51
|
Iqbal MS, Peng K, Sardar N, Iqbal MH, Ghani MU, Tanvir F, Gu D, Guohua Z, Duan X. Interleukins-6 -174G/C (rs1800795) and -572C/G (rs1800796) polymorphisms and prostate cancer risk. Mol Immunol 2023; 164:88-97. [PMID: 37989067 DOI: 10.1016/j.molimm.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Prostate cancer (PCa) is an aggressive cancer influenced by a complex interplay of genetic and environmental factors. Amongst these risk factors, the impact of Interleukin6 (IL6) gene polymorphisms in PCa risk has received a lot of attention. IL-6 is a cytokine that has been implicated in the pathogenesis of several malignancies, including PCa. Two IL-6 gene polymorphisms, - 174 G/C (rs1800795) and - 572 C/G (rs1800796), have received intellectual attention due to their potential role as modulators of prostate cancer risk. The main objective of this research was to comprehensively explore the potential associations between IL-6 rs1800795 and rs1800796 polymorphisms, and their impact on the occurrence of PCa. A case-control study was carried out with a well-defined cohort comprising 110 PCa cases and 110 controls (total n = 220). The genotyping of rs1800795 and rs1800796 was carefully performed using the highly sensitive and accurate Polymerase Chain Reaction-High Resolution Melting Curve (PCR-HRM) technique. The assessment of genetic associations was evaluated using various R packages, such as Haplo-Stats, SNP stat, pheatmap, and LD heatmap. The present study applied odds ratio (OR) analysis to reveal significant evidence of strong associations between the genotypes of rs1800795 and rs1800796 and the susceptibility to PCa. The findings of this study underscore the noteworthy impact of genetic variations in the IL-6 gene on the development of prostate cancer. Specifically, the C/G and G/G genotypes of rs1800795 demonstrated increased PCa risk, with odds ratios (OR) of 1.650 (95% CI = 1.068-2.549, p = 0.032) and 2.475 (95% CI = 1.215-5.043, p < 0.001), respectively. Similarly, the G/C genotype of rs1800796 exhibited an OR of 2.374 (95% CI = 1.363-4.130, p = 0.012) for elevated prostate cancer risk, while the C/C genotype had an OR of 1.81 (95% CI = 1.02-3.22, p = 0.7). Furthermore, our haplotype analysis have revealed an association between haplotype 4 (C-G) and increased risk of PCa (OR = 1.69, 95% CI = 1.05-2.73, p = 0.032). In conclusion, this case-control analysis presents compelling evidence for a significant association between IL-6 variants (rs1800795 and rs1800796) and increased susceptibility to prostate cancer.
Collapse
Affiliation(s)
- Muhammad Sarfaraz Iqbal
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Kaoqing Peng
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Nimra Sardar
- Department of Microbiology and Molecular Genetics, School of Applied Sciences, University of Okara, Punjab, Pakistan.
| | | | - Muhammad Usman Ghani
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan.
| | - Fouzia Tanvir
- Department of Molecularbiology, Institute of Pure and Applied Zoology, University of Okara, Punjab, Pakistan
| | - Di Gu
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zeng Guohua
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
52
|
Allen SG, Zhang C, Malone S, Roy S, Dess RT, Jackson WC, Mehra R, Speers C, Chinnaiyan AM, Sun Y, Spratt DE. Impact of sequencing of androgen receptor-signaling inhibition and radiotherapy in prostate cancer: importance of homologous recombination disruption. World J Urol 2023; 41:3877-3887. [PMID: 37851053 DOI: 10.1007/s00345-023-04649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
PURPOSE The synergy of combining androgen receptor-signaling inhibition (ARSI) to radiotherapy (RT) in prostate cancer has been largely attributed to non-homologous end joining (NHEJ) inhibition. However, this mechanism is unlikely to explain recently observed trial results that demonstrated the sequencing of ARSI and RT significantly impacts clinical outcomes, with adjuvant ARSI following RT yielding superior outcomes to neoadjuvant/concurrent therapy. We hypothesized this is driven by differential effects on AR-signaling and alternative DNA repair pathway engagement based on ARSI/RT sequencing. METHODS We explored the effects of ARSI sequencing with RT (neoadjuvant vs concurrent vs adjuvant) in multiple prostate cancer cell lines using androgen-deprived media and validation with the anti-androgen enzalutamide. The effects of ARSI sequencing were measured with clonogenic assays, AR-target gene transcription and translation quantification, cell cycle analysis, DNA damage and repair assays, and xenograft animal validation studies. RESULTS Adjuvant ARSI after RT was significantly more effective at killing colony forming cells and decreasing the transcription and translation of downstream AR-target genes across all prostate cancer models evaluated. These results were reproduced in xenograft studies. The differential effects of ARSI sequencing were not fully explained by NHEJ inhibition alone, but by the additional disruption of homologous recombination specifically with adjuvant sequencing of ARSI. CONCLUSION We demonstrate that altered sequencing of ARSI and RT mediates differential anti-AR-signaling and anti-cancer effects, with the greatest benefit from adjuvant ARSI following RT. These results, combined with our prior clinical findings, support the superiority of an adjuvant-based sequencing approach when using ARSI with RT.
Collapse
Affiliation(s)
- Steven G Allen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Chao Zhang
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Shawn Malone
- Department of Radiation Oncology, The Ottawa Hospital Cancer Center, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Soumyajit Roy
- Department of Radiation Oncology, The Ottawa Hospital Cancer Center, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Robert T Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - William C Jackson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Corey Speers
- Department of Radiation Oncology, UH Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Arul M Chinnaiyan
- Rogel Cancer Center and Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yilun Sun
- Department of Population Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, UH Seidman Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
53
|
Fazekas T, Széles ÁD, Teutsch B, Csizmarik A, Vékony B, Váradi A, Kói T, Lang Z, Ács N, Kopa Z, Hegyi P, Hadaschik B, Grünwald V, Nyirády P, Szarvas T. Therapeutic sensitivity to standard treatments in BRCA positive metastatic castration-resistant prostate cancer patients-a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 2023; 26:665-672. [PMID: 36509931 PMCID: PMC10638083 DOI: 10.1038/s41391-022-00626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recent oncology guidelines recommend BRCA1/2 testing for a wide range of prostate cancer (PCa) patients. In addition, PARP inhibitors are available for mutation-positive metastatic castration-resistant PCa (mCRPC) patients following prior treatment with abiraterone, enzalutamide or docetaxel. However, the question of which of these standard treatments is the most effective for BRCA1/2 positive mCRPC patients remains to be answered. The aim of this meta-analysis was to assess the efficacy of abiraterone, enzalutamide and docetaxel in BRCA1/2 mutation-positive mCRPC patients in terms of PSA-response (PSA50), progression-free survival (PFS) and overall survival (OS). METHODS As no interventional trials are available on this topic, we performed the data synthesis of BRCA1/2 positive mCRPC patients by using both proportional and individual patient data. For PSA50 evaluation, we pooled event rates with 95% confidence intervals (CI), while for time-to-event (PFS, OS) analyses we used individual patient data with random effect Cox regression calculations. RESULTS Our meta-analysis included 16 eligible studies with 348 BRCA1/2 positive mCRPC patients. In the first treatment line, response rates for abiraterone, enzalutamide and docetaxel were 52% (CI: 25-79%), 64% (CI: 43-80%) and 55% (CI: 36-73%), respectively. Analyses of individual patient data revealed a PFS (HR: 0.47, CI: 0.26-0.83, p = 0.010) but no OS (HR: 1.41, CI: 0.82-2.42, p = 0.210) benefit for enzalutamide compared to abiraterone-treated patients. CONCLUSIONS Our PSA50 analyses revealed that all the three first-line treatments have therapeutic effect in BRCA1/2 positive mCRPC; although, based on the results of PSA50 and PFS analyses, BRCA positive mCRPC patients might better respond to enzalutamide treatment. However, molecular marker-driven interventional studies directly comparing these agents are crucial for providing higher-level evidence.
Collapse
Affiliation(s)
- Tamás Fazekas
- Department of Urology, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám D Széles
- Department of Urology, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Anita Csizmarik
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Bálint Vékony
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Alex Váradi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsolt Lang
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biostatistics, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Nándor Ács
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Zsolt Kopa
- Department of Urology, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Viktor Grünwald
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Péter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, Semmelweis University, Budapest, Hungary.
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.
| |
Collapse
|
54
|
Sharifi MN, O'Regan RM, Wisinski KB. Is the Androgen Receptor a Viable Target in Triple Negative Breast Cancer in 5 Years? Clin Breast Cancer 2023; 23:813-824. [PMID: 37419745 DOI: 10.1016/j.clbc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
Triple negative breast cancer (TNBC) is characterized by high rates of disease recurrence after definitive therapy, and median survival of less than 18 months in the metastatic setting. Systemic therapy options for TNBC consist primarily of cytotoxic chemotherapy-containing regimens, and while recently FDA-approved chemo-immunotherapy combinations and antibody-drug conjugates such as Sacituzumab govitecan have improved clinical outcomes, there remains an unmet need for more effective and less toxic therapies. A subset of TNBC expresses the androgen receptor (AR), a nuclear hormone steroid receptor that activates an androgen-responsive transcriptional program, and gene expression profiling has revealed a TNBC molecular subtype with AR expression and luminal and androgen responsive features. Both preclinical and clinical data suggest biologic similarities between luminal AR (LAR) TNBC and ER+ luminal breast cancer, including lower proliferative activity, relative chemoresistance, and high rates of oncogenic activating mutations in the phosphatidylinositol-3-kinase (PI3K) pathway. Preclinical LAR-TNBC models are sensitive to androgen signaling inhibitors (ASIs), and particularly given the availability of FDA-approved ASIs with robust efficacy in prostate cancer, there has been great interest in targeting this pathway in AR+ TNBC. Here, we review the underlying biology and completed and ongoing androgen-targeted therapy studies in early stage and metastatic AR+ TNBC.
Collapse
Affiliation(s)
- Marina N Sharifi
- UW Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI.
| | - Ruth M O'Regan
- Department of Medicine, University of Rochester, Rochester, NY
| | - Kari B Wisinski
- UW Carbone Cancer Center, University of Wisconsin, Madison, Madison, WI
| |
Collapse
|
55
|
Yu EM, Hwang MW, Aragon-Ching JB. Mechanistic Insights on Localized to Metastatic Prostate Cancer Transition and Therapeutic Opportunities. Res Rep Urol 2023; 15:519-529. [PMID: 38050587 PMCID: PMC10693764 DOI: 10.2147/rru.s386517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
Prostate cancer is the most common non-cutaneous cancer among American men. Multiple mechanisms are involved in tumorigenesis and progression to metastases. While androgen deprivation therapy remains the cornerstone of treatment, progression to castration-resistant disease becomes inevitable. Aberrant pathway activations of PI3K/AKT due to PTEN loss, epithelial-mesenchymal transition pathways, homologous recombination repair, and DNA repair pathway mechanisms of resistance and cross-talk lead to opportunities for therapeutic targeting in metastatic castration-resistant prostate cancer. This review focuses on mechanisms of progression and key trials that evaluate the drugs and combinations that exploit these pathways.
Collapse
Affiliation(s)
- Eun-mi Yu
- GU Medical Oncology, Inova Schar Cancer Institute, Fairfax, VA, USA
| | - Min Woo Hwang
- Department of Internal Medicine, Inova Fairfax Hospital, Fairfax, VA, USA
| | | |
Collapse
|
56
|
Slootbeek PHJ, Overbeek JK, Ligtenberg MJL, van Erp NP, Mehra N. PARPing up the right tree; an overview of PARP inhibitors for metastatic castration-resistant prostate cancer. Cancer Lett 2023; 577:216367. [PMID: 37689306 DOI: 10.1016/j.canlet.2023.216367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
PARP inhibitors (PARPi) are transforming the current treatment landscape of metastatic castration-resistant prostate cancer. By reanalysing published data on olaparib, talazoparib, rucaparib and niraparib, we provide a concise overview of responses by molecular subgroup. As monotherapy, all PARPi showed comparable efficacy and the same hierarchy in responsiveness: patients with tumours harbouring aberrations in BRCA1 or BRCA2 (BRCAm) evidently demonstrate superior responses when compared to aberrations in other homologous recombination repair (HRR) related genes. Niraparib seems to cause more grade ≥3 adverse events in comparison to other PARPi. PARPi have also been combined with androgen-receptor signalling inhibitors (ARSI) for both patients with tumours harbouring aberrations in HRR genes (HRRm), and molecularly unselected patients. Compared to wildtype, BRCAm patients responded best, followed by HRRm. Olaparib-abiraterone, niraparib-abiraterone, and talazoparib-enzalutamide all prolonged progression-free survival compared to an ARSI alone in HRRm patients. In the non-HRRm subgroup, only olaparib-abiraterone and talazoparib-enzalutamide were effective. Results for the combination of rucaparib with enzalutamide are yet to be reported. The rate of grade ≥3 adverse events for the combination regimens is 10-30% higher when compared to an ARSI alone. Given the limited efficacy in unselected patients, these PARPi-ARSI combinations may be best reserved for selected patients.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joanneke K Overbeek
- Department of Clinical Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nielka P van Erp
- Department of Clinical Pharmacy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
57
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
58
|
Ganguly S, Lone Z, Muskara A, Imamura J, Hardaway A, Patel M, Berk M, Smile TD, Davicioni E, Stephans KL, Ciezki J, Weight CJ, Gupta S, Reddy CA, Tendulkar RD, Chakraborty AA, Klein EA, Sharifi N, Mian OY. Intratumoral androgen biosynthesis associated with 3β-hydroxysteroid dehydrogenase 1 promotes resistance to radiotherapy in prostate cancer. J Clin Invest 2023; 133:e165718. [PMID: 37966114 PMCID: PMC10645386 DOI: 10.1172/jci165718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 09/19/2023] [Indexed: 11/16/2023] Open
Abstract
Half of all men with advanced prostate cancer (PCa) inherit at least 1 copy of an adrenal-permissive HSD3B1 (1245C) allele, which increases levels of 3β-hydroxysteroid dehydrogenase 1 (3βHSD1) and promotes intracellular androgen biosynthesis. Germline inheritance of the adrenally permissive allele confers worse outcomes in men with advanced PCa. We investigated whether HSD3B1 (1245C) drives resistance to combined androgen deprivation and radiotherapy. Adrenally permissive 3βHSD1 enhanced resistance to radiotherapy in PCa cell lines and xenograft models engineered to mimic the human adrenal/gonadal axis during androgen deprivation. The allele-specific effects on radiosensitivity were dependent on availability of DHEA, the substrate for 3βHSD1. In lines expressing the HSD3B1 (1245C) allele, enhanced expression of DNA damage response (DDR) genes and more rapid DNA double-strand break (DSB) resolution were observed. A correlation between androgen receptor (AR) expression and increased DDR gene expression was confirmed in 680 radical prostatectomy specimens. Treatment with the nonsteroidal antiandrogen enzalutamide reversed the resistant phenotype of HSD3B1 (1245C) PCa in vitro and in vivo. In conclusion, 3βHSD1 promotes prostate cancer resistance to combined androgen deprivation and radiotherapy by upregulating DNA DSB repair. This work supports prospective validation of early combined androgen blockade for high-risk men harboring the HSD3B1 (1245C) allele.
Collapse
Affiliation(s)
| | - Zaeem Lone
- Translational Hematology and Oncology Research
| | | | | | | | - Mona Patel
- Department of Cancer Biology, Lerner Research Institute
| | - Mike Berk
- Department of Cancer Biology, Lerner Research Institute
| | - Timothy D Smile
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Kevin L Stephans
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jay Ciezki
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Shilpa Gupta
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Rahul D Tendulkar
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Abhishek A Chakraborty
- Department of Cancer Biology, Lerner Research Institute
- Glickman Urologic and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric A Klein
- Veracyte Inc., San Francisco, California, USA
- Glickman Urologic and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nima Sharifi
- Glickman Urologic and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Desai Sethi Urology Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Ohio, USA
| | - Omar Y Mian
- Translational Hematology and Oncology Research
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
59
|
Yadav A, Biswas T, Praveen A, Ganguly P, Bhattacharyya A, Verma A, Datta D, Ateeq B. Targeting MALAT1 Augments Sensitivity to PARP Inhibition by Impairing Homologous Recombination in Prostate Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:2044-2061. [PMID: 37812088 PMCID: PMC10561629 DOI: 10.1158/2767-9764.crc-23-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/26/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
PARP inhibitors (PARPi) have emerged as a promising targeted therapeutic intervention for metastatic castrate-resistant prostate cancer (mCRPC). However, the clinical utility of PARPi is limited to a subset of patients who harbor aberrations in the genes associated with the homologous recombination (HR) pathway. Here, we report that targeting metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an oncogenic long noncoding RNA (lncRNA), contrives a BRCAness-like phenotype, and augments sensitivity to PARPi. Mechanistically, we show that MALAT1 silencing reprograms the homologous recombination (HR) transcriptome and makes prostate cancer cells more vulnerable to PARPi. Particularly, coinhibition of MALAT1 and PARP1 exhibits a decline in clonogenic survival, delays resolution of γH2AX foci, and reduces tumor burden in mice xenograft model. Moreover, we show that miR-421, a tumor suppressor miRNA, negatively regulates the expression of HR genes, while in aggressive prostate cancer cases, miR-421 is sequestered by MALAT1, leading to increased expression of HR genes. Conclusively, our findings suggest that MALAT1 ablation confers sensitivity to PARPi, thus highlighting an alternative therapeutic strategy for patients with castration-resistant prostate cancer (CRPC), irrespective of the alterations in HR genes. SIGNIFICANCE PARPi are clinically approved for patients with metastatic CRPC carrying mutations in HR genes, but are ineffective for HR-proficient prostate cancer. Herein, we show that oncogenic lncRNA, MALAT1 is frequently overexpressed in advanced stage prostate cancer and plays a crucial role in maintaining genomic integrity. Importantly, we propose a novel therapeutic strategy that emphasizes MALAT1 inhibition, leading to HR dysfunction in both HR-deficient and -proficient prostate cancer, consequently augmenting their susceptibility to PARPi.
Collapse
Affiliation(s)
- Anjali Yadav
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Tanay Biswas
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ayush Praveen
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ankita Bhattacharyya
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
- Centre of Excellence for Cancer - Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
60
|
Gebrael G, Fortuna GG, Sayegh N, Swami U, Agarwal N. Advances in the treatment of metastatic prostate cancer. Trends Cancer 2023; 9:840-854. [PMID: 37442702 PMCID: PMC10527423 DOI: 10.1016/j.trecan.2023.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The field of metastatic prostate cancer (mPCa) has seen unprecedented therapeutic advances in the past decade. In the past 2 years, recent approvals include the triplet therapy regimens of androgen deprivation therapy (ADT), docetaxel, and an androgen receptor (AR) pathway inhibitor (ARPI) in the castration-sensitive setting and lutetium-177 vipivotide tetraxetan (177Lu-PSMA-617) and the combination of poly(ADP) ribose polymerase (PARP) inhibitors (PARPis) and ARPIs in the castration-resistant setting. With many agents currently undergoing investigation in registration trials, the therapeutic armamentarium will expand rapidly, making treatment selection and sequencing challenging. Herein, we review the landmark clinical trials ongoing or reported in the past 2 years, discuss the optimal approach to treatment selection, and provide insight into future directions.
Collapse
Affiliation(s)
- Georges Gebrael
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Gliceida Galarza Fortuna
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nicolas Sayegh
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Umang Swami
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
61
|
Li X, Zang N, Zhang N, Pang L, Lv L, Meng X, Lv X, Leng J. DNA damage resulting from human endocrine disrupting chemical exposure: Genotoxicity, detection and dietary phytochemical intervention. CHEMOSPHERE 2023; 338:139522. [PMID: 37478996 DOI: 10.1016/j.chemosphere.2023.139522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
In recent years, exposure to endocrine disrupting chemicals (EDCs) has posed an increasing threat to human health. EDCs are major risk factors in the occurrence and development of many diseases. Continuous DNA damage triggers severe pathogenic consequences, such as cancer. Beyond their effects on the endocrine system, EDCs genotoxicity is also worthy of attention, owing to the high accessibility and bioavailability of EDCs. This review investigates and summarizes nearly a decade of DNA damage studies on EDC exposure, including DNA damage mechanisms, detection methods, population marker analysis, and the application of dietary phytochemicals. The aims of this review are (1) to systematically summarize the genotoxic effects of environmental EDCs (2) to comprehensively summarize cutting-edge measurement methods, thus providing analytical solutions for studies on EDC exposure; and (3) to highlight critical data on the detoxification and repair effects of dietary phytochemicals. Dietary phytochemicals decrease genotoxicity by playing a major role in the detoxification system, and show potential therapeutic effects on human diseases caused by EDC exposure. This review may support research on environmental toxicology and alternative chemo-prevention for human EDC exposure.
Collapse
Affiliation(s)
- Xiaoqing Li
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Ningzi Zang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Nan Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Lijian Pang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiansheng Meng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, China.
| |
Collapse
|
62
|
Agarwal N, Zhang T, Efstathiou E, Sayegh N, Engelsberg A, Saad F, Fizazi K. The biology behind combining poly [ADP ribose] polymerase and androgen receptor inhibition for metastatic castration-resistant prostate cancer. Eur J Cancer 2023; 192:113249. [PMID: 37672815 DOI: 10.1016/j.ejca.2023.113249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 09/08/2023]
Abstract
For about a decade, poly [ADP ribose] polymerases (PARP) inhibitors have been used almost exclusively to treat tumours that are deficient in one of the BRCA genes. In advanced prostate cancer, which is largely driven by the activity of the androgen receptor (AR), accumulating preclinical evidence has suggested an interplay between the AR and PARP, which could be therapeutically exploited independently of defects in the tumour's DNA homologous recombination repair (HRR) machinery. This includes the regulation of HRR genes by the AR, a mutual influence between the activities of PARP and the AR, and the co-localisation of BRCA2 to the retinoblastoma gene in the human genome. Based on these findings, randomised clinical trials have been initiated to study the addition of a PARP inhibitor to AR pathway inhibitor therapy. Three of four randomised studies demonstrated a significantly increased anti-tumour activity in men with metastatic prostate cancer, irrespective of HRR gene alterations. In this review, we summarise the available preclinical evidence that provides the rationale for the combination of inhibitors for PARP and the AR and discuss how it might contribute to the efficacy observed in the clinic.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| | - Tian Zhang
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Nicolas Sayegh
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Fred Saad
- Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Québec, Canada
| | - Karim Fizazi
- Institut Gustave Roussy, University of Paris Sud, Villejuif, France
| |
Collapse
|
63
|
Saad F, Clarke NW, Oya M, Shore N, Procopio G, Guedes JD, Arslan C, Mehra N, Parnis F, Brown E, Schlürmann F, Joung JY, Sugimoto M, Sartor O, Liu YZ, Poehlein C, Barker L, Del Rosario PM, Armstrong AJ. Olaparib plus abiraterone versus placebo plus abiraterone in metastatic castration-resistant prostate cancer (PROpel): final prespecified overall survival results of a randomised, double-blind, phase 3 trial. Lancet Oncol 2023; 24:1094-1108. [PMID: 37714168 DOI: 10.1016/s1470-2045(23)00382-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND PROpel met its primary endpoint showing statistically significant improvement in radiographic progression-free survival with olaparib plus abiraterone versus placebo plus abiraterone in patients with first-line metastatic castration-resistant prostate cancer (mCRPC) unselected by homologous recombination repair mutation (HRRm) status, with benefit observed in all prespecified subgroups. Here we report the final prespecified overall survival analysis. METHODS This was a randomised, double-blind, phase 3 trial done at 126 centres in 17 countries worldwide. Patients with mCRPC aged at least 18 years, Eastern Cooperative Oncology Group performance status 0-1, a life expectancy of at least 6 months, with no previous systemic treatment for mCRPC and unselected by HRRm status were randomly assigned (1:1) centrally by means of an interactive voice response system-interactive web response system to abiraterone acetate (orally, 1000 mg once daily) plus prednisone or prednisolone with either olaparib (orally, 300 mg twice daily) or placebo. The patients, the investigator, and study centre staff were masked to drug allocation. Stratification factors were site of metastases and previous docetaxel at metastatic hormone-sensitive cancer stage. Radiographic progression-free survival was the primary endpoint and overall survival was a key secondary endpoint with alpha-control (alpha-threshold at prespecified final analysis: 0·0377 [two-sided]), evaluated in the intention-to-treat population. Safety was evaluated in all patients who received at least one dose of a study drug. This study is registered with ClinicalTrials.gov, NCT03732820, and is completed and no longer recruiting. FINDINGS Between Oct 31, 2018 and March 11, 2020, 1103 patients were screened, of whom 399 were randomly assigned to olaparib plus abiraterone and 397 to placebo plus abiraterone. Median follow-up for overall survival in patients with censored data was 36·6 months (IQR 34·1-40·3) for olaparib plus abiraterone and 36·5 months (33·8-40·3) for placebo plus abiraterone. Median overall survival was 42·1 months (95% CI 38·4-not reached) with olaparib plus abiraterone and 34·7 months (31·0-39·3) with placebo plus abiraterone (hazard ratio 0·81, 95% CI 0·67-1·00; p=0·054). The most common grade 3-4 adverse event was anaemia reported in 64 (16%) of 398 patients in the olaparib plus abiraterone and 13 (3%) of 396 patients in the placebo plus abiraterone group. Serious adverse events were reported in 161 (40%) in the olaparib plus abiraterone group and 126 (32%) in the placebo plus abiraterone group. One death in the placebo plus abiraterone group, from interstitial lung disease, was considered treatment related. INTERPRETATION Overall survival was not significantly different between treatment groups at this final prespecified analysis. FUNDING Supported by AstraZeneca and Merck Sharp & Dohme.
Collapse
Affiliation(s)
- Fred Saad
- Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
| | - Noel W Clarke
- The Christie and Salford Royal Hospital NHS Foundation Trusts and University of Manchester, Manchester, UK.
| | | | - Neal Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | - Giuseppe Procopio
- Programma Prostata Fondazione Istituto Nazionale Tumori Milano, Milan, Italy
| | - João Daniel Guedes
- Hospital de Base de São José do Rio Preto, São José do Rio Preto, Brazil
| | - Cagatay Arslan
- Izmir Economy University Medical Point Hospital, Karsiyaka, Izmir, Turkey
| | - Niven Mehra
- Radboud Universitair Medisch Centrum, Nijmegen, Netherlands
| | | | - Emma Brown
- University Hospital Southampton, Southampton, UK
| | | | | | | | | | - Yu-Zhen Liu
- Precision Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Laura Barker
- Global Medicines Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancer, Duke University, Durham, NC, USA
| |
Collapse
|
64
|
Martini A, Fallara G, Ploussard G, Malavaud B. Combination therapy with olaparib and abiraterone acetate for metastatic castration-resistant prostate cancer. Lancet Oncol 2023; 24:1056-1057. [PMID: 37797626 DOI: 10.1016/s1470-2045(23)00448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Affiliation(s)
- Alberto Martini
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Giuseppe Fallara
- Department of Urology, European Institute of Oncology Milan, Italy
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hospital, Toulouse, France; Department of Urology, Institut Universitaire du Cancer Toulouse-Oncopôle, Toulouse, France
| | - Bernard Malavaud
- Department of Urology, La Croix du Sud Hospital, Toulouse, France; Department of Urology, Institut Universitaire du Cancer Toulouse-Oncopôle, Toulouse, France
| |
Collapse
|
65
|
Giesen A, Baekelandt L, Devlies W, Devos G, Dumez H, Everaerts W, Claessens F, Joniau S. Double trouble for prostate cancer: synergistic action of AR blockade and PARPi in non-HRR mutated patients. Front Oncol 2023; 13:1265812. [PMID: 37810962 PMCID: PMC10551452 DOI: 10.3389/fonc.2023.1265812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men worldwide. Despite better and more intensive treatment options in earlier disease stages, a large subset of patients still progress to metastatic castration-resistant PCa (mCRPC). Recently, poly-(ADP-ribose)-polymerase (PARP)-inhibitors have been introduced in this setting. The TALAPRO-2 and PROpel trials both showed a marked benefit of PARPi in combination with an androgen receptor signaling inhibitor (ARSI), compared with an ARSI alone in both the homologous recombination repair (HRR)-mutated, as well as in the HRR-non-mutated subgroup. In this review, we present a comprehensive overview of how maximal AR-blockade via an ARSI in combination with a PARPi has a synergistic effect at the molecular level, leading to synthetic lethality in both HRR-mutated and HRR-non-mutated PCa patients. PARP2 is known to be a cofactor of the AR complex, needed for decompacting the chromatin and start of transcription of AR target genes (including HRR genes). The inhibition of PARP thus reinforces the effect of an ARSI. The deep androgen deprivation caused by combining androgen deprivation therapy (ADT) with an ARSI, induces an HRR-like deficient state, often referred to as "BRCA-ness". Further, PARPi will prevent the repair of single-strand DNA breaks, leading to the accumulation of DNA double-strand breaks (DSBs). Due to the induced HRR-deficient state, DSBs cannot be repaired, leading to apoptosis.
Collapse
Affiliation(s)
- Alexander Giesen
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Loïc Baekelandt
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Wout Devlies
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, Catholic University Leuven (KU Leuven), Leuven, Belgium
| | - Gaëtan Devos
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Herlinde Dumez
- Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Wouter Everaerts
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Frank Claessens
- Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, Catholic University Leuven (KU Leuven), Leuven, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
- Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, Catholic University Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
66
|
Dai C, Dehm SM, Sharifi N. Targeting the Androgen Signaling Axis in Prostate Cancer. J Clin Oncol 2023; 41:4267-4278. [PMID: 37429011 PMCID: PMC10852396 DOI: 10.1200/jco.23.00433] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/12/2023] Open
Abstract
Activation of the androgen receptor (AR) and AR-driven transcriptional programs is central to the pathophysiology of prostate cancer. Despite successful translational efforts in targeting AR, therapeutic resistance often occurs as a result of molecular alterations in the androgen signaling axis. The efficacy of next-generation AR-directed therapies for castration-resistant prostate cancer has provided crucial clinical validation for the continued dependence on AR signaling and introduced a range of new treatment options for men with both castration-resistant and castration-sensitive disease. Despite this, however, metastatic prostate cancer largely remains an incurable disease, highlighting the need to better understand the diverse mechanisms by which tumors thwart AR-directed therapies, which may inform new therapeutic avenues. In this review, we revisit concepts in AR signaling and current understandings of AR signaling-dependent resistance mechanisms as well as the next frontier of AR targeting in prostate cancer.
Collapse
Affiliation(s)
- Charles Dai
- Massachusetts General Hospital Cancer Center, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Dana-Farber Cancer Institute, Boston, MA
| | - Scott M. Dehm
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
- Department of Urology, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
67
|
Rivero Belenchón I, Congregado Ruiz CB, Saez C, Osman García I, Medina López RA. Parp Inhibitors and Radiotherapy: A New Combination for Prostate Cancer (Systematic Review). Int J Mol Sci 2023; 24:12978. [PMID: 37629155 PMCID: PMC10455664 DOI: 10.3390/ijms241612978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
PARPi, in combination with ionizing radiation, has demonstrated the ability to enhance cellular radiosensitivity in different tumors. The rationale is that the exposure to radiation leads to both physical and biochemical damage to DNA, prompting cells to initiate three primary mechanisms for DNA repair. Two double-stranded DNA breaks (DSB) repair pathways: (1) non-homologous end-joining (NHEJ) and (2) homologous recombination (HR); and (3) a single-stranded DNA break (SSB) repair pathway (base excision repair, BER). In this scenario, PARPi can serve as radiosensitizers by leveraging the BER pathway. This mechanism heightens the likelihood of replication forks collapsing, consequently leading to the formation of persistent DSBs. Together, the combination of PARPi and radiotherapy is a potent oncological strategy. This combination has proven its efficacy in different tumors. However, in prostate cancer, there are only preclinical studies to support it and, recently, an ongoing clinical trial. The objective of this paper is to perform a review of the current evidence regarding the use of PARPi and radiotherapy (RT) in PCa and to give future insight on this topic.
Collapse
Affiliation(s)
- Inés Rivero Belenchón
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Carmen Belen Congregado Ruiz
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Carmen Saez
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Ignacio Osman García
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| | - Rafael Antonio Medina López
- Urology and Nephrology Department, University Hospital Virgen del Rocío, 41013 Seville, Spain; (I.O.G.); (R.A.M.L.)
- Biomedical Institute of Seville (IBIS), 41013 Seville, Spain;
| |
Collapse
|
68
|
Inderjeeth A, Iravani A, Subramaniam S, Conduit C, Sandhu S. Novel radionuclide therapy combinations in prostate cancer. Ther Adv Med Oncol 2023; 15:17588359231187202. [PMID: 37547444 PMCID: PMC10399256 DOI: 10.1177/17588359231187202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
Prostate cancer remains the commonest cancer diagnosed in males and a leading cause of cancer-related death. Men with metastatic castration-resistant prostate cancer (mCRPC) who have progressed on chemotherapy and androgen receptor pathway inhibitors (ARPI) have limited treatment options, significant morbidity, and poor outcomes. Prostate-specific membrane antigen (PSMA)-directed radionuclide therapy (RNT) is emerging as an efficacious and well-tolerated therapy; however, disease progression is universal. Several ongoing RNT trials focus on combination strategies to improve efficacy and durability of treatment response, including combinations with ARPIs, chemotherapy, immunotherapy, and targeted therapies. Further, efforts are underway to expand the role of PSMA-directed RNT to earlier stages of disease including hormone-sensitive and localized prostate cancer. In this review, we discuss the rationale and ongoing RNT combination therapeutic trials in prostate cancer and summarize the efficacy and toxicity associated with RNT.
Collapse
Affiliation(s)
- Andrisha–Jade Inderjeeth
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Amir Iravani
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Shalini Subramaniam
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Bankstown-Lidcombe Hospital, Bankstown, NSW, Australia
| | - Ciara Conduit
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Sir Peter MacCallum Cancer Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
69
|
Agarwal N, Azad AA, Carles J, Fay AP, Matsubara N, Heinrich D, Szczylik C, De Giorgi U, Young Joung J, Fong PCC, Voog E, Jones RJ, Shore ND, Dunshee C, Zschäbitz S, Oldenburg J, Lin X, Healy CG, Di Santo N, Zohren F, Fizazi K. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): a randomised, placebo-controlled, phase 3 trial. Lancet 2023; 402:291-303. [PMID: 37285865 DOI: 10.1016/s0140-6736(23)01055-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Co-inhibition of poly(ADP-ribose) polymerase (PARP) and androgen receptor activity might result in antitumour efficacy irrespective of alterations in DNA damage repair genes involved in homologous recombination repair (HRR). We aimed to compare the efficacy and safety of talazoparib (a PARP inhibitor) plus enzalutamide (an androgen receptor blocker) versus enzalutamide alone in patients with metastatic castration-resistant prostate cancer (mCRPC). METHODS TALAPRO-2 is a randomised, double-blind, phase 3 trial of talazoparib plus enzalutamide versus placebo plus enzalutamide as first-line therapy in men (age ≥18 years [≥20 years in Japan]) with asymptomatic or mildly symptomatic mCRPC receiving ongoing androgen deprivation therapy. Patients were enrolled from 223 hospitals, cancer centres, and medical centres in 26 countries in North America, Europe, Israel, South America, South Africa, and the Asia-Pacific region. Patients were prospectively assessed for HRR gene alterations in tumour tissue and randomly assigned (1:1) to talazoparib 0·5 mg or placebo, plus enzalutamide 160 mg, administered orally once daily. Randomisation was stratified by HRR gene alteration status (deficient vs non-deficient or unknown) and previous treatment with life-prolonging therapy (docetaxel or abiraterone, or both: yes vs no) in the castration-sensitive setting. The sponsor, patients, and investigators were masked to talazoparib or placebo, while enzalutamide was open-label. The primary endpoint was radiographic progression-free survival (rPFS) by blinded independent central review, evaluated in the intention-to-treat population. Safety was evaluated in all patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov (NCT03395197) and is ongoing. FINDINGS Between Jan 7, 2019, and Sept 17, 2020, 805 patients were enrolled and randomly assigned (402 to the talazoparib group and 403 to the placebo group). Median follow-up for rPFS was 24·9 months (IQR 21·9-30·2) for the talazoparib group and 24·6 months (14·4-30·2) for the placebo group. At the planned primary analysis, median rPFS was not reached (95% CI 27·5 months-not reached) for talazoparib plus enzalutamide and 21·9 months (16·6-25·1) for placebo plus enzalutamide (hazard ratio 0·63; 95% CI 0·51-0·78; p<0·0001). In the talazoparib group, the most common treatment-emergent adverse events were anaemia, neutropenia, and fatigue; the most common grade 3-4 event was anaemia (185 [46%] of 398 patients), which improved after dose reduction, and only 33 (8%) of 398 patients discontinued talazoparib due to anaemia. Treatment-related deaths occurred in no patients in the talazoparib group and two patients (<1%) in the placebo group. INTERPRETATION Talazoparib plus enzalutamide resulted in clinically meaningful and statistically significant improvement in rPFS versus standard of care enzalutamide as first-line treatment for patients with mCRPC. Final overall survival data and additional long-term safety follow-up will further clarify the clinical benefit of the treatment combination in patients with and without tumour HRR gene alterations. FUNDING Pfizer.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Huntsman Cancer Institute (NCI-CCC), University of Utah, Salt Lake City, UT, USA.
| | - Arun A Azad
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Joan Carles
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Andre P Fay
- PUCRS School of Medicine, Porto Alegre, Brazil
| | | | | | - Cezary Szczylik
- Department of Oncology, European Health Center, Otwock, Poland; Postgraduate Medical Education Center, Warsaw, Poland
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy
| | | | - Peter C C Fong
- Auckland City Hospital, Auckland, New Zealand; University of Auckland, Auckland, New Zealand
| | - Eric Voog
- Clinique Victor Hugo Centre Jean Bernard, Le Mans, France
| | - Robert J Jones
- School of Cancer Sciences, University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Neal D Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | | | - Stefanie Zschäbitz
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Jan Oldenburg
- Akershus University Hospital (Ahus), Lørenskog, Norway
| | | | | | | | | | - Karim Fizazi
- Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France.
| |
Collapse
|
70
|
Bhoir S, De Benedetti A. Targeting Prostate Cancer, the 'Tousled Way'. Int J Mol Sci 2023; 24:11100. [PMID: 37446279 DOI: 10.3390/ijms241311100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Androgen deprivation therapy (ADT) has been the mainstay of prostate cancer (PCa) treatment, with success in developing more effective inhibitors of androgen synthesis and antiandrogens in clinical practice. However, hormone deprivation and AR ablation have caused an increase in ADT-insensitive PCas associated with a poor prognosis. Resistance to ADT arises through various mechanisms, and most castration-resistant PCas still rely on the androgen axis, while others become truly androgen receptor (AR)-independent. Our research identified the human tousled-like kinase 1 (TLK1) as a crucial early mediator of PCa cell adaptation to ADT, promoting androgen-independent growth, inhibiting apoptosis, and facilitating cell motility and metastasis. Although explicit, the growing role of TLK1 biology in PCa has remained underrepresented and elusive. In this review, we aim to highlight the diverse functions of TLK1 in PCa, shed light on the molecular mechanisms underlying the transition from androgen-sensitive (AS) to an androgen-insensitive (AI) disease mediated by TLK1, and explore potential strategies to counteract this process. Targeting TLK1 and its associated signaling could prevent PCa progression to the incurable metastatic castration-resistant PCa (mCRPC) stage and provide a promising approach to treating PCa.
Collapse
Affiliation(s)
- Siddhant Bhoir
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
71
|
Xie W, Li S, Guo H, Zhang J, Tu M, Wang R, Lin B, Wu Y, Wang X. Androgen receptor knockdown enhances prostate cancer chemosensitivity by down-regulating FEN1 through the ERK/ELK1 signalling pathway. Cancer Med 2023; 12:15317-15336. [PMID: 37326412 PMCID: PMC10417077 DOI: 10.1002/cam4.6188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Flap endonuclease 1 (FEN1) is highly upregulated in prostate cancer and promotes the growth of prostate cancer cells. Androgen receptor (AR) is the most critical determinant of the occurrence, progression, metastasis, and treatment of prostate cancer. However, the effect of FEN1 on docetaxel (DTX) sensitivity and the regulatory mechanisms of AR on FEN1 expression in prostate cancer need to be further studied. METHODS Bioinformatics analyses were performed using data from the Cancer Genome Atlas and the Gene Expression Omnibus. Prostate cancer cell lines 22Rv1 and LNCaP were used. FEN1 siRNA, FEN1 overexpression plasmid, and AR siRNA were transfected into cells. Biomarker expression was evaluated by immunohistochemistry and Western blotting. Apoptosis and the cell cycle were explored using flow cytometry analysis. Luciferase reporter assay was performed to verify the target relationship. Xenograft assays were conducted using 22Rv1 cells to evaluate the in vivo conclusions. RESULTS Overexpression of FEN1 inhibited cell apoptosis and cell cycle arrest in the S phase induced by DTX. AR knockdown enhanced DTX-induced cell apoptosis and cell cycle arrest at the S phase in prostate cancer cells, which was attenuated by FEN1 overexpression. In vivo experiments showed that overexpression of FEN1 significantly increased tumour growth and weakened the inhibitory effect of DTX on prostate tumour growth, while AR knockdown enhance the sensitivity of DTX to prostate tumour. AR knockdown resulted in FEN1, pho-ERK1/2, and pho-ELK1 downregulation, and the luciferase reporter assay confirmed that ELK1 can regulate the transcription of FEN1. CONCLUSION Collectively, our studies demonstrate that AR knockdown improves the DTX sensitivity of prostate cancer cells by downregulating FEN1 through the ERK/ELK1 signalling pathway.
Collapse
Affiliation(s)
- Weijie Xie
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Shulin Li
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
- Department of UrologyAffiliated Hospital of Guangdong Medical UniversityGuangdong ProvinceZhanjiangPeople's Republic of China
| | - Huan Guo
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Jiawei Zhang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Menjiang Tu
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Rui Wang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Bingling Lin
- Department of RadiologyPeking University Shenzhen HospitalShenzhenPeople's Republic of China
| | - Yuqi Wu
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
| | - Xiangwei Wang
- Department of Urology and Carson International Cancer Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy CenterShenzhen UniversityShenzhenPeople's Republic of China
- Department of UrologyAffiliated Hospital of Guangdong Medical UniversityGuangdong ProvinceZhanjiangPeople's Republic of China
| |
Collapse
|
72
|
Imamura J, Ganguly S, Muskara A, Liao RS, Nguyen JK, Weight C, Wee CE, Gupta S, Mian OY. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution. Front Endocrinol (Lausanne) 2023; 14:1191311. [PMID: 37455903 PMCID: PMC10349394 DOI: 10.3389/fendo.2023.1191311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Androgen deprivation therapy is a cornerstone of treatment for advanced prostate cancer, and the development of castrate-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-related mortality. While CRPC typically develops through a gain in androgen receptor (AR) signaling, a subset of CRPC will lose reliance on the AR. This process involves genetic, epigenetic, and hormonal changes that promote cellular plasticity, leading to AR-indifferent disease, with neuroendocrine prostate cancer (NEPC) being the quintessential example. NEPC is enriched following treatment with second-generation anti-androgens and exhibits resistance to endocrine therapy. Loss of RB1, TP53, and PTEN expression and MYCN and AURKA amplification appear to be key drivers for NEPC differentiation. Epigenetic modifications also play an important role in the transition to a neuroendocrine phenotype. DNA methylation of specific gene promoters can regulate lineage commitment and differentiation. Histone methylation can suppress AR expression and promote neuroendocrine-specific gene expression. Emerging data suggest that EZH2 is a key regulator of this epigenetic rewiring. Several mechanisms drive AR-dependent castration resistance, notably AR splice variant expression, expression of the adrenal-permissive 3βHSD1 allele, and glucocorticoid receptor expression. Aberrant epigenetic regulation also promotes radioresistance by altering the expression of DNA repair- and cell cycle-related genes. Novel therapies are currently being developed to target these diverse genetic, epigenetic, and hormonal mechanisms promoting lineage plasticity-driven NEPC.
Collapse
Affiliation(s)
- Jarrell Imamura
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shinjini Ganguly
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andrew Muskara
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ross S. Liao
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Jane K. Nguyen
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher Weight
- Glickman Urologic Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher E. Wee
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Shilpa Gupta
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Omar Y. Mian
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
73
|
Cartes R, Karim MU, Tisseverasinghe S, Tolba M, Bahoric B, Anidjar M, McPherson V, Probst S, Rompré-Brodeur A, Niazi T. Neoadjuvant versus Concurrent Androgen Deprivation Therapy in Localized Prostate Cancer Treated with Radiotherapy: A Systematic Review of the Literature. Cancers (Basel) 2023; 15:3363. [PMID: 37444473 DOI: 10.3390/cancers15133363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND There is an ongoing debate on the optimal sequencing of androgen deprivation therapy (ADT) and radiotherapy (RT) in patients with localized prostate cancer (PCa). Recent data favors concurrent ADT and RT over the neoadjuvant approach. METHODS We conducted a systematic review in PubMed, EMBASE, and Cochrane Databases assessing the combination and optimal sequencing of ADT and RT for Intermediate-Risk (IR) and High-Risk (HR) PCa. FINDINGS Twenty randomized control trials, one abstract, one individual patient data meta-analysis, and two retrospective studies were selected. HR PCa patients had improved survival outcomes with RT and ADT, particularly when a long-course Neoadjuvant-Concurrent-Adjuvant ADT was used. This benefit was seen in IR PCa when adding short-course ADT, although less consistently. The best available evidence indicates that concurrent over neoadjuvant sequencing is associated with better metastases-free survival at 15 years. Although most patients had IR PCa, HR participants may have been undertreated with short-course ADT and the absence of pelvic RT. Conversely, retrospective data suggests a survival benefit when using the neoadjuvant approach in HR PCa patients. INTERPRETATION The available literature supports concurrent ADT and RT initiation for IR PCa. Neoadjuvant-concurrent-adjuvant sequencing should remain the standard approach for HR PCa and is an option for IR PCa.
Collapse
Affiliation(s)
- Rodrigo Cartes
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Muneeb Uddin Karim
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | | | - Marwan Tolba
- Department of Radiation Oncology, Dalhousie University, and Nova Scotia Health Authority, Sydney, NS B1P 1P3, Canada
| | - Boris Bahoric
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Maurice Anidjar
- Department of Urology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Victor McPherson
- Department of Urology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Stephan Probst
- Department of Nuclear Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | | | - Tamim Niazi
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
74
|
Lukashchuk N, Barnicle A, Adelman CA, Armenia J, Kang J, Barrett JC, Harrington EA. Impact of DNA damage repair alterations on prostate cancer progression and metastasis. Front Oncol 2023; 13:1162644. [PMID: 37434977 PMCID: PMC10331135 DOI: 10.3389/fonc.2023.1162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Prostate cancer is among the most common diseases worldwide. Despite recent progress with treatments, patients with advanced prostate cancer have poor outcomes and there is a high unmet need in this population. Understanding molecular determinants underlying prostate cancer and the aggressive phenotype of disease can help with design of better clinical trials and improve treatments for these patients. One of the pathways often altered in advanced prostate cancer is DNA damage response (DDR), including alterations in BRCA1/2 and other homologous recombination repair (HRR) genes. Alterations in the DDR pathway are particularly prevalent in metastatic prostate cancer. In this review, we summarise the prevalence of DDR alterations in primary and advanced prostate cancer and discuss the impact of alterations in the DDR pathway on aggressive disease phenotype, prognosis and the association of germline pathogenic alterations in DDR genes with risk of developing prostate cancer.
Collapse
Affiliation(s)
- Natalia Lukashchuk
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Alan Barnicle
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Carrie A. Adelman
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Joshua Armenia
- Oncology Data Science, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Jinyu Kang
- Global Medicines Development, Oncology Research and Development (R&D), AstraZeneca, Gaithersburg, MD, United States
| | - J. Carl Barrett
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Waltham, MA, United States
| | - Elizabeth A. Harrington
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
75
|
Chi KN, Rathkopf D, Smith MR, Efstathiou E, Attard G, Olmos D, Lee JY, Small EJ, Pereira de Santana Gomes AJ, Roubaud G, Saad M, Zurawski B, Sakalo V, Mason GE, Francis P, Wang G, Wu D, Diorio B, Lopez-Gitlitz A, Sandhu S. Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol 2023; 41:3339-3351. [PMID: 36952634 PMCID: PMC10431499 DOI: 10.1200/jco.22.01649] [Citation(s) in RCA: 114] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/08/2023] [Indexed: 03/25/2023] Open
Abstract
PURPOSE Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease with current standard-of-care therapies. Homologous recombination repair (HRR) gene alterations, including BRCA1/2 alterations, can sensitize cancer cells to poly (ADP-ribose) polymerase inhibition, which may improve outcomes in treatment-naïve mCRPC when combined with androgen receptor signaling inhibition. METHODS MAGNITUDE (ClinicalTrials.gov identifier: NCT03748641) is a phase III, randomized, double-blinded study that evaluates niraparib and abiraterone acetate plus prednisone (niraparib + AAP) in patients with (HRR+, n = 423) or without (HRR-, n = 247) HRR-associated gene alterations, as prospectively determined by tissue/plasma-based assays. Patients were assigned 1:1 to receive niraparib + AAP or placebo + AAP. The primary end point, radiographic progression-free survival (rPFS) assessed by central review, was evaluated first in the BRCA1/2 subgroup and then in the full HRR+ cohort, with secondary end points analyzed for the full HRR+ cohort if rPFS was statistically significant. A futility analysis was preplanned in the HRR- cohort. RESULTS Median rPFS in the BRCA1/2 subgroup was significantly longer in the niraparib + AAP group compared with the placebo + AAP group (16.6 v 10.9 months; hazard ratio [HR], 0.53; 95% CI, 0.36 to 0.79; P = .001). In the overall HRR+ cohort, rPFS was significantly longer in the niraparib + AAP group compared with the placebo + AAP group (16.5 v 13.7 months; HR, 0.73; 95% CI, 0.56 to 0.96; P = .022). These findings were supported by improvement in the secondary end points of time to symptomatic progression and time to initiation of cytotoxic chemotherapy. In the HRR- cohort, futility was declared per the prespecified criteria. Treatment with niraparib + AAP was tolerable, with anemia and hypertension as the most reported grade ≥ 3 adverse events. CONCLUSION Combination treatment with niraparib + AAP significantly lengthened rPFS in patients with HRR+ mCRPC compared with standard-of-care AAP. [Media: see text].
Collapse
Affiliation(s)
- Kim N. Chi
- BC Cancer – Vancouver Center, University of British Columbia, Vancouver, BC, Canada
| | - Dana Rathkopf
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY
| | - Matthew R. Smith
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | | | | | - David Olmos
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Ji Youl Lee
- Department of Urology Cancer Center, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Eric J. Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | | | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Marniza Saad
- Department of Clinical Oncology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Bogdan Zurawski
- Department of Outpatient Chemotherapy, Professor Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | - Valerii Sakalo
- Kyiv City Clinical Oncology Center and Academician O.F. Vozianov Institute of Urology of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | - Gary E. Mason
- Janssen Research & Development, LLC, Spring House, PA
| | | | - George Wang
- Janssen Research & Development, LLC, Spring House, PA
| | - Daphne Wu
- Janssen Research & Development, LLC, Los Angeles, CA
| | | | | | - Shahneen Sandhu
- Peter MacCallum Cancer Centre and the University of Melbourne, Melbourne, Australia
| |
Collapse
|
76
|
Lyu F, Shang SY, Gao XS, Ma MW, Xie M, Ren XY, Liu MZ, Chen JY, Li SS, Huang L. Uncovering the Secrets of Prostate Cancer's Radiotherapy Resistance: Advances in Mechanism Research. Biomedicines 2023; 11:1628. [PMID: 37371723 PMCID: PMC10296152 DOI: 10.3390/biomedicines11061628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is a critical global public health issue with its incidence on the rise. Radiation therapy holds a primary role in PCa treatment; however, radiation resistance has become increasingly challenging as we uncover more about PCa's pathogenesis. Our review aims to investigate the multifaceted mechanisms underlying radiation therapy resistance in PCa. Specifically, we will examine how various factors, such as cell cycle regulation, DNA damage repair, hypoxic conditions, oxidative stress, testosterone levels, epithelial-mesenchymal transition, and tumor stem cells, contribute to radiation therapy resistance. By exploring these mechanisms, we hope to offer new insights and directions towards overcoming the challenges of radiation therapy resistance in PCa. This can also provide a theoretical basis for the clinical application of novel ultra-high-dose-rate (FLASH) radiotherapy in the era of PCa.
Collapse
Affiliation(s)
- Feng Lyu
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Shi-Yu Shang
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
- First Clinical Medical School, Hebei North University, Zhangjiakou 075000, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Mu Xie
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Xue-Ying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Ming-Zhu Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Jia-Yan Chen
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Shan-Shi Li
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| | - Lei Huang
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (F.L.); (S.-Y.S.); (M.-W.M.); (M.X.); (X.-Y.R.); (M.-Z.L.); (J.-Y.C.); (S.-S.L.); (L.H.)
| |
Collapse
|
77
|
Huang H, Wu L, Lu L, Zhang Z, Qiu B, Mo J, Luo Y, Xi Z, Feng M, Wan P, Zhu J, Yu D, Wu W, Tan K, Liu J, Sheng Q, Xu T, Huang J, Lv Z, Tang Y, Xia Q. Single-cell transcriptomics uncovers cellular architecture and developmental trajectories in hepatoblastoma. Hepatology 2023; 77:1911-1928. [PMID: 36059151 DOI: 10.1002/hep.32775] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HB) is the predominant type of childhood liver cancer. Treatment options for the clinically advanced HB remain limited. We aimed to dissect the cellular and molecular basis underlying HB oncogenesis and heterogeneity at the single-cell level, which could facilitate a better understanding of HB at both the biological and clinical levels. APPROACH AND RESULTS Single-cell transcriptome profiling of tumor and paired distal liver tissue samples from five patients with HB was performed. Deconvolution analysis was used for integrating the single-cell transcriptomic profiles with the bulk transcriptomes of our HB cohort of post-neoadjuvant chemotherapy tumor samples. A single-cell transcriptomic landscape of early human liver parenchymal development was established for exploring the cellular root and hierarchy of HB oncogenesis. As a result, seven distinct tumor cell subpopulations were annotated, and an effective HB subtyping method was established based on their compositions. A HB tumor cell hierarchy was further revealed to not only fit with the classical cancer stem cell (CSC) model but also mirror the early human liver parenchymal development. Moreover, FACT inhibition, which could disrupt the oncogenic positive feedback loop between MYC and SSRP1 in HB, was identified as a promising epigenetic-targeted therapeutic strategy against the CSC-like HB1-Pro-like1 subpopulation and its related high-risk "Pro-like1" subtype of HB. CONCLUSIONS Our findings illustrate the cellular architecture and developmental trajectories of HB via integrative bulk and single-cell transcriptome analyses, thus establishing a resourceful framework for the development of targeted diagnostics and therapeutics in the future.
Collapse
Affiliation(s)
- Hongting Huang
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Liang Wu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Li Lu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Zijie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Bijun Qiu
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Jialin Mo
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Mingxuan Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Jianjun Zhu
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Dingye Yu
- Department of Gastrointestinal Surgery , Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Wei Wu
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Jiangbin Liu
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Qingfeng Sheng
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Ting Xu
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Jinyan Huang
- Biomedical Big Data Center , The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease , Zhejiang University School of Medicine First Affiliated Hospital , Hangzhou , China
- Zhejiang University Cancer Center , Zhejiang University , Hangzhou , China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Yujie Tang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
- Shanghai Engineering Research Centre of Transplantation and Immunology , Shanghai , China
- Shanghai Institute of Transplantation , Shanghai , China
| |
Collapse
|
78
|
Tang C, Sherry AD, Haymaker C, Bathala T, Liu S, Fellman B, Cohen L, Aparicio A, Zurita AJ, Reuben A, Marmonti E, Chun SG, Reddy JP, Ghia A, McGuire S, Efstathiou E, Wang J, Wang J, Pilie P, Kovitz C, Du W, Simiele SJ, Kumar R, Borghero Y, Shi Z, Chapin B, Gomez D, Wistuba I, Corn PG. Addition of Metastasis-Directed Therapy to Intermittent Hormone Therapy for Oligometastatic Prostate Cancer: The EXTEND Phase 2 Randomized Clinical Trial. JAMA Oncol 2023; 9:825-834. [PMID: 37022702 PMCID: PMC10080407 DOI: 10.1001/jamaoncol.2023.0161] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/20/2022] [Indexed: 04/07/2023]
Abstract
Importance Despite evidence demonstrating an overall survival benefit with up-front hormone therapy in addition to established synergy between hormone therapy and radiation, the addition of metastasis-directed therapy (MDT) to hormone therapy for oligometastatic prostate cancer, to date, has not been evaluated in a randomized clinical trial. Objective To determine in men with oligometastatic prostate cancer whether the addition of MDT to intermittent hormone therapy improves oncologic outcomes and preserves time with eugonadal testosterone compared with intermittent hormone therapy alone. Design, Setting, Participants The External Beam Radiation to Eliminate Nominal Metastatic Disease (EXTEND) trial is a phase 2, basket randomized clinical trial for multiple solid tumors testing the addition of MDT to standard-of-care systemic therapy. Men aged 18 years or older with oligometastatic prostate cancer who had 5 or fewer metastases and were treated with hormone therapy for 2 or more months were enrolled to the prostate intermittent hormone therapy basket at multicenter tertiary cancer centers from September 2018 to November 2020. The cutoff date for the primary analysis was January 7, 2022. Interventions Patients were randomized 1:1 to MDT, consisting of definitive radiation therapy to all sites of disease and intermittent hormone therapy (combined therapy arm; n = 43) or to hormone therapy only (n = 44). A planned break in hormone therapy occurred 6 months after enrollment, after which hormone therapy was withheld until progression. Main Outcomes and Measures The primary end point was disease progression, defined as death or radiographic, clinical, or biochemical progression. A key predefined secondary end point was eugonadal progression-free survival (PFS), defined as the time from achieving a eugonadal testosterone level (≥150 ng/dL; to convert to nanomoles per liter, multiply by 0.0347) until progression. Exploratory measures included quality of life and systemic immune evaluation using flow cytometry and T-cell receptor sequencing. Results The study included 87 men (median age, 67 years [IQR, 63-72 years]). Median follow-up was 22.0 months (range, 11.6-39.2 months). Progression-free survival was improved in the combined therapy arm (median not reached) compared with the hormone therapy only arm (median, 15.8 months; 95% CI, 13.6-21.2 months) (hazard ratio, 0.25; 95% CI, 0.12-0.55; P < .001). Eugonadal PFS was also improved with MDT (median not reached) compared with the hormone therapy only (6.1 months; 95% CI, 3.7 months to not estimable) (hazard ratio, 0.32; 95% CI, 0.11-0.91; P = .03). Flow cytometry and T-cell receptor sequencing demonstrated increased markers of T-cell activation, proliferation, and clonal expansion limited to the combined therapy arm. Conclusions and Relevance In this randomized clinical trial, PFS and eugonadal PFS were significantly improved with combination treatment compared with hormone treatment only in men with oligometastatic prostate cancer. Combination of MDT with intermittent hormone therapy may allow for excellent disease control while facilitating prolonged eugonadal testosterone intervals. Trial Registration ClinicalTrials.gov Identifier: NCT03599765.
Collapse
Affiliation(s)
- Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - Alexander D. Sherry
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Tharakeswara Bathala
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston
| | - Suyu Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Bryan Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Lorenzo Cohen
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Enrica Marmonti
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Stephen G. Chun
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jay P. Reddy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Amol Ghia
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Sean McGuire
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jennifer Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jianbo Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Patrick Pilie
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Craig Kovitz
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Weiliang Du
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston
| | - Samantha J. Simiele
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston
| | - Rachit Kumar
- Department of Radiation Oncology, Banner MD Anderson Cancer Center, Gilbert, Arizona
| | - Yerko Borghero
- Department of Radiation Oncology, Banner MD Anderson Cancer Center, Gilbert, Arizona
| | - Zheng Shi
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio
| | - Brian Chapin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston
| | - Daniel Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
79
|
Du X, Fei X, Wang J, Dong Y, Fan L, Yang B, Chen W, Gong Y, Xia B, Zhu H, Wu F, Wang Y, Dong L, Zhu Y, Pan J, Yao X, Dong B. Early serial circulating tumor DNA sequencing predicts the efficacy of chemohormonal therapy in patients with metastatic hormone-sensitive prostate cancer. Transl Oncol 2023; 34:101701. [PMID: 37247504 DOI: 10.1016/j.tranon.2023.101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023] Open
Abstract
Chemohormonal therapy is a standard treatment for metastatic hormone-sensitive prostate cancer (mHSPC); however, there are no biomarkers to guide clinical decisions regarding therapeutic options. We aimed to evaluate the clinical utility of serial circulating tumor DNA (ctDNA) sequencing in early prediction of the efficacy of chemohormonal therapy in patients with mHSPC. We conducted a retrospective observational study of 66 patients with mHSPC receiving chemohormonal therapy who underwent serial targeted gene-panel ctDNA sequencing. Peripheral blood samples were collected before treatment and after one cycle of chemotherapy. Kaplan-Meier and log-rank analyses were used to analyze the association between ctDNA status and disease progression-free survival. Serial changes in the ctDNA fraction and genetic alterations were also observed. After one cycle of chemotherapy, 23 (34.8%) patients displayed elevated ctDNA levels, whereas the other patients (65.2%, n = 43) did not. The median time to castration resistance in the group with reduced ctDNA levels was significantly longer than that in the group with increased ctDNA levels (17.70 vs. 8.43 months [mo], p < 0.001). Interestingly, patients with de novo alterations in homologous recombination pathway genes after treatment experienced a shorter time to castration resistance than that experienced by the remaining patients (8.02 vs. 13.20 mo, p = 0.011). The increased ctDNA levels or de novo alterations detected in homologous recombination pathway genes are a harbinger of disease progression. Early serial ctDNA sequencing could aid clinicians in making accurate treatment decisions.
Collapse
Affiliation(s)
- Xinxing Du
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaochen Fei
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhao Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liancheng Fan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiming Gong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Binbin Xia
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanjing Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqing Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
80
|
Sorrentino C, Di Carlo E. Molecular Targeted Therapies in Metastatic Prostate Cancer: Recent Advances and Future Challenges. Cancers (Basel) 2023; 15:2885. [PMID: 37296848 PMCID: PMC10251915 DOI: 10.3390/cancers15112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the most frequent malignant tumor in men, and, despite the great improvements in survival in patients with localized cancer, the prognosis for metastatic disease remains poor. Novel molecular targeted therapies, which block specific molecules or signaling pathways in tumor cells or in their microenvironment, have shown encouraging results in metastatic castration-resistant prostate cancer. Among these therapeutic approaches, prostate-specific membrane antigen-targeted radionuclide therapies and DNA repair inhibitors represent the most promising ones, with some therapeutic protocols already approved by the FDA, whereas therapies targeting tumor neovascularization and immune checkpoint inhibitors have not yet demonstrated clear clinical benefits. In this review, the most relevant studies and clinical trials on this topic are illustrated and discussed, together with future research directions and challenges.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
81
|
Jaworski D, Brzoszczyk B, Szylberg Ł. Recent Research Advances in Double-Strand Break and Mismatch Repair Defects in Prostate Cancer and Potential Clinical Applications. Cells 2023; 12:1375. [PMID: 37408208 DOI: 10.3390/cells12101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
Prostate cancer remains a leading cause of cancer-related death in men worldwide. Recent research advances have emphasized the critical roles of mismatch repair (MMR) and double-strand break (DSB) in prostate cancer development and progression. Here, we provide a comprehensive review of the molecular mechanisms underlying DSB and MMR defects in prostate cancer, as well as their clinical implications. Furthermore, we discuss the promising therapeutic potential of immune checkpoint inhibitors and PARP inhibitors in targeting these defects, particularly in the context of personalized medicine and further perspectives. Recent clinical trials have demonstrated the efficacy of these novel treatments, including Food and Drugs Association (FDA) drug approvals, offering hope for improved patient outcomes. Overall, this review emphasizes the importance of understanding the interplay between MMR and DSB defects in prostate cancer to develop innovative and effective therapeutic strategies for patients.
Collapse
Affiliation(s)
- Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Division of Ophthalmology and Optometry, Department of Ophthalmology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
| | - Bartosz Brzoszczyk
- Department of Urology, University Hospital No. 2 im. Dr. Jan Biziel in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-067 Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
| |
Collapse
|
82
|
Kumar R, Sena LA, Denmeade SR, Kachhap S. The testosterone paradox of advanced prostate cancer: mechanistic insights and clinical implications. Nat Rev Urol 2023; 20:265-278. [PMID: 36543976 PMCID: PMC10164147 DOI: 10.1038/s41585-022-00686-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
The discovery of the benefits of castration for prostate cancer treatment in 1941 led to androgen deprivation therapy, which remains a mainstay of the treatment of men with advanced prostate cancer. However, as early as this original publication, the inevitable development of castration-resistant prostate cancer was recognized. Resistance first manifests as a sustained rise in the androgen-responsive gene, PSA, consistent with reactivation of the androgen receptor axis. Evaluation of clinical specimens demonstrates that castration-resistant prostate cancer cells remain addicted to androgen signalling and adapt to chronic low-testosterone states. Paradoxically, results of several studies have suggested that treatment with supraphysiological levels of testosterone can retard prostate cancer growth. Insights from these studies have been used to investigate administration of supraphysiological testosterone to patients with prostate cancer for clinical benefits, a strategy that is termed bipolar androgen therapy (BAT). BAT involves rapid cycling from supraphysiological back to near-castration testosterone levels over a 4-week cycle. Understanding how BAT works at the molecular and cellular levels might help to rationalize combining BAT with other agents to achieve increased efficacy and tumour responses.
Collapse
Affiliation(s)
- Rajendra Kumar
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Laura A Sena
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Sushant Kachhap
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
83
|
Dias A, Brook MN, Bancroft EK, Page EC, Chamberlain A, Saya S, Amin J, Mikropoulos C, Taylor N, Myhill K, Thomas S, Saunders E, Dadaev T, Leongamornlert D, Dyrsø Jensen T, Evans DG, Cybulski C, Liljegren A, Teo SH, Side L, Kote‐Jarai Z, Eeles RA. Serum testosterone and prostate cancer in men with germline BRCA1/2 pathogenic variants. BJUI COMPASS 2023; 4:361-373. [PMID: 37025481 PMCID: PMC10071088 DOI: 10.1002/bco2.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 01/11/2023] Open
Abstract
Objectives The relation of serum androgens and the development of prostate cancer (PCa) is subject of debate. Lower total testosterone (TT) levels have been associated with increased PCa detection and worse pathological features after treatment. However, data from the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) and Prostate Cancer Prevention (PCPT) trial groups indicate no association. The aim of this study is to investigate the association of serum androgen levels and PCa detection in a prospective screening study of men at higher genetic risk of aggressive PCa due to BRCA1/2 pathogenic variants (PVs), the IMPACT study. Methods Men enrolled in the IMPACT study provided serum samples during regular visits. Hormonal levels were calculated using immunoassays. Free testosterone (FT) was calculated from TT and sex hormone binding globulin (SHBG) using the Sodergard mass equation. Age, body mass index (BMI), prostate-specific antigen (PSA) and hormonal concentrations were compared between genetic cohorts. We also explored associations between age and TT, SHBG, FT and PCa, in the whole subset and stratified by BRCA1/2 PVs status. Results A total of 777 participants in the IMPACT study had TT and SHBG measurements in serum samples at annual visits, giving 3940 prospective androgen levels, from 266 BRCA1 PVs carriers, 313 BRCA2 PVs carriers and 198 non-carriers. The median number of visits per patient was 5. There was no difference in TT, SHBG and FT between carriers and non-carriers. In a univariate analysis, androgen levels were not associated with PCa. In the analysis stratified by carrier status, no significant association was found between hormonal levels and PCa in non-carriers, BRCA1 or BRCA2 PVs carriers. Conclusions Male BRCA1/2 PVs carriers have a similar androgen profile to non-carriers. Hormonal levels were not associated with PCa in men with and without BRCA1/2 PVs. Mechanisms related to the particularly aggressive phenotype of PCa in BRCA2 PVs carriers may therefore not be linked with circulating hormonal levels.
Collapse
Affiliation(s)
- Alexander Dias
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Instituto Nacional de Cancer Jose de Alencar Gomes da Silva INCARio de JaneiroBrazil
| | - Mark N. Brook
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
| | - Elizabeth K. Bancroft
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Academic Urology UnitRoyal Marsden NHS Foundation TrustLondonUK
| | | | | | - Sibel Saya
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
| | - Jan Amin
- Clinical Biochemistry SectionRoyal Marsden NHS Foundation TrustLondonUK
| | - Christos Mikropoulos
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Academic Urology UnitRoyal Marsden NHS Foundation TrustLondonUK
| | - Natalie Taylor
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Academic Urology UnitRoyal Marsden NHS Foundation TrustLondonUK
| | - Kathryn Myhill
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Academic Urology UnitRoyal Marsden NHS Foundation TrustLondonUK
| | - Sarah Thomas
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
| | | | - Tokhir Dadaev
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
| | | | | | - D. Gareth Evans
- Genetic Medicine, Manchester Academic Health Sciences CentreCentral Manchester University Hospitals NHS Foundation TrustManchesterUK
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and PathologyPomeranian Medical University in SzczecinSzczecinPoland
| | - Annelie Liljegren
- Karolinska University Hospital and Karolinska InstitutetStockholmSweden
| | - Soo H. Teo
- Cancer Research Initiatives FoundationSubang Jaya Medical CentreSelangorDarul EhsanMalaysia
| | - Lucy Side
- Wessex Clinical Genetics ServicePrincess Anne HospitalSouthamptonUK
| | | | | | - Rosalind A. Eeles
- Oncogenetics TeamThe Institute of Cancer ResearchLondonUK
- Academic Urology UnitRoyal Marsden NHS Foundation TrustLondonUK
| |
Collapse
|
84
|
Adams MN, Croft LV, Urquhart A, Saleem MAM, Rockstroh A, Duijf PHG, Thomas PB, Ferguson GP, Najib IM, Shah ET, Bolderson E, Nagaraj S, Williams ED, Nelson CC, O'Byrne KJ, Richard DJ. hSSB1 (NABP2/OBFC2B) modulates the DNA damage and androgen-induced transcriptional response in prostate cancer. Prostate 2023; 83:628-640. [PMID: 36811381 PMCID: PMC10953336 DOI: 10.1002/pros.24496] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Activation and regulation of androgen receptor (AR) signaling and the DNA damage response impact the prostate cancer (PCa) treatment modalities of androgen deprivation therapy (ADT) and radiotherapy. Here, we have evaluated a role for human single-strand binding protein 1 (hSSB1/NABP2) in modulation of the cellular response to androgens and ionizing radiation (IR). hSSB1 has defined roles in transcription and maintenance of genome stability, yet little is known about this protein in PCa. METHODS We correlated hSSB1 with measures of genomic instability across available PCa cases from The Cancer Genome Atlas (TCGA). Microarray and subsequent pathway and transcription factor enrichment analysis were performed on LNCaP and DU145 prostate cancer cells. RESULTS Our data demonstrate that hSSB1 expression in PCa correlates with measures of genomic instability including multigene signatures and genomic scars that are reflective of defects in the repair of DNA double-strand breaks via homologous recombination. In response to IR-induced DNA damage, we demonstrate that hSSB1 regulates cellular pathways that control cell cycle progression and the associated checkpoints. In keeping with a role for hSSB1 in transcription, our analysis revealed that hSSB1 negatively modulates p53 and RNA polymerase II transcription in PCa. Of relevance to PCa pathology, our findings highlight a transcriptional role for hSSB1 in regulating the androgen response. We identified that AR function is predicted to be impacted by hSSB1 depletion, whereby this protein is required to modulate AR gene activity in PCa. CONCLUSIONS Our findings point to a key role for hSSB1 in mediating the cellular response to androgen and DNA damage via modulation of transcription. Exploiting hSSB1 in PCa might yield benefits as a strategy to ensure a durable response to ADT and/or radiotherapy and improved patient outcomes.
Collapse
Affiliation(s)
- Mark N. Adams
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Laura V. Croft
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Aaron Urquhart
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | | | - Anja Rockstroh
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Pascal H. G. Duijf
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
- Centre for Data ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Medical GeneticsOslo University HospitalOsloNorway
- Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | - Patrick B. Thomas
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
- Queensland Bladder Cancer InitiativeWoolloongabbaQueenslandAustralia
- Australian Prostate Cancer Research Centre – QueenslandBrisbaneQueenslandAustralia
| | - Genevieve P. Ferguson
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Idris Mohd Najib
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Esha T. Shah
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Emma Bolderson
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Shivashankar Nagaraj
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| | - Elizabeth D. Williams
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
- Queensland Bladder Cancer InitiativeWoolloongabbaQueenslandAustralia
- Australian Prostate Cancer Research Centre – QueenslandBrisbaneQueenslandAustralia
| | - Colleen C. Nelson
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
- Australian Prostate Cancer Research Centre – QueenslandBrisbaneQueenslandAustralia
| | - Kenneth J. O'Byrne
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
- Australian Prostate Cancer Research Centre – QueenslandBrisbaneQueenslandAustralia
- Cancer ServicesPrincess Alexandra HospitalWoolloongabbaQueenslandAustralia
| | - Derek J. Richard
- School of Biomedical Sciences, Faculty of Health, Translational Research InstituteQueensland University of TechnologyWoolloongabbaQueenslandAustralia
| |
Collapse
|
85
|
Taylor AK, Kosoff D, Emamekhoo H, Lang JM, Kyriakopoulos CE. PARP inhibitors in metastatic prostate cancer. Front Oncol 2023; 13:1159557. [PMID: 37168382 PMCID: PMC10165068 DOI: 10.3389/fonc.2023.1159557] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Poly-ADP ribose polymerase inhibitors (PARPi) are an emerging therapeutic option for the treatment of prostate cancer. Their primary mechanism of action is via induction of synthetic lethality in cells with underlying deficiencies in homologous recombination repair (HRR). In men with metastatic castrate-resistant prostate cancer (mCRPC) and select HRR pathway alterations, PARPi treatment has been shown to induce objective tumor responses as well as improve progression free and overall survival. Presently, there are two PARPi, olaparib and rucaparib, that are FDA approved in the treatment of mCRPC. Ongoing research is focused on identifying which HRR alterations are best suited to predict response to PARPi so that these therapies can be most effectively utilized in the clinic. While resistance to PARPi remains a concern, combination therapies may represent a mechanism to overcome or delay resistance.
Collapse
Affiliation(s)
- Amy K. Taylor
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - David Kosoff
- Department of Medicine, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Hamid Emamekhoo
- Department of Medicine, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Joshua M. Lang
- Department of Medicine, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Christos E. Kyriakopoulos
- Department of Medicine, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
86
|
Liu J, Zhao Y, He D, Jones KM, Tang S, Allison DB, Zhang Y, Chen J, Zhang Q, Wang X, Li C, Wang C, Li L, Liu X. A kinome-wide CRISPR screen identifies CK1α as a target to overcome enzalutamide resistance of prostate cancer. Cell Rep Med 2023; 4:101015. [PMID: 37075701 PMCID: PMC10140619 DOI: 10.1016/j.xcrm.2023.101015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Enzalutamide (ENZA), a second-generation androgen receptor antagonist, has significantly increased progression-free and overall survival of patients with metastatic prostate cancer (PCa). However, resistance remains a prominent obstacle in treatment. Utilizing a kinome-wide CRISPR-Cas9 knockout screen, we identified casein kinase 1α (CK1α) as a therapeutic target to overcome ENZA resistance. Depletion or pharmacologic inhibition of CK1α enhanced ENZA efficacy in ENZA-resistant cells and patient-derived xenografts. Mechanistically, CK1α phosphorylates the serine residue S1270 and modulates the protein abundance of ataxia telangiectasia mutated (ATM), a primary initiator of DNA double-strand break (DSB)-response signaling, which is compromised in ENZA-resistant cells and patients. Inhibition of CK1α stabilizes ATM, resulting in the restoration of DSB signaling, and thus increases ENZA-induced cell death and growth arrest. Our study details a therapeutic approach for ENZA-resistant PCa and characterizes a particular perspective for the function of CK1α in the regulation of DNA-damage response.
Collapse
Affiliation(s)
- Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Katelyn M Jones
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Shan Tang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Derek B Allison
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Qiongsi Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Xinyi Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Lang Li
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
87
|
Storey CM, Altai M, Bicak M, Veach DR, Lückerath K, Adrian G, McDevitt MR, Kalidindi T, Park JE, Herrmann K, Abou D, Zedan W, Peekhaus N, Klein RJ, Damoiseaux R, Larson SM, Lilja H, Thorek D, Ulmert D. Quantitative In Vivo Imaging of the Androgen Receptor Axis Reveals Degree of Prostate Cancer Radiotherapy Response. Mol Cancer Res 2023; 21:307-315. [PMID: 36608299 PMCID: PMC10355285 DOI: 10.1158/1541-7786.mcr-22-0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Noninvasive biomarkers for androgen receptor (AR) pathway activation are urgently needed to better monitor patient response to prostate cancer therapies. AR is a critical driver and mediator of resistance of prostate cancer but currently available noninvasive prostate cancer biomarkers to monitor AR activity are discordant with downstream AR pathway activity. External beam radiotherapy (EBRT) remains a common treatment for all stages of prostate cancer, and DNA damage induced by EBRT upregulates AR pathway activity to promote therapeutic resistance. [89Zr]11B6-PET is a novel modality targeting prostate-specific protein human kallikrein 2 (hK2), which is a surrogate biomarker for AR activity. Here, we studied whether [89Zr]11B6-PET can accurately assess EBRT-induced AR activity.Genetic and human prostate cancer mouse models received EBRT (2-50 Gy) and treatment response was monitored by [89Zr]11B6-PET/CT. Radiotracer uptake and expression of AR and AR target genes was quantified in resected tissue.EBRT increased AR pathway activity and [89Zr]11B6 uptake in LNCaP-AR and 22RV1 tumors. EBRT increased prostate-specific [89Zr]11B6 uptake in prostate cancer-bearing mice (Hi-Myc x Pb_KLK2) with no significant changes in uptake in healthy (Pb_KLK2) mice, and this correlated with hK2 protein levels. IMPLICATIONS hK2 expression in prostate cancer tissue is a proxy of EBRT-induced AR activity that can noninvasively be detected using [89Zr]11B6-PET; further clinical evaluation of hK2-PET for monitoring response and development of resistance to EBRT in real time is warranted.
Collapse
Affiliation(s)
- Claire M Storey
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, USA
| | - Mohamed Altai
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mesude Bicak
- Hasso Plattner Institute for Digital Health, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, USA
| | - Katharina Lückerath
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, DKTK, Essen, Germany
| | - Gabriel Adrian
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Michael R McDevitt
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, USA
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, USA
| | - Julie E Park
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, DKTK, Essen, Germany
| | - Diane Abou
- Department of Radiology, Washington University School of Medicine, St. Louis, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, USA
| | - Wahed Zedan
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Norbert Peekhaus
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Robert J Klein
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Robert Damoiseaux
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, USA
- California NanoSystems Institute, UCLA, Los Angeles, USA
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, USA
| | - Hans Lilja
- Genitourinary Oncology Service, Department of Medicine, MSKCC, New York, USA
- Urology Service, Department of Surgery, MSKCC, New York, USA
- Department of Laboratory Medicine, MSKCC, New York, USA
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Daniel Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, USA
| | - David Ulmert
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, USA
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
- California NanoSystems Institute, UCLA, Los Angeles, USA
- Department of Urology, Institute of Urologic Oncology, UCLA, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, USA
| |
Collapse
|
88
|
Tisseverasinghe S, Bahoric B, Anidjar M, Probst S, Niazi T. Advances in PARP Inhibitors for Prostate Cancer. Cancers (Basel) 2023; 15:1849. [PMID: 36980735 PMCID: PMC10046616 DOI: 10.3390/cancers15061849] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Poly-adenosine diphosphate-ribose polymerase plays an essential role in cell function by regulating apoptosis, genomic stability and DNA repair. PARPi is a promising drug class that has gained significant traction in the last decade with good outcomes in different cancers. Several trials have sought to test its effectiveness in metastatic castration resistant prostate cancer (mCRPC). We conducted a comprehensive literature review to evaluate the current role of PARPi in this setting. To this effect, we conducted queries in the PubMed, Embase and Cochrane databases. We reviewed and compared all major contemporary publications on the topic. In particular, recent phase II and III studies have also demonstrated the benefits of olaparib, rucaparib, niraparib, talazoparib in CRPC. Drug effectiveness has been assessed through radiological progression or overall response. Given the notion of synthetic lethality and potential synergy with other oncological therapies, several trials are looking to integrate PARPi in combined therapies. There remains ongoing controversy on the need for genetic screening prior to treatment initiation as well as the optimal patient population, which would benefit most from PARPi. PARPi is an important asset in the oncological arsenal for mCRPC. New combinations with PARPi may improve outcomes in earlier phases of prostate cancer.
Collapse
Affiliation(s)
| | - Boris Bahoric
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Maurice Anidjar
- Department of Urology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Stephan Probst
- Department of Nuclear Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Tamim Niazi
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
89
|
Lapini A, Caffo O, Conti GN, Pappagallo G, Del Re M, D'Angelillo RM, Capoluongo ED, Castiglione F, Brunelli M, Iacovelli R, De Giorgi U, Bracarda S. Matching BRCA and prostate cancer in a public health system: Report of the Italian Society for Uro-Oncology (SIUrO) consensus project. Crit Rev Oncol Hematol 2023; 184:103959. [PMID: 36921782 DOI: 10.1016/j.critrevonc.2023.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The recent approval of PARP inhibitors for the treatment of metastatic -castration-resistant prostate cancer (mCRPC) patients with BRCA mutations firstly introduced the possibility of proposing a targeted treatment in this disease. However, the availability of this therapeutic option raises a number of questions concerning the management of prostate cancer in everyday clinical practice: the timing and method of detecting BRCA mutations, the therapeutic implications of the detection, and the screening of the members of the family of a prostate cancer patient with a BRCA alteration. These challenging issues led the Italian Society for Uro-Oncology (SIUrO) to organise a Consensus Conference aimed to develop suggestions capable of supporting clinicians managing prostate cancer patients. The present paper described the development of the statements discussed during the consensus, which involved all of the most important Italian scientific societies engaged in the multi-disciplinary and multi-professional management of the disease.
Collapse
Affiliation(s)
- Alberto Lapini
- Department of Urology, University of Florence, University Hospital of Florence, Largo Brambilla, 3, 50134 Florence, Italy
| | - Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, Largo Medaglie d'Oro, 38122 Trento, Italy.
| | - Giario Natale Conti
- Italian Society for Uro-Oncology (SIURO), Via Dante 17, 40125 Bologna, Italy
| | - Giovanni Pappagallo
- IRCCS "Sacro Cuore - Don Calabria", Viale Luigi Rizzardi, 4, 37024 Negrar di Valpolicella, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma, 67, 56126 Pisa, Italy
| | - Rolando Maria D'Angelillo
- Radiation Oncology, Department of Biomedicine and Prevention University of Rome "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Ettore Domenico Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Pansini 5, 80131 Naples, Italy; Department of Clinical Pathology and Genomics, Azienda Ospedaliera per L'Emergenza Cannizzaro, Via Messina 829, 95126 Catania, Italy
| | - Francesca Castiglione
- Department of Pathology, University of Florence, Largo Brambilla, 3, 50134 Florence, Italy
| | - Matteo Brunelli
- Unit of Pathology, Department of Diagnostics and Public Health, University of Verona, P.le L.A. Scuro 10, 37134 Verona, Italy
| | - Roberto Iacovelli
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Ugo De Giorgi
- Unit of Medical Oncology, IRCCS-Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Via Maroncelli 40, 47014 Meldola, Italy
| | - Sergio Bracarda
- Medical and Translational Oncology, Department of Oncology, Azienda Ospedaliera Santa Maria, Viale Tristano di Joannuccio, 05100 Terni, Italy
| |
Collapse
|
90
|
Shi F, Wu L, Cui D, Sun M, Shen Y, Zhou Z, Deng Z, Han B, Xia S, Zhu Z, Sun F. LncFALEC recruits ART5/PARP1 and promotes castration-resistant prostate cancer through enhancing PARP1-meditated self PARylation. Cell Oncol (Dordr) 2023; 46:761-776. [PMID: 36913068 DOI: 10.1007/s13402-023-00783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are abnormal expression in various malignant tumors. Our previous research demonstrated that focally amplified long non-coding RNA (lncRNA) on chromosome 1 (FALEC) is an oncogenic lncRNA in prostate cancer (PCa). However, the role of FALEC in castration-resistant prostate cancer (CRPC) is poorly understood. In this study, we showed FALEC was upregulated in post-castration tissues and CRPC cells, and increased FALEC expression was associated with poor survival in post-castration PCa patients. RNA FISH demonstrated FALEC was translocated into nucleus in CRPC cells. RNA pulldown and followed Mass Spectrometry (MS) assay demonstrated FALEC directly interacted with PARP1 and loss of function assay showed FALEC depletion sensitized CRPC cells to castration treatment and restored NAD+. Specific PARP1 inhibitor AG14361 and NAD+ endogenous competitor NADP+ sensitized FALEC-deleted CRPC cells to castration treatment. FALEC increasing PARP1 meditated self PARylation through recruiting ART5 and down regulation of ART5 decreased CRPC cell viability and restored NAD+ through inhibiting PARP1meditated self PARylation in vitro. Furthermore, ART5 was indispensable for FALEC directly interaction and regulation of PARP1, loss of ART5 impaired FALEC and PARP1 associated self PARylation. In vivo, FALEC depleted combined with PARP1 inhibitor decreased CRPC cell derived tumor growth and metastasis in a model of castration treatment NOD/SCID mice. Together, these results established that FALEC may be a novel diagnostic marker for PCa progression and provides a potential new therapeutic strategy to target the FALEC/ART5/PARP1 complex in CRPC patients.
Collapse
Affiliation(s)
- Fei Shi
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Lei Wu
- Department of Urology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Di Cui
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Menghao Sun
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Yuanhao Shen
- School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Zhou
- Department of Urology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Zheng Deng
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Bangmin Han
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Shujie Xia
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.,Department of Urology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zheng Zhu
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA, 95817, USA.
| | - Feng Sun
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China. .,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
91
|
Rangsrikitphoti P, Marquez-Garban DC, Pietras RJ, McGowan E, Boonyaratanakornkit V. Sex steroid hormones and DNA repair regulation: Implications on cancer treatment responses. J Steroid Biochem Mol Biol 2023; 227:106230. [PMID: 36450315 DOI: 10.1016/j.jsbmb.2022.106230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The role of sex steroid hormones (SSHs) has been shown to modulate cancer cytotoxic treatment sensitivity. Dysregulation of DNA repair associated with genomic instability, abnormal cell survival and not only promotes cancer progression but also resistance to cancer treatment. The three major SSHs, androgen, estrogen, and progesterone, have been shown to interact with several essential DNA repair components. The presence of androgens directly regulates key molecules in DNA double-strand break (DSB) repair. Estrogen can promote cell proliferation and DNA repair, allowing cancer cells to tolerate chemotherapy and radiotherapy. Information on the role of progesterone in DNA repair is limited: progesterone interaction with some DNA repair components has been identified, but the biological significance is still unknown. Here, we review the roles of how each SSH affects DNA repair regulation and modulates response to genotoxic therapies and discuss future research that can be beneficial when combining SSHs with cancer therapy. We also provide preliminary analysis from publicly available databases defining the link between progesterone/PR and DDRs & DNA repair regulation that plausibly contribute to chemotherapy response and breast cancer patient survival.
Collapse
Affiliation(s)
- Pattarasiri Rangsrikitphoti
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Diana C Marquez-Garban
- UCLA Jonsson Comprehensive Cancer and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Richard J Pietras
- UCLA Jonsson Comprehensive Cancer and Department of Medicine, Division of Hematology-Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Viroj Boonyaratanakornkit
- Graduate Program in Clinical Biochemistry and Molecular Medicine and Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Age-related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
92
|
Lückerath K, Trajkovic-Arsic M, Mona CE. Fibroblast Activation Protein Inhibitor Theranostics. PET Clin 2023:S1556-8598(23)00019-6. [PMID: 36990945 DOI: 10.1016/j.cpet.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fibroblast activation protein (FAP)-radioligand therapy might be effective in some patients without being curative. FAP-radioligands deliver ionizing radiation directly to FAP+ cancer-associated fibroblasts and, in some cancers, to FAP+ tumor cells; in addition, they indirectly irradiate FAP- cells in tumor tissue via cross-fire and bystander effects. Here, we discuss the potential to improve FAP-radioligand therapy through interfering with DNA damage repair, immunotherapy, and co-targeting cancer-associated fibroblasts. As the molecular and cellular effects of FAP-radioligands on the tumor and its microenvironment have not been investigated yet, we call for future research to close this gap in knowledge, which prevents the development of more effective FAP-radioligand therapies.
Collapse
Affiliation(s)
- Katharina Lückerath
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, DKTK and German Cancer Research Center (DKFZ) Partner Side Essen, Hufelandstrasse 15, 45147, Germany; Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Christine E Mona
- Ahmanson Translational Theranostic Division, Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Drive S, Los Angeles, CA 90095, USA.
| |
Collapse
|
93
|
ESTRO-ACROP recommendations for evidence-based use of androgen deprivation therapy in combination with external-beam radiotherapy in prostate cancer. Radiother Oncol 2023; 183:109544. [PMID: 36813168 DOI: 10.1016/j.radonc.2023.109544] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND AND PURPOSE There is no consensus concerning the appropriate use of androgen deprivation therapy (ADT) during primary and postoperative external-beam radiotherapy (EBRT) in the management of prostate cancer (PCa). Thus, the European Society for Radiotherapy and Oncology (ESTRO) Advisory Committee for Radiation Oncology Practice (ACROP) guidelines seeks to present current recommendations for the clinical use of ADT in the various indications of EBRT. MATERIAL AND METHODS A literature search was conducted in MEDLINE PubMed that evaluated EBRT and ADT in prostate cancer. The search focused on randomized, Phase II and III trials published in English from January 2000 to May 2022. In case topics were addressed in the absence of Phase II or III trials, recommendations were labelled accordingly based on the limited body of evidence. Localized PCa was classified according to D'Amico et al. classification in low-, intermediate and high risk PCa. The ACROP clinical committee identified 13 European experts who discussed and analyzed the body of evidence concerning the use of ADT with EBRT for prostate cancer. RESULTS Key issues were identified and are discussed: It was concluded that no additional ADT is recommended for low-risk prostate cancer patients, whereas for intermediate- and high-risk patients four to six months and two to three years of ADT are recommended. Likewise, patients with locally advanced prostate cancer are recommended to receive ADT for two to three years and when ≥ 2 high-risk factors (cT3-4, ISUP grade ≥ 4 or PSA ≥ 40 ng/ml) or cN1 is present ADT for three years plus additional Abiraterone for two years is recommended. For postoperative patients no ADT is recommended for adjuvant EBRT in pN0 patients whereas for pN1 patients adjuvant EBRT with long-term ADT is performed for at least 24 to 36 months. In the setting of salvage EBRT ADT is performed in biochemically persistent PCa patients with no evidence of metastatic disease. Long-term ADT (24 months) is recommended in pN0 patients with high risk of further progression (PSA ≥ 0.7 ng/ml and ISUP grade group ≥ 4) and a life expectancy of over ten years, whereas short-term ADT (6 months) is recommended in pN0 patients with lower risk profile (PSA < 0.7 ng/ml and ISUP grade group 4). Patients considered for ultra-hypofractionated EBRT as well as patients with image based local recurrence within the prostatic fossa or lymph node recurrence should participate in appropriate clinical trials evaluating the role of additional ADT. CONCLUSION These ESTRO-ACROP recommendations are evidence-based and relevant to the use of ADT in combination with EBRT in PCa for the most common clinical settings.
Collapse
|
94
|
Tran PT, Lowe K, Tsai HL, Song DY, Hung AY, Hearn JW, Miller S, Proudfoot JA, Deek MP, Phillips R, Lotan T, Paller CJ, Marshall CH, Markowski M, Dipasquale S, Denmeade S, Carducci M, Eisenberger M, DeWeese TL, Orton M, Deville C, Davicioni E, Liauw SL, Heath EI, Greco S, Desai NB, Spratt DE, Feng F, Wang H, Beer TM, Antonarakis ES. Phase II Randomized Study of Salvage Radiation Therapy Plus Enzalutamide or Placebo for High-Risk Prostate-Specific Antigen Recurrent Prostate Cancer After Radical Prostatectomy: The SALV-ENZA Trial. J Clin Oncol 2023; 41:1307-1317. [PMID: 36367998 PMCID: PMC9940936 DOI: 10.1200/jco.22.01662] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE We sought to investigate whether enzalutamide (ENZA), without concurrent androgen deprivation therapy, increases freedom from prostate-specific antigen (PSA) progression (FFPP) when combined with salvage radiation therapy (SRT) in men with recurrent prostate cancer after radical prostatectomy (RP). PATIENTS AND METHODS Men with biochemically recurrent prostate cancer after RP were enrolled into a randomized, double-blind, phase II, placebo-controlled, multicenter study of SRT plus ENZA or placebo (ClinicalTrials.gov identifier: NCT02203695). Random assignment (1:1) was stratified by center, surgical margin status (R0 v R1), PSA before salvage treatment (PSA ≥ 0.5 v < 0.5 ng/mL), and pathologic Gleason sum (7 v 8-10). Patients were assigned to receive either ENZA 160 mg once daily or matching placebo for 6 months. After 2 months of study drug therapy, external-beam radiation (66.6-70.2 Gy) was administered to the prostate bed (no pelvic nodes). The primary end point was FFPP in the intention-to-treat population. Secondary end points were time to local recurrence within the radiation field, metastasis-free survival, and safety as determined by frequency and severity of adverse events. RESULTS Eighty-six (86) patients were randomly assigned, with a median follow-up of 34 (range, 0-52) months. Trial arms were well balanced. The median pre-SRT PSA was 0.3 (range, 0.06-4.6) ng/mL, 56 of 86 patients (65%) had extraprostatic disease (pT3), 39 of 86 (45%) had a Gleason sum of 8-10, and 43 of 86 (50%) had positive surgical margins (R1). FFPP was significantly improved with ENZA versus placebo (hazard ratio [HR], 0.42; 95% CI, 0.19 to 0.92; P = .031), and 2-year FFPP was 84% versus 66%, respectively. Subgroup analyses demonstrated differential benefit of ENZA in men with pT3 (HR, 0.22; 95% CI, 0.07 to 0.69) versus pT2 disease (HR, 1.54; 95% CI, 0.43 to 5.47; Pinteraction = .019) and R1 (HR, 0.14; 95% CI, 0.03 to 0.64) versus R0 disease (HR, 1.00; 95% CI, 0.36 to 2.76; Pinteraction = .023). There were insufficient secondary end point events for analysis. The most common adverse events were grade 1-2 fatigue (65% ENZA v 53% placebo) and urinary frequency (40% ENZA v 49% placebo). CONCLUSION SRT plus ENZA monotherapy for 6 months in men with PSA-recurrent high-risk prostate cancer after RP is safe and delays PSA progression relative to SRT alone. The impact of ENZA on distant metastasis or survival is unknown at this time.
Collapse
Affiliation(s)
- Phuoc T. Tran
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
- Current address: Department of Radiation Oncology, University of Maryland, Baltimore, MD
| | - Kathryn Lowe
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hua-Ling Tsai
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel Y. Song
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Arthur Y. Hung
- Department of Radiation Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Jason W.D. Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Steven Miller
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI
| | | | - Matthew P. Deek
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan Phillips
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tamara Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Channing J. Paller
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine H. Marshall
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark Markowski
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shirl Dipasquale
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Samuel Denmeade
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael Carducci
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mario Eisenberger
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Theodore L. DeWeese
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Matthew Orton
- Department of Radiation Oncology, Indiana University Health Arnett, Lafayette, IN
| | - Curtiland Deville
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Stanley L. Liauw
- Department of Radiation Oncology and Cellular Oncology, University of Chicago, Chicago, IL
| | - Elisabeth I. Heath
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI
| | - Stephen Greco
- Department of Radiation Oncology & Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Neil B. Desai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniel E. Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH
| | - Felix Feng
- Departments of Medicine, Radiation Oncology and Urology, University of California San Francisco, San Francisco, CA
| | - Hao Wang
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tomasz M. Beer
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Emmanuel S. Antonarakis
- Department of Medical Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
95
|
Swami N, Nguyen T, Ogobuiro I, Abramowitz M, Chipidza F, Davicioni E, Meiyappan K, Pra AD, Nguyen PL, Pollack A, Punnen S, Mahal BA, Alshalalfa M. Distinct Profiles of DNA Repair Activity Define Favorable-risk Prostate Cancer Subtypes With Divergent Outcome. Clin Genitourin Cancer 2023; 21:76-83. [PMID: 36522269 DOI: 10.1016/j.clgc.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Understanding if divergent molecular profiles of DNA damage and repair (DDR) pathway activity, a biomarker of disease progression, exist in prostate tumors with favorable-risk features is an unmet need, which this study aim to unearth. MATERIALS AND METHODS This was a multicenter registry genome-wide expression profiling study of prospectively collected radical prostatectomy (RP) tumor samples from 2014 to 2016. DDR activity was calculated from average expression of 372 DDR genes. Consensus hierarchical clustering was used to arrive at a robust clustering solution based on DDR gene expression patterns. Genome-wide differential expression between clusters was performed, and outcomes were evaluated across expression patterns. RESULTS Of 5239 patients from the prospective registry, 376 had favorable-risk disease (Grade group [GG] 1 to 2, PSA prior to RP <10ng/ml, pT2 or less). DDR activity score was correlated with prognostic genomic signatures that predict for metastatic risk (r = 0.37, P < 2e-16) and high grade groups (P < .001). High DDR activity (top-quartile) was observed in 28% of patients with favorable-risk disease. In favorable-risk disease, 3 distinct clusters with varied DDR activity emerged with consensus clustering. Cluster I (compared with cluster II-III and GG3-GG5 disease) had the highest expression of all DDR sub-pathways, MYC, PAPR1, AR, and AR activity (P < .001 for all). Furthermore, cluster I was associated with poorer metastasis-free survival (MFS) and Overall survival (OS) compared with other clusters (MFS; HR: 2.43, 95%CI, [1.22-4.83], P = .01; OS; HR: 2.77, 95%CI, [1.18-6.5], P = .01). CONCLUSIONS Cluster I is a novel subgroup of favorable-risk disease with high DDR activity, AR activity, PARP1 and chr8q/MYC expression, and poorer MFS and OS.
Collapse
Affiliation(s)
- Nishwant Swami
- University of Massachusetts Medical School, Worcester, MA
| | - Tiffany Nguyen
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Ifeanyichukwu Ogobuiro
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Matthew Abramowitz
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Fallon Chipidza
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA
| | | | - Karthik Meiyappan
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Alan Dal Pra
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Paul L Nguyen
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA
| | - Alan Pollack
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Sanoj Punnen
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Brandon A Mahal
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL
| | - Mohammed Alshalalfa
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL.
| |
Collapse
|
96
|
Ma TM, Sun Y, Malone S, Roach M, Dearnaley D, Pisansky TM, Feng FY, Sandler HM, Efstathiou JA, Syndikus I, Hall EC, Tree AC, Sydes MR, Cruickshank C, Roy S, Bolla M, Maingon P, De Reijke T, Nabid A, Carrier N, Souhami L, Zapatero A, Guerrero A, Alvarez A, Gonzalez San-Segundo C, Maldonado X, Romero T, Steinberg ML, Valle LF, Rettig MB, Nickols NG, Shoag JE, Reiter RE, Zaorsky NG, Jia AY, Garcia JA, Spratt DE, Kishan AU. Sequencing of Androgen-Deprivation Therapy of Short Duration With Radiotherapy for Nonmetastatic Prostate Cancer (SANDSTORM): A Pooled Analysis of 12 Randomized Trials. J Clin Oncol 2023; 41:881-892. [PMID: 36269935 PMCID: PMC9902004 DOI: 10.1200/jco.22.00970] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023] Open
Abstract
PURPOSE The sequencing of androgen-deprivation therapy (ADT) with radiotherapy (RT) may affect outcomes for prostate cancer in an RT-field size-dependent manner. Herein, we investigate the impact of ADT sequencing for men receiving ADT with prostate-only RT (PORT) or whole-pelvis RT (WPRT). MATERIALS AND METHODS Individual patient data from 12 randomized trials that included patients receiving neoadjuvant/concurrent or concurrent/adjuvant short-term ADT (4-6 months) with RT for localized disease were obtained from the Meta-Analysis of Randomized trials in Cancer of the Prostate consortium. Inverse probability of treatment weighting (IPTW) was performed with propensity scores derived from age, initial prostate-specific antigen, Gleason score, T stage, RT dose, and mid-trial enrollment year. Metastasis-free survival (primary end point) and overall survival (OS) were assessed by IPTW-adjusted Cox regression models, analyzed independently for men receiving PORT versus WPRT. IPTW-adjusted Fine and Gray competing risk models were built to evaluate distant metastasis (DM) and prostate cancer-specific mortality. RESULTS Overall, 7,409 patients were included (6,325 neoadjuvant/concurrent and 1,084 concurrent/adjuvant) with a median follow-up of 10.2 years (interquartile range, 7.2-14.9 years). A significant interaction between ADT sequencing and RT field size was observed for all end points (P interaction < .02 for all) except OS. With PORT (n = 4,355), compared with neoadjuvant/concurrent ADT, concurrent/adjuvant ADT was associated with improved metastasis-free survival (10-year benefit 8.0%, hazard ratio [HR], 0.65; 95% CI, 0.54 to 0.79; P < .0001), DM (subdistribution HR, 0.52; 95% CI, 0.33 to 0.82; P = .0046), prostate cancer-specific mortality (subdistribution HR, 0.30; 95% CI, 0.16 to 0.54; P < .0001), and OS (HR, 0.69; 95% CI, 0.57 to 0.83; P = .0001). However, in patients receiving WPRT (n = 3,049), no significant difference in any end point was observed in regard to ADT sequencing except for worse DM (HR, 1.57; 95% CI, 1.20 to 2.05; P = .0009) with concurrent/adjuvant ADT. CONCLUSION ADT sequencing exhibits a significant impact on clinical outcomes with a significant interaction with field size. Concurrent/adjuvant ADT should be the standard of care where short-term ADT is indicated in combination with PORT.
Collapse
Affiliation(s)
- Ting Martin Ma
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Yilun Sun
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Shawn Malone
- The Ottawa Hospital Cancer Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Mack Roach
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| | - David Dearnaley
- Academic Urology Unit, Royal Marsden Hospital, London, United Kingdom
- Institute of Cancer Research, London, United Kingdom
| | | | - Felix Y. Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| | | | - Jason A. Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Isabel Syndikus
- Clatterbridge Cancer Centre, Bebington, Wirral, United Kingdom
| | - Emma C. Hall
- Clinical Trials and Statistics Unit (ICR-CTSU), The Institute of Cancer Research, London, United Kingdom
| | - Alison C. Tree
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, London, United Kingdom
| | | | - Claire Cruickshank
- Clinical Trials and Statistics Unit (ICR-CTSU), The Institute of Cancer Research, London, United Kingdom
| | - Soumyajit Roy
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL
| | - Michel Bolla
- Radiotherapy Department Grenoble, Grenoble Alpes University, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Philippe Maingon
- Sorbonne University, APHP Sorbonne University, La Pitié Salpêtrière, Paris, France
| | - Theo De Reijke
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Abdenour Nabid
- Department of Radiation Oncology, Centre Hospitaler Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Nathalie Carrier
- Department of Radiation Oncology, Centre Hospitaler Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Luis Souhami
- Division of Radiation Oncology, McGill University Health Center, Montreal, Canada
| | - Almudena Zapatero
- Department of Radiation Oncology, University Hospital La Princesa, Health Research Institute, Madrid, Spain
| | | | - Ana Alvarez
- Department of Radiation Oncology, University Hospital Gregorio Maranon, Complutense University, Madrid, Spain
| | - Carmen Gonzalez San-Segundo
- Department of Radiation Oncology, University Hospital Gregorio Maranon, Complutense University, Madrid, Spain
| | | | - Tahmineh Romero
- Department of Medicine Statistics Core, University of California Los Angeles, Los Angeles, CA
| | | | - Luca F. Valle
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Matthew B. Rettig
- Department of Urology, University of California, Los Angeles, CA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA
| | | | - Jonathan E. Shoag
- Department of Urology, University Hospitals Seidman Cancer Center, Cleveland Medical Center, Cleveland, OH
| | - Robert E. Reiter
- Department of Urology, University of California, Los Angeles, CA
| | - Nicholas G. Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland Medical Center, Cleveland, OH
| | - Angela Y. Jia
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland Medical Center, Cleveland, OH
| | - Jorge A. Garcia
- Department of Hematology Oncology, University Hospital Cleveland Medical Center, Cleveland, OH
| | - Daniel E. Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Cleveland Medical Center, Cleveland, OH
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles, CA
- Department of Urology, University of California, Los Angeles, CA
| |
Collapse
|
97
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
98
|
Suominen MI, Knuuttila M, Schatz CA, Schlicker A, Vääräniemi J, Sjöholm B, Alhoniemi E, Haendler B, Mumberg D, Käkönen SM, Scholz A. Enhanced Antitumor Efficacy of Radium-223 and Enzalutamide in the Intratibial LNCaP Prostate Cancer Model. Int J Mol Sci 2023; 24:ijms24032189. [PMID: 36768509 PMCID: PMC9916479 DOI: 10.3390/ijms24032189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Radium-223 dichloride and enzalutamide are indicated for metastatic castration-resistant prostate cancer and their combination is currently being investigated in a large phase 3 clinical trial. Here, we evaluated the antitumor efficacy of radium-223, enzalutamide, and their combination in the intratibial LNCaP model mimicking prostate cancer metastasized to bone. In vitro experiments revealed that the combination of radium-223 and enzalutamide inhibited LNCaP cell proliferation and showed synergistic efficacy. The combination of radium-223 and enzalutamide also demonstrated enhanced in vivo antitumor efficacy, as determined by measuring serum PSA levels in the intratibial LNCaP model. A decreasing trend in the total area of tumor-induced abnormal bone was associated with the combination treatment. The serum levels of the bone formation marker PINP and the bone resorption marker CTX-I were lowest in the combination treatment group and markedly decreased compared with vehicle group. Concurrent administration of enzalutamide did not impair radium-223 uptake in tumor-bearing bone or the ability of radium-223 to inhibit tumor-induced abnormal bone formation. In conclusion, combination treatment with radium-223 and enzalutamide demonstrated enhanced antitumor efficacy without compromising the integrity of healthy bone. The results support the ongoing phase 3 trial of this combination.
Collapse
Affiliation(s)
| | | | | | - Andreas Schlicker
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | | | | | | | - Bernard Haendler
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Dominik Mumberg
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Sanna-Maria Käkönen
- Aurexel Life Sciences Ltd., 21240 Askainen, Finland
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Arne Scholz
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-468-16369
| |
Collapse
|
99
|
Patterson JC, Varkaris A, Croucher PJP, Ridinger M, Dalrymple S, Nouri M, Xie F, Varmeh S, Jonas O, Whitman MA, Chen S, Rashed S, Makusha L, Luo J, Isaacs JT, Erlander MG, Einstein DJ, Balk SP, Yaffe MB. Plk1 Inhibitors and Abiraterone Synergistically Disrupt Mitosis and Kill Cancer Cells of Disparate Origin Independently of Androgen Receptor Signaling. Cancer Res 2023; 83:219-238. [PMID: 36413141 PMCID: PMC9852064 DOI: 10.1158/0008-5472.can-22-1533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Abiraterone is a standard treatment for metastatic castrate-resistant prostate cancer (mCRPC) that slows disease progression by abrogating androgen synthesis and antagonizing the androgen receptor (AR). Here we report that inhibitors of the mitotic regulator polo-like kinase-1 (Plk1), including the clinically active third-generation Plk1 inhibitor onvansertib, synergizes with abiraterone in vitro and in vivo to kill a subset of cancer cells from a wide variety of tumor types in an androgen-independent manner. Gene-expression analysis identified an AR-independent synergy-specific gene set signature upregulated upon abiraterone treatment that is dominated by pathways related to mitosis and the mitotic spindle. Abiraterone treatment alone caused defects in mitotic spindle orientation, failure of complete chromosome condensation, and improper cell division independently of its effects on AR signaling. These effects, although mild following abiraterone monotherapy, resulted in profound sensitization to the antimitotic effects of Plk1 inhibition, leading to spindle assembly checkpoint-dependent mitotic cancer cell death and entosis. In a murine patient-derived xenograft model of abiraterone-resistant metastatic castration-resistant prostate cancer (mCRPC), combined onvansertib and abiraterone resulted in enhanced mitotic arrest and dramatic inhibition of tumor cell growth compared with either agent alone. Overall, this work establishes a mechanistic basis for the phase II clinical trial (NCT03414034) testing combined onvansertib and abiraterone in mCRPC patients and indicates this combination may have broad utility for cancer treatment. SIGNIFICANCE Abiraterone treatment induces mitotic defects that sensitize cancer cells to Plk1 inhibition, revealing an AR-independent mechanism for this synergistic combination that is applicable to a variety of cancer types.
Collapse
Affiliation(s)
- Jesse C. Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andreas Varkaris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA,Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Susan Dalrymple
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mannan Nouri
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Fang Xie
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shohreh Varmeh
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew A. Whitman
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sen Chen
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Saleh Rashed
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lovemore Makusha
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - John T. Isaacs
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | - David J. Einstein
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Steven P. Balk
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Michael B. Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
100
|
Quinn Z, Leiby B, Sonpavde G, Choudhury AD, Sweeney C, Einstein D, Szmulewitz R, Sartor O, Knudsen K, Yang ESH, Kelly WK. Phase I Study of Niraparib in Combination with Radium-223 for the Treatment of Metastatic Castrate-Resistant Prostate Cancer. Clin Cancer Res 2023; 29:50-59. [PMID: 36321991 PMCID: PMC9812873 DOI: 10.1158/1078-0432.ccr-22-2526] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE To identify the safety of niraparib, a PARP inhibitor, in combination with Radium-223 for the treatment of metastatic castrate-resistant prostate cancer (mCRPC) in men without known BRCA mutations. PATIENTS AND METHODS Men with progressive mCPRC following ≥1 line of androgen receptor (AR)-targeted therapy and bone metastases but no documented BRCA-1 or BRCA-2 alterations or bulky visceral disease were included. Niraparib dose was escalated in combination with standard dosing of Radium-223 using a time-to-event continual reassessment method. The highest dose level with a DLT probability <20% was defined as MTD. Secondary endpoints included PSA change and progression-free survival. Exploratory analyses included assessing DNA mutations found in ctDNA as well as gene expression changes assessed in whole blood samples. RESULTS Thirty patients were treated with niraparib and radium-223: 13 patients received 100 mg, 12 received 200 mg, and 5 patients received 300 mg of niraparib. There were six DLT events: two (13%) for neutropenia, two (13%) for thrombocytopenia, whereas fatigue and nausea each occurred once (3%). Anemia (2/13%) and neutropenia (2/13%) were the most common grade 3 adverse events. For patients with prior chemotherapy exposure, the MTD was 100 mg, whereas the MTD for chemotherapy naïve patients was 200 mg. Whole blood gene expression of PAX5 and CD19 was higher in responders and ARG-1, IL2R, and FLT3 expression was higher in nonresponders. CONCLUSIONS Combining niraparib with Radium-223 in patients with mCRPC was safe; however, further studies incorporating biomarkers will better elucidate the role of combinations of PARP inhibitors with DNA damaging and other agents.
Collapse
Affiliation(s)
- Zachary Quinn
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia PA
| | - Benjamin Leiby
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia PA
| | - Guru Sonpavde
- Lank Center for Genitourinary Oncology, Dana Farber Cancer Institute, Boston MA
| | - Atish D Choudhury
- Lank Center for Genitourinary Oncology, Dana Farber Cancer Institute, Boston MA
| | - Christopher Sweeney
- Lank Center for Genitourinary Oncology, Dana Farber Cancer Institute, Boston MA
| | | | | | - Oliver Sartor
- Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA
| | - Karen Knudsen
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia PA
| | - Eddy Shih-Hsin Yang
- University of Alabama at Birmingham, O’Neal Comprehensive Cancer Center, Birmingham, AL
| | - Wm. Kevin Kelly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia PA
| |
Collapse
|