51
|
Ma C, Zhao JZ, Lin RT, Zhou L, Chen YN, Yu LJ, Shi TY, Wang M, Liu MM, Liu YR, Zhang T. Combined overexpression of cadherin 6, cadherin 11 and cluster of differentiation 44 is associated with lymph node metastasis and poor prognosis in oral squamous cell carcinoma. Oncol Lett 2018; 15:9498-9506. [PMID: 29805672 DOI: 10.3892/ol.2018.8509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/28/2018] [Indexed: 12/23/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly invasive lesion that frequently metastasizes to the cervical lymph nodes and is associated with a poor prognosis. Several adhesion factors, including cadherin 6 (CDH6), cadherin 11 (CDH11) and cluster of differentiation 44 (CD44), have been reported to be involved in the invasion and metastasis of multiple types of cancer. Therefore, the aim of the present study was to determine the expression of CDH6, CDH11 and CD44 in tumor tissues from patients with OSCC, and whether this was associated with the metastasis and survival of OSCC. The mRNA expression of the human tumor metastasis-related cytokines was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in OSCC tumors with or without lymph node metastasis (n=10/group). The expression of CDH6, CDH11 and CD44 in 101 OSCC and 10 normal oral mucosa samples was examined by immunohistochemical staining. The association between overall and disease-specific survival times of patients with OSCC and the expression of these three proteins was evaluated using Kaplan-Meier curves and the log-rank test. RT-qPCR results indicated that the mRNA expression of CDH6, CDH11 and CD44 was increased in OSCC patients with lymph node metastasis (2.93-, 2.01- and 1.92-fold; P<0.05). Overexpression of CDH6, CDH11 and CD44 was observed in 31/35 (89%), 25/35 (71%) and 31/35 (89%) patients, respectively. The number of OSCC patients with lymph node metastasis exhibiting CDH6, CDH11 and CD44 overexpression was significantly higher than the number of patients without lymph node metastasis exhibiting overexpression of these proteins (P=0.017, P=0.038 and P=0.007, respectively). OSCC patients with high co-expression of CDH6, CDH11 and CD44 exhibited lower disease-specific survival times (P=0.047; χ2=3.933) when compared with OSCC patients with low co-expression of these adhesion factors. CDH6, CDH11 and CD44 serve important roles in OSCC metastasis and the combined use of these factors as biomarkers may improve the accuracy of the prediction of cancer metastases and prognosis.
Collapse
Affiliation(s)
- Chao Ma
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Ji-Zhi Zhao
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Run-Tai Lin
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Lian Zhou
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Yong-Ning Chen
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Li-Jiang Yu
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Tian-Yin Shi
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Mu Wang
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Man-Man Liu
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Yao-Ran Liu
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Tao Zhang
- Department of Stomatology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| |
Collapse
|
52
|
Graham N, Qian BZ. Mesenchymal Stromal Cells: Emerging Roles in Bone Metastasis. Int J Mol Sci 2018; 19:E1121. [PMID: 29642534 PMCID: PMC5979535 DOI: 10.3390/ijms19041121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
Bone metastasis is the most advanced stage of many cancers and indicates a poor prognosis for patients due to resistance to anti-tumor therapies. The establishment of metastasis within the bone is a multistep process. To ensure survival within the bone marrow, tumor cells must initially colonize a niche in which they can enter dormancy. Subsequently, reactivation permits the proliferation and growth of the tumor cells, giving rise to a macro-metastasis displayed clinically as a bone metastatic lesion. Here, we review the evidences that suggest mesenchymal stromal cells play an important role in each of these steps throughout the development of bone metastasis. Similarities between the molecular mechanisms implicated in these processes and those involved in the homeostasis of the bone indicate that the metastatic cells may exploit the homeostatic processes to their own advantage. Identifying the molecular interactions between the mesenchymal stromal cells and tumor cells that promote tumor development may offer insight into potential therapeutic targets that could be utilized to treat bone metastasis.
Collapse
Affiliation(s)
- Nicola Graham
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Bin-Zhi Qian
- Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK.
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
53
|
Yu-Lee LY, Yu G, Lee YC, Lin SC, Pan J, Pan T, Yu KJ, Liu B, Creighton CJ, Rodriguez-Canales J, Villalobos PA, Wistuba II, de Nadal E, Posas F, Gallick GE, Lin SH. Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFβRIII-p38MAPK-pS249/T252RB Pathway. Cancer Res 2018. [PMID: 29514796 DOI: 10.1158/0008-5472.can-17-1051] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bone metastasis from prostate cancer can occur years after prostatectomy, due to reactivation of dormant disseminated tumor cells (DTC) in the bone, yet the mechanism by which DTCs are initially induced into a dormant state in the bone remains to be elucidated. We show here that the bone microenvironment confers dormancy to C4-2B4 prostate cancer cells, as they become dormant when injected into mouse femurs but not under the skin. Live-cell imaging of dormant cells at the single-cell level revealed that conditioned medium from differentiated, but not undifferentiated, osteoblasts induced C4-2B4 cellular quiescence, suggesting that differentiated osteoblasts present locally around the tumor cells in the bone conferred dormancy to prostate cancer cells. Gene array analyses identified GDF10 and TGFβ2 among osteoblast-secreted proteins that induced quiescence of C4-2B4, C4-2b, and PC3-mm2, but not 22RV1 or BPH-1 cells, indicating prostate cancer tumor cells differ in their dormancy response. TGFβ2 and GDF10 induced dormancy through TGFβRIII to activate phospho-p38MAPK, which phosphorylates retinoblastoma (RB) at the novel N-terminal S249/T252 sites to block prostate cancer cell proliferation. Consistently, expression of dominant-negative p38MAPK in C4-2b and C4-2B4 prostate cancer cell lines abolished tumor cell dormancy both in vitro and in vivo Lower TGFβRIII expression in patients with prostate cancer correlated with increased metastatic potential and decreased survival rates. Together, our results identify a dormancy mechanism by which DTCs are induced into a dormant state through TGFβRIII-p38MAPK-pS249/pT252-RB signaling and offer a rationale for developing strategies to prevent prostate cancer recurrence in the bone.Significance: These findings provide mechanistic insights into the dormancy of metastatic prostate cancer in the bone and offer a rationale for developing strategies to prevent prostate cancer recurrence in the bone. Cancer Res; 78(11); 2911-24. ©2018 AACR.
Collapse
Affiliation(s)
- Li-Yuan Yu-Lee
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Pan
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Tianhong Pan
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kai-Jie Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Center for Cancer Genetics and Genomics and Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chad J Creighton
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela A Villalobos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eulalia de Nadal
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Posas
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
54
|
Dadwal UC, Chang ES, Sankar U. Androgen Receptor-CaMKK2 Axis in Prostate Cancer and Bone Microenvironment. Front Endocrinol (Lausanne) 2018; 9:335. [PMID: 29967592 PMCID: PMC6015873 DOI: 10.3389/fendo.2018.00335] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
The skeletal system is of paramount importance in advanced stage prostate cancer (PCa) as it is the preferred site of metastasis. Complex mechanisms are employed sequentially by PCa cells to home to and colonize the bone. Bone-resident PCa cells then recruit osteoblasts (OBs), osteoclasts (OCs), and macrophages within the niche into entities that promote cancer cell growth and survival. Since PCa is heavily reliant on androgens for growth and survival, androgen-deprivation therapy (ADT) is the standard of care for advanced disease. Although it significantly improves survival rates, ADT detrimentally affects bone health and significantly increases the risk of fractures. Moreover, whereas the majority patients with advanced PCa respond favorably to androgen deprivation, most experience a relapse of the disease to a hormone-refractory form within 1-2 years of ADT. The tumor adapts to surviving under low testosterone conditions by selecting for mutations in the androgen receptor (AR) that constitutively activate it. Thus, AR signaling remains active in PCa cells and aids in its survival under low levels of circulating androgens and additionally allows the cancer cells to manipulate the bone microenvironment to fuel its growth. Hence, AR and its downstream effectors are attractive targets for therapeutic interventions against PCa. Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2), was recently identified as a key downstream target of AR in coordinating PCa cell growth, survival, and migration. Additionally, this multifunctional serine/threonine protein kinase is a critical mediator of bone remodeling and macrophage function, thus emerging as an attractive therapeutic target downstream of AR in controlling metastatic PCa and preventing ADT-induced bone loss. Here, we discuss the role played by AR-CaMKK2 signaling axis in PCa survival, metabolism, cell growth, and migration as well as the cell-intrinsic roles of CaMKK2 in OBs, OCs, and macrophages within the bone microenvironment.
Collapse
|
55
|
Ghosh D, Dawson MR. Microenvironment Influences Cancer Cell Mechanics from Tumor Growth to Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:69-90. [PMID: 30368749 DOI: 10.1007/978-3-319-95294-9_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment in a solid tumor includes a multitude of cell types, matrix proteins, and growth factors that profoundly influence cancer cell mechanics by providing both physical and chemical stimulation. This tumor microenvironment, which is both dynamic and heterogeneous in nature, plays a critical role in cancer progression from the growth of the primary tumor to the development of metastatic and drug-resistant tumors. This chapter provides an overview of the biophysical tools used to study cancer cell mechanics and mechanical changes in the tumor microenvironment at different stages of cancer progression, including growth of the primary tumor, local invasion, and metastasis. Quantitative single cell biophysical analysis of intracellular mechanics, cell traction forces, and cell motility can easily be combined with analysis of critical cell fate processes, including adhesion, proliferation, and drug resistance, to determine how changes in mechanics contribute to cancer progression. This biophysical approach can be used to systematically investigate the parameters in the tumor that control cancer cell interactions with the stroma and to identify specific conditions that induce tumor-promoting behavior, along with strategies for inhibiting these conditions to treat cancer. Increased understanding of the underlying biophysical mechanisms that drive cancer progression may provide insight into novel therapeutic approaches in the fight against cancer.
Collapse
Affiliation(s)
- Deepraj Ghosh
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA
| | - Michelle R Dawson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, USA.
- Center for Biomedical Engineering, Brown University, Providence, RI, USA.
- School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
56
|
Pan T, Lin SC, Yu KJ, Yu G, Song JH, Lewis VO, Bird JE, Moon B, Lin PP, Tannir NM, Jonasch E, Wood CG, Gallick GE, Yu-Lee LY, Lin SH, Satcher RL. BIGH3 Promotes Osteolytic Lesions in Renal Cell Carcinoma Bone Metastasis by Inhibiting Osteoblast Differentiation. Neoplasia 2017; 20:32-43. [PMID: 29190493 PMCID: PMC5711998 DOI: 10.1016/j.neo.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND: Bone metastasis is common in renal cell carcinoma (RCC), and the lesions are mainly osteolytic. The mechanism of bone destruction in RCC bone metastasis is unknown. METHODS: We used a direct intrafemur injection of mice with bone-derived 786-O RCC cells (Bo-786) as an in vivo model to study if inhibition of osteoblast differentiation is involved in osteolytic bone lesions in RCC bone metastasis. RESULTS: We showed that bone-derived Bo-786 cells induced osteolytic bone lesions in the femur of mice. We examined the effect of conditioned medium of Bo-786 cells (Bo-786 CM) on both primary mouse osteoblasts and MC3T3-E1 preosteoblasts and found that Bo-786 CM inhibited osteoblast differentiation. Secretome analysis of Bo-786 CM revealed that BIGH3 (Beta ig h3 protein), also known as TGFBI (transforming growth factor beta-induced protein), is highly expressed. We generated recombinant BIGH3 and found that BIGH3 inhibited osteoblast differentiation in vitro. In addition, CM from Bo-786 BIGH3 knockdown cells (786-BIGH3 KD) reduced the inhibition of osteoblast differentiation compared to CM from vector control. Intrafemural injection of mice with 786-BIGH3 KD cells showed a reduction in osteolytic bone lesions compared to vector control. Immunohistochemical staining of 18 bone metastasis specimens from human RCC showed strong BIGH3 expression in 11/18 (61%) and moderate BIGH3 expression in 7/18 (39%) of the specimens. CONCLUSIONS: These results suggest that suppression of osteoblast differentiation by BIGH3 is one of the mechanisms that enhance osteolytic lesions in RCC bone metastasis, and raise the possibilty that treatments that increase bone formation may improve therapy outcomes.
Collapse
Affiliation(s)
- Tianhong Pan
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Kai-Jie Yu
- Department of Urology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA; Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Chemical Engineering and Biotechnology and Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Guoyu Yu
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Valerae O Lewis
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Justin E Bird
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan Moon
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick P Lin
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher G Wood
- Department of Urology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA; Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Robert L Satcher
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
57
|
Lee YC, Bååth JA, Bastle RM, Bhattacharjee S, Cantoria MJ, Dornan M, Gamero-Estevez E, Ford L, Halova L, Kernan J, Kürten C, Li S, Martinez J, Sachan N, Sarr M, Shan X, Subramanian N, Rivera K, Pappin D, Lin SH. Impact of Detergents on Membrane Protein Complex Isolation. J Proteome Res 2017; 17:348-358. [DOI: 10.1021/acs.jproteome.7b00599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jenny Arnling Bååth
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Ryan M. Bastle
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Sonali Bhattacharjee
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Mary Jo Cantoria
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Mark Dornan
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | | | - Lenzie Ford
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Lenka Halova
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Jennifer Kernan
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Charlotte Kürten
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Siran Li
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Jerahme Martinez
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Nalani Sachan
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Medoune Sarr
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Xiwei Shan
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | | | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Darryl Pappin
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York 11724, United States
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
58
|
Cao Z, Livas T, Kyprianou N. Anoikis and EMT: Lethal "Liaisons" during Cancer Progression. Crit Rev Oncog 2017; 21:155-168. [PMID: 27915969 DOI: 10.1615/critrevoncog.2016016955] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anoikis is a unique mode of apoptotic cell death that occurs consequentially to insufficient cell-matrix interactions. Resistance to anoikis is a critical contributor to tumor invasion and metastasis. The phenomenon is regulated by integrins, which upon engagement with components of the extracellular matrix (ECM) form adhesion complexes and the actin cytoskeleton drives the formation of cell protrusions used to adhere to ECM, directing cell migration. The epithelial-mesenchymal transition (EMT) confers stem cell properties and leads to acquisition of a migratory and invasive phenotype by causing adherens junction breakdown and circumventing anoikis in the tumor microenvironment. The investigation of drug discovery platforms for apoptosis-driven therapeutics identified several novel agents with antitumor action via reversing resistance to anoikis, inhibiting survival pathways and impacting the EMT landscape in human cancer. In this review, we discuss current evidence on the contribution of the anoikis phenomenon functionally linked to EMT to cancer metastasis and the therapeutic value of antitumor drugs that selectively reverse anoikis resistance and/or EMT to impair tumor progression toward the development/optimization of apoptosis-driven therapeutic targeting of metastatic disease.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| | - Theodore Livas
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| | - Natasha Kyprianou
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| |
Collapse
|
59
|
Bilen MA, Pan T, Lee YC, Lin SC, Yu G, Pan J, Hawke D, Pan BF, Vykoukal J, Gray K, Satcher RL, Gallick GE, Yu-Lee LY, Lin SH. Proteomics Profiling of Exosomes from Primary Mouse Osteoblasts under Proliferation versus Mineralization Conditions and Characterization of Their Uptake into Prostate Cancer Cells. J Proteome Res 2017; 16:2709-2728. [PMID: 28675788 DOI: 10.1021/acs.jproteome.6b00981] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Osteoblasts communicate both with normal cells in the bone marrow and with tumor cells that metastasized to bone. Here we show that osteoblasts release exosomes, we termed osteosomes, which may be a novel mechanism by which osteoblasts communicate with cells in their environment. We have isolated exosomes from undifferentiated/proliferating (D0 osteosomes) and differentiated/mineralizing (D24 osteosomes) primary mouse calvarial osteoblasts. The D0 and D24 osteosomes were found to be vesicles of 130-140 nm by dynamic light scattering analysis. Proteomics profiling using tandem mass spectrometry (LC-MS/MS) identified 206 proteins in D0 osteosomes and 336 in D24 osteosomes. The proteins in osteosomes are mainly derived from the cytoplasm (∼47%) and plasma membrane (∼31%). About 69% of proteins in osteosomes are also found in Vesiclepedia, and these canonical exosomal proteins include tetraspanins and Rab family proteins. We found that there are differences in both protein content and levels in exosomes isolated from undifferentiated and differentiated osteoblasts. Among the proteins that are unique to osteosomes, 169 proteins are present in both D0 and D24 osteosomes, 37 are unique to D0, and 167 are unique to D24. Among those 169 proteins present in both D0 and D24 osteosomes, 10 proteins are likely present at higher levels in D24 than D0 osteosomes based on emPAI ratios of >5. These results suggest that osteosomes released from different cellular state of osteoblasts may mediate distinct functions. Using live-cell imaging, we measured the uptake of PKH26-labeled osteosomes into C4-2B4 and PC3-mm2 prostate cancer cells. In addition, we showed that cadherin-11, a cell adhesion molecule, plays a role in the uptake of osteosomes into PC3-mm2 cells as osteosome uptake was delayed by neutralizing antibody against cadherin-11. Together, our studies suggest that osteosomes could have a unique role in the bone microenvironment under both physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Pan
- Department of Medicine, Baylor College of Medicine , Houston, Texas 77030, United States
| | | | | | | | | | | | | | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine , Houston, Texas 77030, United States
| | | |
Collapse
|
60
|
Boucher J, Monvoisin A, Vix J, Mesnil M, Thuringer D, Debiais F, Cronier L. Connexins, important players in the dissemination of prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:202-215. [PMID: 28693897 DOI: 10.1016/j.bbamem.2017.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022]
Abstract
Over the past 50years, increasing experimental evidences have established that connexins (Cxs) and gap junctional intercellular communication (GJIC) ensure an important role in both the onset and development of cancerous processes. In the present review, we focus on the impact of Cxs and GJIC during the development of prostate cancer (PCa), from the primary growth mainly localized in acinar glands and ducts to the distant metastasis mainly concentrated in bone. As observed in several other types of solid tumours, Cxs and especially Cx43 exhibit an ambivalent role with a tumour suppressor effect in the early stages and, conversely, a rather pro-tumoural profile for most of invasion and dissemination steps to secondary sites. We report here the current knowledge on the function of Cxs during PCa cells migration, cytoskeletal dynamics, proteinases activities and the cross talk with the surrounding stromal cells in the microenvironment of the tumour and the bones. In addition, we discuss the role of Cxs in the bone tropism even if the prostate model is rarely used to study the complete sequence of cancer dissemination compared to breast cancer or melanoma. Even if not yet fully understood, these recent findings on Cxs provide new insights into their molecular mechanisms associated with progression and bone targeted behaviour of PCa. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Jonathan Boucher
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | - Arnaud Monvoisin
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | - Justine Vix
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France; Department of Rheumatology, C.H.U. la Milétrie, Poitiers, France
| | - Marc Mesnil
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | | | - Françoise Debiais
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France; Department of Rheumatology, C.H.U. la Milétrie, Poitiers, France
| | - Laurent Cronier
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France.
| |
Collapse
|
61
|
Clézardin P. Pathophysiology of bone metastases from solid malignancies. Joint Bone Spine 2017; 84:677-684. [PMID: 28499894 DOI: 10.1016/j.jbspin.2017.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 02/03/2023]
Abstract
Bone metastases are common complications of many cancers. Among the mechanisms that set the scene for the development of bone metastases, several are shared by all forms of metastatic dissemination (pre-metastatic niche formation and chemotactic attraction of malignant cells, which invade the host tissue) and others are specific of bone tissue (homing of malignant cells to bone marrow niches and acquisition of an osteomimetic cell phenotype). After a latency period that can last several years, the malignant cells can proliferate into tumors that alter the normal bone remodeling process by inducing dysregulation of osteoblast and osteoclast function. These metastases may be lytic, characterized by major bone destruction; sclerotic, with excess bone formation; or mixed. Osteolysis occurs when the tumor cells stimulate osteoclast activity and inhibit osteoblast activity, whereas the opposite effects lead to bone sclerosis. Moreover, the mineralized bone matrix plays a major role in the formation of bone metastases, as its degradation releases growth factors and calcium that exert mitogenic effects on tumor cells. Thus, bone metastases are the site of a vicious circle in which mechanisms involved in bone resorption/formation promote tumor growth and vice versa.
Collapse
Affiliation(s)
- Philippe Clézardin
- Inserm, UMR 1033, UFR de médecine Lyon-Est, 69372 Lyon cedex 08, France; Université Claude-Bernard Lyon-1, 69622 Villeurbanne, France.
| |
Collapse
|
62
|
Sfikakis PP, Vlachogiannis NI, Christopoulos PF. Cadherin-11 as a therapeutic target in chronic, inflammatory rheumatic diseases. Clin Immunol 2017; 176:107-113. [DOI: 10.1016/j.clim.2017.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/17/2022]
|
63
|
Manca P, Pantano F, Iuliani M, Ribelli G, De Lisi D, Danesi R, Del Re M, Vincenzi B, Tonini G, Santini D. Determinants of bone specific metastasis in prostate cancer. Crit Rev Oncol Hematol 2017; 112:59-66. [PMID: 28325265 DOI: 10.1016/j.critrevonc.2017.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer is one of the most common type of cancer in Western countries. Although the majority of patients with PCa have a minimally aggressive disease, some of them will experience relapse and formation of metastasis. Bone metastasis are a major cause of quality of life impairment and death among patients with metastatic prostate cancer. Different "bone targeted therapies" and several follow-up strategies were developed in order to optimize bone metastasis prevention and treatment. Nevertheless there is still a great clinical need of identifying patients more likely to benefit from those interventions as not all patients will develop metastatic disease and not all patients with metastatic disease will develop bone metastasis. Here we review markers predictive of bone metastasis occurrence that have been tested in clinical settings, particularly focusing on the ability of such markers to predict bone metastasis over visceral metastasis occurrence.
Collapse
Affiliation(s)
- Paolo Manca
- Medical Oncology Department, Campus Bio-Medico University, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Francesco Pantano
- Medical Oncology Department, Campus Bio-Medico University, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Michele Iuliani
- Medical Oncology Department, Campus Bio-Medico University, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Giulia Ribelli
- Medical Oncology Department, Campus Bio-Medico University, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Delia De Lisi
- Medical Oncology Department, Campus Bio-Medico University, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Bruno Vincenzi
- Medical Oncology Department, Campus Bio-Medico University, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Giuseppe Tonini
- Medical Oncology Department, Campus Bio-Medico University, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| | - Daniele Santini
- Medical Oncology Department, Campus Bio-Medico University, Via Alvaro del Portillo 200, 00128 Rome, Italy.
| |
Collapse
|
64
|
Nakazawa M, Kyprianou N. Epithelial-mesenchymal-transition regulators in prostate cancer: Androgens and beyond. J Steroid Biochem Mol Biol 2017; 166:84-90. [PMID: 27189666 DOI: 10.1016/j.jsbmb.2016.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/20/2016] [Accepted: 05/07/2016] [Indexed: 12/16/2022]
Abstract
Castration resistant prostate cancer (CRPC) remains one of the leading causes of cancer deaths among men. Conventional therapies targeting androgen signaling driven tumor growth have provided limited survival benefit in patients. Recent identification of the critical molecular and cellular events surrounding tumor progression, invasion, and metastasis to the bone as well as other sites provide new insights in targeting advanced disease. Epithelial mesenchymal transition (EMT) is a process via which epithelial cells undergo morphological changes to a motile mesenchymal phenotype, a phenomenon implicated in cancer metastasis but also therapeutic resistance. Therapeutic targeting of EMT has the potential to open a new avenue in the treatment paradigm of CRPC through the reversion of the invasive mesenchymal phenotype to the well differentiated tumor epithelial tumor phenotype. Overcoming therapeutic resistance in metastatic prostate cancer is an unmet need in today's clinical management of advanced disease. This review outlines our current understanding of the contribution of EMT and its reversal to MET in prostate cancer progression and therapeutic resistance, and the impact of selected targeting of mechanisms of resistance via EMT towards a therapeutic benefit in patients with CRPC.
Collapse
Affiliation(s)
- Mary Nakazawa
- Departments of Urology, Biochemistry, Pathology and Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States, United States
| | - Natasha Kyprianou
- Departments of Urology, Biochemistry, Pathology and Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States, United States.
| |
Collapse
|
65
|
Functions of the Tumor Suppressors p53 and Rb in Actin Cytoskeleton Remodeling. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9231057. [PMID: 28078303 PMCID: PMC5203884 DOI: 10.1155/2016/9231057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/21/2016] [Indexed: 01/27/2023]
Abstract
Mechanical microenvironments, such as extracellular matrix stiffness and strain, have crucial roles in cancer progression. Cells sense their microenvironments with mechanosensing biomolecules, which is accompanied by the modulation of actin cytoskeleton structures, and the signals are subsequently transduced downstream as biochemical signals. The tumor suppressors p53 and retinoblastoma protein (Rb) are known to prevent cancer progression. The p53 and Rb signaling pathways are disrupted in many types of cancers. Here, we review recent findings about the roles of these tumor suppressors in the regulation of mechanosensing biomolecules and the actin cytoskeleton. We further discuss how dysfunction in the p53- and/or Rb-mediated mechanosignaling pathways is potentially involved in cancer progression. These pathways might provide good targets for developing anticancer therapies.
Collapse
|
66
|
Dasen B, Vlajnic T, Mengus C, Ruiz C, Bubendorf L, Spagnoli G, Wyler S, Erne P, Resink TJ, Philippova M. T-cadherin in prostate cancer: relationship with cancer progression, differentiation and drug resistance. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2016; 3:44-57. [PMID: 28138401 PMCID: PMC5259566 DOI: 10.1002/cjp2.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/30/2016] [Accepted: 10/16/2016] [Indexed: 01/17/2023]
Abstract
Prostate cancer represents the second leading cause of cancer-related death in men. T-cadherin (CDH13) is an atypical GPI-anchored member of the cadherin family of adhesion molecules. Its gene was reported to be downregulated in a small series of prostate tumours. T-cadherin protein expression/localisation in prostate tissue has never been investigated. The purpose of our study was to analyse CDH13 gene and protein levels in large sets of healthy and cancer prostate tissue specimens and evaluate CDH13 effects on the sensitivity of prostate cancer cells to chemotherapy. Analysis of CDH13 gene expression in the TCGA RNAseq dataset for prostate adenocarcinoma (N = 550) and in tissue samples (N = 101) by qPCR revealed weak positive correlation with the Gleason score in cancer and no difference between benign and malignant specimens. Immunohistochemical analysis of tissue sections (N = 12) and microarrays (N = 128 specimens) demonstrated the presence of CDH13 on the apical surface and at intercellular contacts of cytokeratin 8-positive luminal cells and cells double-positive for cytokeratin 8 and basal marker p63. T-cadherin protein expression was markedly upregulated in cancer as compared to benign prostate hyperplasia, the increase being more prominent in organ-confined than in advanced hormone-resistant tumours, and correlated negatively with the Gleason pattern. T-cadherin protein level correlated strongly with cytokeratin 8 and with an abnormal diffuse/membrane localisation pattern of p63. Ectopic expression of CDH13 in metastatic prostate cancer cell line DU145 reduced cell growth in the presence of doxorubicin. We conclude that CDH13 protein, but not its gene expression, is strongly upregulated in early prostate cancer, correlates with changes in luminal/basal differentiation and p63 localisation, and promotes sensitivity of cancer cells to doxorubicin. These data identify CDH13 as a novel molecule relevant for prostate cancer progression and response to therapy.
Collapse
Affiliation(s)
- Boris Dasen
- Department of Biomedicine, Laboratory for Signal Transduction University Hospital Basel Switzerland
| | - Tatjana Vlajnic
- Institute of Pathology, University Hospital Basel Switzerland
| | - Chantal Mengus
- Institute of Surgical Research and Department of Biomedicine Basel University Hospital Switzerland
| | - Christian Ruiz
- Institute of Pathology, University Hospital Basel Switzerland
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel Switzerland
| | - Giulio Spagnoli
- Institute of Surgical Research and Department of Biomedicine Basel University Hospital Switzerland
| | - Stephen Wyler
- Urology Clinic, University Hospital Basel Switzerland
| | - Paul Erne
- Department of Biomedicine, Laboratory for Signal Transduction University Hospital Basel Switzerland
| | - Thérèse J Resink
- Department of Biomedicine, Laboratory for Signal Transduction University Hospital Basel Switzerland
| | - Maria Philippova
- Department of Biomedicine, Laboratory for Signal Transduction University Hospital Basel Switzerland
| |
Collapse
|
67
|
Birtolo C, Pham H, Morvaridi S, Chheda C, Go VLW, Ptasznik A, Edderkaoui M, Weisman MH, Noss E, Brenner MB, Larson B, Guindi M, Wang Q, Pandol SJ. Cadherin-11 Is a Cell Surface Marker Up-Regulated in Activated Pancreatic Stellate Cells and Is Involved in Pancreatic Cancer Cell Migration. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:146-155. [PMID: 27855278 DOI: 10.1016/j.ajpath.2016.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
Abstract
Chronic pancreatitis is a prominent risk factor for the development of pancreatic ductal adenocarcinoma. In both conditions, the activation of myofibroblast-like pancreatic stellate cells (PSCs) plays a predominant role in the formation of desmoplastic reaction through the synthesis of connective tissue and extracellular matrix, inducing local pancreatic fibrosis and an inflammatory response. Yet the signaling events involved in chronic pancreatitis and pancreatic cancer progression and metastasis remain poorly defined. Cadherin-11 (Cad-11, also known as OB cadherin or CDH11) is a cell-to-cell adhesion molecule implicated in many biological functions, including tissue morphogenesis and architecture, extracellular matrix-mediated tissue remodeling, cytoskeletal organization, epithelial-to-mesenchymal transition, and cellular migration. In this study, we show that, in human chronic pancreatitis and pancreatic cancer tissues, Cad-11 expression was significantly increased in PSCs and pancreatic cancer cells. In particular, an increased expression of Cad-11 can be detected on the plasma membrane of activated PSCs isolated from chronic pancreatitis tissues and in pancreatic cancer cells metastasized to the liver. Moreover, knockdown of Cad-11 in cancer cells reduced pancreatic cancer cell migration. Taken together, our data underline the potential role of Cad-11 in PSC activation and pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Chiara Birtolo
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Internal Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Hung Pham
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Susan Morvaridi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chintan Chheda
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Vay Liang W Go
- Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California
| | - Andrzej Ptasznik
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael H Weisman
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erika Noss
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael B Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brent Larson
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Maha Guindi
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California; Department of Veterans Affairs, VA Greater Los Angeles Health Care System, Los Angeles, California.
| |
Collapse
|
68
|
Kolijn K, Verhoef EI, van Leenders GJLH. Morphological and immunohistochemical identification of epithelial-to-mesenchymal transition in clinical prostate cancer. Oncotarget 2016; 6:24488-98. [PMID: 26041890 PMCID: PMC4695200 DOI: 10.18632/oncotarget.4177] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/02/2015] [Indexed: 12/22/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process known to be associated with aggressive tumor behavior, metastasis and treatment resistance. It is characterized by coincidental upregulation of mesenchymal markers such as vimentin, fibronectin and N-cadherin concurrent with E-cadherin downregulation. Studies on EMT are generally performed in cell lines and mouse models, while the histopathological and phenotypical properties in clinical prostate cancer (PCa) are still unclear. The objective of this study was to identify EMT in PCa patients. We demonstrated that N-cadherin, vimentin and fibronectin were generally not co-expressed in corresponding tumor regions. Immunofluorescent double stainings confirmed that co-expression of mesenchymal markers was uncommon, as we found no prostate cancer cells that co-expressed N-cadherin with fibronectin and only rare (<1%) cells that co-expressed N-cadherin with vimentin. Downregulation of E-cadherin was demonstrated in all N-cadherin positive tumor cells, but not in vimentin or fibronectin positive tumor cells. We further analyzed N-cadherin expression in morphologically distinct PCa growth patterns in a radical prostatectomy cohort (n = 77) and found that N-cadherin is preferentially expressed in ill-defined Gleason grade 4 PCa. In conclusion, we demonstrate that N-cadherin is the most reliable marker for EMT in clinical PCa and is preferentially expressed in ill-defined Gleason grade 4 growth pattern.
Collapse
Affiliation(s)
- Kimberley Kolijn
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Esther I Verhoef
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | |
Collapse
|
69
|
Piao S, Inglehart RC, Scanlon CS, Russo N, Banerjee R, D'Silva NJ. CDH11 inhibits proliferation and invasion in head and neck cancer. J Oral Pathol Med 2016; 46:89-97. [PMID: 27397103 DOI: 10.1111/jop.12471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND In this study, we use a bioinformatics-based strategy to nominate a tumor suppressor gene cadherin-11 (CDH11) and investigate its role in growth and invasion in head and neck squamous cell carcinoma (HNSCC). METHODS Using the Oncomine™ database to compare HNSCC and normal specimens, CDH11 was nominated as having a role in HNSCC. CDH11 expression in HNSCC was evaluated by immunohistochemistry on a tissue microarray (TMA) and immunoblotting and immunofluorescence of cell lines. The functional impact of CDH11 on proliferation and invasion was evaluated after siRNA-mediated knockdown. RESULTS In silico analysis suggested that CDH11 is overexpressed in HNSCC compared to normal specimens. HNSCC TMA exhibited a small but significant increase in intensity and proportion of CDH11. By immunoblot analysis, CDH11 was higher in 4/7 HNSCC cell lines compared to normal keratinocytes; CDH11 was highly upregulated in UM-SCC-47 and UM-SCC-74A and detectable in UM-SCC-14A and UM-SCC-29 cell lines. Downregulation of CDH11 in both UM-SCC-29 and UM-SCC-47 using two different siRNAs enhanced proliferation and invasion. CONCLUSION CDH11 inhibits cell proliferation and invasion of HNSCC. This suggests that CDH11 functions as a tumor suppressor gene in head and neck cancer. Our findings emphasize the importance of verifying in silico findings with functional studies.
Collapse
Affiliation(s)
- Songlin Piao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ronald C Inglehart
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Nickole Russo
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
70
|
Magnusson LU, Hagberg Thulin M, Plas P, Olsson A, Damber JE, Welén K. Tasquinimod inhibits prostate cancer growth in bone through alterations in the bone microenvironment. Prostate 2016; 76:383-93. [PMID: 26660725 DOI: 10.1002/pros.23133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/13/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Tasquinimod (ABR-215050) is an orally active quinoline-3-carboxamide analog that inhibits occurrence of experimental metastasis and delays disease progression of castration resistant prostate cancer in humans. Its mechanism of action is not fully elucidated, but previous studies show immunomodulatory and anti-angiogenic effects. The aim of the present study was to investigate the tumor inhibiting effect of tasquinimod in bone of castrated mice as well as to elucidate its working mechanism related to bone microenvironment. METHODS Effects of tasquinimod on prostate cancer metastasis to bone was studied in an intratibial xenograft model. Animals were treated with tasquinimod and tumor establishment and growth, immunological status, as well as markers for bone remodeling were analyzed. Direct effects of tasquinimod on osteoblasts were studied in vitro. RESULTS Establishment and growth of tumors in the bone after intratibial implantation in castrated mice was suppressed by tasquinimod treatment. The treatment effect was linked to decreased potential for immunosuppression in the pre-metastatic niche in bone (lower levels of CD206 and Arg1 expression in combination with increased iNOS expression) as well as in the tumor microenvironment (less Gr1 and CD206 staining). The shift to a pro-inflammatory, anti-tumorigenic milieu was also reflected in serum by increased levels of IFN-γ, CCL4, IL-5, LIX, IP-10, and MCP-1 as well as decreased TGF-β. Tasquinimod treatment also affected expression of factors involved in the pre-metastatic niche in the bone microenvironment (Lox, Cdh2, Cdh11, and Cxcl12). In addition, tasquinimod treatment caused a decreased osteogenic response indicated by decreased expression of Ocn, Runx2, and Col1a2 and increased expression of osteoclast stimulating CSF2. In vitro studies on mouse osteoblasts showed impaired osteoblast mineralization upon tasquinimod treatment. CONCLUSIONS The present study shows that tasquinimod reduces establishment and progression of tumor growth in bone likely through a combination of effects on the pre-metastatic niche, homing, immunological status, and osteogenesis. It was concluded that tasquinimod interferes with the metastatic process, presumably by inhibition of tumor establishment. Hence, our data suggest that tasquinimod might be most effective in inhibiting the occurrence of new metastatic lesions.
Collapse
Affiliation(s)
- Lisa U Magnusson
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Malin Hagberg Thulin
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | - Jan-Erik Damber
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Welén
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
71
|
Huang C, Kratzer MC, Wedlich D, Kashef J. E-cadherin is required for cranial neural crest migration in Xenopus laevis. Dev Biol 2016; 411:159-171. [DOI: 10.1016/j.ydbio.2016.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 11/25/2022]
|
72
|
Mouse models for studying prostate cancer bone metastasis. BONEKEY REPORTS 2016; 5:777. [PMID: 26916039 DOI: 10.1038/bonekey.2016.4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
Once tumor cells metastasize to the bone, the prognosis for prostate cancer patients is generally very poor. The mechanisms involved in bone metastasis, however, remain elusive, because of lack of relevant animal models. In this manuscript, we describe step-by-step protocols for the xenograft mouse models that are currently used for studying prostate cancer bone metastasis. The different routes of tumor inoculation (intraosseous, intracardiac, intravenous and orthotopic) presented are useful for exploring the biology of bone metastasis.
Collapse
|
73
|
Hiraga T. Targeted Agents in Preclinical and Early Clinical Development for the Treatment of Cancer Bone Metastases. Expert Opin Investig Drugs 2016; 25:319-34. [DOI: 10.1517/13543784.2016.1142972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
74
|
Lee YC, Lin SC, Yu G, Cheng CJ, Liu B, Liu HC, Hawke DH, Parikh NU, Varkaris A, Corn P, Logothetis C, Satcher RL, Yu-Lee LY, Gallick GE, Lin SH. Identification of Bone-Derived Factors Conferring De Novo Therapeutic Resistance in Metastatic Prostate Cancer. Cancer Res 2015; 75:4949-59. [PMID: 26530902 DOI: 10.1158/0008-5472.can-15-1215] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022]
Abstract
Resistance to currently available targeted therapies significantly hampers the survival of patients with prostate cancer with bone metastasis. Here we demonstrate an important resistance mechanism initiated from tumor-induced bone. Studies using an osteogenic patient-derived xenograft, MDA-PCa-118b, revealed that tumor cells resistant to cabozantinib, a Met and VEGFR-2 inhibitor, reside in a "resistance niche" adjacent to prostate cancer-induced bone. We performed secretome analysis of the conditioned medium from tumor-induced bone to identify proteins (termed "osteocrines") found within this resistance niche. In accordance with previous reports demonstrating that activation of integrin signaling pathways confers therapeutic resistance, 27 of the 90 osteocrines identified were integrin ligands. We found that following cabozantinib treatment, only tumor cells positioned adjacent to the newly formed woven bone remained viable and expressed high levels of pFAK-Y397 and pTalin-S425, mediators of integrin signaling. Accordingly, treatment of C4-2B4 cells with integrin ligands resulted in increased pFAK-Y397 expression and cell survival, whereas targeting integrins with FAK inhibitors PF-562271 or defactinib inhibited FAK phosphorylation and reduced the survival of PC3-mm2 cells. Moreover, treatment of MDA-PCa-118b tumors with PF-562271 led to decreased tumor growth, irrespective of initial tumor size. Finally, we show that upon treatment cessation, the combination of PF-562271 and cabozantinib delayed tumor recurrence in contrast to cabozantinib treatment alone. Our studies suggest that identifying paracrine de novo resistance mechanisms may significantly contribute to the generation of a broader set of potent therapeutic tools that act combinatorially to inhibit metastatic prostate cancer.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chien-Jui Cheng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bin Liu
- Department of Genetics, Center for Cancer Genetics and Genomics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hsuan-Chen Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David H Hawke
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nila U Parikh
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andreas Varkaris
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
75
|
Satcher RL, Pan T, Bilen MA, Li X, Lee YC, Ortiz A, Kowalczyk AP, Yu-Lee LY, Lin SH. Cadherin-11 endocytosis through binding to clathrin promotes cadherin-11-mediated migration in prostate cancer cells. J Cell Sci 2015; 128:4629-41. [PMID: 26519476 DOI: 10.1242/jcs.176081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022] Open
Abstract
Cadherin-11 (Cad11) cell adhesion molecule plays a role in prostate cancer cell migration. Because disassembly of adhesion complexes through endocytosis of adhesion proteins has been shown to play a role in cell migration, we examined whether Cad11 endocytosis plays a role in Cad11-mediated migration. The mechanism by which Cad11 is internalized is unknown. Using a GST pulldown assay, we found that clathrin binds to the Cad11 cytoplasmic domain but not to that of E-cadherin. Using deletion analysis, we identified a unique sequence motif, VFEEE, in the Cad11 membrane proximal region (amino acid residues 11-15) that binds to clathrin. Endocytosis assays using K(+)-depletion buffer showed that Cad11 internalization is clathrin dependent. Proximity ligation assays showed that Cad11 colocalizes with clathrin, and immunofluorescence assays showed that Cad11 localizes in vesicles that stain for the early endosomal marker Rab5. Deletion of the VFEEE sequence from the Cad11 cytoplasmic domain (Cad11-cla-Δ5) leads to inhibition of Cad11 internalization and reduces Cad11-mediated cell migration in C4-2B and PC3-mm2 prostate cancer cells. These observations suggest that clathrin-mediated internalization of Cad11 regulates surface trafficking of Cad11 and that dynamic turnover of Cad11 regulates the migratory function of Cad11 in prostate cancer cells.
Collapse
Affiliation(s)
- Robert L Satcher
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tianhong Pan
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mehmet A Bilen
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoxia Li
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Angelica Ortiz
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
76
|
Kokabee L, Wang X, Sevinsky CJ, Wang WLW, Cheu L, Chittur SV, Karimipoor M, Tenniswood M, Conklin DS. Bruton's tyrosine kinase is a potential therapeutic target in prostate cancer. Cancer Biol Ther 2015; 16:1604-15. [PMID: 26383180 DOI: 10.1080/15384047.2015.1078023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that has mainly been studied in haematopoietic cells. We have investigated whether BTK is a potential therapeutic target in prostate cancer. We find that BTK is expressed in prostate cells, with the alternate BTK-C isoform predominantly expressed in prostate cancer cells and tumors. This isoform is transcribed from an alternative promoter and results in a protein with an amino-terminal extension. Prostate cancer cell lines and prostate tumors express more BTK-C transcript than the malignant NAMALWA B-cell line or human lymphomas. BTK protein expression is also observed in tumor tissue from prostate cancer patients. Down regulation of this protein with RNAi or inhibition with BTK-specific inhibitors, Ibrutinib, AVL-292 or CGI-1746 decrease cell survival and induce apoptosis in prostate cancer cells. Microarray results show that inhibiting BTK under these conditions increases expression of apoptosis related genes, while overexpression of BTK-C is associated with elevated expression of genes with functions related to cell adhesion, cytoskeletal structure and the extracellular matrix. These results are consistent with studies that show that BTK signaling is important for adhesion and migration of B cells and suggest that BTK-C may confer similar properties to prostate cancer cells. Since BTK-C is a survival factor for these cells, it represents both a potential biomarker and novel therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Leila Kokabee
- a Cancer Research Center and Department of Biomedical Sciences ; State University of New York; University at Albany ; Rensselaer , NY USA.,b Department of Molecular Medicine ; Pasteur Institute of Iran; Tehran, Iran
| | - Xianhui Wang
- a Cancer Research Center and Department of Biomedical Sciences ; State University of New York; University at Albany ; Rensselaer , NY USA
| | - Christopher J Sevinsky
- a Cancer Research Center and Department of Biomedical Sciences ; State University of New York; University at Albany ; Rensselaer , NY USA
| | - Wei Lin Winnie Wang
- a Cancer Research Center and Department of Biomedical Sciences ; State University of New York; University at Albany ; Rensselaer , NY USA
| | - Lindsay Cheu
- a Cancer Research Center and Department of Biomedical Sciences ; State University of New York; University at Albany ; Rensselaer , NY USA
| | - Sridar V Chittur
- a Cancer Research Center and Department of Biomedical Sciences ; State University of New York; University at Albany ; Rensselaer , NY USA
| | - Morteza Karimipoor
- b Department of Molecular Medicine ; Pasteur Institute of Iran; Tehran, Iran
| | - Martin Tenniswood
- a Cancer Research Center and Department of Biomedical Sciences ; State University of New York; University at Albany ; Rensselaer , NY USA
| | - Douglas S Conklin
- a Cancer Research Center and Department of Biomedical Sciences ; State University of New York; University at Albany ; Rensselaer , NY USA
| |
Collapse
|
77
|
Lorenc Z, Opiłka MN, Kruszniewska-Rajs C, Rajs A, Waniczek D, Starzewska M, Lorenc J, Mazurek U. Expression Level of Genes Coding for Cell Adhesion Molecules of Cadherin Group in Colorectal Cancer Patients. Med Sci Monit 2015; 21:2031-40. [PMID: 26167814 PMCID: PMC4514365 DOI: 10.12659/msm.893610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal Cancer (CRC) is one of the most frequently diagnosed neoplasms and also one of the main death causes. Cell adhesion molecules are taking part in specific junctions, contributing to tissue integrality. Lower expression of the cadherins may be correlated with poorer differentiation of the CRC, and its more aggressive phenotype. The aim of the study is to designate the cadherin genes potentially useful for the diagnostics, prognostics, and the treatment of CRC. Material/Method Specimens were collected from 28 persons (14 female and 14 male), who were operated for CRC. The molecular analysis was performed using oligonucleotide microarrays, mRNA used was collected from adenocarcinoma, and macroscopically healthy tissue. The results were validated using qRT-PCR technique. Results Agglomerative hierarchical clustering of normalized mRNA levels has shown 4 groups with statistically different gene expression. The control group was divided into 2 groups, the one was appropriate control (C1), the second (C2) had the genetic properties of the CRC, without pathological changes histologically and macroscopically. The other 2 groups were: LSC (Low stage cancer) and HSC (High stage cancer). Consolidated results of the fluorescency of all of the differential genes, designated two coding E-cadherin (CDH1) with the lower expression, and P-cadherin (CDH3) with higher expression in CRC tissue. Conclusions The levels of genes expression are different for several groups of cadherins, and are related with the stage of CRC, therefore could be potentially the useful marker of the stage of the disease, also applicable in treatment and diagnostics of CRC.
Collapse
Affiliation(s)
- Zbigniew Lorenc
- Chair and Clinical Department of General, Colorectal and Trauma Surgery, Medical University of Silesia, Katowice, Poland
| | - Mieszko Norbert Opiłka
- Chair and Clinical Department of General, Colorectal and Trauma Surgery, Medical University of Silesia, Katowice, Poland
| | | | - Antoni Rajs
- Department of Molecular Biology, Medical University of Silesia, Katowice, Poland
| | - Dariusz Waniczek
- Department of Propedeutics Surgery, Chair of General, Colorectal and Polytrauma Surgery, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Starzewska
- Chair and Clinical Department of General, Colorectal and Trauma Surgery, Medical University of Silesia, Katowice, Poland
| | - Justyna Lorenc
- Chair and Clinical Department of General, Colorectal and Trauma Surgery, Medical University of Silesia, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
78
|
VON Bülow C, Oliveira-Ferrer L, Löning T, Trillsch F, Mahner S, Milde-Langosch K. Cadherin-11 mRNA and protein expression in ovarian tumors of different malignancy: No evidence of oncogenic or tumor-suppressive function. Mol Clin Oncol 2015; 3:1067-1072. [PMID: 26623052 DOI: 10.3892/mco.2015.593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/27/2015] [Indexed: 12/16/2022] Open
Abstract
Cadherin-11 (CDH11, OB-cadherin) is a mesenchymal cadherin found to be upregulated in various types of tumors and implicated in tumor progression and metastasis. In order to determine the role of CDH11 expression in ovarian tumors, we performed a combined reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot analysis and immunohistochemical study on a large cohort of benign, borderline and invasive ovarian tumors. The RT-qPCR and western blot analysis demonstrated that the CDH11 expression was high in benign cystadenomas and decreased with increasing malignancy. This may be explained by the different tumor-stroma ratios, since immunohistochemistry revealed strong staining of stromal cells, particularly vascular smooth muscle cells and endothelial cells, but only weak cytoplasmic or nuclear immunoreactivity of cancer cells. Within the group of invasive carcinomas, high CDH11 protein expression, as detected by western blot analysis, was found to be significantly correlated with advanced stage and nodal involvement. However, the recurrence-free and overall survival analyses did not reveal any prognostic or predictive significance. In conclusion, in contrast to other tumor types, CDH11 does not play an important role in ovarian cancer progression.
Collapse
Affiliation(s)
- Charlotte VON Bülow
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | | | - Fabian Trillsch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Karin Milde-Langosch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
79
|
Hatano M, Matsumoto Y, Fukushi JI, Matsunobu T, Endo M, Okada S, Iura K, Kamura S, Fujiwara T, Iida K, Fujiwara Y, Nabeshima A, Yokoyama N, Fukushima S, Oda Y, Iwamoto Y. Cadherin-11 regulates the metastasis of Ewing sarcoma cells to bone. Clin Exp Metastasis 2015; 32:579-91. [DOI: 10.1007/s10585-015-9729-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/15/2015] [Indexed: 12/25/2022]
|
80
|
Chen J, Ryzhova LM, Sewell-Loftin MK, Brown CB, Huppert SS, Baldwin HS, Merryman WD. Notch1 Mutation Leads to Valvular Calcification Through Enhanced Myofibroblast Mechanotransduction. Arterioscler Thromb Vasc Biol 2015; 35:1597-605. [PMID: 26023079 DOI: 10.1161/atvbaha.114.305095] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/19/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Calcific aortic valve disease (CAVD) is a significant cardiovascular disorder, and controversy exists as to whether it is primarily a dystrophic or osteogenic process in vivo. In this study, we sought to clarify the mechanism of CAVD by assessing a genetic mutation, Notch1 heterozygosity, which leads to CAVD with 100% penetrance in humans. APPROACH AND RESULTS Murine immortalized Notch1(+/-) aortic valve interstitial cells (AVICs) were isolated and expanded in vitro. Molecular signaling of wild-type and Notch1(+/-) AVICs were compared to identify changes in pathways that have been linked to CAVD-transforming growth factor-β1/bone morphogenetic protein, mitogen-activated protein kinase, and phosphoinositide 3-kinase/protein kinase B-and assessed for calcification potential. Additionally, AVIC mechanobiology was studied in a physiologically relevant, dynamic mechanical environment (10% cyclic strain) to investigate differences in responses between the cell types. We found that Notch1(+/-) AVICs resembled a myofibroblast-like phenotype expressing higher amounts of cadherin-11, a known mediator of dystrophic calcification, and decreased Runx2, a known osteogenic marker. We determined that cadherin-11 expression is regulated by Akt activity, and inhibition of Akt phosphorylation significantly reduced cadherin-11 expression. Moreover, in the presence of cyclic strain, Notch1(+/-) AVICs exhibited significantly upregulated phosphorylation of Akt at Ser473 and smooth muscle α-actin expression, indicative of a fully activated myofibroblast. Finally, these Notch1-mediated alterations led to enhanced dystrophic calcific nodule formation. CONCLUSIONS This study presents novel insights in our understanding of Notch1-mediated CAVD by demonstrating that the mutation leads to AVICs that are fully activated myofibroblasts, resulting in dystrophic, but not osteogenic, calcification.
Collapse
Affiliation(s)
- Joseph Chen
- From the Department of Biomedical Engineering (J.C., L.M.R., M.K.S.-L., W.D.M.) and Divison of Cardiology, Department of Pediatrics (C.B.B., H.S.B.), Vanderbilt University, Nashville, TN; and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital, OH (S.S.H.)
| | - Larisa M Ryzhova
- From the Department of Biomedical Engineering (J.C., L.M.R., M.K.S.-L., W.D.M.) and Divison of Cardiology, Department of Pediatrics (C.B.B., H.S.B.), Vanderbilt University, Nashville, TN; and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital, OH (S.S.H.)
| | - M K Sewell-Loftin
- From the Department of Biomedical Engineering (J.C., L.M.R., M.K.S.-L., W.D.M.) and Divison of Cardiology, Department of Pediatrics (C.B.B., H.S.B.), Vanderbilt University, Nashville, TN; and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital, OH (S.S.H.)
| | - Christopher B Brown
- From the Department of Biomedical Engineering (J.C., L.M.R., M.K.S.-L., W.D.M.) and Divison of Cardiology, Department of Pediatrics (C.B.B., H.S.B.), Vanderbilt University, Nashville, TN; and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital, OH (S.S.H.)
| | - Stacey S Huppert
- From the Department of Biomedical Engineering (J.C., L.M.R., M.K.S.-L., W.D.M.) and Divison of Cardiology, Department of Pediatrics (C.B.B., H.S.B.), Vanderbilt University, Nashville, TN; and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital, OH (S.S.H.)
| | - H Scott Baldwin
- From the Department of Biomedical Engineering (J.C., L.M.R., M.K.S.-L., W.D.M.) and Divison of Cardiology, Department of Pediatrics (C.B.B., H.S.B.), Vanderbilt University, Nashville, TN; and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital, OH (S.S.H.)
| | - W David Merryman
- From the Department of Biomedical Engineering (J.C., L.M.R., M.K.S.-L., W.D.M.) and Divison of Cardiology, Department of Pediatrics (C.B.B., H.S.B.), Vanderbilt University, Nashville, TN; and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital, OH (S.S.H.).
| |
Collapse
|
81
|
Three-dimensional (3D) culture of bone-derived human 786-O renal cell carcinoma retains relevant clinical characteristics of bone metastases. Cancer Lett 2015; 365:89-95. [PMID: 26004343 DOI: 10.1016/j.canlet.2015.05.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/12/2015] [Indexed: 11/24/2022]
Abstract
Bone metastases from renal cell carcinoma (RCC) are typically lytic, destructive, and resistant to treatment regimens. Current in vitro models for studying metastasis introduce artifacts that limit their usefulness. Many features of tumors growing in bone are lost when human RCC cells are cultured in two-dimensional (2D) plastic substrata. In this study, we established that RCC spheroids, consisting of aggregates of cells, can be grown in a three-dimensional (3D) hyaluronate hydrogel-based culture system. The bone-derived human 786-O RCC subline proliferated and survived long term in these hydrogels. Additionally, RCC spheroids in 3D hydrogels demonstrated lower proliferation rates than their counterparts grown in 2D. Overall, gene expression patterns of RCC spheroids in 3D more closely mimicked those observed in vivo than did those of cells grown in 2D. Of particular importance, selected adhesion molecules, angiogenesis factors, and osteolytic factors that have been shown to be involved in RCC bone metastasis were found to be expressed at higher levels in 3D than in 2D cultures. We propose that the 3D culture system provides an improved platform for RCC bone metastasis studies compared with 2D systems.
Collapse
|
82
|
New therapeutic targets for cancer bone metastasis. Trends Pharmacol Sci 2015; 36:360-73. [PMID: 25962679 DOI: 10.1016/j.tips.2015.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/18/2022]
Abstract
Bone metastases are dejected consequences of many types of tumors including breast, prostate, lung, kidney, and thyroid cancers. This complicated process begins with the successful tumor cell epithelial-mesenchymal transition, escape from the original site, and penetration into the circulation. The homing of tumor cells to the bone depends on both tumor-intrinsic traits and various molecules supplied by the bone metastatic niche. The colonization and growth of cancer cells in the osseous environment, which awaken their dormancy to form micro- and macro-metastasis, involve an intricate interaction between the circulating tumor cells and local bone cells including osteoclasts, osteoblasts, adipocytes, and macrophages. We discuss the most recent advances in the identification of new molecules and novel mechanisms during each step of bone metastasis that may serve as promising therapeutic targets.
Collapse
|
83
|
Bujko M, Kober P, Mikula M, Ligaj M, Ostrowski J, Siedlecki JA. Expression changes of cell-cell adhesion-related genes in colorectal tumors. Oncol Lett 2015; 9:2463-2470. [PMID: 26137091 DOI: 10.3892/ol.2015.3107] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/10/2015] [Indexed: 02/07/2023] Open
Abstract
Epithelial tissues achieve a highly organized structure due to cell-cell junction complexes. Carcinogenesis is accompanied by changes in cell interactions and tissue morphology, which appear in the early stages of benign tumors and progress along with invasive potential. The aim of the present study was to analyze the changes in expression levels of genes encoding intercellular junction proteins that have been previously identified to be differentially expressed in colorectal tumors compared with normal mucosa samples (fold change, >2.5) in genome-wide expression profiling. The expression of 20 selected genes was assessed using quantitative reverse transcription polymerase chain reaction in 26 colorectal cancer, 42 adenoma and 24 normal mucosa samples. Between these tissue types, differences were observed in the mRNA levels of genes encoding adherens junction proteins (upregulation of CDH3 and CDH11, and downregulation of CDH19 and PTPRF), tight junction proteins (upregulation of CLDN1 and CLDN2, and downregulation of CLDN5, CLDN8, CLDN23, CLDN15, JAM2 and CGN) and desmosomes (upregulation of DSC3 and DSG3, and downregulation of DSC2), in addition to a decrease in the expression of certain other genes involved in intercellular connections: PCDHB14, PCDH7, MUPCDH and NEO1. The differences between tissue types were statistically significant, and separate clustering of normal adenoma and carcinoma samples was observed in a hierarchical clustering analysis. These results indicate that the morphological changes in neoplastic colon tissue that occur during the 'adenoma-carcinoma sequence' are accompanied by specific changes in the expression of multiple genes encoding the majority of cell-cell junction complexes. The particular differential expression patterns appear to be consistent among patients with cancer and adenoma, in addition to normal mucosa samples.
Collapse
Affiliation(s)
- Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Marcin Ligaj
- Department of Pathology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Janusz Aleksander Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| |
Collapse
|
84
|
Vázquez-Villa F, García-Ocaña M, Galván JA, García-Martínez J, García-Pravia C, Menéndez-Rodríguez P, González-del Rey C, Barneo-Serra L, de Los Toyos JR. COL11A1/(pro)collagen 11A1 expression is a remarkable biomarker of human invasive carcinoma-associated stromal cells and carcinoma progression. Tumour Biol 2015; 36:2213-22. [PMID: 25761876 DOI: 10.1007/s13277-015-3295-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/27/2015] [Indexed: 12/14/2022] Open
Abstract
The COL11A1 human gene codes for the α1 chain of procollagen 11A1 and mature collagen 11A1, an extracellular minor fibrillar collagen. Under regular conditions, this gene and its derived products are mainly expressed by chondrocytes and mesenchymal stem cells as well as osteoblasts. Normal epithelial cells and quiescent fibroblasts from diverse locations do not express them. Mesenchyme-derived tumors and related conditions, such as scleroderma and keloids, are positive for COL11A1/(pro)collagen 11A1 expression, as well as high-grade human gliomas/glioblastomas. This expression is almost absent in benign pathological processes such as breast hyperplasia, sclerosing adenosis, idiopathic pulmonary fibrosis, cirrhosis, pancreatitis, diverticulitis, and inflammatory bowel disease. By contrast, COL11A1/(pro)collagen 11A1 is highly expressed by activated stromal cells of the desmoplastic reaction of different human invasive carcinomas, and this expression is correlated with carcinoma aggressiveness and progression, and lymph node metastasis. COL11A1 upregulation has been shown to be associated to TGF-β1, Wnt, and Hh signaling pathways, which are especially active in cancer-associated stromal cells. At the front of invasive carcinomas, neoplastic epithelial cells, putatively undergoing epithelial-to-mesenchymal transition, and carcinoma-derived cells with highly metastatic capabilities, can express COL11A1. Thus, in established metastases, the expression of COL11A1/(pro)collagen 11A1 could rely on both the metastatic epithelial cells and/or the accompanying activated stromal cells. COL11A1/(pro)collagen 11A1 expression is a remarkable biomarker of human carcinoma-associated stromal cells and carcinoma progression.
Collapse
Affiliation(s)
- Fernando Vázquez-Villa
- Surgery Department, School of Medicine and Health Sciences, University of Oviedo, 33006, Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Assefnia S, Dakshanamurthy S, Guidry Auvil JM, Hampel C, Anastasiadis PZ, Kallakury B, Uren A, Foley DW, Brown ML, Shapiro L, Brenner M, Haigh D, Byers SW. Cadherin-11 in poor prognosis malignancies and rheumatoid arthritis: common target, common therapies. Oncotarget 2015; 5:1458-74. [PMID: 24681547 PMCID: PMC4039224 DOI: 10.18632/oncotarget.1538] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cadherin-11 (CDH11), associated with epithelial to mesenchymal transformation in development, poor prognosis malignancies and cancer stem cells, is also a major therapeutic target in rheumatoid arthritis (RA). CDH11 expressing basal-like breast carcinomas and other CDH11 expressing malignancies exhibit poor prognosis. We show that CDH11 is increased early in breast cancer and ductal carcinoma in-situ. CDH11 knockdown and antibodies effective in RA slowed the growth of basal-like breast tumors and decreased proliferation and colony formation of breast, glioblastoma and prostate cancer cells. The repurposed arthritis drug celecoxib, which binds to CDH11, and other small molecules designed to bind CDH11 without inhibiting COX-2 preferentially affect the growth of CDH11 positive cancer cells in vitro and in animals. These data suggest that CDH11 is important for malignant progression, and is a therapeutic target in arthritis and cancer with the potential for rapid clinical translation
Collapse
Affiliation(s)
- Shahin Assefnia
- The Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Ganguly SS, Li X, Miranti CK. The host microenvironment influences prostate cancer invasion, systemic spread, bone colonization, and osteoblastic metastasis. Front Oncol 2014; 4:364. [PMID: 25566502 PMCID: PMC4266028 DOI: 10.3389/fonc.2014.00364] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/29/2014] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men worldwide. Most PCa deaths are due to osteoblastic bone metastases. What triggers PCa metastasis to the bone and what causes osteoblastic lesions remain unanswered. A major contributor to PCa metastasis is the host microenvironment. Here, we address how the primary tumor microenvironment influences PCa metastasis via integrins, extracellular proteases, and transient epithelia-mesenchymal transition (EMT) to promote PCa progression, invasion, and metastasis. We discuss how the bone-microenvironment influences metastasis; where chemotactic cytokines favor bone homing, adhesion molecules promote colonization, and bone-derived signals induce osteoblastic lesions. Animal models that fully recapitulate human PCa progression from primary tumor to bone metastasis are needed to understand the PCa pathophysiology that leads to bone metastasis. Better delineation of the specific processes involved in PCa bone metastasize is needed to prevent or treat metastatic PCa. Therapeutic regimens that focus on the tumor microenvironment could add to the PCa pharmacopeia.
Collapse
Affiliation(s)
- Sourik S Ganguly
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Tumor Microenvironment and Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA ; Program for Skeletal Disease and Tumor Metastasis, Laboratory of Integrin Signaling and Tumorigenesis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| | - Xiaohong Li
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Tumor Microenvironment and Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| | - Cindy K Miranti
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Integrin Signaling and Tumorigenesis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| |
Collapse
|
87
|
CXCL12 Modulates Prostate Cancer Cell Adhesion by Altering the Levels or Activities of β1-Containing Integrins. Int J Cell Biol 2014; 2014:981750. [PMID: 25580125 PMCID: PMC4279265 DOI: 10.1155/2014/981750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 12/27/2022] Open
Abstract
The mechanisms by which prostate cancer (PCa) cell adhesion and migration are controlled during metastasis are not well understood. Here, we studied the effect of CXCL12 in PCa cell adhesion and spreading in DU145 and PC3 cell lines using as substrates collagen I, fibronectin (FN), and their recombinant fragments. CXCL12 treatment increased β1 integrin-dependent PC3 cell adhesion on FN which correlated with increased focal adhesion kinase activation. However neither α5β1 nor α4β1 subunits were involved in this adhesion. By contrast, CXCL12 decreased DU145 adhesion and spreading on FN by downregulating α5 and β1 integrin expression. To demonstrate the clinical relevance of CXCL12 in PCa, we measured CXCL12 levels in plasma by using ELISA and found that the chemokine is elevated in PCa patients when compared to controls. The high concentration of CXCL12 in patients suffering from PCa in comparison to those with benign disease or healthy individuals implicates CXCL12 as a potential biomarker for PCa. In addition these data show that CXCL12 may be crucial in controlling PCa cell adhesion on fibronectin and collagen I, possibly via crosstalk with integrin receptors and/or altering the expression levels of integrin subunits.
Collapse
|
88
|
Ortiz A, Lee YC, Yu G, Liu HC, Lin SC, Bilen MA, Cho H, Yu-Lee LY, Lin SH. Angiomotin is a novel component of cadherin-11/β-catenin/p120 complex and is critical for cadherin-11-mediated cell migration. FASEB J 2014; 29:1080-91. [PMID: 25466890 DOI: 10.1096/fj.14-261594] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Loss of E-cadherin and up-regulation of mesenchymal cadherins, a hallmark of the epithelial-mesenchymal transition, contributes to migration and dissemination of cancer cells. Expression of human cadherin-11 (Cad11), also known as osteoblast cadherin, in prostate cancer increases the migration of prostate cancer cells. How Cad11 mediates cell migration is unknown. Using the human Cad11 cytoplasmic domain in pulldown assays, we identified human angiomotin (Amot), known to be involved in cell polarity, migration, and Hippo pathway, as a component of the Cad11 protein complex. Deletion analysis showed that the last C-terminal 10 amino acids in Cad11 cytoplasmic domain are required for Amot binding. Further, Cad11 preferentially interacts with Amot-p80 than Amot-p130 isoform and binds directly to the middle domain of Amot-p80. Cad11-Amot interaction affects Cad11-mediated cell migration, but not homophilic adhesion, as deletion of Amot binding motif of Cad11 (Cad11-ΔAmot) did not abolish Cad11-mediated cell-cell adhesion of mouse L cells, but significantly reduced Cad11-mediated cell migration of human C4-2B4 and PC3-mm2 prostate cancer cells and human HEK293T cells. Together, our studies identified Amot-p80 as a novel component of the Cad11 complex and demonstrated that Amot-p80 is critical for Cad11-mediated cell migration.
Collapse
Affiliation(s)
- Angelica Ortiz
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yu-Chen Lee
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Guoyu Yu
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hsuan-Chen Liu
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Song-Chang Lin
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Melmet Asim Bilen
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hyojin Cho
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Li-Yuan Yu-Lee
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sue-Hwa Lin
- Departments of *Translational Molecular Pathology and Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA; and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
89
|
Maslova K, Kyriakakis E, Pfaff D, Frachet A, Frismantiene A, Bubendorf L, Ruiz C, Vlajnic T, Erne P, Resink TJ, Philippova M. EGFR and IGF-1R in regulation of prostate cancer cell phenotype and polarity: opposing functions and modulation by T-cadherin. FASEB J 2014; 29:494-507. [PMID: 25381040 DOI: 10.1096/fj.14-249367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
T-cadherin is an atypical glycosylphosphatidylinsoitol-anchored member of the cadherin superfamily of adhesion molecules. We found that T-cadherin overexpression in malignant (DU145) and benign (BPH-1) prostatic epithelial cell lines or silencing in the BPH-1 cell line, respectively, promoted or inhibited migration and spheroid invasion in collagen I gel and Matrigel. T-cadherin-dependent effects were associated with changes in cell phenotype: overexpression caused cell dissemination and loss of polarity evaluated by relative positioning of the Golgi/nuclei in cell groups, whereas silencing caused formation of compact polarized epithelial-like clusters. Epidermal growth factor receptor (EGFR) and IGF factor-1 receptor (IGF-1R) were identified as mediators of T-cadherin effects. These receptors per se had opposing influences on cell phenotype. EGFR activation with EGF or IGF-1R inhibition with NVP-AEW541 promoted dissemination, invasion, and polarity loss. Conversely, inhibition of EGFR with gefitinib or activation of IGF-1R with IGF-1 rescued epithelial morphology and decreased invasion. T-cadherin silencing enhanced both EGFR and IGF-1R phosphorylation, yet converted cells to the morphology typical for activated IGF-1R. T-cadherin effects were sensitive to modulation of EGFR or IGF-1R activity, suggesting direct involvement of both receptors. We conclude that T-cadherin regulates prostate cancer cell behavior by tuning the balance in EGFR/IGF-1R activity and enhancing the impact of IGF-1R.
Collapse
Affiliation(s)
- Kseniya Maslova
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Emmanouil Kyriakakis
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Dennis Pfaff
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Audrey Frachet
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Agne Frismantiene
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Lukas Bubendorf
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Christian Ruiz
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Tatjana Vlajnic
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Paul Erne
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Thérèse J Resink
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| | - Maria Philippova
- *Department of Biomedicine, Laboratory for Signal Transduction, and Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; and Hirslanden Klinik St. Anna, Luzern, Switzerland
| |
Collapse
|
90
|
Singh T, Kaur V, Kumar M, Kaur P, Murthy RSR, Rawal RK. The critical role of bisphosphonates to target bone cancer metastasis: an overview. J Drug Target 2014; 23:1-15. [DOI: 10.3109/1061186x.2014.950668] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
91
|
Yu G, Lee YC, Cheng CJ, Wu CF, Song JH, Gallick GE, Yu-Lee LY, Kuang J, Lin SH. RSK promotes prostate cancer progression in bone through ING3, CKAP2, and PTK6-mediated cell survival. Mol Cancer Res 2014; 13:348-57. [PMID: 25189355 DOI: 10.1158/1541-7786.mcr-14-0384-t] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Prostate cancer has a proclivity to metastasize to bone. The mechanism by which prostate cancer cells are able to survive and progress in the bone microenvironment is not clear. Identification of molecules that play critical roles in the progression of prostate cancer in bone will provide essential targets for therapy. Ribosomal S6 protein kinases (RSK) have been shown to mediate many cellular functions critical for cancer progression. Whether RSK plays a role in the progression of prostate cancer in bone is unknown. IHC analysis of human prostate cancer specimens showed increased phosphorylation of RSK in the nucleus of prostate cancer cells in a significant fraction of human prostate cancer bone metastasis specimens, compared with the primary site or lymph node metastasis. Expression of constitutively active myristylated RSK in C4-2B4 cells (C4-2B4/RSK) increased their survival and anchorage-independent growth compared with C4-2B4/vector cells. Using an orthotopic bone injection model, it was determined that injecting C4-2B4/RSK cells into mouse femurs enhanced their progression in bone compared with control cells. In PC3-mm2 cells, knockdown of RSK1 (RPS6KA1), the predominant RSK isoform, but not RSK2 (RPS6KA2) alone, decreased anchorage-independent growth in vitro and reduced tumor progression in bone and tumor-induced bone remodeling in vivo. Mechanistic studies showed that RSK regulates anchorage-independent growth through transcriptional regulation of factors that modulate cell survival, including ING3, CKAP2, and PTK6. Together, these data provide strong evidence that RSK is an important driver in prostate cancer progression in bone. IMPLICATIONS RSK, an important driver in prostate cancer progression in bone, has promising potential as a therapeutic target for prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Chien-Jui Cheng
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan. Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chuan-Fen Wu
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas. Department of Genitourinary Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
92
|
Satcher RL, Pan T, Cheng CJ, Lee YC, Lin SC, Yu G, Li X, Hoang AG, Tamboli P, Jonasch E, Gallick GE, Lin SH. Cadherin-11 in renal cell carcinoma bone metastasis. PLoS One 2014; 9:e89880. [PMID: 24587095 PMCID: PMC3933681 DOI: 10.1371/journal.pone.0089880] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/28/2014] [Indexed: 12/13/2022] Open
Abstract
Bone is one of the common sites of metastases from renal cell carcinoma (RCC), however the mechanism by which RCC preferentially metastasize to bone is poorly understood. Homing/retention of RCC cells to bone and subsequent proliferation are necessary steps for RCC cells to colonize bone. To explore possible mechanisms by which these processes occur, we used an in vivo metastasis model in which 786-O RCC cells were injected into SCID mice intracardially, and organotropic cell lines from bone, liver, and lymph node were selected. The expression of molecules affecting cell adhesion, angiogenesis, and osteolysis were then examined in these selected cells. Cadherin-11, a mesenchymal cadherin mainly expressed in osteoblasts, was significantly increased on the cell surface in bone metastasis-derived 786-O cells (Bo-786-O) compared to parental, liver, or lymph node-derived cells. In contrast, the homing receptor CXCR4 was equivalently expressed in cells derived from all organs. No significant difference was observed in the expression of angiogenic factors, including HIF-1α, VEGF, angiopoeitin-1, Tie2, c-MET, and osteolytic factors, including PTHrP, IL-6 and RANKL. While the parental and Bo-786-O cells have similar proliferation rates, Bo-786-O cells showed an increase in migration compared to the parental 786-O cells. Knockdown of Cadherin-11 using shRNA reduced the rate of migration in Bo-786-O cells, suggesting that Cadherin-11 contributes to the increased migration observed in bone-derived cells. Immunohistochemical analysis of cadherin-11 expression in a human renal carcinoma tissue array showed that the number of human specimens with positive cadherin-11 activity was significantly higher in tumors that metastasized to bone than that in primary tumors. Together, these results suggest that Cadherin-11 may play a role in RCC bone metastasis.
Collapse
Affiliation(s)
- Robert L. Satcher
- Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Tianhong Pan
- Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Chien-Jui Cheng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chen Lee
- Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Song-Chang Lin
- Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Guoyu Yu
- Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xiaoxia Li
- Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Anh G. Hoang
- Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Pheroze Tamboli
- Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Eric Jonasch
- Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gary E. Gallick
- Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sue-Hwa Lin
- Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
- Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
93
|
Hesami P, Holzapfel BM, Taubenberger A, Roudier M, Fazli L, Sieh S, Thibaudeau L, Gregory LS, Hutmacher DW, Clements JA. A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clin Exp Metastasis 2014; 31:435-46. [DOI: 10.1007/s10585-014-9638-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/15/2014] [Indexed: 12/17/2022]
|
94
|
Abstract
Loss of cadherin 1 (CDH1; also known as epithelial cadherin (E-cadherin)) is used for the diagnosis and prognosis of epithelial cancers. However, it should not be ignored that the superfamily of transmembrane cadherin proteins encompasses more than 100 members in humans, including other classical cadherins, numerous protocadherins and cadherin-related proteins. Elucidation of their roles in suppression versus initiation or progression of various tumour types is a young but fascinating field of molecular cancer research. These cadherins are very diverse in both structure and function, and their mutual interactions seem to influence biological responses in complex and versatile ways.
Collapse
Affiliation(s)
- Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.The Inflammation Research Center, VIB, B-9052 Ghent, Belgium
| |
Collapse
|
95
|
Becker SFS, Mayor R, Kashef J. Cadherin-11 mediates contact inhibition of locomotion during Xenopus neural crest cell migration. PLoS One 2013; 8:e85717. [PMID: 24392028 PMCID: PMC3877381 DOI: 10.1371/journal.pone.0085717] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/30/2013] [Indexed: 12/02/2022] Open
Abstract
Collective cell migration is an essential feature both in embryonic development and cancer progression. The molecular mechanisms of these coordinated directional cell movements still need to be elucidated. The migration of cranial neural crest (CNC) cells during embryogenesis is an excellent model for collective cell migration in vivo. These highly motile and multipotent cells migrate directionally on defined routes throughout the embryo. Interestingly, local cell-cell interactions seem to be the key force for directionality. CNC cells can change their migration direction by a repulsive cell response called contact inhibition of locomotion (CIL). Cell protrusions collapse upon homotypic cell-cell contact and internal repolarization leads to formation of new protrusions toward cell-free regions. Wnt/PCP signaling was shown to mediate activation of small RhoGTPase RhoA and inhibition of cell protrusions at the contact side. However, the mechanism how a cell recognizes the contact is poorly understood. Here, we demonstrate that Xenopus cadherin-11 (Xcad-11) mediated cell-cell adhesion is necessary in CIL for directional and collective migration of CNC cells. Reduction of Xcad-11 adhesive function resulted in higher invasiveness of CNC due to loss of CIL. Additionally, transplantation analyses revealed that CNC migratory behaviour in vivo is non-directional and incomplete when Xcad-11 adhesive function is impaired. Blocking Wnt/PCP signaling led to similar results underlining the importance of Xcad-11 in the mechanism of CIL and directional migration of CNC.
Collapse
Affiliation(s)
- Sarah F. S. Becker
- Zoological Institute, Cell- and Developmental Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Jubin Kashef
- Zoological Institute, Cell- and Developmental Biology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- *
| |
Collapse
|
96
|
Geletu M, Guy S, Arulanandam R, Feracci H, Raptis L. Engaged for survival: From cadherin ligation to STAT3 activation. JAKSTAT 2013; 2:e27363. [PMID: 24470979 DOI: 10.4161/jkst.27363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/15/2022] Open
Abstract
In normal tissues or tumors, cells have extensive opportunities for adhesion to their neighbors. This state is mimicked by dense cell cultures. In this review, we integrate some recent findings on a key signal transducer, STAT3 (signal transducer and activator of transcription-3), whose activity is dramatically increased following cadherin-mediated cell to cell adhesion. Cadherin engagement, favored in dense cell cultures, causes a dramatic increase in total Rac/Cdc42 protein levels through inhibition of proteasomal degradation, which is followed by activation of IL-6 and STAT3. The cadherin/Rac/IL-6/STAT3 axis offers a potent survival signal that is a prerequisite for neoplastic transformation, as well as normal tissue function.
Collapse
Affiliation(s)
- Mulu Geletu
- Department of Pathology; Queen's University; Kingston, ON Canada
| | - Stephanie Guy
- Department of Pathology; Queen's University; Kingston, ON Canada
| | | | - Hélène Feracci
- Université Bordeaux 1; Centre de Recherche Paul Pascal; CNRS UPR 8641; Pessac, France
| | - Leda Raptis
- Department of Pathology; Queen's University; Kingston, ON Canada ; Department of Biomedical and Molecular Sciences; Queen's University; Kingston, ON Canada
| |
Collapse
|
97
|
Dushyanthen S, Cossigny DAF, Quan GMY. The osteoblastic and osteoclastic interactions in spinal metastases secondary to prostate cancer. CANCER GROWTH AND METASTASIS 2013; 6:61-80. [PMID: 24665208 PMCID: PMC3941153 DOI: 10.4137/cgm.s12769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PC) is one of the most common cancers arising in men and has a high propensity for bone metastasis, particularly to the spine. At this stage, it often causes severe morbidity due to pathological fracture and/or metastatic epidural spinal cord compression which, if untreated, inevitably leads to intractable pain, neurological deficit, and paralysis. Unfortunately, the underlying molecular mechanisms driving growth of secondary PC in the bony vertebral column remain largely unknown. Further investigation is warranted in order to identify therapeutic targets in the future. This review summarizes the current understanding of PC bone metastasis in the spine, highlighting interactions between key tumor and bone-derived factors which influence tumor progression, especially the functional roles of osteoblasts and osteoclasts in the bone microenvironment through their interactions with metastatic PC cells and the critical pathway RANK/RANKL/OPG in bone destruction.
Collapse
Affiliation(s)
- Sathana Dushyanthen
- Spinal Biology Research Laboratory, Department of Spinal Surgery, University of Melbourne Department of Surgery, Austin Health, Heidelberg Victoria, Australia
| | - Davina A F Cossigny
- Spinal Biology Research Laboratory, Department of Spinal Surgery, University of Melbourne Department of Surgery, Austin Health, Heidelberg Victoria, Australia
| | - Gerald M Y Quan
- Spinal Biology Research Laboratory, Department of Spinal Surgery, University of Melbourne Department of Surgery, Austin Health, Heidelberg Victoria, Australia
| |
Collapse
|
98
|
Lee YC, Bilen MA, Yu G, Lin SC, Huang CF, Ortiz A, Cho H, Song JH, Satcher RL, Kuang J, Gallick GE, Yu-Lee LY, Huang W, Lin SH. Inhibition of cell adhesion by a cadherin-11 antibody thwarts bone metastasis. Mol Cancer Res 2013; 11:1401-11. [PMID: 23913163 PMCID: PMC3834228 DOI: 10.1158/1541-7786.mcr-13-0108] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED Cadherin-11 (CDH11) is a member of the cadherin superfamily mainly expressed in osteoblasts but not in epithelial cells. However, prostate cancer cells with a propensity for bone metastasis express high levels of cadherin-11 and reduced levels of E-cadherin. Downregulation of cadherin-11 inhibits interaction of prostate cancer cells with osteoblasts in vitro and homing of prostate cancer cells to bone in an animal model of metastasis. These findings indicate that targeting cadherin-11 may prevent prostate cancer bone metastasis. To explore this possibility, a panel of 21 monoclonal antibodies (mAb) was generated against the extracellular (EC) domain of cadherin-11. Two antibodies, mAbs 2C7 and 1A5, inhibited cadherin-11-mediated cell-cell aggregation in vitro using L-cells transfected with cadherin-11. Both antibodies demonstrated specificity to cadherin-11, and neither antibody recognized E-cadherin or N-cadherin on C4-2B or PC3 cells, respectively. Furthermore, mAb 2C7 inhibited cadherin-11-mediated aggregation between the highly metastatic PC3-mm2 cells and MC3T3-E1 osteoblasts. Mechanistically, a series of deletion mutants revealed a unique motif, aa 343-348, in the cadherin-11 EC3 domain that is recognized by mAb 2C7 and that this motif coordinated cell-cell adhesion. Importantly, administration of mAb 2C7 in a prophylactic setting effectively prevented metastasis of PC3-mm2 cells to bone in an in vivo mouse model. These results show that targeting the extracellular domain of cadherin-11 can limit cellular adhesion and metastatic dissemination of prostate cancer cells. IMPLICATIONS Monotherapy using a cadherin-11 antibody is a suitable option for the prevention of bone metastases.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Mehmet Asim Bilen
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Guoyu Yu
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Song-Chang Lin
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Chih-Fen Huang
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Department of Pharmacy at National Taiwan University Hospital, Taipei, Taiwan
| | - Angelica Ortiz
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Hyojin Cho
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jian H. Song
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Robert L. Satcher
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jian Kuang
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Gary E. Gallick
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Sue-Hwa Lin
- Departments of Translational Molecular Pathology, Genitourinary Medical Oncology, Orthopaedic Oncology, Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
99
|
Chu K, Boley KM, Moraes R, Barsky SH, Robertson FM. The paradox of E-cadherin: role in response to hypoxia in the tumor microenvironment and regulation of energy metabolism. Oncotarget 2013; 4:446-62. [PMID: 23530113 PMCID: PMC3717307 DOI: 10.18632/oncotarget.872] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
E-Cadherin is a cell:cell adhesion molecule critical for appropriate embryonic and mammary development. In cancer, E-Cadherin has been primarily viewed as being lost during the process of epithelial-mesenchymal transition (EMT), which occurs with a switch from E-Cadherin expression to a gain of N-Cadherin and other mesenchymal markers. EMT has been shown to play a role in the metastatic process while the reverse process, mesenchymal-epithelial transition (MET), is important for metastatic colonization. Here we report an unexpected role of E-Cadherin in regulating tumorigenicity and hypoxia responses of breast tumors in vivo. Reduced expression of E-Cadherin led to a dramatic reduction of the in vivo growth capability of SUM149, Mary-X and 4T1 tumor cells. Furthermore, over-expression of ZEB1, a known transcriptional repressor of E-Cadherin, led to reduced in vivo growth of SUM149 tumors. Gene set enrichment analysis identified the loss of hypoxia response genes as a major mechanism in mediating the lack of in vivo growth of SUM149 cells that lacked E-Cadherin or over-expressed ZEB1. The in vivo growth defect of SUM149 E-Cadherin knockdown tumors was rescued by the hypoxia-inducible 1α transcription factor (HIF-1α). Given the importance of HIF-1α in cellular metabolism, we observed reduced glycolytic capacity in SUM149 and 4T1 cells that had E-Cadherin knocked down. Our observations shed light on the complex functions of E-Cadherin in retention of an epithelial phenotype and as a mediator of survival of aggressive breast cancer under hypoxic conditions in vivo. Furthermore, we find that patients with basal subtype breast cancer and high E-Cadherin expression in their tumors had a poor clinical outcome. Our data suggests a novel function for E-Cadherin as a bona fide signaling molecule required for the in vivo growth of aggressive breast cancer tumor cells, that retain E-Cadherin expression, in mediating their metabolic function.
Collapse
Affiliation(s)
- Khoi Chu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | |
Collapse
|
100
|
Nam EH, Lee Y, Zhao XF, Park YK, Lee JW, Kim S. ZEB2–Sp1 cooperation induces invasion by upregulating cadherin-11 and integrin α5 expression. Carcinogenesis 2013; 35:302-14. [DOI: 10.1093/carcin/bgt340] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|