51
|
Chang CY, Kazmin D, Jasper JS, Kunder R, Zuercher WJ, McDonnell DP. The metabolic regulator ERRα, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer Cell 2011; 20:500-10. [PMID: 22014575 PMCID: PMC3199323 DOI: 10.1016/j.ccr.2011.08.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/27/2011] [Accepted: 08/26/2011] [Indexed: 01/28/2023]
Abstract
A genomic signature designed to assess the activity of the estrogen-related receptor alpha (ERRα) was used to profile more than 800 breast tumors, revealing a shorter disease-free survival in patients with tumors exhibiting elevated receptor activity. Importantly, this signature also predicted the ability of an ERRα antagonist, XCT790, to inhibit proliferation in cellular models of breast cancer. Using a chemical genomic approach, it was determined that activation of the Her2/IGF-1R signaling pathways and subsequent C-MYC stabilization upregulate the expression of peroxisome proliferator-activated receptor gamma coactivator-1 beta (PGC-1β), an obligate cofactor for ERRα activity. PGC-1β knockdown in breast cancer cells impaired ERRα signaling and reduced cell proliferation, implicating a functional role for PGC-1β/ERRα in the pathogenesis of breast cancers.
Collapse
Affiliation(s)
- Ching-yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dmitri Kazmin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeff S. Jasper
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca Kunder
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - William J. Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, NC 27709, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
52
|
Bhalla K, Hwang BJ, Dewi RE, Ou L, Twaddel W, Fang HB, Vafai SB, Vazquez F, Puigserver P, Boros L, Girnun GD. PGC1α promotes tumor growth by inducing gene expression programs supporting lipogenesis. Cancer Res 2011; 71:6888-98. [PMID: 21914785 DOI: 10.1158/0008-5472.can-11-1011] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the role of aerobic glycolysis in cancer, recent studies highlight the importance of the mitochondria and biosynthetic pathways as well. PPARγ coactivator 1α (PGC1α) is a key transcriptional regulator of several metabolic pathways including oxidative metabolism and lipogenesis. Initial studies suggested that PGC1α expression is reduced in tumors compared with adjacent normal tissue. Paradoxically, other studies show that PGC1α is associated with cancer cell proliferation. Therefore, the role of PGC1α in cancer and especially carcinogenesis is unclear. Using Pgc1α(-/-) and Pgc1α(+/+) mice, we show that loss of PGC1α protects mice from azoxymethane-induced colon carcinogenesis. Similarly, diethylnitrosamine-induced liver carcinogenesis is reduced in Pgc1α(-/-) mice as compared with Pgc1α(+/+) mice. Xenograft studies using gain and loss of PGC1α expression showed that PGC1α also promotes tumor growth. Interestingly, while PGC1α induced oxidative phosphorylation and tricarboxylic acid cycle gene expression, we also observed an increase in the expression of two genes required for de novo fatty acid synthesis, ACC and FASN. In addition, SLC25A1 and ACLY, which are required for the conversion of glucose into acetyl-CoA for fatty acid synthesis, were also increased by PGC1α, thus linking the oxidative and lipogenic functions of PGC1α. Indeed, using stable (13)C isotope tracer analysis, we show that PGC1α increased de novo lipogenesis. Importantly, inhibition of fatty acid synthesis blunted these progrowth effects of PGC1α. In conclusion, these studies show for the first time that loss of PGC1α protects against carcinogenesis and that PGC1α coordinately regulates mitochondrial and fatty acid metabolism to promote tumor growth.
Collapse
Affiliation(s)
- Kavita Bhalla
- Department of Biochemistry and Molecular Biology, University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Deblois G, Giguère V. Functional and physiological genomics of estrogen-related receptors (ERRs) in health and disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1032-40. [DOI: 10.1016/j.bbadis.2010.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 12/11/2022]
|
54
|
Gao M, Wang J, Lu N, Fang F, Liu J, Wong CW. Mitogen-activated protein kinase kinases promote mitochondrial biogenesis in part through inducing peroxisome proliferator-activated receptor γ coactivator-1β expression. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1239-44. [PMID: 21458501 DOI: 10.1016/j.bbamcr.2011.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 01/08/2023]
Abstract
Growth factor activates mitogen-activated protein kinase kinases to promote cell growth. Mitochondrial biogenesis is an integral part of cell growth. How growth factor regulates mitochondrial biogenesis is not fully understood. In this study, we found that mitochondrial mass was specifically reduced upon serum starvation and induced upon re-feeding with serum. Using mitogen-activated protein kinase kinases inhibitor U0126, we found that the mRNA expression levels of ATP synthase, cytochrome-C, mitochondrial transcription factor A, and mitofusin 2 were reduced. Since the transcriptional levels of these genes are under the control of peroxisome proliferator-activated receptor γ coactivator-1α and -1β (PGC-1α and PGC-1β), we examined and found that only the mRNA and protein levels of PGC-1β were suppressed. Importantly, over-expression of PGC-1β partially reversed the reduction of mitochondrial mass upon U0126 treatment. Thus, we conclude that mitogen-activated protein kinase kinases direct mitochondrial biogenesis through selectively inducing PGC-1β expression.
Collapse
Affiliation(s)
- Minghui Gao
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, 510530 China
| | | | | | | | | | | |
Collapse
|
55
|
Yao X, Hao H, Li Y, Li S. Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network. BMC SYSTEMS BIOLOGY 2011; 5:79. [PMID: 21599985 PMCID: PMC3130676 DOI: 10.1186/1752-0509-5-79] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/20/2011] [Indexed: 12/05/2022]
Abstract
Background Protein-protein interaction networks and phenotype similarity information have been synthesized together to discover novel disease-causing genes. Genetic or phenotypic similarities are manifested as certain modularity properties in a phenotype-gene heterogeneous network consisting of the phenotype-phenotype similarity network, protein-protein interaction network and gene-disease association network. However, the quantitative analysis of modularity in the heterogeneous network and its influence on disease-gene discovery are still unaddressed. Furthermore, the genetic correspondence of the disease subtypes can be identified by marking the genes and phenotypes in the phenotype-gene network. We present a novel network inference method to measure the network modularity, and in particular to suggest the subtypes of diseases based on the heterogeneous network. Results Based on a measure which is introduced to evaluate the closeness between two nodes in the phenotype-gene heterogeneous network, we developed a Hitting-Time-based method, CIPHER-HIT, for assessing the modularity of disease gene predictions and credibly prioritizing disease-causing genes, and then identifying the genetic modules corresponding to potential subtypes of the queried phenotype. The CIPHER-HIT is free to rely on any preset parameters. We found that when taking into account the modularity levels, the CIPHER-HIT method can significantly improve the performance of disease gene predictions, which demonstrates modularity is one of the key features for credible inference of disease genes on the phenotype-gene heterogeneous network. By applying the CIPHER-HIT to the subtype analysis of Breast cancer, we found that the prioritized genes can be divided into two sub-modules, one contains the members of the Fanconi anemia gene family, and the other contains a reported protein complex MRE11/RAD50/NBN. Conclusions The phenotype-gene heterogeneous network contains abundant information for not only disease genes discovery but also disease subtypes detection. The CIPHER-HIT method presented here is effective for network inference, particularly on credible prediction of disease genes and the subtype analysis of diseases, for example Breast cancer. This method provides a promising way to analyze heterogeneous biological networks, both globally and locally.
Collapse
Affiliation(s)
- Xin Yao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
56
|
Tiraby C, Hazen BC, Gantner ML, Kralli A. Estrogen-related receptor gamma promotes mesenchymal-to-epithelial transition and suppresses breast tumor growth. Cancer Res 2011; 71:2518-28. [PMID: 21339306 DOI: 10.1158/0008-5472.can-10-1315] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Estrogen-related receptors (ERR), ERR alpha (ERRα) and ERR gamma (ERRγ), are orphan nuclear receptors implicated in breast cancer that function similarly in the regulation of oxidative metabolism genes. Paradoxically, in clinical studies, high levels of ERRα are associated with poor outcomes whereas high levels of ERRγ are associated with a favorable course. Recent studies suggest that ERRα may indeed promote breast tumor growth. The roles of ERRγ in breast cancer progression and how ERRα and ERRγ may differentially affect cancer growth are unclear. In mammary carcinoma cells that do not express endogenous ERRγ, we found that ectopic expression of ERRγ enhanced oxidative metabolism in vitro and inhibited the growth of tumor xenografts in vivo. In contrast, ectopic expression of the ERRα coactivator PGC-1α enhanced oxidative metabolism but did not affect tumor growth. Notably, ERRγ activated expression of a genetic program characteristic of mesenchymal-to-epithelial transition (MET). This program was apparent by changes in cellular morphology, upregulation of epithelial cell markers, downregulation of mesenchymal markers, and decreased cellular invasiveness. We determined that this program was also associated with upregulation of E-cadherin, which is activated directly by ERRγ. In contrast, PGC-1α activated only a subset of genes characteristic of the MET program and, unlike ERRγ, did not upregulate E-cadherin. In conclusion, these results show that ERRγ induces E-cadherin, promotes MET, and suppresses breast cancer growth. Our findings suggest that ERRγ agonists may have applications in the treatment of breast cancer.
Collapse
Affiliation(s)
- Claire Tiraby
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
57
|
Kriegbaum MC, Jacobsen B, Hald A, Ploug M. Expression of C4.4A, a structural uPAR homolog, reflects squamous epithelial differentiation in the adult mouse and during embryogenesis. J Histochem Cytochem 2011; 59:188-201. [PMID: 21339181 PMCID: PMC3201140 DOI: 10.1369/0022155410394859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/23/2010] [Indexed: 12/28/2022] Open
Abstract
The glycosylphosphatidylinositol (GPI)-anchored C4.4A was originally identified as a metastasis-associated protein by differential screening of rat pancreatic carcinoma cell lines. C4.4A is accordingly expressed in various human carcinoma lesions. Although C4.4A is a structural homolog of the urokinase receptor (uPAR), which is implicated in cancer invasion and metastasis, no function has so far been assigned to C4.4A. To assist future studies on its function in both physiological and pathophysiological conditions, the present study provide a global survey on C4.4A expression in the normal mouse by a comprehensive immunohistochemical mapping. This task was accomplished by staining paraffin-embedded tissues with a specific rabbit polyclonal anti-C4.4A antibody. In the adult mouse, C4.4A was predominantly expressed in the suprabasal layers of the squamous epithelia of the oral cavity, esophagus, non-glandular portion of the rodent stomach, anus, vagina, cornea, and skin. This epithelial confinement was particularly evident from the abrupt termination of C4.4A expression at the squamo-columnar transition zones found at the ano-rectal and utero-vaginal junctions, for example. During mouse embryogenesis, C4.4A expression first appears in the developing squamous epithelium at embryonic day 13.5. This anatomical location of C4.4A is thus concordant with a possible functional role in early differentiation of stratified squamous epithelia.
Collapse
Affiliation(s)
| | | | | | - Michael Ploug
- Michael Ploug, Finsen Laboratory, Rigshospitalet Section 3537, Copenhagen Biocenter room 3.3.31, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark. E-mail:
| |
Collapse
|
58
|
Lee SO, Li X, Khan S, Safe S. Targeting NR4A1 (TR3) in cancer cells and tumors. Expert Opin Ther Targets 2011; 15:195-206. [PMID: 21204731 DOI: 10.1517/14728222.2011.547481] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Nuclear receptor 4A1(NR4A1) (testicular receptor 3 (TR3), nuclear hormone receptor (Nur)77) is a member of the nuclear receptor superfamily of transcription factors and is highly expressed in multiple tumor types. RNA interference studies indicate that NR4A1 exhibits growth-promoting, angiogenic and prosurvival activity in most cancers. AREAS COVERED Studies on several apoptosis-inducing agents that activate nuclear export of NR4A1, which subsequently forms a mitochondrial NR4A1-bcl-2 complex that induces the intrinsic pathway for apoptosis are discussed. Cytosporone B and related compounds that induce NR4A1-dependent apoptosis in cancer cells through both modulation of nuclear NR4A1 and nuclear export are discussed. A relatively new class of diindolylmethane analogs (C-DIMs) including 1,1-bis(3'-indolyl)-1-(p-methoxyphenyl)methane (DIM-C-pPhOCH(3)) (NR4A1 activator) and 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) (NR4A1 deactivator) are discussed in more detail. These anticancer drugs (C-DIMs) act strictly through nuclear NR4A1 and induce apoptosis in cancer cells and tumors. EXPERT OPINION It is clear that NR4A1 plays an important pro-oncogenic role in cancer cells and tumors, and there is increasing evidence that this receptor can be targeted by anticancer drugs that induce cell death via NR4A1-dependent and -independent pathways. Since many of these compounds exhibit relatively low toxicity, they represent an important class of mechanism-based anticancer drugs with excellent potential for clinical applications.
Collapse
Affiliation(s)
- Syng-Ook Lee
- Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
59
|
Gallet M, Vanacker JM. ERR receptors as potential targets in osteoporosis. Trends Endocrinol Metab 2010; 21:637-41. [PMID: 20674386 DOI: 10.1016/j.tem.2010.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 01/12/2023]
Abstract
The bone fragility and increased fracture risk associated with osteoporosis in post-menopausal women is a major public health concern. Current treatments for osteoporosis relying on hormone replacement therapies are suspected to have an association with increased breast cancer risk, highlighting the need for identifying new potential targets in bone. Recent data suggest that the estrogen-related receptor (ERR)α, an orphan nuclear receptor, represses osteoblast differentiation, and that its deletion in knockout mouse models results in increased mineral density. Furthermore, modulation of ERRα activity reduces proliferation and tumorigenesis of breast cancer cells. These results indicated that inhibition of ERRα might provide a treatment for osteoporosis without displaying adverse effects in breast cancer. This review focuses on the role of the ERR receptors, and in particular ERRα, in the differentiation of bone precursor cells and its consequences on bone homeostasis, and discusses the possible grounds for the discrepancies reported in the literature.
Collapse
Affiliation(s)
- Marlène Gallet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | | |
Collapse
|
60
|
Duellman SJ, Calaoagan JM, Sato BG, Fine R, Klebansky B, Chao WR, Hobbs P, Collins N, Sambucetti L, Laderoute KR. A novel steroidal inhibitor of estrogen-related receptor alpha (ERR alpha). Biochem Pharmacol 2010; 80:819-26. [PMID: 20513360 PMCID: PMC2918268 DOI: 10.1016/j.bcp.2010.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 01/15/2023]
Abstract
The orphan nuclear receptor estrogen-related receptor alpha (ERRalpha) has been implicated in the development of various human malignancies, including breast, prostate, ovary, and colon cancer. ERRalpha, bound to a co-activator protein (e.g., peroxisome proliferator receptor gamma co-activator-1alpha, PGC-1alpha), regulates cellular energy metabolism by activating transcription of genes involved in various metabolic processes, such as mitochondrial genesis, oxidative phosphorylation, and fatty acid oxidation. Accumulating evidence suggests that ERRalpha is a novel target for solid tumor therapy, conceivably through effects on the regulation of tumor cell energy metabolism associated with energy stress within solid tumor microenvironments. This report describes a novel steroidal antiestrogen (SR16388) that binds selectively to ERRalpha, but not to ERRbeta or ERRgamma, as determined using a time-resolved fluorescence resonance energy transfer assay. SR16388 potently inhibits ERRalpha's transcriptional activity in reporter gene assays, and prevents endogenous PGC-1alpha and ERRalpha from being recruited to the promoters or enhancers of target genes. Representative in vivo results show that SR16388 inhibited the growth of human prostate tumor xenografts in nude mice as a single agent at 30mg/kg given once daily and 100mg/kg given once weekly. In a combination study, SR16388 (10mg/kg, once daily) and paclitaxel (7.5mg/kg, twice weekly) inhibited the growth of prostate tumor xenografts in nude mice by 61% compared to untreated xenograft tumors. SR16388 also inhibited the proliferation of diverse human tumor cell lines after a 24-h exposure to the compound. SR16388 thus has utility both as an experimental antitumor agent and as a chemical probe of ERRalpha biology.
Collapse
Affiliation(s)
- Sarah J Duellman
- Biosciences Division, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Riggins RB, Mazzotta MM, Maniya OZ, Clarke R. Orphan nuclear receptors in breast cancer pathogenesis and therapeutic response. Endocr Relat Cancer 2010; 17:R213-31. [PMID: 20576803 PMCID: PMC3518023 DOI: 10.1677/erc-10-0058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors comprise a large family of highly conserved transcription factors that regulate many key processes in normal and neoplastic tissues. Most nuclear receptors share a common, highly conserved domain structure that includes a carboxy-terminal ligand-binding domain. However, a subgroup of this gene family is known as the orphan nuclear receptors because to date there are no known natural ligands that regulate their activity. Many of the 25 nuclear receptors classified as orphan play critical roles in embryonic development, metabolism, and the regulation of circadian rhythm. Here, we review the emerging role(s) of orphan nuclear receptors in breast cancer, with a particular focus on two of the estrogen-related receptors (ERRalpha and ERRgamma) and several others implicated in clinical outcome and response or resistance to cytotoxic or endocrine therapies, including the chicken ovalbumin upstream promoter transcription factors, nerve growth factor-induced B, DAX-1, liver receptor homolog-1, and retinoic acid-related orphan receptor alpha. We also propose that a clearer understanding of the function of orphan nuclear receptors in mammary gland development and normal mammary tissues could significantly improve our ability to diagnose, treat, and prevent breast cancer.
Collapse
Affiliation(s)
- Rebecca B. Riggins
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Mary M. Mazzotta
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Omar Z. Maniya
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Robert Clarke
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
- Department of Physiology and Biophysics, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| |
Collapse
|
62
|
Wang J, Wang Y, Wong C. Oestrogen-related receptor alpha inverse agonist XCT-790 arrests A549 lung cancer cell population growth by inducing mitochondrial reactive oxygen species production. Cell Prolif 2010; 43:103-13. [PMID: 20447055 PMCID: PMC6495589 DOI: 10.1111/j.1365-2184.2009.00659.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/15/2009] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Although oestrogen-related receptor alpha (ERRalpha) is primarily thought to regulate energy homeostasis, it also serves as a prognostic marker for cancer. The aim of this study was to investigate any connection between ERRalpha activity and cell population growth. MATERIALS AND METHODS XCT-790, an ERRa specific inverse agonist, was employed to suppress ERRa activity in human non-small cell lung cancer cells (NSCLC) A549. Gene expressions were detected using quantitative real-time PCR and Western blot analysis. Mitochondrial mass, membrane potential and reactive oxygen species (ROS) production were measured by staining with Mitotracker green, JC-1 and CM-H(2)DCFDA dyes respectively. Rate of progression through the tricarboxylic acid (TCA) cycle was analysed by measuring activities of citrate synthase and succinate dehydrogenase. Cell cycle analysis was performed by using flow cytometry. RESULTS We found that XCT-790 treatment reduced mitochondrial mass but enhanced mitochondrial ROS production by increasing rate through the TCA cycle, elevating mitochondrial membrane potential (DeltaPsi(m)) and down-regulating expression of superoxide dismutase. It was further demonstrated that XCT-790-induced ROS modulated p53 and Rb signalling pathways and suppressed cell replication. CONCLUSIONS ERRalpha affects cell cycle mechanisms through modulating mitochondrial mass and function. Dysregulation of this essential pathway leads to elevation in mitochondrial ROS production, which in turn modulates activities of tumour suppressors, resulting in cell cycle arrest.
Collapse
Affiliation(s)
- J. Wang
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Y. Wang
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - C. Wong
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
63
|
Miyajima J, Hayashi T, Saito K, Iida S, Matsuoka K. The Interaction between female sex hormone receptors and osteopontin in a rat hyperoxaluric model. Kurume Med J 2010; 57:73-80. [PMID: 21186342 DOI: 10.2739/kurumemedj.57.73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is well known that the incidence of urinary stones is higher in men than women. Although it is believed that the lower incidence of urinary stones in women is due to a protective effect of estrogen, the mechanisms remain unclear. To clarify the relation between female sex hormones and stone matrix protein, we examined the interaction of estrogen receptor-α (ERα), estrogen receptor-related receptor-α (ERRα), and stone matrix protein osteopontin (OPN) in a rat hyperoxaluric model and in primary cultured rat kidney cells. Adult female Wistar rats were divided into 6 groups. Groups 1 and 4 consisted of normal females, Groups 2 and 5 consisted of ovariectomized females, and Groups 3 and 6 consisted of ovariectomized females receiving female sex hormone supplements. Groups 1-3 were administered distilled water, while groups 4-6 were administered 0.5% ethyleneglycol (EG). Moreover, rat kidney primary cultured cells were examined after treatment with female sex hormones under various conditions. The expressions of ERα, ERRα and OPN-mRNA in whole kidney and primary cultured cells were examined using Real-Time PCR. The expressions of OPN and ERRα-mRNA were suppressed by ovariectomy. Supplementation with female sex hormones increased the expression of OPN and ERRα-mRNA. In contrast, the expression of ERα-mRNA was increased by ovariectomy and suppressed by supplementation with female sex hormones. The results of the mRNA expression in primary cultured cells matched those in the hyperoxaluric model rats. Although the reason for the difference in expression between ERα and ERRα-mRNA is unclear, estrogen may regulates OPN expression through ERα and/or ERRα, either independently or in combination. Moreover, the decrease of OPN induced by removal of estrogen may increase urinary stones in postmenopausal women.
Collapse
Affiliation(s)
- Jiro Miyajima
- Department of Urology, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | |
Collapse
|
64
|
Deblois G, Hall JA, Perry MC, Laganière J, Ghahremani M, Park M, Hallett M, Giguère V. Genome-wide identification of direct target genes implicates estrogen-related receptor alpha as a determinant of breast cancer heterogeneity. Cancer Res 2009; 69:6149-57. [PMID: 19622763 DOI: 10.1158/0008-5472.can-09-1251] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor, the expression of which correlates with negative prognosis in breast cancer. ERRalpha shares functional features with the estrogen receptor alpha (ERalpha) and its activity is modulated by the ERBB2 signaling pathway. Using genome-wide binding sites location analyses in ERalpha-positive and ERalpha-negative breast cancer cell lines, we show that ERRalpha and ERalpha display strict binding site specificity and maintain independent mechanisms of transcriptional activation. Nonetheless, ERRalpha and ERalpha coregulate a small subset of common target genes via binding either to a dual-specificity binding site or to distinct cognate binding sites located within the extended promoter region of the gene. Although ERRalpha signaling in breast cancer cells is mostly independent of ERalpha, the small fraction of common ERRalpha/ERalpha targets comprises genes with high relevance to breast tumor biology, including genes located within the ERBB2 amplicon and GATA3. Finally, unsupervised hierarchical clustering based on the expression profiling of ERRalpha direct target genes in human breast tumors revealed four main clusters that recapitulate established tumor subtypes. Taken together, the identification and functional characterization of the ERRalpha transcriptional network implicate ERRalpha signaling as a determinant of breast cancer heterogeneity.
Collapse
Affiliation(s)
- Geneviève Deblois
- Rosalind and Morris Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Chisamore MJ, Cunningham ME, Flores O, Wilkinson HA, Chen JD. Characterization of a novel small molecule subtype specific estrogen-related receptor alpha antagonist in MCF-7 breast cancer cells. PLoS One 2009; 4:e5624. [PMID: 19462000 PMCID: PMC2680043 DOI: 10.1371/journal.pone.0005624] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/17/2009] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The orphan nuclear receptor estrogen-related receptor alpha (ERRalpha) is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor alpha (ERalpha). An endogenous ligand has not been found. Novel ERRalpha antagonists that are highly specific for binding to the ligand binding domain (LBD) of ERRalpha have been recently reported. Research suggests that ERRalpha may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRalpha specific antagonist. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate this ERRalpha ligand inhibits ERRalpha transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERalpha (ESR1) mRNA levels were not affected upon treatment with the ERRalpha antagonist, but other ERRalpha (ESRRA) target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase (CYP19A1) mRNA levels decreased. In vitro, the ERRalpha antagonist prevents the constitutive interaction between ERRalpha and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRalpha protein degradation via the ubiquitin proteasome pathway is increased by the ERRalpha-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP) that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRalpha protein is decreased when cells are treated with the ligand. Knocking-down ERRalpha (shRNA) led to similar genomic effects seen when MCF-7 cells were treated with our ERRalpha antagonist. CONCLUSIONS/SIGNIFICANCE We report the mechanism of action of a novel ERRalpha specific antagonist that inhibits transcriptional activity of ERRalpha, disrupts the constitutive interaction between ERRalpha and nuclear coactivators, and induces proteasome-dependent ERRalpha protein degradation. Additionally, we confirmed that knocking-down ERRalpha lead to similar genomic effects demonstrated in vitro when treated with the ERRalpha specific antagonist.
Collapse
Affiliation(s)
- Michael J Chisamore
- Department of Molecular Endocrinology, Merck Research Laboratories, West Point, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|