancer-preventive properties in some solid tumors, including Renal Cell Carcinoma (RCC). Emerging evidences show that statins can inhibit RCC cell growth by inducing cell cycle arrest and apoptosis in a dose- and time-dependent manner. In addition, statins inhibit the phosphorylation of AKT, mammalian target of rapamycin (mTOR), and ERK leading to reduced motility of RCC cells. Interestingly, the potential impact of concomitant statin intake has been recently evaluated in RCC patients treated by targeted therapy or immunotherapy. In this review, we illustrate the most recent data on the preclinical activity of statins in Renal Cell Carcinoma models and discuss the impact of their use on the prevention and survival of patients affected by this tumor.
Collapse
Affiliation(s)
- Matteo Santoni
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100 Macerata, Italy.
| | - Fernando Sabino M Monteiro
- Latin American Cooperative Oncology Group - LACOG, Brazil; Oncology and Hematology Department, Hospital Santa Lucia, SHLS 716 Cj. C, Brasília, DF 70390-700, Brazil
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni - 15, Bologna, Italy
| | - Halima Abahssain
- Medicine and Pharmacy Faculty, National Institute of Oncology, Medical Oncology Unit, Mohamed V University, Rabat, Morocco
| | - Gaetano Aurilio
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Zin W Myint
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0293, USA; Division of Medical Oncology, University of Kentucky, Lexington, KY, USA
| | | | - Nicola Battelli
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100 Macerata, Italy
| | - Enrique Grande
- Department of Medical Oncology, MD Anderson Cancer Center Madrid, Madrid, Spain
| |
Collapse
|
66
|
Zha S, Yu X, Wang X, Gu Y, Tan Y, Lu Y, Yao Z. Topical Simvastatin Improves Lesions of Diffuse Normolipemic Plane Xanthoma by Inhibiting Foam Cell Pyroptosis. Front Immunol 2022; 13:865704. [PMID: 35619689 PMCID: PMC9128406 DOI: 10.3389/fimmu.2022.865704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
Xanthoma pathogenesis is speculated to be associated with oxidized low-density lipoprotein (ox-LDL) deposition, although this remains unclear. Most patients with diffuse plane xanthomas present elevated blood lipid levels, and they benefit from treatment with oral lipid-lowering agents. However, there is no available treatment for diffuse normolipemic plane xanthoma (DNPX). In this study, for the first time, we used a topical simvastatin ointment to treat DNPX in three pediatric patients and observed favorable results. Immunofluorescence staining showed that the pyroptotic pathway was significantly attenuated after topical simvastatin application on the skin lesions of the patients. As ox-LDL deposition was observed in the lesions, we used ox-LDL to build a foam cell model in vitro. In the ox-LDL-induced foam cell formation, simvastatin consistently inhibited pyroptotic activation and inflammation in the macrophages. Additionally, the overexpression of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) or 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase (HMGCR), the known target of statins, reversed the effects of simvastatin. Moreover, gasdermin D (GSDMD) or HMGCR knockdown inhibited ox-LDL-induced pyroptosis. Furthermore, the immunoprecipitation results confirmed the interaction between NLRP3 and HMGCR, and this interaction was inhibited by simvastatin. In conclusion, we demonstrated that topical application of simvastatin ointment might be a promising treatment for DNPX skin lesions and that this therapeutic effect may be related to pyroptosis inhibition via HMGCR inhibition in foam cells. Moreover, xanthoma pathogenesis might be associated with ox-LDL deposition and inflammation.
Collapse
Affiliation(s)
- Siyuan Zha
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Yu
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Wang
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Gu
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidong Tan
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lu
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
67
|
Targeting of Mevalonate-Isoprenoid Pathway in Acute Myeloid Leukemia Cells by Bisphosphonate Drugs. Biomedicines 2022; 10:biomedicines10051146. [PMID: 35625883 PMCID: PMC9138592 DOI: 10.3390/biomedicines10051146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Metabolic reprogramming represents a hallmark of tumorigenesis to sustain survival in harsh conditions, rapid growth and metastasis in order to resist to cancer therapies. These metabolic alterations involve glucose metabolism, known as the Warburg effect, increased glutaminolysis and enhanced amino acid and lipid metabolism, especially the cholesterol biosynthesis pathway known as the mevalonate pathway and these are upregulated in several cancer types, including acute myeloid leukemia (AML). In particular, it was demonstrated that the mevalonate pathway has a pivotal role in cellular transformation. Therefore, targeting this biochemical process with drugs such as statins represents a promising therapeutic strategy to be combined with other anticancer treatments. In the last decade, several studies have revealed that amino-bisphosphonates (BP), primarily used for bone fragility disorders, also exhibit potential anti-cancer activity in leukemic cells, as well as in patients with symptomatic multiple myeloma. Indeed, these compounds inhibit the farnesyl pyrophosphate synthase, a key enzyme in the mevalonate pathway, reducing isoprenoid formation of farnesyl pyrophosphate and geranylgeranyl pyrophosphate. This, in turn, inhibits the prenylation of small Guanosine Triphosphate-binding proteins, such as Ras, Rho, Rac, Rab, which are essential for regulating cell survival membrane ruffling and trafficking, interfering with cancer key signaling events involved in clonal expansion and maturation block of progenitor cells in myeloid hematological malignancies. Thus, in this review, we discuss the recent advancements about bisphosphonates’ effects, especially zoledronate, analyzing the biochemical mechanisms and anti-tumor effects on AML model systems. Future studies will be oriented to investigate the clinical relevance and significance of BP treatment in AML, representing an attractive therapeutic strategy that could be integrated into chemotherapy.
Collapse
|
68
|
Buchou C, Laud-Duval K, van der Ent W, Grossetête S, Zaidi S, Gentric G, Corbé M, Müller K, Del Nery E, Surdez D, Delattre O. Upregulation of the Mevalonate Pathway through EWSR1-FLI1/EGR2 Regulatory Axis Confers Ewing Cells Exquisite Sensitivity to Statins. Cancers (Basel) 2022; 14:2327. [PMID: 35565457 PMCID: PMC9100622 DOI: 10.3390/cancers14092327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Ewing sarcoma (EwS) is an aggressive primary bone cancer in children and young adults characterized by oncogenic fusions between genes encoding FET-RNA-binding proteins and ETS transcription factors, the most frequent fusion being EWSR1-FLI1. We show that EGR2, an Ewing-susceptibility gene and an essential direct target of EWSR1-FLI1, directly regulates the transcription of genes encoding key enzymes of the mevalonate (MVA) pathway. Consequently, Ewing sarcoma is one of the tumors that expresses the highest levels of mevalonate pathway genes. Moreover, genome-wide screens indicate that MVA pathway genes constitute major dependencies of Ewing cells. Accordingly, the statin inhibitors of HMG-CoA-reductase, a rate-limiting enzyme of the MVA pathway, demonstrate cytotoxicity in EwS. Statins induce increased ROS and lipid peroxidation levels, as well as decreased membrane localization of prenylated proteins, such as small GTP proteins. These metabolic effects lead to an alteration in the dynamics of S-phase progression and to apoptosis. Statin-induced effects can be rescued by downstream products of the MVA pathway. Finally, we further show that statins impair tumor growth in different Ewing PDX models. Altogether, the data show that statins, which are off-patent, well-tolerated, and inexpensive compounds, should be strongly considered in the therapeutic arsenal against this deadly childhood disease.
Collapse
Affiliation(s)
- Charlie Buchou
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Karine Laud-Duval
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Wietske van der Ent
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Sandrine Grossetête
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| | - Géraldine Gentric
- INSERM U830, Équipe Labellisée LNCC, Stress and Cancer Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France;
| | - Maxime Corbé
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Kévin Müller
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Elaine Del Nery
- Department of Translational Research, The Biophenics High-Content Screening Laboratory, PSL Research University, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (M.C.); (K.M.); (E.D.N.)
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
- Balgrist University Hospital, University of Zurich, Zurich, Forchstrasse 340, 8008 Zürich, Switzerland
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity & Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, 26 rue d’ULM, 75005 Paris, France; (C.B.); (K.L.-D.); (W.v.d.E.); (S.G.); (S.Z.); (D.S.)
| |
Collapse
|
69
|
Takada K, Shimokawa M, Takamori S, Shimamatsu S, Hirai F, Tagawa T, Okamoto T, Hamatake M, Tsuchiya-Kawano Y, Otsubo K, Inoue K, Yoneshima Y, Tanaka K, Okamoto I, Nakanishi Y, Mori M. A propensity score-matched analysis of the impact of statin therapy on the outcomes of patients with non-small-cell lung cancer receiving anti-PD-1 monotherapy: a multicenter retrospective study. BMC Cancer 2022; 22:503. [PMID: 35524214 PMCID: PMC9074359 DOI: 10.1186/s12885-022-09385-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Many studies have recently reported the association of concomitant medications with the response and survival in patients with non-small-cell lung cancer (NSCLC) treated with cancer immunotherapy. However, the clinical impact of statin therapy on the outcome of cancer immunotherapy in patients with NSCLC is poorly understood. METHODS In our database, we retrospectively identified and enrolled 390 patients with advanced or recurrent NSCLC who were treated with anti-programmed cell death-1 (PD-1) monotherapy in clinical practice between January 2016 and December 2019 at 3 medical centers in Japan to examine the clinical impact of statin therapy on the survival of patients with NSCLC receiving anti-PD-1 monotherapy. A propensity score-matched analysis was conducted to minimize the bias arising from the patients' backgrounds. RESULTS The Kaplan-Meier curves of the propensity score-matched cohort showed that the overall survival (OS), but not the progression-free survival (PFS), was significantly longer in patients receiving statin therapy. However, a Cox regression analysis in the propensity score-matched cohort revealed that statin therapy was not an independent favorable prognostic factor, although it tended to be correlated with a favorable outcome. CONCLUSIONS Statin therapy may be a combination tool for cancer immunotherapy in patients with NSCLC. These findings should be validated in further prospective studies with larger sample sizes.
Collapse
Affiliation(s)
- Kazuki Takada
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan.
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.,Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka, 811-1395, Japan
| | - Shinkichi Takamori
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka, 811-1395, Japan.
| | - Shinichiro Shimamatsu
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Fumihiko Hirai
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka, 811-1395, Japan
| | - Motoharu Hamatake
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Yuko Tsuchiya-Kawano
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Kohei Otsubo
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Koji Inoue
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Yasuto Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoichi Nakanishi
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
70
|
Guo C, Wan R, He Y, Lin SH, Cao J, Qiu Y, Zhang T, Zhao Q, Niu Y, Jin Y, Huang HY, Wang X, Tan L, Thomas RK, Zhang H, Chen L, Wong KK, Hu L, Ji H. Therapeutic targeting of the mevalonate-geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer. NATURE CANCER 2022; 3:614-628. [PMID: 35449308 DOI: 10.1038/s43018-022-00358-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Small cell lung cancer (SCLC) lacks effective treatments to overcome chemoresistance. Here we established multiple human chemoresistant xenograft models through long-term intermittent chemotherapy, mimicking clinically relevant therapeutic settings. We show that chemoresistant SCLC undergoes metabolic reprogramming relying on the mevalonate (MVA)-geranylgeranyl diphosphate (GGPP) pathway, which can be targeted using clinically approved statins. Mechanistically, statins induce oxidative stress accumulation and apoptosis through the GGPP synthase 1 (GGPS1)-RAB7A-autophagy axis. Statin treatment overcomes both intrinsic and acquired SCLC chemoresistance in vivo across different SCLC PDX models bearing high GGPS1 levels. Moreover, we show that GGPS1 expression is negatively associated with survival in patients with SCLC. Finally, we demonstrate that combined statin and chemotherapy treatment resulted in durable responses in three patients with SCLC who relapsed from first-line chemotherapy. Collectively, these data uncover the MVA-GGPP pathway as a metabolic vulnerability in SCLC and identify statins as a potentially effective treatment to overcome chemoresistance.
Collapse
Affiliation(s)
- Chenchen Guo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruijie Wan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shu-Hai Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jiayu Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tengfei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yujia Niu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xue Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Roman K Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Pathology, Medical Faculty, University Hospital Cologne, Cologne, Germany
- DKFZ, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
71
|
Lim SA, Su W, Chapman NM, Chi H. Lipid metabolism in T cell signaling and function. Nat Chem Biol 2022; 18:470-481. [PMID: 35484263 PMCID: PMC11103273 DOI: 10.1038/s41589-022-01017-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/17/2022] [Indexed: 12/19/2022]
Abstract
T cells orchestrate adaptive immunity against pathogens and other immune challenges, but their dysfunction can also mediate the pathogenesis of cancer and autoimmunity. Metabolic adaptation in response to immunological and microenvironmental signals contributes to T cell function and fate decision. Lipid metabolism has emerged as a key regulator of T cell responses, with selective lipid metabolites serving as metabolic rheostats to integrate environmental cues and interplay with intracellular signaling processes. Here, we discuss how extracellular, de novo synthesized and membrane lipids orchestrate T cell biology. We also describe the roles of lipids as regulators of intracellular signaling at the levels of transcriptional, epigenetic and post-translational regulation in T cells. Finally, we summarize therapeutic targeting of lipid metabolism and signaling, and conclude with a discussion of important future directions. Understanding the molecular and functional interplay between lipid metabolism and T cell biology will ultimately inform therapeutic intervention for human disease.
Collapse
Affiliation(s)
- Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wei Su
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
72
|
The mevalonate pathway in breast cancer biology. Cancer Lett 2022; 542:215761. [DOI: 10.1016/j.canlet.2022.215761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
|
73
|
Akotiah A, Walker D, Boddie S, Campbell RB. Drug Targeting and Therapeutic Management of Chronic Myeloid Leukemia: Conventional and Nanotherapeutic Drug Options. Anticancer Agents Med Chem 2022; 22:2933-2941. [PMID: 35473533 DOI: 10.2174/1871520622666220426104631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
Chronic myeloid leukemia (CML) is a blood cancer predominantly affecting older adult patients. According to the American Cancer Society, an estimated 8,860 people will be diagnosed with CML in 2022. Treatments for CML have evolved with a focus on CML phase severity or progression. Overall, there have been some breakthrough treatment options for a high percentage of patients with CML. This is largely due to the discovery of tyrosine kinase inhibitors (TKI); however, drug resistance continues to present a significant challenge for the management of CML disease. The use of interferon (IFN), antimetabolites, and bone marrow transplants provide alternative treatment options, but also present with limitations including severe side effects, toxicity, and graft versus host disease. Nanomedicine has demonstrated benefits in terms of efficacy, often reducing or eliminating unwanted toxicities associated with the use of conventional drug agents. This review summarizes rational molecular targets of CML drugs and provides highlights of current FDA-approved agents for the treatment of CML. Additionally, this communication includes an overview of the limitations of conventional treatments and how nanomedicine has addressed challenges encountered during CML treatment. .
Collapse
Affiliation(s)
- Akrofi Akotiah
- MCPHS University Department of Pharmaceutical Sciences 19 Foster Street Worcester, MA 01608, USA
| | - Dominique Walker
- MCPHS University Department of Pharmaceutical Sciences 19 Foster Street Worcester, MA 01608, USA
| | - Sarah Boddie
- MCPHS University Department of Pharmaceutical Sciences 19 Foster Street Worcester, MA 01608, USA
| | - Robert B Campbell
- MCPHS University Department of Pharmaceutical Sciences 19 Foster Street Worcester, MA 01608, USA
| |
Collapse
|
74
|
Dehghankelishadi P, Maritz MF, Dmochowska N, Badiee P, Cheah E, Kempson I, Berbeco RI, Thierry B. Formulation of simvastatin within high density lipoprotein enables potent tumour radiosensitisation. J Control Release 2022; 346:98-109. [PMID: 35447296 DOI: 10.1016/j.jconrel.2022.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Preclinical, clinical and epidemiologic studies have established the potent anticancer and radiosensitisation effects of HMG-CoA reductase inhibitors (statins). However, the low bioavailability of oral statin formulations is a key barrier to achieving effective doses within tumour. To address this issue and ascertain the radiosensitisation potential of simvastatin, we developed a parenteral high density lipoprotein nanoparticle (HDL NP) formulation of this commonly used statin. A scalable method for the preparation of the simvastatin-HDL NPs was developed using a 3D printed microfluidic mixer. This enables the production of litre scale amounts of particles with minimal batch to batch variation. Simvastatin-HDL NPs enhanced the radiobiological response in 2D/3D head and neck squamous cell carcinoma (HNSCC) in vitro models. The simvastatin-HDL NPs radiosensitisation was comparable to that of 10 and 5 times higher doses of free drug in 2D and 3D cultures, respectively, which could be partially explained by more efficient cellular uptake of the statin in the nanoformulation as well as by the inherent biological activity of the HDL NPs on the cholesterol pathway. The radiosensitising potency of the simvastatin-HDL nanoformulation was validated in an immunocompetent MOC-1 HNSCC tumour bearing mouse model. This data supports the rationale of repurposing statins through reformulation within HDL NPs. Statins are safe and readily available molecules including as generic, and their use as radiosensitisers could lead to much needed effective and affordable approaches to improve treatment of solid tumours.
Collapse
Affiliation(s)
- Pouya Dehghankelishadi
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Michelle F Maritz
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Nicole Dmochowska
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Parisa Badiee
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Edward Cheah
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia; UniSA Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Ross I Berbeco
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| |
Collapse
|
75
|
Statins and prostate cancer-hype or hope? The biological perspective. Prostate Cancer Prostatic Dis 2022; 25:650-656. [PMID: 35768578 DOI: 10.1038/s41391-022-00557-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/14/2022] [Accepted: 05/27/2022] [Indexed: 01/14/2023]
Abstract
Growing evidence suggests that men prescribed a statin for cholesterol control have a lower risk of advanced prostate cancer (PCa) and improved treatment outcomes; however, the mechanism by which statins elicit their anti-neoplastic effects is not well understood and is likely multifaceted. Statins are potent and specific inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme of the mevalonate (MVA) metabolic pathway. This two-part series is a review of the observational and experimental data on statins as anti-cancer agents in PCa. In this article, we describe the functional role that deregulated MVA metabolism plays in PCa progression and summarize the biological evidence and rationale for targeting the MVA pathway, with statins and other agents, for the treatment of PCa.
Collapse
|
76
|
Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev 2022; 41:17-31. [PMID: 34741716 PMCID: PMC10045462 DOI: 10.1007/s10555-021-09996-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Metabolic reprogramming is recognized as a hallmark of cancer. Lipids are the essential biomolecules required for membrane biosynthesis, energy storage, and cell signaling. Altered lipid metabolism allows tumor cells to survive in the nutrient-deprived environment. However, lipid metabolism remodeling in renal cell carcinoma (RCC) has not received the same attention as in other cancers. RCC, the most common type of kidney cancer, is associated with almost 15,000 death in the USA annually. Being refractory to conventional chemotherapy agents and limited available targeted therapy options has made the treatment of metastatic RCC very challenging. In this article, we review recent findings that support the importance of synthesis and metabolism of cholesterol, free fatty acids (FFAs), and polyunsaturated fatty acids (PUFAs) in the carcinogenesis and biology of RCC. Delineating the detailed mechanisms underlying lipid reprogramming can help to better understand the pathophysiology of RCC and to design novel therapeutic strategies targeting this malignancy.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Omid Yazdanpanah
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Larry H Matherly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA. .,Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
77
|
Pokorna Z, Vyslouzil J, Vojtesek B, Coates PJ. Identifying pathways regulating the oncogenic p53 family member ΔNp63 provides therapeutic avenues for squamous cell carcinoma. Cell Mol Biol Lett 2022; 27:18. [PMID: 35196980 PMCID: PMC8903560 DOI: 10.1186/s11658-022-00323-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Background ΔNp63 overexpression is a common event in squamous cell carcinoma (SCC) that contributes to tumorigenesis, making ΔNp63 a potential target for therapy. Methods We created inducible TP63-shRNA cells to study the effects of p63-depletion in SCC cell lines and non-malignant HaCaT keratinocytes. DNA damaging agents, growth factors, signaling pathway inhibitors, histone deacetylase inhibitors, and metabolism-modifying drugs were also investigated for their ability to influence ΔNp63 protein and mRNA levels. Results HaCaT keratinocytes, FaDu and SCC-25 cells express high levels of ΔNp63. HaCaT and FaDu inducible TP63-shRNA cells showed reduced proliferation after p63 depletion, with greater effects on FaDu than HaCaT cells, compatible with oncogene addiction in SCC. Genotoxic insults and histone deacetylase inhibitors variably reduced ΔNp63 levels in keratinocytes and SCC cells. Growth factors that regulate proliferation/survival of squamous cells (IGF-1, EGF, amphiregulin, KGF, and HGF) and PI3K, mTOR, MAPK/ERK or EGFR inhibitors showed lesser and inconsistent effects, with dual inhibition of PI3K and mTOR or EGFR inhibition selectively reducing ΔNp63 levels in HaCaT cells. In contrast, the antihyperlipidemic drug lovastatin selectively increased ΔNp63 in HaCaT cells. Conclusions These data confirm that ΔNp63-positive SCC cells require p63 for continued growth and provide proof of concept that p63 reduction is a therapeutic option for these tumors. Investigations of ΔNp63 regulation identified agent-specific and cell-specific pathways. In particular, dual inhibition of the PI3K and mTOR pathways reduced ΔNp63 more effectively than single pathway inhibition, and broad-spectrum histone deacetylase inhibitors showed a time-dependent biphasic response, with high level downregulation at the transcriptional level within 24 h. In addition to furthering our understanding of ΔNp63 regulation in squamous cells, these data identify novel drug combinations that may be useful for p63-based therapy of SCC. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00323-x.
Collapse
Affiliation(s)
- Zuzana Pokorna
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Jan Vyslouzil
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Philip J Coates
- Research Center of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
78
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
79
|
Statins Reduce Hepatocellular Carcinoma Risk in Patients with Chronic Kidney Disease and End-Stage Renal Disease: A 17-Year Longitudinal Study. Cancers (Basel) 2022; 14:cancers14030825. [PMID: 35159093 PMCID: PMC8834435 DOI: 10.3390/cancers14030825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Statins are medicines used to treat patients with high lipid levels (hyperlipidemia). Studies have reported that patients undergoing statin therapy are at reduced risk of developing liver cancer. In this study, we compared the risk of developing liver cancer among hyperlipidemic patients with and without statin therapy in three patient groups classified by renal function: normal renal function (NRF) group, chronic kidney disease (CKD) not requiring dialysis, and dialysis-dependent end stage of real disease (ESRD). Our results showed that the risk of developing liver cancer increased progressively from NRF group to CKD and ESRD groups, but was lower for patients receiving statins treatment than non-treated patients. We also found that the statin therapy effectiveness was better in patients taking hydrophilic statins than in those taking lipophilic statins, and in patients taking statin-ezetimibe combination than in those taking statin alone, particularly in the NRF group. Ezetimibe is also an effective option of treating hyperlipidemia. Abstract Hepatocellular carcinoma (HCC) is the most common cancer in end-stage renal disease (ESRD) patients in Taiwan. Whether statin therapy associated with the HCC risk in hyperlipidemic patients with chronic kidney disease (CKD) and ESRD is unclear. Using population-based insurance claim data from Taiwan, we identified from hyperlipidemic patients taking statins or not (677,364 versus 867,707) in 1999–2015. Among them, three pairs of propensity score matched statin and non-statin cohorts were established by renal function: 413,867 pairs with normal renal function (NRF), 46,851 pairs with CKD and 6372 pairs with ESRD. Incidence rates of HCC were compared, by the end of 2016, between statin and non-statin cohorts, between hydrophilic statins (HS) and lipophilic statins (LS) users, and between statin-ezetimibe combination therapy (SECT) and statin monotherapy (SM) users. The HCC incidence increased progressively from NRF to CKD and ESRD groups, was lower in the statin cohort than in the non-statin cohort, with the differences of incidence per 10,000 person-years increased from (7.77 vs. 21.4) in NRF group to (15.8 vs. 37.1) in CKD group to (19.1 vs. 47.8) in ESRD group. The incidence increased with age, but the Cox method estimated hazard ratios showed a greater statin effectiveness in older patients. Among statin users, the HCC incidence was lower in HS users than in LS users, and lower in SECT users than in SM users, but the difference was significant only in the NRF group. Hyperlipidemic patients with CKD and ESRD receiving statins are at reduced HCC risks; the treatment effectiveness is superior for HS users than for LS users, and for SECT users than for SM users, but not significant.
Collapse
|
80
|
Esposito D, Pant I, Shen Y, Qiao RF, Yang X, Bai Y, Jin J, Poulikakos PI, Aaronson SA. ROCK1 mechano-signaling dependency of human malignancies driven by TEAD/YAP activation. Nat Commun 2022; 13:703. [PMID: 35121738 PMCID: PMC8817028 DOI: 10.1038/s41467-022-28319-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Rho family mechano-signaling through the actin cytoskeleton positively regulates physiological TEAD/YAP transcription, while the evolutionarily conserved Hippo tumor suppressor pathway antagonizes this transcription through YAP cytoplasmic localization/degradation. The mechanisms responsible for oncogenic dysregulation of these pathways, their prevalence in tumors, as well as how such dysregulation can be therapeutically targeted are not resolved. We demonstrate that p53 DNA contact mutants in human tumors, indirectly hyperactivate RhoA/ROCK1/actomyosin signaling, which is both necessary and sufficient to drive oncogenic TEAD/YAP transcription. Moreover, we demonstrate that recurrent lesions in the Hippo pathway depend on physiological levels of ROCK1/actomyosin signaling for oncogenic TEAD/YAP transcription. Finally, we show that ROCK inhibitors selectively antagonize proliferation and motility of human tumors with either mechanism. Thus, we identify a cancer driver paradigm and a precision medicine approach for selective targeting of human malignancies driven by TEAD/YAP transcription through mechanisms that either upregulate or depend on homeostatic RhoA mechano-signaling.
Collapse
Affiliation(s)
- Davide Esposito
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ila Pant
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yao Shen
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rui F Qiao
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaobao Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yiyang Bai
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
81
|
Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals (Basel) 2022; 15:ph15020151. [PMID: 35215263 PMCID: PMC8877351 DOI: 10.3390/ph15020151] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are administered as first-line therapy for hypercholesterolemia, both as primary and secondary prevention. Besides the lipid-lowering effect, statins have been suggested to inhibit the development of cardiovascular disease through anti-inflammatory, antioxidant, vascular endothelial function-improving, plaque-stabilizing, and platelet aggregation-inhibiting effects. The preventive effect of statins on atherothrombotic stroke has been well established, but statins can influence other cerebrovascular diseases. This suggests that statins have many neuroprotective effects in addition to lowering cholesterol. Furthermore, research suggests that statins cause pro-apoptotic, growth-inhibitory, and pro-differentiation effects in various malignancies. Preclinical and clinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. The pleiotropic effects of statins on cardiovascular and cerebrovascular diseases have been well established; however, the effects of statins on cancer patients have not been fully elucidated and are still controversial. This review discusses the recent evidence on the effects of statins on cardiovascular and cerebrovascular diseases and cancer. Additionally, this study describes the pharmacological action of statins, focusing on the aspect of ‘beyond lipid-lowering’.
Collapse
|
82
|
Lee J, Park S, Kim Y, Kim HM, Oh CM. Exploring the Genetic Associations Between the Use of Statins and Alzheimer's Disease. J Lipid Atheroscler 2022; 11:133-146. [PMID: 35656152 PMCID: PMC9133776 DOI: 10.12997/jla.2022.11.2.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/09/2022] Open
Abstract
Objective Alzheimer's disease (AD) is the most common cause of dementia. The statins have shown beneficial effects on cognitive functions and reduced the risk of dementia development. However, the exact mechanisms of statin effects in AD are not yet fully understood. In this study, we aimed to explore the underlying mechanisms of statin on AD. Methods We downloaded AD blood dataset (GSE63060) and statin-related blood gene expression dataset (GSE86216). Then we performed gene expression analysis of each dataset and compared blood gene expressions between AD patients and statin-treated patients. Then, we downloaded mouse embryonic neural stem cell dataset (GSE111945) and performed gene expression analysis. Results From the human blood dataset, we identified upregulated/downregulated genes in AD patients and statin-treated patients. Some of the upregulated genes (AEN, MBTPS1, ABCG1) in the blood of AD patients are downregulated in statin-treated patients. Several downregulated genes (FGL2, HMGCS1, PSME2, SRSF3, and ATG3) are upregulated in statin-treated patients. Gene set enrichment analysis using mouse stem cell dataset revealed a significant relationship of Kyoto Encyclopedia of Genes and Genomes-defined pathway of AD in statin-treated neural stem cells compared to vehicle-treated neural stem cells (normalized enrichment score: −2.24 in male and −1.6 in female). Conclusion These gene expression analyses from human blood and mouse neural stem cell demonstrate the important clues on the molecular mechanisms of impacts of statin on AD disease. Further studies are needed to investigate the exact role of candidate genes and pathways suggested in our AD pathogenesis study.
Collapse
Affiliation(s)
- Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Suhyeon Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hyun Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
83
|
Zhang L, Wang H, Tian J, Sui L, Chen X. Concomitant Statins and the Survival of Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors: A Meta-Analysis. Int J Clin Pract 2022; 2022:3429462. [PMID: 35855055 PMCID: PMC9276478 DOI: 10.1155/2022/3429462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
Statins are suggested to improve cancer survival by possible anti-inflammatory effect. However, it remains unclear if concomitant use of statins could improve the efficacy of immune checkpoint inhibitors (ICIs) in patients with non-small-cell lung cancer (NSCLC). Accordingly, a meta-analysis was performed to systematically evaluate the effect of concomitant statins in NSCLC patients receiving ICIs. Relevant studies were obtained by literature search in PubMed, Embase, and Web of Science databases. A conservative random-effect model was used to combine the results. Eight cohorts including 2382 patients were included. The programmed death-1/ligand-1 inhibitors were used in seven studies; while the cytotoxic T-lymphocyte-associated protein 4 inhibitors were used in the other study. It was shown that concomitant use of statin did not significantly affect the progression-free survival (PFS, hazard ratio (HR): 0.86, 95% confidence interval (CI): 0.70 to 1.07, P=0.17; I 2 = 62%) or overall survival (OS, HR: 0.86, 95% CI: 0.74 to 1.01, P=0.07; I 2 = 29%) of NSCLC patients receiving ICIs. Subgroup analyses showed consistent results in studies with univariate or multivariate analytic models (P for subgroup analysis = 0.97 and 0.38 for the outcome of PFS and OS, respectively). In conclusion, concomitant use of statin seemed to have no significant influence on the survival of patients with NSCLC who were treated with ICIs.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Oncology, The Hospital of Shunyi District of Beijing, Beijing 101300, China
| | - Hong Wang
- Department of Oncology, The Hospital of Shunyi District of Beijing, Beijing 101300, China
| | - Jizheng Tian
- Department of Oncology, The Hospital of Shunyi District of Beijing, Beijing 101300, China
| | - Lili Sui
- Department of Oncology, The Hospital of Shunyi District of Beijing, Beijing 101300, China
| | - Xiaoyan Chen
- Department of Oncology, The Hospital of Shunyi District of Beijing, Beijing 101300, China
| |
Collapse
|
84
|
Criscuolo D, Avolio R, Matassa DS, Esposito F. Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Front Oncol 2021; 11:797265. [PMID: 34888254 PMCID: PMC8650000 DOI: 10.3389/fonc.2021.797265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation. Accumulating evidence in multiple organisms shows that the metabolic functions of mitochondria are tightly connected to protein synthesis, being assembly and activity of respiratory complexes highly dependent on de novo synthesis of their components. In turn, protein synthesis within the organelle is tightly connected with the cytosolic process. This implies an entire network of interactions and fine-tuned regulations that build up a completely under-estimated level of complexity. We are now only preliminarily beginning to reconstitute such regulatory level in human cells, and to perceive its role in diseases. Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and energetic stress that could be potentially exploited for therapeutic purposes. In this review, we summarize the available literature on the coordinated regulation of mitochondrial and cytosolic mRNA translation, and their effects on the integrity of the mitochondrial proteome and functions. Finally, we highlight the potential held by this topic for future research directions and for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
85
|
Crosstalk between Statins and Cancer Prevention and Therapy: An Update. Pharmaceuticals (Basel) 2021; 14:ph14121220. [PMID: 34959621 PMCID: PMC8704600 DOI: 10.3390/ph14121220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
The importance of statins in cancer has been discussed in many studies. They are known for their anticancer properties against solid tumors of the liver or lung, as well as diffuse cancers, such as multiple myeloma or leukemia. Currently, the most commonly used statins are simvastatin, rosuvastatin and atorvastatin. The anti-tumor activity of statins is largely related to their ability to induce apoptosis by targeting cancer cells with high selectivity. Statins are also involved in the regulation of the histone acetylation level, the disturbance of which can lead to abnormal activity of genes involved in the regulation of proliferation, differentiation and apoptosis. As a result, tumor growth and its invasion may be promoted, which is associated with a poor prognosis. High levels of histone deacetylases are observed in many cancers; therefore, one of the therapeutic strategies is to use their inhibitors. Combining statins with histone deacetylase inhibitors can induce a synergistic anticancer effect.
Collapse
|
86
|
Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. MEMBRANES 2021; 11:membranes11120919. [PMID: 34940418 PMCID: PMC8708953 DOI: 10.3390/membranes11120919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).
Collapse
|
87
|
Ishikawa T, Osaki T, Sugiura A, Tashiro J, Warita T, Hosaka YZ, Warita K. Atorvastatin preferentially inhibits the growth of high ZEB-expressing canine cancer cells. Vet Comp Oncol 2021; 20:313-323. [PMID: 34657361 DOI: 10.1111/vco.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is fundamental in cancer progression and contributes to the acquisition of malignant properties. The statin class of cholesterol-lowering drugs exhibits pleiotropic anticancer effects in vitro and in vivo, and many epidemiologic studies have reported a correlation between statin use and reduced cancer mortality. We have shown previously that sensitivity to the anti-proliferative effect of statins varies among human cancer cells and statins are more effective against mesenchymal-like cells than epithelial-like ones in human cancers. There have only been few reports on the application of statins to cancer therapy in veterinary medicine, and differences in statin sensitivity among canine cancer cells have not been examined. In this study, we aimed to clarify the correlation between sensitivity to atorvastatin and epithelial/mesenchymal states in 11 canine cancer cell lines derived from mammary gland, squamous cell carcinoma, lung, and melanoma. Sensitivity to atorvastatin varied among canine cancer cells, with IC50 values ranging from 5.92 to 71.5 μM at 48 h, which were higher than the plasma concentrations clinically achieved with statin therapy. Atorvastatin preferentially attenuated the proliferation of mesenchymal-like cells. In particular, highly statin-sensitive cells were characterized by aberrant expression of the ZEB family of EMT-inducing transcription factors. However, ZEB2 silencing in highly sensitive cells did not induce resistance to atorvastatin. Taken together, these results suggest that high expression of ZEB is a characteristic of highly statin-sensitive cells and could be a molecular marker for predicting whether cancers are sensitive to statins, though ZEB itself does not confer statin sensitivity.
Collapse
Affiliation(s)
- Takuro Ishikawa
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomohiro Osaki
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Akihiro Sugiura
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Jiro Tashiro
- Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Tomoko Warita
- Department of Biomedical Sciences, School of Biological and Environmental Science, Kwansei Gakuin University, Hyogo, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Anatomy, School of Veterinary Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
88
|
RhoA enhances osteosarcoma resistance to MPPa-PDT via the Hippo/YAP signaling pathway. Cell Biosci 2021; 11:179. [PMID: 34627383 PMCID: PMC8501741 DOI: 10.1186/s13578-021-00690-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OS) is the most prevalent primary bone malignancy affecting adolescents, yet the emergence of chemoradiotherapeutic resistance has limited efforts to cure affected patients to date. Pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT) is a recently developed, minimally invasive treatment for OS that is similarly constrained by such therapeutic resistance. This study sought to explore the mechanistic basis for RhoA-activated YAP1 (YAP)-mediated resistance in OS. Methods The relationship between YAP expression levels and patient prognosis was analyzed, and YAP levels in OS cell lines were quantified. Immunofluorescent staining was used to assess YAP nuclear translocation. OS cell lines (HOS and MG63) in which RhoA and YAP were knocked down or overexpressed were generated using lentiviral vectors. CCK-8 assays were used to examine OS cell viability, while the apoptotic death of these cells was monitored via Hoechst staining, Western blotting, and flow cytometry. Tumor-bearing nude mice were additionally used to assess the relationship between lentivirus-mediated alterations in RhoA expression and MPPa-PDT treatment outcomes. TUNEL and immunohistochemical staining approaches were leveraged to assess apoptotic cell death in tissue samples. Results OS patients exhibited higher levels of YAP expression, and these were correlated with a poor prognosis. MPPa-PDT induced apoptosis in OS cells, and such MPPa-PDT-induced apoptosis was enhanced following YAP knockdown whereas it was suppressed by YAP overexpression. RhoA and YAP expression levels were positively correlated in OS patients, and both active and total RhoA protein levels rose in OS cells following MPPa-PDT treatment. When RhoA was knocked down, levels of unphosphorylated YAP and downstream target genes were significantly reduced, while RhoA/ROCK2/LIMK2 pathway phosphorylation was suppressed, whereas RhoA overexpression resulted in the opposite phenotype. MPPa-PDT treatment was linked to an increase in HMGCR protein levels, and the inhibition of RhoA or HMGCR was sufficient to suppress RhoA activity and to decrease the protein levels of YAP and its downstream targets. Mevalonate administration partially reversed these reductions in the expression of YAP and YAP target genes. RhoA knockdown significantly enhanced the apoptotic death of OS cells in vitro and in vivo following MPPa-PDT treatment, whereas RhoA overexpression had the opposite effect. Conclusions These results suggest that the mevalonate pathway activates RhoA, which in turn activates YAP and promotes OS cell resistance to MPPa-PDT therapy. Targeting the RhoA/ROCK2/LIMK2/YAP pathway can significantly improve the efficacy of MPPa-PDT treatment for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00690-6.
Collapse
|
89
|
Chen YC, Chia YC, Huang BM. Phytochemicals from Polyalthia Species: Potential and Implication on Anti-Oxidant, Anti-Inflammatory, Anti-Cancer, and Chemoprevention Activities. Molecules 2021; 26:molecules26175369. [PMID: 34500802 PMCID: PMC8433920 DOI: 10.3390/molecules26175369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Polyalthia belong to the Annonaceae family and are a type of evergreen tree distributed across many tropical and subtropical regions. Polyalthia species have been used long term as indigenous medicine to treat certain diseases, including fever, diabetes, infection, digestive disease, etc. Recent studies have demonstrated that not only crude extracts but also the isolated pure compounds exhibit various pharmacological activities, such as anti-oxidant, anti-microbial, anti-tumor, anti-cancer, etc. It is known that the initiation of cancer usually takes several years and is related to unhealthy lifestyle, as well as dietary and environmental factors, such as stress, toxins and smoking. In fact, natural or synthetic substances have been used as cancer chemoprevention to delay, impede, or even stop cancer growing. This review is an attempt to collect current available phytochemicals from Polyalthia species, which exhibit anti-cancer potentials for chemoprevention purposes, providing directions for further research on the interesting agents and possible clinical applications.
Collapse
Affiliation(s)
- Yung-Chia Chen
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chen Chia
- Department of Food Science and Technology, TaJen University, Pingtung 90741, Taiwan;
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-06-2353535 (ext. 5337); Fax: +886-06-2093007
| |
Collapse
|
90
|
Wang X, Zhang X, Chen Y, Zhao C, Zhou W, Chen W, Zhang C, Ding K, Li W, Xu H, Lou L, Chu Z, Hu S, Yang J. Cardiac-specific deletion of FDPS induces cardiac remodeling and dysfunction by enhancing the activity of small GTP-binding proteins. J Pathol 2021; 255:438-450. [PMID: 34467534 DOI: 10.1002/path.5789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/04/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
The mevalonate pathway is essential for cholesterol biosynthesis. Previous studies have suggested that the key enzyme in this pathway, farnesyl diphosphate synthase (FDPS), regulates the cardiovascular system. We used human samples and mice that were deficient in cardiac FDPS (c-Fdps-/- mice) to investigate the role of FDPS in cardiac homeostasis. Cardiac function was assessed using echocardiography. Left ventricles were examined and tested for histological and molecular markers of cardiac remodeling. Our results showed that FDPS levels were downregulated in samples from patients with cardiomyopathy. Furthermore, c-Fdps-/- mice exhibited cardiac remodeling and dysfunction. This dysfunction was associated with abnormal activation of Ras and Rheb, which may be due to the accumulation of geranyl pyrophosphate. Activation of Ras and Rheb stimulated downstream mTOR and ERK pathways. Moreover, administration of farnesyltransferase inhibitors attenuated cardiac remodeling and dysfunction in c-Fdps-/- mice. These results indicate that FDPS plays an important role in cardiac homeostasis. Deletion of FDPS stimulates the downstream mTOR and ERK signaling pathways, resulting in cardiac remodeling and dysfunction. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Xuan Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Yuxiao Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Chenze Zhao
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, PR China
| | - Weier Zhou
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Wanwan Chen
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Chi Zhang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Kejun Ding
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Weidong Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Lian Lou
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Zhenliang Chu
- Department of Cardiology, The Second Hospital of Jiaxing, Jiaxing, PR China
| | - ShenJiang Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
91
|
Bartolacci C, Andreani C, El-Gammal Y, Scaglioni PP. Lipid Metabolism Regulates Oxidative Stress and Ferroptosis in RAS-Driven Cancers: A Perspective on Cancer Progression and Therapy. Front Mol Biosci 2021; 8:706650. [PMID: 34485382 PMCID: PMC8415548 DOI: 10.3389/fmolb.2021.706650] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 01/17/2023] Open
Abstract
HRAS, NRAS and KRAS, collectively referred to as oncogenic RAS, are the most frequently mutated driver proto-oncogenes in cancer. Oncogenic RAS aberrantly rewires metabolic pathways promoting the generation of intracellular reactive oxygen species (ROS). In particular, lipids have gained increasing attention serving critical biological roles as building blocks for cellular membranes, moieties for post-translational protein modifications, signaling molecules and substrates for ß-oxidation. However, thus far, the understanding of lipid metabolism in cancer has been hampered by the lack of sensitive analytical platforms able to identify and quantify such complex molecules and to assess their metabolic flux in vitro and, even more so, in primary tumors. Similarly, the role of ROS in RAS-driven cancer cells has remained elusive. On the one hand, ROS are beneficial to the development and progression of precancerous lesions, by upregulating survival and growth factor signaling, on the other, they promote accumulation of oxidative by-products that decrease the threshold of cancer cells to undergo ferroptosis. Here, we overview the recent advances in the study of the relation between RAS and lipid metabolism, in the context of different cancer types. In particular, we will focus our attention on how lipids and oxidative stress can either promote or sensitize to ferroptosis RAS driven cancers. Finally, we will explore whether this fine balance could be modulated for therapeutic gain.
Collapse
Affiliation(s)
| | | | | | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
92
|
Takada K, Takamori S, Miura N, Shikada Y, Shimokawa M. Comments on 'The Impact of Beta Blockers on Survival Outcomes in Patients With Non-small-cell Lung Cancer Treated With Immune Checkpoint Inhibitors'. Clin Lung Cancer 2021; 23:e174-e175. [PMID: 34479808 DOI: 10.1016/j.cllc.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan.
| | - Naoko Miura
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Yasunori Shikada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| |
Collapse
|
93
|
Bharali P, Anirvan P, Gogoi M, Singh SP. Statins and Cancer Mortality in NAFLD: Is it Too Early to Rejoice? J Clin Gastroenterol 2021; 55:638-639. [PMID: 34049381 DOI: 10.1097/mcg.0000000000001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Pankaj Bharali
- Department of Gastroenterology, Srirama Chandra Bhanja Medical College and Hospital, Cuttack, Odisha, India
| | | | | | | |
Collapse
|
94
|
Nam GH, Kwon M, Jung H, Ko E, Kim SA, Choi Y, Song SJ, Kim S, Lee Y, Kim GB, Han J, Woo J, Cho Y, Jeong C, Park SY, Roberts TM, Cho YB, Kim IS. Statin-mediated inhibition of RAS prenylation activates ER stress to enhance the immunogenicity of KRAS mutant cancer. J Immunother Cancer 2021; 9:jitc-2021-002474. [PMID: 34330763 PMCID: PMC8327837 DOI: 10.1136/jitc-2021-002474] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Statins preferentially promote tumor-specific apoptosis by depleting isoprenoid such as farnesyl pyrophosphate and geranylgeranyl pyrophosphate. However, statins have not yet been approved for clinical cancer treatment due, in part, to poor understanding of molecular determinants on statin sensitivity. Here, we investigated the potential of statins to elicit enhanced immunogenicity of KRAS-mutant (KRASmut) tumors. Methods The immunogenicity of treated cancer cells was determined by western blot, flow cytometry and confocal microscopy. The immunotherapeutic efficacy of mono or combination therapy using statin was assessed in KRASmut tumor models, including syngeneic colorectal cancer and genetically engineered lung and pancreatic tumors. Using NanoString analysis, we analyzed how statin influenced the gene signatures associated with the antigen presentation of dendritic cells in vivo and evaluated whether statin could induce CD8+ T-cell immunity. Multiplex immunohistochemistry was performed to better understand the complicated tumor-immune microenvironment. Results Statin-mediated inhibition of KRAS prenylation provoked severe endoplasmic reticulum (ER) stress by attenuating the anti-ER stress effect of KRAS mutation, thereby resulting in the immunogenic cell death (ICD) of KRASmut cancer cells. Moreover, statin-mediated ICD enhanced the cross-priming ability of dendritic cells, thereby provoking CD8+ T-cell immune responses against KRASmut tumors. Combination therapy using statin and oxaliplatin, an ICD inducer, significantly enhanced the immunogenicity of KRASmut tumors and promoted tumor-specific immunity in syngeneic and genetically engineered KRASmut tumor models. Along with immune-checkpoint inhibitors, the abovementioned combination therapy overcame resistance to PD-1 blockade therapies, improving the survival rate of KRASmut tumor models. Conclusions Our findings suggest that KRAS mutation could be a molecular target for statins to elicit potent tumor-specific immunity.
Collapse
Affiliation(s)
- Gi-Hoon Nam
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Minsu Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hanul Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Eunbyeol Ko
- Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Seong A Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yoonjeong Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Su Jeong Song
- Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Seohyun Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yeji Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gi Beom Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jihoon Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jiwan Woo
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yakdol Cho
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Cherlhyun Jeong
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul 02447, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea .,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
95
|
Hsu PY, Mammadova A, Benkirane-Jessel N, Désaubry L, Nebigil CG. Updates on Anticancer Therapy-Mediated Vascular Toxicity and New Horizons in Therapeutic Strategies. Front Cardiovasc Med 2021; 8:694711. [PMID: 34386529 PMCID: PMC8353082 DOI: 10.3389/fcvm.2021.694711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular toxicity is a frequent adverse effect of current anticancer chemotherapies and often results from endothelial dysfunction. Vascular endothelial growth factor inhibitors (VEGFi), anthracyclines, plant alkaloids, alkylating agents, antimetabolites, and radiation therapy evoke vascular toxicity. These anticancer treatments not only affect tumor vascularization in a beneficial manner, they also damage ECs in the heart. Cardiac ECs have a vital role in cardiovascular functions including hemostasis, inflammatory and coagulation responses, vasculogenesis, and angiogenesis. EC damage can be resulted from capturing angiogenic factors, inhibiting EC proliferation, survival and signal transduction, or altering vascular tone. EC dysfunction accounts for the pathogenesis of myocardial infarction, atherothrombosis, microangiopathies, and hypertension. In this review, we provide a comprehensive overview of the effects of chemotherapeutic agents on vascular toxicity leading to hypertension, microvascular rarefaction thrombosis and atherosclerosis, and affecting drug delivery. We also describe the potential therapeutic approaches such as vascular endothelial growth factor (VEGF)-B and prokineticin receptor-1 agonists to maintain endothelial function during or following treatments with chemotherapeutic agents, without affecting anti-tumor effectiveness.
Collapse
Affiliation(s)
| | | | | | | | - Canan G. Nebigil
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, FMTS (Fédération de Médecine Translationnelle de l'Université de Strasbourg), Strasbourg, France
| |
Collapse
|
96
|
Evaluating Targeted Therapies in Ovarian Cancer Metabolism: Novel Role for PCSK9 and Second Generation mTOR Inhibitors. Cancers (Basel) 2021; 13:cancers13153727. [PMID: 34359627 PMCID: PMC8345177 DOI: 10.3390/cancers13153727] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Dysregulated lipid metabolism is emerging as a hallmark in several malignancies, including ovarian cancer (OC). Specifically, metastatic OC is highly dependent on lipid-rich omentum. We aimed to investigate the therapeutic value of targeting lipid metabolism in OC. For this purpose, we studied the role of PCSK9, a cholesterol-regulating enzyme, in OC cell survival and its downstream signaling. We also investigated the cytotoxic efficacy of a small library of metabolic (n = 11) and mTOR (n = 10) inhibitors using OC cell lines (n = 8) and ex vivo patient-derived cell cultures (PDCs, n = 5) to identify clinically suitable drug vulnerabilities. Targeting PCSK9 expression with siRNA or PCSK9 specific inhibitor (PF-06446846) impaired OC cell survival. In addition, overexpression of PCSK9 induced robust AKT phosphorylation along with increased expression of ERK1/2 and MEK1/2, suggesting a pro-survival role of PCSK9 in OC cells. Moreover, our drug testing revealed marked differences in cytotoxic responses to drugs targeting metabolic pathways of high-grade serous ovarian cancer (HGSOC) and low-grade serous ovarian cancer (LGSOC) PDCs. Our results show that targeting PCSK9 expression could impair OC cell survival, which warrants further investigation to address the dependency of this cancer on lipogenesis and omental metastasis. Moreover, the differences in metabolic gene expression and drug responses of OC PDCs indicate the existence of a metabolic heterogeneity within OC subtypes, which should be further explored for therapeutic improvements.
Collapse
|
97
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
98
|
Murtola TJ, Siltari A. Statins for Prostate Cancer: When and How Much? Clin Cancer Res 2021; 27:4947-4949. [PMID: 34281913 DOI: 10.1158/1078-0432.ccr-21-1891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
Statins have plausible biological effects against prostate cancer cells and are associated with improved disease-specific mortality. In current randomized placebo-controlled trial, low-dose atorvastatin caused no difference in relapses after radical prostatectomy in Asian men. Future trials should study higher statin doses at later disease stages with survival as the endpoint.See related article by Jeong et al., p. 5004.
Collapse
Affiliation(s)
- Teemu J Murtola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. .,Department of Urology, TAYS Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Aino Siltari
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
99
|
The potential use of simvastatin for cancer treatment: A review. Biomed Pharmacother 2021; 141:111858. [PMID: 34323700 DOI: 10.1016/j.biopha.2021.111858] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Statins, typically used to reduce lipid levels, have been rediscovered for exhibiting anticancer activities. Among them, especially simvastatin may influence the proliferation, migration, and survival of cancer cells. The concept of using statins to treat cancer has been adopted since the 1990s In vitro and in vivo experiments and cohort studies using statins have been carried out to demonstrate their antitumor effects (such as proliferation and migration impairment) by influencing inflammatory and oxidative stress-related tumorigenesis. Nevertheless, the biological mechanisms for these actions are not fully elucidated. In this review, we present an overview of the most important studies conducted from 2015 to date on the use of simvastatin in cancer therapy. This review brings the most recent perspectives and targets in epidemiological, in vitro, and in vivo studies, regarding the use of simvastatin alone or in combination with other drugs for the treatment of various types of cancer.
Collapse
|
100
|
Huang CT, Liang YJ. Anti-tumor effect of statin on pancreatic adenocarcinoma: From concept to precision medicine. World J Clin Cases 2021; 9:4500-4505. [PMID: 34222418 PMCID: PMC8223840 DOI: 10.12998/wjcc.v9.i18.4500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
A statin is a cholesterol-lowering agent, which inhibits HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase and subsequently reduces the cholesterol precursor, and was first used commercially in 1987. The concept of cholesterol restriction leading to cancer cell dysfunction was proposed in 1992. The interruption of different signaling pathways has been proved in preclinical experiments to elucidate the anti-tumor mechanism of statins in pancreatic adenocarcinoma. Observational studies have shown that the clinical use of statins is beneficial in patients with pancreatic adenocarcinoma, including a chemoprevention effect, post-surgical resection follow-up and therapeutic prognosis of advanced cancer stage. Arrest of the cancer cell cycle by the combined use of gemcitabine and statin was observed in a cell line study. The effect of microbiota on the tumor microenvironment of pancreatic adenocarcinoma is a new therapeutic approach as statins can modulate the gut microbiota. Hence, further randomized trials of statins in pancreatic adenocarcinoma treatment will be warranted with application of precision medicine from microbiota-derived, cell cycle-based and signaling pathway-targeted research.
Collapse
Affiliation(s)
- Chung-Tsui Huang
- Department of Gastroenterology and Hepatology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan
| | - Yao-Jen Liang
- Graduate Institute of Applied Science and Engineering, Department and Institute of Life Science, Fu-Jen University, New Taipei 242, Taiwan
| |
Collapse
|