51
|
Choi HJ, Lee HB, Park HK, Cho SM, Han HJ, Lee SJ, Lee JY, Nam SJ, Cho EH, Son WC. EZH2 Expression in Naturally Occurring Canine Tumors. Comp Med 2018; 68:148-155. [PMID: 29663940 PMCID: PMC5897971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/16/2017] [Accepted: 10/15/2017] [Indexed: 06/08/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) shows upregulated expression in tumors and is an important driver of tumor development and progression. However, the mechanism underlying the mediation of tumor aggressiveness by EZH2 remains unclear. We here investigated the levels of EZH2 in various normal and tumorous dog tissues and compared these patterns with those of the corresponding human tissues. Immunohistochemical analysis showed positive staining for EZH2 in 76 of 82 cases of canine tumors, whereas low or negligible staining occurred in normal tissues and other canine tumors, including hepatocellular adenoma and lipoma. In particular, canine lymphoma, melanoma, basal cell tumors, squamous cell carcinoma, and prostate cancer all show EZH2 overexpression, as do their human counterparts. Given the similarities of spontaneous canine tumors to human cancers, we believe that these canine tumors can be used as animal models in future research and clinical trials in the development of EZH2 inhibitors.
Collapse
Affiliation(s)
- Hyun-Ji Choi
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, and Department of Pathology, Asan Medical Center, Seoul, Korea
| | - Han-Byul Lee
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, and Department of Pathology, Asan Medical Center, Seoul, Korea
| | - Hyun-Kyu Park
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, and Department of Pathology, Asan Medical Center, Seoul, Korea
| | - Sung-Min Cho
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, and Department of Pathology, Asan Medical Center, Seoul, Korea
| | - Hyo-Jeong Han
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, and Department of Pathology, Asan Medical Center, Seoul, Korea
| | - Sang-Joon Lee
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, and Department of Pathology, Asan Medical Center, Seoul, Korea
| | - Ji-Young Lee
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, and Department of Pathology, Asan Medical Center, Seoul, Korea
| | - Su-Jeong Nam
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, and Department of Pathology, Asan Medical Center, Seoul, Korea
| | - Eun-Ho Cho
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, and Department of Pathology, Asan Medical Center, Seoul, Korea
| | - Woo-Chan Son
- University of Ulsan College of Medicine, Asan Institute for Life Sciences, and Department of Pathology, Asan Medical Center, Seoul, Korea.,
| |
Collapse
|
52
|
Özeş AR, Pulliam N, Ertosun MG, Yılmaz Ö, Tang J, Çopuroğlu E, Matei D, Özeş ON, Nephew KP. Protein kinase A-mediated phosphorylation regulates STAT3 activation and oncogenic EZH2 activity. Oncogene 2018; 37:3589-3600. [PMID: 29576612 PMCID: PMC6023775 DOI: 10.1038/s41388-018-0218-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/10/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2) member enhancer of zeste homologue 2
(EZH2) trimethylates histone H3 lysine 27 (H3K27me3), alters chromatin structure
and contributes to epigenetic regulation of gene expression in normal and
disease processes. Phosphorylation of EZH2 augmented EZH2 oncogenic activity in
cancer but observations have been limited to serine 21
(S21) residue by protein kinase B.
In addition, phosphorylation of the evolutionarily conserved T372 motif of EZH2
by p38 resulted in EZH2 interaction with Ying Yang 1 and promoted muscle stem
cell differentiation. In the present study, we used epithelial ovarian cancer
(OC) cells as a model to demonstrate that phosphorylation of EZH2 at T372 by
protein kinase A (PKA) induced a dominant-negative EZH2 phenotype, inhibited OC
cell proliferation and migration in vitro and decreased ovarian
xenograft tumor growth in vivo. Phosphorylation of T372 by PKA
enhanced the interaction between EZH2 and signal transducer and activator of
transcription 3 (STAT3), and STAT3 binding to pT372-EZH2 reduced cellular levels
of pSTAT3 and downregulated interleukin 6 receptor expression in OC.
Furthermore, PKA-mediated pT372-EZH2 decreased ATP levels and altered
mitochondrial gene expression, resulting in mitochondrial dysfunction and
reduced OC cell growth. These findings demonstrate that PKA-mediated T372
phosphorylation reduces oncogenic EZH2 activity and reveal a novel role for
pT372 in regulating EZH2 in OC and possibly other cancers.
Collapse
Affiliation(s)
- Ali R Özeş
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, 47405, USA.,Indiana University School of Medicine, Medical Sciences, Bloomington, IN, 47405, USA
| | - Nick Pulliam
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, 47405, USA.,Indiana University School of Medicine, Medical Sciences, Bloomington, IN, 47405, USA
| | - Mustafa G Ertosun
- Department of Medical Biology and Genetics, Akdeniz University, Antalya, Turkey
| | - Özlem Yılmaz
- Department of Medical Biology and Genetics, Akdeniz University, Antalya, Turkey
| | - Jessica Tang
- Indiana University School of Medicine, Medical Sciences, Bloomington, IN, 47405, USA
| | - Ece Çopuroğlu
- Department of Medical Biology and Genetics, Akdeniz University, Antalya, Turkey
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Osman N Özeş
- Department of Medical Biology and Genetics, Akdeniz University, Antalya, Turkey.
| | - Kenneth P Nephew
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, 47405, USA. .,Indiana University School of Medicine, Medical Sciences, Bloomington, IN, 47405, USA. .,Departments of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
53
|
EZH2 inhibition promotes epithelial-to-mesenchymal transition in ovarian cancer cells. Oncotarget 2018; 7:84453-84467. [PMID: 27563817 PMCID: PMC5356672 DOI: 10.18632/oncotarget.11497] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer cells acquire essential characteristics for metastatic dissemination through the process of epithelial-to-mesenchymal transition (EMT), which is regulated by gene expression and chromatin remodeling changes. The enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the polycomb repressive complex 2 (PRC2), catalyzes trimethylation of lysine 27 of histone H3 (H3K27me3) to repress gene transcription. Here we report the functional roles of EZH2-catalyzed H3K27me3 during EMT in ovarian cancer (OC) cells. TGF-β-induced EMT in SKOV3 OC cells was associated with decreased levels of EZH2 and H3K27me3 (P<0.05). These effects were delayed (~72 h relative to EMT initiation) and coincided with increased (>15-fold) expression of EMT-associated transcription factors ZEB2 and SNAI2. EZH2 knockdown (using siRNA) or enzymatic inhibition (by GSK126) induced EMT-like changes in OC cells. The EMT regulator ZEB2 was upregulated in cells treated with either approach. Furthermore, TGF-β enhanced expression of ZEB2 in EZH2 siRNA- or GSK126-treated cells (P<0.01), suggesting that H3K27me3 plays a role in TGF-β-stimulated ZEB2 induction. Chromatin immunoprecipitation assays confirmed that TGF-β treatment decreased binding of EZH2 and H3K27me3 to the ZEB2 promoter (P<0.05). In all, these results demonstrate that EZH2, by repressing ZEB2, is required for the maintenance of an epithelial phenotype in OC cells.
Collapse
|
54
|
Karakashev S, Zhu H, Wu S, Yokoyama Y, Bitler BG, Park PH, Lee JH, Kossenkov AV, Gaonkar KS, Yan H, Drapkin R, Conejo-Garcia JR, Speicher DW, Ordog T, Zhang R. CARM1-expressing ovarian cancer depends on the histone methyltransferase EZH2 activity. Nat Commun 2018; 9:631. [PMID: 29434212 PMCID: PMC5809368 DOI: 10.1038/s41467-018-03031-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/15/2018] [Indexed: 01/05/2023] Open
Abstract
CARM1 is an arginine methyltransferase that asymmetrically dimethylates protein substrates on arginine residues. CARM1 is often overexpressed in human cancers. However, clinically applicable cancer therapeutic strategies based on CARM1 expression remain to be explored. Here, we report that EZH2 inhibition is effective in CARM1-expressing epithelial ovarian cancer. Inhibition of EZH2 activity using a clinically applicable small molecule inhibitor significantly suppresses the growth of CARM1-expressing, but not CARM1-deficient, ovarian tumors in two xenograft models and improves the survival of mice bearing CARM1-expressing ovarian tumors. The observed selectivity correlates with reactivation of EZH2 target tumor suppressor genes in a CARM1-dependent manner. Mechanistically, CARM1 promotes EZH2-mediated silencing of EZH2/BAF155 target tumor suppressor genes by methylating BAF155, which leads to the displacement of BAF155 by EZH2. Together, these results indicate that pharmacological inhibition of EZH2 represents a novel therapeutic strategy for CARM1-expressing cancers.
Collapse
Affiliation(s)
- Sergey Karakashev
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Hengrui Zhu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Shuai Wu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Yuhki Yokoyama
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Benjamin G Bitler
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Pyoung-Hwa Park
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jeong-Heon Lee
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Krutika Satish Gaonkar
- Division of Biostatistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Huihuang Yan
- Division of Biostatistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - David W Speicher
- Molecular and Cellular Oncology Program, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Tamas Ordog
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
55
|
EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget 2018; 7:56338-56354. [PMID: 27472460 PMCID: PMC5302918 DOI: 10.18632/oncotarget.10841] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/09/2016] [Indexed: 01/14/2023] Open
Abstract
Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.
Collapse
|
56
|
Yamaguchi H, Du Y, Nakai K, Ding M, Chang SS, Hsu JL, Yao J, Wei Y, Nie L, Jiao S, Chang WC, Chen CH, Yu Y, Hortobagyi GN, Hung MC. EZH2 contributes to the response to PARP inhibitors through its PARP-mediated poly-ADP ribosylation in breast cancer. Oncogene 2018; 37:208-217. [PMID: 28925391 PMCID: PMC5786281 DOI: 10.1038/onc.2017.311] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023]
Abstract
Inhibitors against poly (ADP-ribose) polymerase (PARP) are promising targeted agents currently used to treat BRCA-mutant ovarian cancer and are in clinical trials for other cancer types, including BRCA-mutant breast cancer. To enhance the clinical response to PARP inhibitors (PARPis), understanding the mechanisms underlying PARPi sensitivity is urgently needed. Here, we show enhancer of zeste homolog 2 (EZH2), an enzyme that catalyzes H3 lysine trimethylation and associates with oncogenic function, contributes to PARPi sensitivity in breast cancer cells. Mechanistically, upon oxidative stress or alkylating DNA damage, PARP1 interacts with and attaches poly-ADP-ribose (PAR) chains to EZH2. PARylation of EZH2 by PARP1 then induces PRC2 complex dissociation and EZH2 downregulation, which in turn reduces EZH2-mediated H3 trimethylation. In contrast, inhibition of PARP by PARPi attenuates alkylating DNA damage-induced EZH2 downregulation, thereby promoting EZH2-mediated gene silencing and cancer stem cell property compared with PARPi-untreated cells. Moreover, the addition of an EZH2 inhibitor sensitizes the BRCA-mutant breast cells to PARPi. Thus, these results may provide a rationale for combining PARP and EZH2 inhibition as a therapeutic strategy for BRCA-mutated breast and ovarian cancers.
Collapse
Affiliation(s)
- H Yamaguchi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Du
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K Nakai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Ding
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S-S Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Nie
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W-C Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - C-H Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Y Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - G N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M-C Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
57
|
Alldredge JK, Eskander RN. EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers. GYNECOLOGIC ONCOLOGY RESEARCH AND PRACTICE 2017; 4:17. [PMID: 29093822 PMCID: PMC5663065 DOI: 10.1186/s40661-017-0052-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022]
Abstract
Clear cell carcinoma and endometrioid adenocarcinoma are histologic subtypes of ovarian and uterine cancer that demonstrate unique clinical behavior but share common underlying genomic aberrations and oncogenic pathways. ARID1A mutations are more frequently identified in these tumors, in comparison to other gynecologic histologies, and loss of ARID1A tumor suppressor function is thought to be an essential component of carcinogenic transformation. Several therapeutic targets in ARID1A mutated cancers are in development, including EZH2 inhibitors. EZH2 facilitates epigenetic methylation to modulate gene expression, and both uterine and ovarian cancers show evidence of EZH2 over expression. EZH2 inhibition in ARID1A mutated tumors acts in a synthetically lethal manner to suppress cell growth and promote apoptosis, revealing a unique new therapeutic opportunity. Several phase 1 and 2 clinical trials of EZH2 inhibitors are ongoing currently and there is considerable promise in translational trials for utilization of this new targeted therapy, both to capitalize on ARID1A loss of function and to increase sensitivity to platinum-based adjuvant chemotherapies. This review will synthesize the molecular carcinogenesis of these malignancies and their unique clinical behavior, as a foundation for an emerging frontier of targeted therapeutics - the synergistic inhibition of EZH2 in ARID1A mutated cancers.
Collapse
Affiliation(s)
- Jill K. Alldredge
- University of California, 101 The City Drive South Orange, Irvine, CA 92868 USA
| | - Ramez N. Eskander
- University of California, San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92029-S0987 USA
| |
Collapse
|
58
|
Yokoyama Y, Zhu H, Lee JH, Kossenkov AV, Wu SY, Wickramasinghe JM, Yin X, Palozola KC, Gardini A, Showe LC, Zaret KS, Liu Q, Speicher D, Conejo-Garcia JR, Bradner JE, Zhang Z, Sood AK, Ordog T, Bitler BG, Zhang R. BET Inhibitors Suppress ALDH Activity by Targeting ALDH1A1 Super-Enhancer in Ovarian Cancer. Cancer Res 2017; 76:6320-6330. [PMID: 27803105 DOI: 10.1158/0008-5472.can-16-0854] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022]
Abstract
The emergence of tumor cells with certain stem-like characteristics, such as high aldehyde dehydrogenase (ALDH) activity due to ALDH1A1 expression, contributes to chemotherapy resistance and tumor relapse. However, clinically applicable inhibitors of ALDH activity have not been reported. There is evidence to suggest that epigenetic regulation of stem-related genes contributes to chemotherapy efficacy. Here, we show that bromodomain and extraterminal (BET) inhibitors suppress ALDH activity by abrogating BRD4-mediated ALDH1A1 expression through a super-enhancer element and its associated enhancer RNA. The clinically applicable small-molecule BET inhibitor JQ1 suppressed the outgrowth of cisplatin-treated ovarian cancer cells both in vitro and in vivo Combination of JQ1 and cisplatin improved the survival of ovarian cancer-bearing mice in an orthotopic model. These phenotypes correlate with inhibition of ALDH1A1 expression through a super-enhancer element and other stem-related genes in promoter regions bound by BRD4. Thus, targeting the BET protein BRD4 using clinically applicable small-molecule inhibitors, such as JQ1, is a promising strategy for targeting ALDH activity in epithelial ovarian cancer. Cancer Res; 76(21); 6320-30. ©2016 AACR.
Collapse
Affiliation(s)
- Yuhki Yokoyama
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Hengrui Zhu
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jeong Heon Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sherry Y Wu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Xiangfan Yin
- Molecular and Cellular Oncology Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Katherine C Palozola
- Institute for Regenerative Medicine, Epigenetics Program, and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania
| | - Alessandro Gardini
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Louise C Showe
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania.,Molecular and Cellular Oncology Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Epigenetics Program, and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania
| | - Qin Liu
- Molecular and Cellular Oncology Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - David Speicher
- Molecular and Cellular Oncology Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jose R Conejo-Garcia
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota.,Mayo Clinic, Rochester, Minnesota
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Benjamin G Bitler
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
59
|
Aird KM, Iwasaki O, Kossenkov AV, Tanizawa H, Fatkhutdinov N, Bitler BG, Le L, Alicea G, Yang TL, Johnson FB, Noma KI, Zhang R. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J Cell Biol 2016; 215:325-334. [PMID: 27799366 PMCID: PMC5100296 DOI: 10.1083/jcb.201608026] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/21/2016] [Indexed: 01/06/2023] Open
Abstract
Cellular senescence is a stable cell growth arrest that is characterized by the silencing of proliferation-promoting genes through compaction of chromosomes into senescence-associated heterochromatin foci (SAHF). Paradoxically, senescence is also accompanied by increased transcription of certain genes encoding for secreted factors such as cytokines and chemokines, known as the senescence-associated secretory phenotype (SASP). How SASP genes are excluded from SAHF-mediated global gene silencing remains unclear. In this study, we report that high mobility group box 2 (HMGB2) orchestrates the chromatin landscape of SASP gene loci. HMGB2 preferentially localizes to SASP gene loci during senescence. Loss of HMGB2 during senescence blunts SASP gene expression by allowing for spreading of repressive heterochromatin into SASP gene loci. This correlates with incorporation of SASP gene loci into SAHF. Our results establish HMGB2 as a novel master regulator that orchestrates SASP through prevention of heterochromatin spreading to allow for exclusion of SASP gene loci from a global heterochromatin environment during senescence.
Collapse
Affiliation(s)
- Katherine M Aird
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Osamu Iwasaki
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104
| | - Hideki Tanizawa
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Nail Fatkhutdinov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
- Kazan Federal University, Kazan 42000, Russia
| | - Benjamin G Bitler
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Linh Le
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014
| | - Gretchen Alicea
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Ting-Lin Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014
| | - Ken-Ichi Noma
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| |
Collapse
|
60
|
Abstract
Background Current studies report that aberrations in epigenetic regulators or chromatin modifications are related to tumor development and maintenance. EZH2 (Enhancer of zeste homolog 2) is one of the catalytic subunits of Polycomb repressive complex 2, a crucial epigenetic regulator. EZH2 has a master regulatory function in such processes as cell proliferation, stem cell differentiation, and early embryogenesis. In humans, EZH2 is linked to oncogenic function in several carcinomas, including breast cancer, and dysregulation of EZH2 has been particularly associated with loss of differentiation and the development of poorly differentiated breast cancer. In our present study, we were interested in determining whether EZH2 is increased in canine mammary tumors, which show similarities to human breast cancer. Results Investigation of the expression of EZH2 in canine mammary tumors revealed that EZH2 protein was overexpressed in canine mammary carcinomas, as in human breast cancer. In addition, the immunohistochemical expression level of EZH2 was associated with the degree of malignancy in canine mammary carcinoma. This is the first report to describe EZH2 expression in canine mammary tumors. Conclusions Because the expression of EZH2 was similar in canine mammary carcinoma and human breast cancer, spontaneous canine mammary tumors may be a suitable model for studying EZH2 and treatment development.
Collapse
|
61
|
Fatkhutdinov N, Sproesser K, Krepler C, Liu Q, Brafford PA, Herlyn M, Aird KM, Zhang R. Targeting RRM2 and Mutant BRAF Is a Novel Combinatorial Strategy for Melanoma. Mol Cancer Res 2016; 14:767-75. [PMID: 27297629 DOI: 10.1158/1541-7786.mcr-16-0099] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022]
Abstract
UNLABELLED The majority of patients with melanoma harbor mutations in the BRAF oncogene, thus making it a clinically relevant target. However, response to mutant BRAF inhibitors (BRAFi) is relatively short-lived with progression-free survival of only 6 to 7 months. Previously, we reported high expression of ribonucleotide reductase M2 (RRM2), which is rate-limiting for de novo dNTP synthesis, as a poor prognostic factor in patients with mutant BRAF melanoma. In this study, the notion that targeting de novo dNTP synthesis through knockdown of RRM2 could prolong the response of melanoma cells to BRAFi was investigated. Knockdown of RRM2 in combination with the mutant BRAFi PLX4720 (an analog of the FDA-approved drug vemurafenib) inhibited melanoma cell proliferation to a greater extent than either treatment alone. This occurred in vitro in multiple mutant BRAF cell lines and in a novel patient-derived xenograft (PDX) model system. Mechanistically, the combination increased DNA damage accumulation, which correlated with a global decrease in DNA damage repair (DDR) gene expression and increased apoptotic markers. After discontinuing PLX4720 treatment, cells showed marked recurrence. However, knockdown of RRM2 attenuated this rebound growth both in vitro and in vivo, which correlated with maintenance of the senescence-associated cell-cycle arrest. IMPLICATIONS Inhibition of RRM2 converts the transient response of melanoma cells to BRAFi to a stable response and may be a novel combinatorial strategy to prolong therapeutic response of patients with melanoma. Mol Cancer Res; 14(9); 767-75. ©2016 AACR.
Collapse
Affiliation(s)
- Nail Fatkhutdinov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania. Kazan Federal University, Kazan, Russia
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Patricia A Brafford
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Katherine M Aird
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania.
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
62
|
Abstract
Epigenetic mechanisms may play an important role in the etiology of endometriosis. The modification of histones by methylation of lysine residues has been shown to regulate gene expression by changing chromatin structure. We have previously shown that endometriotic lesions had aberrant levels of histone acetylation (lower) and methylation (higher) than control tissues. We aimed to determine the levels of trimethylated histone 3 at lysine residue 27 (H3K27me3), a well-known repressive mark, by immunoassay of fresh tissues and immunohistochemistry (IHC) of an endometriosis-focused tissue microarray. Also, we aimed to determine levels of expression of enhancer of zeste homolog 2 (EZH2), the enzyme responsible for trimethylation of H3K27me3, in cell lines. Average levels of H3K27me3 measured by immunoassay were not significantly different in lesions compared to endometrium from patients and controls. However, there was a trend of higher levels of H3K27me3 in secretory versus proliferative endometrium. The results of IHC showed that lesions (ovarian, fallopian, and peritoneal) and secretory endometrium from controls have higher percentage of H3K27me3-positive nuclei than eutopic endometrium from patients. Endometriotic epithelial cells express high levels of EZH2, which is upregulated by progesterone. This study provides evidence in support of a role of H3K27me3 in the pathogenesis of endometriosis and for EZH2 as a potential therapeutic target for this disease, but more studies are necessary to understand the molecular mechanisms at play.
Collapse
Affiliation(s)
- Mariano Colón-Caraballo
- Department of Microbiology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| | - Janice B Monteiro
- Department of Biochemistry, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| | - Idhaliz Flores
- Department of Microbiology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA Department of Obstetrics and Gynaecology, Ponce Health Sciences University-School of Medicine and Ponce Research Institute, Ponce, PR, USA
| |
Collapse
|
63
|
Curry E, Green I, Chapman-Rothe N, Shamsaei E, Kandil S, Cherblanc FL, Payne L, Bell E, Ganesh T, Srimongkolpithak N, Caron J, Li F, Uren AG, Snyder JP, Vedadi M, Fuchter MJ, Brown R. Dual EZH2 and EHMT2 histone methyltransferase inhibition increases biological efficacy in breast cancer cells. Clin Epigenetics 2015; 7:84. [PMID: 26300989 PMCID: PMC4545913 DOI: 10.1186/s13148-015-0118-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/28/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Many cancers show aberrant silencing of gene expression and overexpression of histone methyltransferases. The histone methyltransferases (HKMT) EZH2 and EHMT2 maintain the repressive chromatin histone methylation marks H3K27me and H3K9me, respectively, which are associated with transcriptional silencing. Although selective HKMT inhibitors reduce levels of individual repressive marks, removal of H3K27me3 by specific EZH2 inhibitors, for instance, may not be sufficient for inducing the expression of genes with multiple repressive marks. RESULTS We report that gene expression and inhibition of triple negative breast cancer cell growth (MDA-MB-231) are markedly increased when targeting both EZH2 and EHMT2, either by siRNA knockdown or pharmacological inhibition, rather than either enzyme independently. Indeed, expression of certain genes is only induced upon dual inhibition. We sought to identify compounds which showed evidence of dual EZH2 and EHMT2 inhibition. Using a cell-based assay, based on the substrate competitive EHMT2 inhibitor BIX01294, we have identified proof-of-concept compounds that induce re-expression of a subset of genes consistent with dual HKMT inhibition. Chromatin immunoprecipitation verified a decrease in silencing marks and an increase in permissive marks at the promoter and transcription start site of re-expressed genes, while Western analysis showed reduction in global levels of H3K27me3 and H3K9me3. The compounds inhibit growth in a panel of breast cancer and lymphoma cell lines with low to sub-micromolar IC50s. Biochemically, the compounds are substrate competitive inhibitors against both EZH2 and EHMT1/2. CONCLUSIONS We have demonstrated that dual inhibition of EZH2 and EHMT2 is more effective at eliciting biological responses of gene transcription and cancer cell growth inhibition compared to inhibition of single HKMTs, and we report the first dual EZH2-EHMT1/2 substrate competitive inhibitors that are functional in cells.
Collapse
Affiliation(s)
- Edward Curry
- />Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Ian Green
- />Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Nadine Chapman-Rothe
- />Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Elham Shamsaei
- />Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Sarah Kandil
- />Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Fanny L Cherblanc
- />Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Luke Payne
- />Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Emma Bell
- />Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
| | - Thota Ganesh
- />Department of Pharmacology, Emory University, Atlanta, GA 30322 USA
| | | | - Joachim Caron
- />Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Fengling Li
- />Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7 Canada
| | - Anthony G. Uren
- />MRC Clinical Sciences Centre, Hammersmith Hospital Campus, London, W12 0NN UK
| | - James P. Snyder
- />Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | - Masoud Vedadi
- />Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7 Canada
| | - Matthew J. Fuchter
- />Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Robert Brown
- />Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN UK
- />Section of Molecular Pathology, Institute of Cancer Research, Sutton, SM2 5NG UK
| |
Collapse
|
64
|
Chen S, Huang L, Sun K, Wu D, Li M, Li M, Zhong B, Chen M, Zhang S. Enhancer of zeste homolog 2 as an independent prognostic marker for cancer: a meta-analysis. PLoS One 2015; 10:e0125480. [PMID: 25974088 PMCID: PMC4431777 DOI: 10.1371/journal.pone.0125480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Background Novel biomarkers are of particular interest for predicting cancer prognosis. This study aimed to explore the associations between enhancer of zeste homolog 2 (EZH2) and patient survival in various cancers. Methods Relevant literature was retrieved from PubMed and Web of Science databases. Pooled hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals (CIs) were calculated. Results Forty-nine studies (8,050 patients) were included. High EZH2 expression was significantly associated with shorter overall (hazard ratio [HR] 1.74, 95% CI: 1.46–2.07), disease-free (HR 1.59, 95% CI: 1.27–1.99), metastasis-free (HR 2.19, 95% CI: 1.38–3.47), progression-free (HR 2.53, 95% CI: 1.52–4.21), cancer-specific (HR 3.13, 95% CI: 1.70–5.74), and disease-specific (HR 2.29, 95% CI: 1.56–3.35) survival, but not recurrence-free survival (HR 1.38, 95% CI: 0.93–2.06). Moreover, EZH2 expression significantly correlated with distant metastasis (OR 3.25, 95% CI: 1.07–9.87) in esophageal carcinoma; differentiation (OR 3.00, 95% CI: 1.37–6.55) in non-small cell lung cancer; TNM stage (OR 3.18, 95% CI: 2.49–4.08) in renal cell carcinoma; and histological grade (OR 4.50, 95% CI: 3.33–6.09), estrogen receptor status (OR 0.15, 95% CI: 0.11–0.20) and progesterone receptor status (OR 0.30, 95% CI: 0.23–0.39) in breast cancer. Conclusions Our results suggested that EZH2 might be an independent prognostic factor for multiple survival measures in different cancers.
Collapse
Affiliation(s)
- Shuling Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lixia Huang
- Division of Respiration, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Kaiyu Sun
- Division of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Dexi Wu
- Division of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Minrui Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Manying Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Bihui Zhong
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- * E-mail: (SZ); (MC)
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- * E-mail: (SZ); (MC)
| |
Collapse
|
65
|
Aird KM, Worth AJ, Snyder NW, Lee JV, Sivanand S, Liu Q, Blair IA, Wellen KE, Zhang R. ATM couples replication stress and metabolic reprogramming during cellular senescence. Cell Rep 2015; 11:893-901. [PMID: 25937285 DOI: 10.1016/j.celrep.2015.04.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/23/2015] [Accepted: 04/05/2015] [Indexed: 11/18/2022] Open
Abstract
Replication stress induced by nucleotide deficiency plays an important role in cancer initiation. Replication stress in primary cells typically activates the cellular senescence tumor-suppression mechanism. Senescence bypass correlates with development of cancer, a disease characterized by metabolic reprogramming. However, the role of metabolic reprogramming in the cellular response to replication stress has been little explored. Here, we report that ataxia telangiectasia mutated (ATM) plays a central role in regulating the cellular response to replication stress by shifting cellular metabolism. ATM inactivation bypasses senescence induced by replication stress triggered by nucleotide deficiency. This was due to restoration of deoxyribonucleotide triphosphate (dNTP) levels through both upregulation of the pentose phosphate pathway via increased glucose-6-phosphate dehydrogenase (G6PD) activity and enhanced glucose and glutamine consumption. These phenotypes were mediated by a coordinated suppression of p53 and upregulation of c-MYC downstream of ATM inactivation. Our data indicate that ATM status couples replication stress and metabolic reprogramming during senescence.
Collapse
Affiliation(s)
- Katherine M Aird
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Andrew J Worth
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathaniel W Snyder
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joyce V Lee
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharanya Sivanand
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
66
|
Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, Schultz DC, Liu Q, Shih IM, Conejo-Garcia JR, Speicher DW, Zhang R. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med 2015; 21:231-8. [PMID: 25686104 PMCID: PMC4352133 DOI: 10.1038/nm.3799] [Citation(s) in RCA: 482] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/05/2015] [Indexed: 12/15/2022]
Abstract
ARID1A, a chromatin remodeler, shows one of the highest mutation rates across many cancer types. Notably, ARID1A is mutated in over 50% of ovarian clear cell carcinomas, which currently has no effective therapy. To date, clinically applicable targeted cancer therapy based on ARID1A mutational status has not been described. Here we show that inhibition of the EZH2 methyltransferase acts in a synthetic lethal manner in ARID1A mutated ovarian cancer cells. ARID1A mutational status correlates with response to the EZH2 inhibitor. We identified PIK3IP1 as a direct ARID1A/EZH2 target, which is upregulated by EZH2 inhibition and contributes to the observed synthetic lethality by inhibiting PI3K/AKT signaling. Significantly, EZH2 inhibition causes regression of ARID1A mutated ovarian tumors in vivo. Together, these data demonstrate for the first time a synthetic lethality between ARID1A mutation and EZH2 inhibition. They indicate that pharmacological inhibition of EZH2 represents a novel treatment strategy for ARID1A mutated cancers.
Collapse
Affiliation(s)
- Benjamin G Bitler
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Katherine M Aird
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Azat Garipov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Hua Li
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Michael Amatangelo
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - David C Schultz
- Center for Chemical Biology and Translational Medicine, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ie-Ming Shih
- Department of Pathology, Oncology, and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Jose R Conejo-Garcia
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - David W Speicher
- 1] Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, Pennsylvania, USA. [2] Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
67
|
Völkel P, Dupret B, Le Bourhis X, Angrand PO. Diverse involvement of EZH2 in cancer epigenetics. Am J Transl Res 2015; 7:175-193. [PMID: 25901190 PMCID: PMC4399085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
EZH2 is the catalytic subunit of Polycomb Repressor Complex 2 (PRC2) which catalyzes methylation of histone H3 at lysine 27 (H3K27me) and mediates gene silencing of target genes via local chromatin reorganization. Numerous evidences show that EZH2 plays a critical role in cancer initiation, progression and metastasis, as well as in cancer stem cell biology. Indeed, EZH2 dysregulation alters gene expression programs in various cancer types. The molecular mechanisms responsible for EZH2 alteration appear to be diverse and depending on the type of cancer. Furthermore, accumulating evidences indicate that EZH2 could also act as a PRC2-independent transcriptional activator in cancer. In this review, we address the current understanding of the oncogenic role of EZH2, including the mechanisms of EZH2 dysregulation in cancer and progresses in therapeutic approaches targeting EZH2.
Collapse
Affiliation(s)
- Pamela Völkel
- Cell Plasticity & Cancer - Inserm U908, University of LilleBâtiment SN3, Cité Scientifique, F-59655 Villeneuve d’Ascq, France
- Interdisciplinary Research Institute - CNRS USR3078/University of LilleParc de la Haute Borne, 50 avenue de Halley, F-59658 Villeneuve d’Ascq, France
| | - Barbara Dupret
- Cell Plasticity & Cancer - Inserm U908, University of LilleBâtiment SN3, Cité Scientifique, F-59655 Villeneuve d’Ascq, France
| | - Xuefen Le Bourhis
- Cell Plasticity & Cancer - Inserm U908, University of LilleBâtiment SN3, Cité Scientifique, F-59655 Villeneuve d’Ascq, France
| | - Pierre-Olivier Angrand
- Cell Plasticity & Cancer - Inserm U908, University of LilleBâtiment SN3, Cité Scientifique, F-59655 Villeneuve d’Ascq, France
| |
Collapse
|
68
|
Abstract
Epigenetic and genetic alterations contribute to cancer initiation and progression. Epigenetics refers to the study of heritable changes in gene expression without alterations in DNA sequences. Epigenetic changes are reversible and include key processes of DNA methylation, chromatin modifications, nucleosome positioning, and alterations in noncoding RNA profiles. Disruptions in epigenetic processes can lead to altered gene function and cellular neoplastic transformation. Epigenetic modifications precede genetic changes and usually occur at an early stage in neoplastic development. Recent technological advances offer a better understanding of the underlying epigenetic alterations during carcinogenesis and provide insight into the discovery of putative epigenetic biomarkers for detection, prognosis, risk assessment, and disease monitoring. In this chapter we provide information on various epigenetic mechanisms and their role in carcinogenesis, in particular, epigenetic modifications causing genetic changes and the potential clinical impact of epigenetic research in the future.
Collapse
Affiliation(s)
- Rajnee Kanwal
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | | | | |
Collapse
|
69
|
Cheng FHC, Aguda BD, Tsai JC, Kochańczyk M, Lin JMJ, Chen GCW, Lai HC, Nephew KP, Hwang TW, Chan MWY. A mathematical model of bimodal epigenetic control of miR-193a in ovarian cancer stem cells. PLoS One 2014; 9:e116050. [PMID: 25545504 PMCID: PMC4278842 DOI: 10.1371/journal.pone.0116050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/30/2014] [Indexed: 12/31/2022] Open
Abstract
Accumulating data indicate that cancer stem cells contribute to tumor chemoresistance and their persistence alters clinical outcome. Our previous study has shown that ovarian cancer may be initiated by ovarian cancer initiating cells (OCIC) characterized by surface antigen CD44 and c-KIT (CD117). It has been experimentally demonstrated that a microRNA, namely miR-193a, targets c-KIT mRNA for degradation and could play a crucial role in ovarian cancer development. How miR-193a is regulated is poorly understood and the emerging picture is complex. To unravel this complexity, we propose a mathematical model to explore how estrogen-mediated up-regulation of another target of miR-193a, namely E2F6, can attenuate the function of miR-193a in two ways, one through a competition of E2F6 and c-KIT transcripts for miR-193a, and second by binding of E2F6 protein, in association with a polycomb complex, to the promoter of miR-193a to down-regulate its transcription. Our model predicts that this bimodal control increases the expression of c-KIT and that the second mode of epigenetic regulation is required to generate a switching behavior in c-KIT and E2F6 expressions. Additional analysis of the TCGA ovarian cancer dataset demonstrates that ovarian cancer patients with low expression of EZH2, a polycomb-group family protein, show positive correlation between E2F6 and c-KIT. We conjecture that a simultaneous EZH2 inhibition and anti-estrogen therapy can constitute an effective combined therapeutic strategy against ovarian cancer.
Collapse
Affiliation(s)
- Frank H. C. Cheng
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China
| | | | - Je-Chiang Tsai
- Department of Mathematics, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China
| | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Jora M. J. Lin
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China
| | - Gary C. W. Chen
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Changsha, People's Republic of China
- Hunan Key Laboratory of Pharmacogenetics, Changsha, People's Republic of China
| | - Kenneth P. Nephew
- Medical Sciences, Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Tzy-Wei Hwang
- Department of Mathematics, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China
- * E-mail: (MWYC); (TWH)
| | - Michael W. Y. Chan
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China
- * E-mail: (MWYC); (TWH)
| |
Collapse
|
70
|
Salz T, Deng C, Pampo C, Siemann D, Qiu Y, Brown K, Huang S. Histone Methyltransferase hSETD1A Is a Novel Regulator of Metastasis in Breast Cancer. Mol Cancer Res 2014; 13:461-9. [PMID: 25373480 DOI: 10.1158/1541-7786.mcr-14-0389] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Epigenetic alteration is a hallmark of all cancers. Such alterations lead to modulation of fundamental cancer-related functions, such as proliferation, migration, and invasion. In particular, methylation of Histone H3 Lysine 4 (H3K4), a histone mark generally associated with transcriptional activation, is altered during progression of several human cancers. While the depletion of H3K4 demethylases promotes breast cancer metastasis, the effect of H3K4 methyltransferases on metastasis is not clear. Nevertheless, gene duplications in the human SETD1A (hSETD1A) H3K4 methyltransferase are present in almost half of breast cancers. Herein, expression analysis determined that hSETD1A is upregulated in multiple metastatic human breast cancer cell lines and clinical tumor specimens. Ablation of hSETD1A in breast cancer cells led to a decrease in migration and invasion in vitro and to a decrease in metastasis in nude mice. Furthermore, a group of matrix metalloproteinases (including MMP2, MMP9, MMP12, MMP13, and MMP17) were identified which were downregulated upon depletion of hSETD1A and demonstrated a decrease in H3K4me3 at their proximal promoters based on chromatin immunoprecipitation analysis. These results provide evidence for a functional and mechanistic link among hSETD1A, MMPs, and metastasis in breast cancer, thereby supporting an oncogenic role for hSETD1A in cancer. IMPLICATIONS This study reveals that hSETD1A controls tumor metastasis by activating MMP expression and provides an epigenetic link among hSETD1A, MMPs, and metastasis of breast cancer.
Collapse
Affiliation(s)
- Tal Salz
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Changwang Deng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Christine Pampo
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Dietmar Siemann
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida. UF Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida
| | - Yi Qiu
- UF Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida. Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Kevin Brown
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida. UF Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida. UF Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida.
| |
Collapse
|
71
|
Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS, Borley J. Poised epigenetic states and acquired drug resistance in cancer. Nat Rev Cancer 2014; 14:747-53. [PMID: 25253389 DOI: 10.1038/nrc3819] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epigenetic events, which are somatically inherited through cell division, are potential drivers of acquired drug resistance in cancer. The high rate of epigenetic change in tumours generates diversity in gene expression patterns that can rapidly evolve through drug selection during treatment, leading to the development of acquired resistance. This will potentially confound stratified chemotherapy decisions that are solely based on mutation biomarkers. Poised epigenetic states in tumour cells may drive multistep epigenetic fixation of gene expression during the acquisition of drug resistance, which has implications for clinical strategies to prevent the emergence of drug resistance.
Collapse
Affiliation(s)
- Robert Brown
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Edward Curry
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Luca Magnani
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | | | - Jane Borley
- Department of Surgery &Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
72
|
Garipov AR, Nesmelov AA, Cabrera-Fuentes HA, Ilinskaya ON. Bacillus intermedius ribonuclease (BINASE) induces apoptosis in human ovarian cancer cells. Toxicon 2014; 92:54-9. [PMID: 25301481 DOI: 10.1016/j.toxicon.2014.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/19/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
Abstract
The cytotoxic effects of Bacillus intermedius RNase (binase) towards ovarian cancer cells (SKOV3 and OVCAR5) were studied in comparison to normal ovarian epithelial cells (HOSE1 and HOSE2). Binase decreased viability and induced the selective apoptosis of ovarian cancer cells. The apoptosis rate was 50% in SKOV3 and 48% in OVCAR5 cells after 24 h of binase treatment (50 μg/ml). Binase-induced apoptosis in these cell lines was accompanied by caspase-3 activation and poly(ADP-ribose) polymerase fragmentation. Normal ovarian epithelial cells were not affected by binase, except for a slight decrease of HOSE2 cell viability and the appearance of traces of activated caspase-3, but not the poly(ADP-ribose) polymerase 85-kDA fragment. Binase did not induce alteration of EZH2 (enhancer of zeste-homolog-2) protein expression neither, in tumor nor in normal cells. In conclusion, selective binase-induced cell death and apoptosis via poly(ADP-ribose) polymerase fragmentation may serve as a new treatment option against ovarian cancer progression.
Collapse
Affiliation(s)
- Azat R Garipov
- Department of Microbiology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, Kazan 420008, Russia
| | - Alexander A Nesmelov
- Department of Microbiology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, Kazan 420008, Russia
| | - Hector A Cabrera-Fuentes
- Department of Microbiology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, Kazan 420008, Russia; Institute of Biochemistry, Medical School, Justus-Liebig-University, Friedrichstrasse, 24, 35390 Giessen, Germany.
| | - Olga N Ilinskaya
- Department of Microbiology, Kazan Federal (Volga-Region) University, Kremlevskaya str. 18, Kazan 420008, Russia
| |
Collapse
|
73
|
Jia N, Li Q, Tao X, Wang J, Hua K, Feng W. Enhancer of zeste homolog 2 is involved in the proliferation of endometrial carcinoma. Oncol Lett 2014; 8:2049-2054. [PMID: 25295088 PMCID: PMC4186594 DOI: 10.3892/ol.2014.2437] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/05/2014] [Indexed: 12/23/2022] Open
Abstract
Endometrial carcinoma is the second most common gynecological malignancy of the female genital tract worldwide. Enhancer of zeste homolog 2 (EZH2), a critical component of the polycomb repressive complex 2, has been found to be involved in multiple biological processes and is overexpressed in several types of cancer. Previous studies have demonstrated that EZH2 is associated with endometrial carcinoma. The present study showed that EZH2 was overexpressed in complex hyperplasia, atypical hyperplasia and endometrial cancer, but not in simple hyperplasia and normal endometrium. Additionally, by analyzing the correlation between EZH2 expression and clinicopathological characteristics, the expression of EZH2 was found to be associated with myometrial invasion and lymph-vascular space invasion of endometrial cancer. Furthermore, small interfering RNA was utilized to investigate the role of EZH2 in endometrial carcinoma cell proliferation, and the results showed that EZH2 knockdown suppressed the proliferation of endometrial carcinoma cells in vitro. Therefore, these findings indicate that EZH2 expression may predict a more aggressive biological behavior in endometrial carcinoma and it may provide potential therapeutic targets for treatment of endometrial carcinoma.
Collapse
Affiliation(s)
- Nan Jia
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China ; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Qing Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China ; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Jieyu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China ; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China ; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| | - Weiwei Feng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China ; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, P.R. China
| |
Collapse
|
74
|
Farooqi AA, Yaylim I, Ozkan NE, Zaman F, Halim TA, Chang HW. Restoring TRAIL mediated signaling in ovarian cancer cells. Arch Immunol Ther Exp (Warsz) 2014; 62:459-74. [PMID: 25030086 DOI: 10.1007/s00005-014-0307-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 06/26/2014] [Indexed: 02/08/2023]
Abstract
Ovarian cancer has emerged as a multifaceted and genomically complex disease. Genetic/epigenetic mutations, suppression of tumor suppressors, overexpression of oncogenes, rewiring of intracellular signaling cascades and loss of apoptosis are some of the deeply studied mechanisms. In vitro and in vivo studies have highlighted different molecular mechanisms that regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis in ovarian cancer. In this review, we bring to limelight, expansion in understanding systematical characterization of ovarian cancer cells has led to the rapid development of new drugs and treatments to target negative regulators of TRAIL mediated signaling pathway. Wide ranging synthetic and natural agents have been shown to stimulate mRNA and protein expression of death receptors. This review is compartmentalized into programmed cell death protein 4, platelet-derived growth factor signaling and miRNA control of TRAIL mediated signaling to ovarian cancer. Mapatumumab and PRO95780 have been tested for efficacy against ovarian cancer. Use of high-throughput screening assays will aid in dissecting the heterogeneity of this disease and increasing a long-term survival which might be achieved by translating rapidly accumulating information obtained from molecular and cellular studies to clinic researches.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, RLMC, 35 km Ferozepur Road, Lahore, Pakistan,
| | | | | | | | | | | |
Collapse
|
75
|
Sun NX, Ye C, Zhao Q, Zhang Q, Xu C, Wang SB, Jin ZJ, Sun SH, Wang F, Li W. Long noncoding RNA-EBIC promotes tumor cell invasion by binding to EZH2 and repressing E-cadherin in cervical cancer. PLoS One 2014; 9:e100340. [PMID: 25007342 PMCID: PMC4090119 DOI: 10.1371/journal.pone.0100340] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/26/2014] [Indexed: 12/31/2022] Open
Abstract
In recent years, long noncoding RNAs (lncRNAs) have been demonstrated to play key roles in tumorgenesis. However, the contributions of lncRNAs to cervical cancer (CC) remain largely unknown. In this study, differentially expressed lncRNAs and mRNAs in cervical cancer and paired peritumoral tissues were detected by transcriptome microarray analysis. We found 708 probe sets of lncRNAs increased and 836 probe sets decreased in CC tissues, while 1288 mRNA differential probe sets increased and 901 mRNA probe sets decreased. The results were validated by quantitative real-time polymerase chain reaction (qPCR). Then, we found a specific differentially expressed lncRNA can physically bind to enhancer of zeste homolog2 (EZH2) by using RNA immunoprecipitation. We termed it as EZH2-binding lncRNA in cervical cancer [lncRNA-EBIC]. Wound healing assays and Matrigel invasion assays were used to determine the function of this lncRNA by silencing it. We observed that the migration and invasion of cervical cancer cells in vitro were inhibited upon suppression of lncRNA-EBIC by siRNA. We also found that the association between lncRNA-EBIC and EZH2 was required for the repression of E-cadherin, which was a key molecular in the metastasis of cervical cancer. Conclusion These results demonstrated that lncRNA-EBIC was an oncogenic lncRNA, which could promote tumor cell invasion in CC by binding to EZH2 and inhibiting E-cadherin expression.
Collapse
Affiliation(s)
- Ning-xia Sun
- Department of Obstetrics and Gynaecology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chen Ye
- Department of Obstetrics and Gynaecology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qian Zhao
- Department of Obstetrics and Gynaecology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qing Zhang
- Department of Obstetrics and Gynaecology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chen Xu
- Department of Obstetrics and Gynaecology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shao-bing Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Zhi-jun Jin
- Department of Obstetrics and Gynaecology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shu-han Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Fang Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
- * E-mail: (FW); (WL)
| | - Wen Li
- Department of Obstetrics and Gynaecology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (FW); (WL)
| |
Collapse
|
76
|
Girard N, Bazille C, Lhuissier E, Benateau H, Llombart-Bosch A, Boumediene K, Bauge C. 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells. PLoS One 2014; 9:e98176. [PMID: 24852755 PMCID: PMC4031152 DOI: 10.1371/journal.pone.0098176] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/29/2014] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Growing evidences indicate that the histone methyltransferase EZH2 (enhancer of zeste homolog 2) may be an appropriate therapeutic target in some tumors. Indeed, a high expression of EZH2 is correlated with poor prognosis and metastasis in many cancers. In addition, 3-Deazaneplanocin A (DZNep), an S-adenosyl-L homocysteine hydrolase inhibitor which induces EZH2 protein depletion, leads to cell death in several cancers and tumors. The aim of this study was to determine whether an epigenetic therapy targeting EZH2 with DZNep may be also efficient to treat chondrosarcomas. METHODS EZH2 expression was determined by immunohistochemistry and western-blot. Chondrosarcoma cell line CH2879 was cultured in the presence of DZNep, and its growth and survival were evaluated by counting adherent cells periodically. Apoptosis was assayed by cell cycle analysis, Apo2.7 expression using flow cytometry, and by PARP cleavage using western-blot. Cell migration was assessed by wound healing assay. RESULTS Chondrosarcomas (at least with high grade) highly express EZH2, at contrary to enchondromas or chondrocytes. In vitro, DZNep inhibits EZH2 protein expression, and subsequently reduces the trimethylation of lysine 27 on histone H3 (H3K27me3). Interestingly, DZNep induces cell death of chondrosarcoma cell lines by apoptosis, while it slightly reduces growth of normal chondrocytes. In addition, DZNep reduces cell migration. CONCLUSION These results indicate that an epigenetic therapy that pharmacologically targets EZH2 via DZNep may constitute a novel approach to treat chondrosarcomas.
Collapse
Affiliation(s)
- Nicolas Girard
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
| | - Céline Bazille
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
- Service d’Anatomie Pathologique, CHU, Caen, France
| | - Eva Lhuissier
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
| | - Hervé Benateau
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
- Service de Chirurgie Maxillo-faciale, CHU, Caen, France
| | | | - Karim Boumediene
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
| | - Catherine Bauge
- Normandie Univ, Caen, France
- UNICAEN, EA4652 MILPAT, Caen, France
| |
Collapse
|
77
|
Attar R, Gasparri ML, Di Donato V, Yaylim I, Halim TA, Zaman F, Farooqi AA. Ovarian Cancer: Interplay of Vitamin D Signaling and miRNA Action. Asian Pac J Cancer Prev 2014; 15:3359-62. [DOI: 10.7314/apjcp.2014.15.8.3359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
78
|
Ozes AR, Nephew KP. 3D culture adds an extra dimension to targeted epigenetic therapies. Cell Cycle 2014; 12:2173-4. [PMID: 23803725 PMCID: PMC3755066 DOI: 10.4161/cc.25551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ali R Ozes
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
79
|
Inhibition of enhancer of zeste homolog 2 (EZH2) expression is associated with decreased tumor cell proliferation, migration, and invasion in endometrial cancer cell lines. Int J Gynecol Cancer 2014; 23:997-1005. [PMID: 23792601 DOI: 10.1097/igc.0b013e318296a265] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To investigate the impact of enhancer of zeste homolog 2 (EZH2) expression on endometrial cancer cell line behavior. MATERIALS AND METHODS Enhancer of zeste homolog 2 expression levels were compared between the nonmalignant endometrial cell line T-HESC and 3 endometrial cancer cell lines, ECC-1, RL95-2, and HEC1-A. Stable EZH2 knockdown cell lines were created, and the impact on cellular proliferation, migration, and invasion were determined. Fluorescent activated cell sorting was used to examine effects of EZH2 silencing on cell cycle progression. Enhancer of zeste homolog 2 expression in endometrial cancer tissue specimens was examined using immunohistochemistry. Comparison of differences between control and short-hairpin EZH2 cell lines was performed using the Student t test and the Fischer exact test. RESULTS Enhancer of zeste homolog 2 protein expression was increased in all 3 cancer cell lines and human endometrial cancer tissue specimens relative to control. RNA interference of EZH2 expression in ECC-1, RL95-2, and HEC1-A significantly decreased cell proliferation, migration, and invasion. Down-regulation of EZH2 expression resulted in a significant increase in the proportion of cells arrested in the G2/M phase. RNA interference of EZH2 expression was associated with an increase in the expression of Wnt pathway inhibitors sFRP1 and DKK3 and a concomitant decrease in β-catenin. Enhancer of zeste homolog 2 expression in human tissue samples was significantly associated with increased stage, grade, depth of invasion, and nodal metastasis. CONCLUSIONS Enhancer of zeste homolog 2 expression is associated with tumor cell proliferation, migration, and invasion in 3 endometrial cancer cell lines as well as with increased stage, grade, depth of invasion, and nodal metastasis in human cancer tissue specimens. Further investigation into this potential therapeutic target is warranted.
Collapse
|
80
|
Abstract
Seminal discoveries have established that epigenetic modifications are important for driving tumor progression. Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain, by posttranslational modification of histones, the silenced state of genes involved in critical biologic processes, including cellular development, stem cell plasticity, and tumor progression. PcG proteins are found in two multimeric protein complexes called Polycomb repressive complexes: PRC1 and PRC2. Enhancer of zeste homolog 2 (EZH2), catalytic core subunit of PRC2, epigenetically silences several tumor-suppressor genes by catalyzing the trimethylation of histone H3 at lysine 27, which serves as a docking site for DNA methyltransferases and histone deacetylases. Evidence suggests that overexpression of EZH2 is strongly associated with cancer progression and poor outcome in disparate cancers, including hematologic and epithelial malignancies. The regulatory circuit and molecular cues causing EZH2 deregulation vary in different cancer types. Therefore, this review provides a comprehensive overview on the oncogenic role of EZH2 during tumorigenesis and highlights the multifaceted role of EZH2, as either a transcriptional activator or repressor depending on the cellular context. Additional insight is provided on the recent understanding of the causes and consequences of EZH2 overexpression in specific cancer types. Finally, evidence is discussed on how EZH2 has emerged as a promising target in anticancer therapy and the prospects for targeting EZH2 without affecting global methylation status. Thus, a better understanding of the complex epigenetic regulatory network controlling EZH2 expression and target genes facilitates the design of novel therapeutic interventions.
Collapse
Affiliation(s)
- Gauri Deb
- Authors' Affiliations: Department of Urology, University Hospitals Case Medical Center; 2Department of Nutrition, Case Western Reserve University; 3Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio; 4Department of Biotechnology, Indian Institute of Technology, Guwahati, Assam; and 5Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | |
Collapse
|
81
|
Structural context of disease-associated mutations and putative mechanism of autoinhibition revealed by X-ray crystallographic analysis of the EZH2-SET domain. PLoS One 2013; 8:e84147. [PMID: 24367637 PMCID: PMC3868555 DOI: 10.1371/journal.pone.0084147] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/12/2013] [Indexed: 01/16/2023] Open
Abstract
The enhancer-of-zeste homolog 2 (EZH2) gene product is an 87 kDa polycomb group (PcG) protein containing a C-terminal methyltransferase SET domain. EZH2, along with binding partners, i.e., EED and SUZ12, upon which it is dependent for activity forms the core of the polycomb repressive complex 2 (PRC2). PRC2 regulates gene silencing by catalyzing the methylation of histone H3 at lysine 27. Both overexpression and mutation of EZH2 are associated with the incidence and aggressiveness of various cancers. The novel crystal structure of the SET domain was determined in order to understand disease-associated EZH2 mutations and derive an explanation for its inactivity independent of complex formation. The 2.00 Å crystal structure reveals that, in its uncomplexed form, the EZH2 C-terminus folds back into the active site blocking engagement with substrate. Furthermore, the S-adenosyl-L-methionine (SAM) binding pocket observed in the crystal structure of homologous SET domains is notably absent. This suggests that a conformational change in the EZH2 SET domain, dependent upon complex formation, must take place for cofactor and substrate binding activities to be recapitulated. In addition, the data provide a structural context for clinically significant mutations found in the EZH2 SET domain.
Collapse
|
82
|
Xu B, Abourbih S, Sircar K, Kassouf W, Mansure JJ, Aprikian A, Tanguay S, Brimo F. Enhancer of zeste homolog 2 expression is associated with metastasis and adverse clinical outcome in clear cell renal cell carcinoma: a comparative study and review of the literature. Arch Pathol Lab Med 2013; 137:1326-36. [PMID: 24079759 DOI: 10.5858/arpa.2012-0525-oa] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase mediating chromatin condensation and epigenetic modulation, is overexpressed in various human carcinomas and is associated with adverse clinicopathologic characteristics and biologic behavior. The expression of EZH2 in renal cell carcinomas (RCCs) has not been fully characterized yet. OBJECTIVE To evaluate the prognostic role of EZH2 in RCC by analyzing the immunohistochemical staining pattern of the marker in relation to pathologic features and clinical outcome. DESIGN We correlated the immunolabeling of EZH2 with multiple clinicopathologic features, including Fuhrman nuclear grade, pathologic stage, metastatic status, and clinical outcome in 223 clear cell RCCs (CRCCs) and 21 papillary RCCs, by using tissue microarrays of primary and metastatic cases. RESULTS Most CRCCs (75%) showed positive EZH2 staining, with most primary tumors showing focal staining in comparison to nonfocal staining in metastatic cases. In primary tumors, EZH2 expression was associated with higher nuclear grade and lower pathologic stage. Metastatic tumors showed a higher number of positive cases (81% versus 67%) and a more diffuse and more intense pattern of staining than primary CRCCs. For the 22 locally advanced primary tumors (T3/4) and 43 metastatic RCCs, patients who experienced RCC-related deaths significantly overexpressed the marker in comparison to patients who did not experience RCC-related mortality. CONCLUSIONS By showing that EZH2 expression is associated with increased metastatic potential and a worse clinical outcome, this study suggests that EZH2 can serve as a prognostic biomarker for RCC, thus confirming it as a key molecule driving oncogenesis and metastasis.
Collapse
Affiliation(s)
- Bin Xu
- From the Departments of Pathology (Drs Xu and Brimo) and Urology (Drs Abourbih, Kassouf, Mansure, Aprikian, and Tanguay), McGill University Health Centre, Montreal, Quebec, Canada; and the Department of Pathology (Dr Sircar), The University of Texas Maryland Anderson Cancer Center, Houston
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Epigenetics of estrogen receptor signaling: role in hormonal cancer progression and therapy. Cancers (Basel) 2013; 3:1691-707. [PMID: 21814622 PMCID: PMC3147309 DOI: 10.3390/cancers3021691] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα-mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.
Collapse
|
84
|
Xu L, Deng Q, Pan Y, Peng M, Wang X, Song L, Xiao M, Wang Z. Cancer-associated fibroblasts enhance the migration ability of ovarian cancer cells by increasing EZH2 expression. Int J Mol Med 2013; 33:91-6. [PMID: 24212330 DOI: 10.3892/ijmm.2013.1549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment is thought to affect malignant transformation and tumor progression. The histone methyltransferase, enhancer of zeste homologue 2 (EZH2), has recently been suggested to play a critical role in the tumorigenesis of several types of human cancer. The aim of this study was to investigate the effects of cancer-associated fibroblasts (CAFs) on the expression of EZH2 and the migration ability of ovarian cancer cells, in order to explore the link between the tumor microenvironment and epigenetic regulation. The ovarian cancer cell lines, A2780, SKOV3 and ES2, were indirectly co-cultured with primary ovarian CAFs or normal fibroblasts (NFs). The migration ability of the ovarian cancer cells was determined by Transwell migration assay. The expression levels of EZH2 were assessed by quantitative reverse transcription PCR (qRT-PCR) and western blot analysis. The A2780-shEZH2 cells (A2780 cells transfected with shRNA targeting EZH2) were indirectly co-cultured with CAFs or NFs, and the changes in the expression levels of EZH2 and the migration ability of the cells were detected. The migration ability of the A2780, SKOV3 and ES2 cells co-cultured with CAFs was significantly enhanced (P<0.05) compared with the NF group and the cells cultured alone. The expression of EZH2 in the A2780, SKOV3 and ES2 cells was significantly increased following co-culture with CAFs (P<0.001) compared with the cells cultured alone but not those cultured with NFs. The migration ability of the A2780-shEZH2 cells was not significantly increased following co-culture with CAFs (P>0.05). Our data indicate that CAFs enhance the migration ability of ovarian cancer cells partly by increasing EZH2 expression.
Collapse
Affiliation(s)
- Linjuan Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Aird KM, Li H, Xin F, Konstantinopoulos PA, Zhang R. Identification of ribonucleotide reductase M2 as a potential target for pro-senescence therapy in epithelial ovarian cancer. Cell Cycle 2013; 13:199-207. [PMID: 24200970 DOI: 10.4161/cc.26953] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of gynecological-related cancer deaths in the United States. There is, therefore, an urgent need to develop novel therapeutic strategies for this devastating disease. Cellular senescence is a state of stable cell growth arrest that acts as an important tumor suppression mechanism. Ribonucleotide reductase M2 (RRM2) plays a key role in regulating the senescence-associated cell growth arrest by controlling biogenesis of 2'-deoxyribonucleoside 5'-triphosphates (dNTPs). The role of RRM2 in EOC remains poorly understood. Here we show that RRM2 is expressed at higher levels in EOCs compared with either normal ovarian surface epithelium (P<0.001) or fallopian tube epithelium (P<0.001). RRM2 expression significantly correlates with the expression of Ki67, a marker of cell proliferation (P<0.001). Moreover, RRM2 expression positively correlates with tumor grade and stage, and high RRM2 expression independently predicts a shorter overall survival in EOC patients (P<0.001). To delineate the functional role of RRM2 in EOC, we knocked down RRM2 expression in a panel of EOC cell lines. Knockdown of RRM2 expression inhibits the growth of human EOC cells. Mechanistically, RRM2 knockdown triggers cellular senescence in these cells. Notably, this correlates with the induction of the DNA damage response, a known mediator of cellular senescence. These data suggest that targeting RRM2 in EOCs by suppressing its activity is a novel pro-senescence therapeutic strategy that has the potential to improve survival of EOC patients.
Collapse
Affiliation(s)
- Katherine M Aird
- Gene Expression and Regulation Program; The Wistar Institute Cancer Center; The Wistar Institute; Philadelphia, PA USA
| | - Hua Li
- Gene Expression and Regulation Program; The Wistar Institute Cancer Center; The Wistar Institute; Philadelphia, PA USA
| | - Frances Xin
- Cell and Molecular Biology Graduate Program; School of Medicine; The University of Pennsylvania; Philadelphia, PA USA
| | - Panagiotis A Konstantinopoulos
- Medical Gynecological Oncology Program; Dana Farber Cancer Institute; Harvard Medical School; Harvard University; Boston, MA USA
| | - Rugang Zhang
- Gene Expression and Regulation Program; The Wistar Institute Cancer Center; The Wistar Institute; Philadelphia, PA USA
| |
Collapse
|
86
|
Mu Z, Li H, Fernandez SV, Alpaugh KR, Zhang R, Cristofanilli M. EZH2 knockdown suppresses the growth and invasion of human inflammatory breast cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:70. [PMID: 24294976 PMCID: PMC3850122 DOI: 10.1186/1756-9966-32-70] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/24/2013] [Indexed: 11/17/2022]
Abstract
Introduction Inflammatory breast cancer (IBC) is the most metastatic variant of breast cancer with the poorest survival in all types of breast cancer patients and presently therapeutic targets for IBC are very limited. Enhancer of zeste homolog 2 (EZH2) is frequently expressed in human IBC and its expression positively correlates with worse clinical outcome. However, the molecular basis for EZH2 promoting IBC has not been explored. Here, we investigated the functional role of EZH2 in IBC cells by examining the effects of its knockdown on the formation of tumor spheroids and invasion of these cells in vitro and in vivo in an orthotopic xenograft model. Methods SUM149 and a new IBC cell line-FC-IBC-02 derived from pleural effusion fluid of an IBC patient were used in this study. Specific knockdown of EZH2 was performed using short hairpin RNA (shRNA) specific to the human EZH2 gene. Cell growth and the formation of tumor spheroids were examined in vitro. The effects of EZH2 knockdown on IBC cell migration and invasion were examined by a Boyden chamber assay. For the in vivo tumor growth studies, IBC cells were orthotopically transplanted into the mammary fat pads of immunodeficient mice. Results The results showed that EZH2 is expressed at higher levels in human IBC cell lines compared with normal human mammary epithelial cells, and the knockdown of EZH2 expression significantly suppressed cell growth and tumor spheroid formation of human IBC cells in vitro. In addition, EZH2 knockdown inhibited the migration and invasion of IBC cells. Significantly, EZH2 knockdown suppressed the angiogenesis and tumor growth of IBC cells in vivo. Conclusions Our results provide direct evidence that EZH2 is critical for the formation of tumor spheroids and invasion of human IBC cells and could be a potential target for developing novel therapeutic strategies for human IBC.
Collapse
|
87
|
Nakagawa S, Okabe H, Sakamoto Y, Hayashi H, Hashimoto D, Yokoyama N, Sakamoto K, Kuroki H, Mima K, Nitta H, Imai K, Chikamoto A, Watanabe M, Beppu T, Baba H. Enhancer of Zeste Homolog 2 (EZH2) Promotes Progression of Cholangiocarcinoma Cells by Regulating Cell Cycle and Apoptosis. Ann Surg Oncol 2013; 20 Suppl 3:S667-75. [DOI: 10.1245/s10434-013-3135-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Indexed: 12/12/2022]
|
88
|
Coradini D, Oriana S. The role of maintenance proteins in the preservation of epithelial cell identity during mammary gland remodeling and breast cancer initiation. CHINESE JOURNAL OF CANCER 2013; 33:51-67. [PMID: 23845141 PMCID: PMC3935006 DOI: 10.5732/cjc.013.10040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During normal postnatal mammary gland development and adult remodeling related to the menstrual cycle, pregnancy, and lactation, ovarian hormones and peptide growth factors contribute to the delineation of a definite epithelial cell identity. This identity is maintained during cell replication in a heritable but DNA-independent manner. The preservation of cell identity is fundamental, especially when cells must undergo changes in response to intrinsic and extrinsic signals. The maintenance proteins, which are required for cell identity preservation, act epigenetically by regulating gene expression through DNA methylation, histone modification, and chromatin remodeling. Among the maintenance proteins, the Trithorax (TrxG) and Polycomb (PcG) group proteins are the best characterized. In this review, we summarize the structures and activities of the TrxG and PcG complexes and describe their pivotal roles in nuclear estrogen receptor activity. In addition, we provide evidence that perturbations in these epigenetic regulators are involved in disrupting epithelial cell identity, mammary gland remodeling, and breast cancer initiation.
Collapse
Affiliation(s)
- Danila Coradini
- Department of Clinical and Community Health Sciences, Medical Statistics, Biometry and Bioinformatics, University of Milan 20133, Italy.
| | | |
Collapse
|
89
|
Zhou S, Tang L, Wang H, Dai J, Zhang J, Shen L, Ng SW, Berkowitz RS. Overexpression of c-Abl predicts unfavorable outcome in epithelial ovarian cancer. Gynecol Oncol 2013; 131:69-76. [PMID: 23820113 DOI: 10.1016/j.ygyno.2013.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/21/2013] [Accepted: 06/23/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Abelson tyrosine kinase (c-Abl) has been shown to promote solid tumor invasion and metastasis. However, little is known regarding whether c-Abl contributes to the development or progression of epithelial ovarian cancer (EOC). The aims of this study are to determine the expression of c-Abl and investigate a possible relationship between c-Abl and prognosis in EOC. METHODS c-Abl protein level was evaluated in 137 EOC specimens by immunohistochemical staining and 32 EOC specimens by Western blot analysis. Expression of c-Abl in ovarian cancer cell lines was measured by Western blot analysis and immunofluorescence. Survival analysis was performed to assess the correlation between c-Abl expression and survival. RESULTS Immunohistochemical staining and Western blot analysis revealed that c-Abl was overexpressed in EOC compared with samples from a non-invasive ovarian tumor and normal ovaries (P<0.05). Furthermore, expression of c-Abl was significantly associated with advanced FIGO stage, poor grade, serum Ca-125 and residual tumor size (P<0.05). By Western blot analysis, c-Abl expression was examined in four ovarian cancer cell lines. Meanwhile, immunofluorescence was performed to show c-Abl expression in SKOV3 and 3AO cell lines. Survival analysis demonstrated that patients with low c-Abl staining had a significantly better survival compared to patients with high c-Abl staining (P<0.05). In multivariate analysis, c-Abl overexpression, poor grade, advanced stage and suboptimal surgical debulking were independent prognostic factors of poor survival. CONCLUSIONS Our present study finds that c-Abl overexpression is associated with an unfavorable outcome. c-Abl may be a crucial predictor for EOC metastasis.
Collapse
Affiliation(s)
- Suiyang Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Amatangelo MD, Garipov A, Li H, Conejo-Garcia JR, Speicher DW, Zhang R. Three-dimensional culture sensitizes epithelial ovarian cancer cells to EZH2 methyltransferase inhibition. Cell Cycle 2013; 12:2113-9. [PMID: 23759589 DOI: 10.4161/cc.25163] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Inhibitors of EZH2 methyltransferase activity have been demonstrated to selectively suppress the growth of diffused large B cell lymphoma (DLBCL) cells with gain-of-function mutations in EZH2, while exhibiting very limited effects on the growth of DLBCL cells with wild-type EZH2. Given that EZH2 is often overexpressed but not mutated in solid tumors, it is important to investigate the determinants of sensitivity of solid tumor cells to EZH2 inhibitors. In the current study, we show that three-dimensional (3D) culture of epithelial ovarian cancer (EOC) cells that overexpress EZH2 sensitizes these cells to EZH2 methyltransferase inhibition. Treatment of EOC cells with GSK343, a specific inhibitor of EZH2 methyltransferase, decreases the level of H3K27Me3, the product of EZH2's enzymatic activity. However, GSK343 exhibited limited effects on the growth of EOC cells in conventional two-dimensional (2D) culture. In contrast, GSK343 significantly suppressed the growth of EOC cells cultured in 3D matrigel extracellular matrix (ECM), which more closely mimics the tumor microenvironment in vivo. Notably, GSK343 induces apoptosis of EOC cells in 3D but not 2D culture. In addition, GSK343 significantly inhibited the invasion of EOC cells. In summary, we show that the 3D ECM sensitizes EOC cells to EZH2 methyltransferase inhibition, which suppresses cell growth, induces apoptosis and inhibits invasion. Our findings imply that in EZH2 wild-type solid tumors, the ECM tumor microenvironment plays an important role in determining sensitivity to EZH2 inhibition and suggest that targeting the ECM represents a novel strategy for enhancing EZH2 inhibitor efficacy.
Collapse
Affiliation(s)
- Michael D Amatangelo
- Gene Expression and Regulation Program; The Wistar Institute; Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
91
|
Aird KM, Zhang G, Li H, Tu Z, Bitler BG, Garipov A, Wu H, Wei Z, Wagner SN, Herlyn M, Zhang R. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 2013; 3:1252-65. [PMID: 23562156 DOI: 10.1016/j.celrep.2013.03.004] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 12/11/2022] Open
Abstract
Oncogene-induced senescence is characterized by a stable cell growth arrest, thus providing a tumor suppression mechanism. However, the underlying mechanisms for this phenomenon remain unknown. Here, we show that a decrease in deoxyribonucleotide triphosphate (dNTP) levels underlies oncogene-induced stable senescence-associated cell growth arrest. The decrease in dNTP levels is caused by oncogene-induced repression of ribonucleotide reductase subunit M2 (RRM2), a rate-limiting protein in dNTP synthesis. This precedes the senescence-associated cell-cycle exit and coincides with the DNA damage response. Consistently, RRM2 downregulation is both necessary and sufficient for senescence. Strikingly, suppression of nucleotide metabolism by RRM2 repression is also necessary for maintenance of the stable senescence-associated cell growth arrest. Furthermore, RRM2 repression correlates with senescence status in benign nevi and melanoma, and its knockdown drives senescence of melanoma cells. These data reveal the molecular basis whereby the stable growth arrest of oncogene-induced senescence is established and maintained through suppression of nucleotide metabolism.
Collapse
Affiliation(s)
- Katherine M Aird
- Gene Expression and Regulation Program, The Wistar Institute Cancer Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Li H, Zhang R. Role of EZH2 in Epithelial Ovarian Cancer: From Biological Insights to Therapeutic Target. Front Oncol 2013; 3:47. [PMID: 23494175 PMCID: PMC3595978 DOI: 10.3389/fonc.2013.00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/23/2013] [Indexed: 01/27/2023] Open
Abstract
EZH2 is the catalytic subunit of polycomb repressive complex 2 (PRC2), which generates a methylation epigenetic mark at lysine 27 residue of histone H3 (H3K27me3) to silence gene expression. EZH2 target genes are involved in a variety of biological processes such as stem cell pluripotency, cell proliferation, and oncogenic transformation. EZH2 is often over-expressed in epithelial ovarian cancer (EOC) cells and in ovarian cancer-associated stromal endothelial cells. Notably, EZH2 promotes cell proliferation, inhibits apoptosis and enhances angiogenesis in EOCs. In contrast to genetic alterations, which are typically non-reversible, epigenetic alterations are reversible. Thus, inhibiting EZH2/PRC2 activity represents an attractive strategy for developing ovarian cancer therapeutics by targeting both ovarian cancer cells and ovarian tumor microenvironment. Here we discuss the progress recently obtained in understanding how EZH2/PRC2 promotes malignant phenotypes of EOC. In addition, we focus on strategies for targeting EZH2/PRC2 to develop novel EOC epigenetic therapeutics.
Collapse
Affiliation(s)
- Hua Li
- Gene Expression and Regulation Program, The Wistar Institute Philadelphia, PA, USA
| | | |
Collapse
|
93
|
BRG1 is required for formation of senescence-associated heterochromatin foci induced by oncogenic RAS or BRCA1 loss. Mol Cell Biol 2013; 33:1819-29. [PMID: 23438604 DOI: 10.1128/mcb.01744-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cellular senescence is an important tumor suppression mechanism. We have previously reported that both oncogene-induced dissociation of BRCA1 from chromatin and BRCA1 knockdown itself drive senescence by promoting formation of senescence-associated heterochromatin foci (SAHF). However, the molecular mechanism by which BRCA1 regulates SAHF formation and senescence is unclear. BRG1 is a chromatin-remodeling factor that interacts with BRCA1 and pRB. Here we show that BRG1 is required for SAHF formation and senescence induced by oncogenic RAS or BRCA1 loss. The interaction between BRG1 and BRCA1 is disrupted during senescence. This correlates with an increased level of chromatin-associated BRG1 in senescent cells. BRG1 knockdown suppresses the formation of SAHF and senescence, while it has no effect on BRCA1 chromatin dissociation induced by oncogenic RAS, indicating that BRG1 functions downstream of BRCA1 chromatin dissociation. Furthermore, BRG1 knockdown inhibits SAHF formation and senescence induced by BRCA1 knockdown. Conversely, BRG1 overexpression drives SAHF formation and senescence in a DNA damage-independent manner. This effect depends upon BRG1's chromatin-remodeling activity as well as the interaction between BRG1 and pRB. Indeed, the interaction between BRG1 and pRB is enhanced during senescence. Chromatin immunoprecipitation analysis revealed that BRG1's association with the human CDKN2A and CDKN1A gene promoters was enhanced during senescence induced by oncogenic RAS or BRCA1 knockdown. Consistently, knockdown of pRB, p21(CIP1), and p16(INK4a), but not p53, suppressed SAHF formation induced by BRG1. Together, these studies reveal the molecular underpinning by which BRG1 acts downstream of BRCA1 to promote SAHF formation and senescence.
Collapse
|
94
|
Garipov A, Li H, Bitler BG, Thapa RJ, Balachandran S, Zhang R. NF-YA underlies EZH2 upregulation and is essential for proliferation of human epithelial ovarian cancer cells. Mol Cancer Res 2013; 11:360-9. [PMID: 23360797 DOI: 10.1158/1541-7786.mcr-12-0661] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epithelial ovarian cancer (EOC) accounts for the most gynecologic malignancy-associated deaths in the United States. Enhancer of zeste homolog 2 (EZH2), which silences gene expression through generating trimethylation on lysine 27 residue of histone H3 (H3K27Me3), is often overexpressed in EOCs and has been suggested as a therapeutic target. However, the mechanism underlying EZH2 overexpression in EOCs is unknown. Here, we show that EZH2 is upregulated at the transcription level, and two CCAAT boxes in the proximal regions of the human EZH2 gene promoter are critical for its transcription in EOC cells. Indeed, NF-YA, the regulatory subunit of the CCAAT-binding transcription factor NF-Y, is expressed at higher levels in human EOCs than in primary human ovarian surface epithelial (HOSE) cells. In addition, there is a positive correlation between expression of NF-YA and EZH2 in EOCs. Notably, high NF-YA expression predicts shorter overall survival in patients with EOCs. The association of NF-YA with the promoter of the human EZH2 gene is enhanced in human EOC cells compared with primary HOSE cells. Significantly, knockdown of NF-YA downregulates EZH2, decreases H3K27Me3 levels, and suppresses the growth of human EOC cells both in vitro and in a xenograft mouse model. Notably, NF-YA knockdown induces apoptosis of EOC cells and ectopic EZH2 expression partially rescues apoptosis induced by NF-YA knockdown. Together, these data reveal that NF-Y is a key regulator of EZH2 expression and is required for EOC cell proliferation, thus representing a novel target for developing EOC therapeutics.
Collapse
Affiliation(s)
- Azat Garipov
- The Wistar Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
95
|
Alimova I, Birks DK, Harris PS, Knipstein JA, Venkataraman S, Marquez VE, Foreman NK, Vibhakar R. Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro Oncol 2012. [PMID: 23190500 DOI: 10.1093/neuonc/nos285] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Overexpression of the Polycomb repressive complex 2 (PRC2) subunit Enhancer of Zeste 2 (EZH2) occurs in several malignancies, including prostate cancer, breast cancer, medulloblastoma, and glioblastoma multiforme. Recent evidence suggests that EZH2 may also have a role in rhabdoid tumors. Atypical teratoid/rhabdoid tumor (ATRT) is a rare, high-grade embryonal brain tumor that occurs most commonly in young children and carries a very poor prognosis. ATRTs are characterized by absence of the chromatin remodeling protein SMARCB1. Given the role of EZH2 in regulating epigenetic changes, we investigated the role of EZH2 in ATRT. METHODS Microarray analysis was used to evaluate expression of EZH2 in ATRT tumor samples. We used shRNA and a chemical inhibitor of EZH2 to examine the impact of EZH2 inhibition on cell growth, proliferation, and tumor cell self-renewal. RESULTS Here, we show that targeted disruption of EZH2 by RNAi or pharmacologic inhibition strongly impairs ATRT cell growth, suppresses tumor cell self-renewal, induces apoptosis, and potently sensitizes these cells to radiation. Using functional analysis of transcription factor activity, we found the cyclin D1-E2F axis to be repressed after EZH2 depletion in ATRT cells. CONCLUSIONS Our observations provide evidence that EZH2 disruption alters cell cycle progression and may be an important new therapeutic target, particularly in combination with radiation, in ATRT.
Collapse
Affiliation(s)
- Irina Alimova
- Department of Pediatrics and Section of Pediatric Hematology/Oncology/BMT, Children’s Hospital Colorado, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
ZHANG RUIJIAN, WANG RUIJUN, CHANG HONG, WU FEI, LIU CHUNTAO, DENG DONGFENG, FAN WENHAI. Downregulation of Ezh2 expression by RNA interference induces cell cycle arrest in the G0/G1 phase and apoptosis in U87 human glioma cells. Oncol Rep 2012; 28:2278-84. [DOI: 10.3892/or.2012.2033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/17/2012] [Indexed: 11/05/2022] Open
|
97
|
Li H, Cai Q, Wu H, Vathipadiekal V, Dobbin ZC, Li T, Hua X, Landen CN, Birrer MJ, Sánchez-Beato M, Zhang R. SUZ12 promotes human epithelial ovarian cancer by suppressing apoptosis via silencing HRK. Mol Cancer Res 2012; 10:1462-72. [PMID: 22964433 DOI: 10.1158/1541-7786.mcr-12-0335] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epithelial ovarian cancer (EOC) ranks first as the cause of death for gynecological cancers in the United States. SUZ12 is a component of the polycomb repressive complex 2 (PRC2) and is essential for PRC2-mediated gene silencing by generating trimethylation on lysine 27 residue of histone H3 (H3K27Me3). The role of SUZ12 in EOC has never been investigated. Here, we show that SUZ12 is expressed at significantly higher levels in human EOC (n = 117) compared with either normal human ovarian surface epithelium (n = 35, P < 0.001) or fallopian tube epithelium (n = 15, P < 0.001). There is a positive correlation between expression of SUZ12 and EZH2 in human EOC (P < 0.001). In addition, expression of SUZ12 positively correlates with Ki67, a marker of cell proliferation (P < 0.001), and predicts shorter overall survival (P = 0.0078). Notably, knockdown of SUZ12 suppresses the growth of human EOC cells in vitro and in vivo in both orthotopic and subcutaneous xenograft EOC models. In addition, SUZ12 knockdown decreases the levels of H3K27Me3 and triggers apoptosis of human EOC cells. Mechanistically, we identified Harakiri (HRK), a proapoptotic gene, as a novel SUZ12 target gene, and showed that HRK upregulation mediates apoptosis induced by SUZ12 knockdown in human EOC cells. In summary, we show that SUZ12 promotes the proliferation of human EOC cells by inhibiting apoptosis and HRK is a novel SUZ12 target gene whose upregulation contributes to apoptosis induced by SUZ12 knockdown.
Collapse
Affiliation(s)
- Hua Li
- Gene Expression and Regulation Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal gynecological malignancy despite several decades of progress in diagnosis and treatment. Taking advantage of the robust development of discovery and utility of prognostic biomarkers, clinicians and researchers are developing personalized and targeted treatment strategies. This review encompasses recently discovered biomarkers of ovarian cancer, the utility of published prognostic biomarkers for EOC (especially biomarkers related to angiogenesis and key signaling pathways), and their integration into clinical practice.
Collapse
Affiliation(s)
- Jie Huang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
99
|
Cao W, Feng Z, Cui Z, Zhang C, Sun Z, Mao L, Chen W. Up-regulation of enhancer of zeste homolog 2 is associated positively with cyclin D1 overexpression and poor clinical outcome in head and neck squamous cell carcinoma. Cancer 2012; 118:2858-71. [PMID: 21989926 DOI: 10.1002/cncr.26575] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 02/05/2023]
Abstract
BACKGROUND The authors previously observed that enhancer of zeste homolog 2 (EZH2) overexpression was associated significantly with the development of oral cancer. In the current study, they investigated whether EZH2 can function as a prognostic predictor for patients with head and neck squamous cell carcinoma (HNSCC). METHODS Expression levels of EZH2 in HNSCC cells were detected using reverse transcriptase-polymerase chain reaction (PCR) and Western blot analyses. In addition, the effects of EZH2 ablation on the proliferation and invasion of HNSCC cells were investigated through small interfering RNA (siRNA)-mediated knockdown. Real-time PCR and immunohistochemistry were used to evaluate EZH2 and cyclin D1 expression in 46 HNSCC samples, and the expression levels also were re-evaluated in 124 independent samples by immunohistochemistry. RESULTS EZH2 expression was elevated remarkably in HNSCC specimens and cell lines. Upon EZH2 silencing, the proliferation and invasion of HNSCC cells were remarkably suppressed. EZH2 expression frequently was correlated with cyclin D1 expression (P = .034) and tumor differentiation (P = .020). In addition, both EZH2 messenger RNA levels and EZH2 protein levels were strongly associated with signs of histologic severity (P = .012 and P = .032, respectively). Univariate analysis revealed that high EZH2 expression was associated with worse overall survival (P = .001) and disease-free survival (P = .002). The combined expression of EZH2 and cyclin D1 had superior prognostic ability for patients with HNSCC than the expression of either marker alone. In multivariate analysis, EZH2 expression was identified as an independent predictor of overall and disease-free survival. CONCLUSIONS The current results indicated that EZH2 is an independent prognostic indicator for patients with HNSCC. In addition, an analysis of the combined expression of EZH2 and cyclin D1 can serve as a more powerful prognostic predictor for patients with HNSCC.
Collapse
Affiliation(s)
- Wei Cao
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
100
|
Li H, Bitler BG, Vathipadiekal V, Maradeo ME, Slifker M, Creasy CL, Tummino PJ, Cairns P, Birrer MJ, Zhang R. ALDH1A1 is a novel EZH2 target gene in epithelial ovarian cancer identified by genome-wide approaches. Cancer Prev Res (Phila) 2011; 5:484-91. [PMID: 22144423 DOI: 10.1158/1940-6207.capr-11-0414] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy in the United States. EZH2 silences gene expression through trimethylating lysine 27 on histone H3 (H3K27Me3). EZH2 is often overexpressed in EOC and has been suggested as a target for EOC intervention. However, EZH2 target genes in EOC remain poorly understood. Here, we mapped the genomic loci occupied by EZH2/H3K27Me3 using chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and globally profiled gene expression in EZH2-knockdown EOC cells. Cross-examination of gene expression and ChIP-seq revealed a list of 60 EZH2 direct target genes whose expression was upregulated more than 1.5-fold upon EZH2 knockdown. For three selected genes (ALDH1A1, SSTR1, and DACT3), we validated their upregulation upon EZH2 knockdown and confirmed the binding of EZH2/H3K27Me3 to their genomic loci. Furthermore, the presence of H3K27Me3 at the genomic loci of these EZH2 target genes was dependent upon EZH2. Interestingly, expression of ALDH1A1, a putative marker for EOC stem cells, was significantly downregulated in high-grade serous EOC (n = 53) compared with ovarian surface epithelial cells (n = 10, P < 0.001). Notably, expression of ALDH1A1 negatively correlated with expression of EZH2 (n = 63, Spearman r = -0.41, P < 0.001). Thus, we identified a list of 60 EZH2 target genes and established that ALDH1A1 is a novel EZH2 target gene in EOC cells. Our results suggest a role for EZH2 in regulating EOC stem cell equilibrium via regulation of ALDH1A1 expression.
Collapse
Affiliation(s)
- Hua Li
- Women's Cancer Program and Epigenetics and Progenitor Cell Keystone Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|