51
|
Dias IHK, Polidori MC, Li L, Weber D, Stahl W, Nelles G, Grune T, Griffiths HR. Plasma levels of HDL and carotenoids are lower in dementia patients with vascular comorbidities. J Alzheimers Dis 2015; 40:399-408. [PMID: 24448787 DOI: 10.3233/jad-131964] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Elevated serum cholesterol concentrations in mid-life increase risk for Alzheimer's disease (AD) in later life. However, lower concentrations of cholesterol-carrying high density lipoprotein (HDL) and its principal apolipoprotein A1 (ApoA1) correlate with increased risk for AD. As HDL transports oxocarotenoids, which are scavengers of peroxynitrite, we have investigated the hypothesis that lower HDL and oxocarotenoid concentrations during AD may render HDL susceptible to nitration and oxidation and in turn reduce the efficiency of reverse cholesterol transport (RCT) from lipid-laden cells. Fasting blood samples were obtained from subjects with (1) AD without cardiovascular comorbidities and risk factors (AD); (2) AD with cardiovascular comorbidities and risk factors (AD Plus); (3) normal cognitive function; for carotenoid determination by HPLC, analysis of HDL nitration and oxidation by ELISA, and 3H-cholesterol export to isolated HDL. HDL concentration in the plasma from AD Plus patients was significantly lower compared to AD or control subject HDL levels. Similarly, lutein, lycopene, and zeaxanthin concentrations were significantly lower in AD Plus patients compared to those in control subjects or AD patients, and oxocarotenoid concentrations correlated with Mini-Mental State Examination scores. At equivalent concentrations of ApoA1, HDL isolated from all subjects irrespective of diagnosis was equally effective at mediating RCT. HDL concentration is lower in AD Plus patients' plasma and thus capacity for RCT is compromised. In contrast, HDL from patients with AD-only was not different in concentration, modifications, or function from HDL of healthy age-matched donors. The relative importance of elevating HDL alone compared with elevating carotenoids alone or elevating both to reduce risk for dementia should be investigated in patients with early signs of dementia.
Collapse
Affiliation(s)
- Irundika H K Dias
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | - Maria Cristina Polidori
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University, Duesseldorf, Germany Institute of Geriatrics, University of Cologne, Köln, Germany
| | - Li Li
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| | | | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University, Duesseldorf, Germany
| | - Gereon Nelles
- NeuroMed, MedCampus Hohenlind Cologne, Köln, Germany
| | | | - Helen R Griffiths
- Life and Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Birmingham, UK
| |
Collapse
|
52
|
Abstract
Recent epidemiological data suggest a progressive increase of serum levels of uric acid worldwide. This rise in the prevalence of hyperuricemia may be related to the epidemic diffusion of overweight and obesity as well as the shifts in diet with increased consumption of foods rich in purines, alcoholic consumption, and soft drinks sweetened with fructose. The rise in serum uric acid levels worldwide may be regarded as leading an increased risk for gout and other systemic diseases, especially in the cardio-renal system. Therefore, careful management of hyperuricemia with urate deposition is crucial to prevent or even treat those systemic diseases. Despite this, hyperuricemia and gout often remain untreated. This paper reviews current evidence on the management of hyperuricemia with urate deposition, with a focus on its most controversial aspects. This review is based on a PubMed/Embase database search for articles on hyperuricemia and its impact on cardiovascular and renal function.
Collapse
Affiliation(s)
- G Desideri
- a a Department of Life , Health and Environmental Sciences, University of L'Aquila , L'Aquila , Italy
| | - J G Puig
- b b Division of Internal Medicine , Hospital Universitario La Paz, Universidad Autónoma de Madrid , Spain
| | - P Richette
- c c Université Paris 7, UFR médicale, Assistance Publique-Hôpitaux de Paris , Paris , France
- d d Hôpital Lariboisière, Fédération de Rhumatologie , Paris , France
| |
Collapse
|
53
|
Jones DP, Radi R. Redox pioneer: professor Helmut Sies. Antioxid Redox Signal 2014; 21:2459-68. [PMID: 25178739 PMCID: PMC4245851 DOI: 10.1089/ars.2014.6037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/12/2014] [Accepted: 08/31/2014] [Indexed: 12/17/2022]
Abstract
Dr. Helmut Sies (MD, 1967) is recognized as a Redox Pioneer, because he authored five articles on oxidative stress, lycopene, and glutathione, each of which has been cited more than 1000 times, and coauthored an article on hydroperoxide metabolism in mammalian systems cited more than 5000 times (Google Scholar). He obtained preclinical education at the University of Tübingen and the University of Munich, clinical training at Munich (MD, 1967) and Paris, and completed Habilitation at Munich (Physiological Chemistry and Physical Biochemistry, 1972). In early research, he first identified hydrogen peroxide (H2O2) as a normal aerobic metabolite and devised a method to quantify H2O2 concentration and turnover in cells. He quantified central redox systems for energy metabolism (NAD, NADP systems) and antioxidant GSH in subcellular compartments. He first described ebselen, a selenoorganic compound, as a glutathione peroxidase mimic. He contributed a fundamental discovery to the physiology of GSH, selenium nutrition, singlet oxygen biochemistry, and health benefits of dietary lycopene and cocoa flavonoids. He has published more than 600 articles, 134 of which are cited at least 100 times, and edited 28 books. His h-index is 115. During the last quarter of the 20th century and well into the 21st, he has served as a scout, trailblazer, and pioneer in redox biology. His formulation of the concept of oxidative stress stimulated and guided research in oxidants and antioxidants; his pioneering research on carotenoids and flavonoids informed nutritional strategies against cancer, cardiovascular disease, and aging; and his quantitative approach to redox biochemistry provides a foundation for modern redox systems biology. Helmut Sies is a true Redox Pioneer.
Collapse
Affiliation(s)
- Dean P. Jones
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Rafael Radi
- Departamento de Bioquímica, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
54
|
Wu GR, Cheserek M, Shi YH, Shen LY, Yu J, Le GW. Elevated plasma dityrosine in patients with hyperlipidemia compared to healthy individuals. ANNALS OF NUTRITION AND METABOLISM 2014; 66:44-50. [PMID: 25531053 DOI: 10.1159/000365731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dityrosine, the modification of tyrosine residues, may contribute to metabolic disorders. This study was undertaken to investigate plasma dityrosine concentrations in patients with hyperlipidemia and to examine the correlation between dityrosine and lipid profiles. METHODS Fluorescence spectrophotometry was used to measure dityrosine in the plasma of healthy subjects (n = 203) and dyslipidemic subjects, which included patients with mild hyperlipidemia (n = 246) and hyperlipidemia (n = 179). Advanced oxidation protein products (AOPP) and malondialdehyde (MDA) were also assayed in all subjects. RESULTS Dityrosine levels were higher by 9.3 and 22.9% in mildly hyperlipidemic and hyperlipidemic patients, respectively, compared to controls after adjustment for age, gender, and BMI. AOPP and MDA levels showed similar trends. The levels of dityrosine related positively (p < 0.05) to total cholesterol (r = 0.362), triglycerides (r = 0.449), and low-density lipoprotein cholesterol (r = 0.359). Moreover, plasma dityrosine (r = 0.408), AOPP (r = 0.488), and MDA (r = 0.181) levels were elevated with an increase in the atherosclerosis index in the subjects. CONCLUSIONS These findings suggest that dityrosine formation may be an early event in the pathological process of hyperlipidemia. Dityrosine as a biomarker detected by fluorescence spectrophotometry might be a useful tool to evaluate the plasma redox state in hyperlipidemia.
Collapse
Affiliation(s)
- Gui-Rong Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | | | | | | |
Collapse
|
55
|
Min JY, Min KB. Serum lycopene, lutein and zeaxanthin, and the risk of Alzheimer's disease mortality in older adults. Dement Geriatr Cogn Disord 2014; 37:246-56. [PMID: 24247062 DOI: 10.1159/000356486] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD). Accumulating evidence shows that antioxidant-rich food reduces the risk of AD by inhibiting oxidative stress. This study investigates whether serum levels of carotenoids were associated with the risk of AD mortality in a nationally representative sample of US adults. METHODS We used data from the Third Nutrition and Health Examination Survey (NHANES III) database and the NHANES III Linked Mortality File. A total of 6,958 participants aged older than 50 years were included in this study. RESULTS We found that high serum levels of lycopene and lutein+zeaxanthin at baseline were associated with a lower risk of AD mortality after adjustment for potential covariates. The reduction in the mortality risk was progressively raised by increasing serum lycopene (HR = 0.26, 95% CI 0.10-0.69) and lutein+zeaxanthin (HR = 0.43, 95% CI 0.22-0.85) levels. In contrast, no associations with AD mortality were observed for other serum carotenoids, including alpha-carotene, beta-carotene, and beta-cryptoxanthin. CONCLUSION High serum levels of lycopene and lutein+zeaxanthin are associated with a lower risk of AD mortality in adults. Our findings suggest that a high intake of lycopene- or lutein+zeaxanthin-rich food may be important for reducing the AD mortality risk.
Collapse
Affiliation(s)
- Jin-young Min
- Department of Epidemiology, Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | | |
Collapse
|
56
|
Momiyama Y. Serum coenzyme Q10 levels as a predictor of dementia in a Japanese general population. Atherosclerosis 2014; 237:433-4. [PMID: 25463069 DOI: 10.1016/j.atherosclerosis.2014.08.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 11/16/2022]
Abstract
Mitochondrial impairment and increased oxidative stress are considered to be involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease. Coenzyme Q10 (CoQ10) is a component of the electron transport chain localized on the inner membrane of the mitochondria. In addition to its bioenergetic activity required for ATP synthesis, CoQ10 also has antioxidant activity in mitochondrial and lipid membranes, which protects against the reactive oxidative species generated during oxidative phosphorylation. Several previous studies had reported no significant differences in serum CoQ10 levels between patients with and without dementia, such as Alzheimer's disease. However, in this issue of Atherosclerosis, Yamagishi et al. demonstrate for the first time that a lower serum CoQ10 level is associated with a greater risk of dementia in a Japanese general population. These findings suggest that assessing serum CoQ10 levels could be useful for predicting the development of dementia, rather than as a biomarker for the presence of dementia.
Collapse
Affiliation(s)
- Yukihiko Momiyama
- Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan.
| |
Collapse
|
57
|
Abstract
Blood cholesterol levels are not consistently elevated in subjects with age-related cognitive decline, although epidemiological studies suggest that Alzheimer's disease and cardiovascular diseases share common risk factors. These include the presence of an unusual genetic variant, the APOE4 (apolipoprotein E4) allele, which modulates LDL (low-density lipoproteins) metabolism, increases free radical formation and reduces plasma antioxidant concentrations. Together, these risk factors support a mechanism for increased LDL circulation time and free radical modification of LDL. Plasma oxycholesterols, hydroxylated metabolites of cholesterol, are carried by oxidized LDL, and elevated lipids in mid-life are associated with increased long-term risk of dementia. Although brain cholesterol metabolism is segregated from the systemic circulation, during oxidative stress, plasma oxycholesterols could have damaging effects on BBB (blood–brain barrier) function and consequently on neuronal cells. Cholesterol-lowering drugs such as statins may prevent the modifications to LDL in mid-life and might show beneficial effects in later life.
Collapse
|
58
|
Ascorbic acid and the brain: rationale for the use against cognitive decline. Nutrients 2014; 6:1752-81. [PMID: 24763117 PMCID: PMC4011065 DOI: 10.3390/nu6041752] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/24/2014] [Accepted: 04/10/2014] [Indexed: 12/21/2022] Open
Abstract
This review is focused upon the role of ascorbic acid (AA, vitamin C) in the promotion of healthy brain aging. Particular attention is attributed to the biochemistry and neuronal metabolism interface, transport across tissues, animal models that are useful for this area of research, and the human studies that implicate AA in the continuum between normal cognitive aging and age-related cognitive decline up to Alzheimer’s disease. Vascular risk factors and comorbidity relationships with cognitive decline and AA are discussed to facilitate strategies for advancing AA research in the area of brain health and neurodegeneration.
Collapse
|
59
|
Serum uric acid levels in patients with Alzheimer's disease: a meta-analysis. PLoS One 2014; 9:e94084. [PMID: 24714617 PMCID: PMC3979756 DOI: 10.1371/journal.pone.0094084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/11/2014] [Indexed: 02/05/2023] Open
Abstract
Background Serum uric acid (UA) could exert neuro-protective effects against Alzheimer's disease (AD) via its antioxidant capacities. Many studies investigated serum UA levels in AD patients, but to date, results from these observational studies are conflicting. Methods We conducted a meta-analysis to compare serum UA levels between AD patients and healthy controls by the random-effects model. Studies were identified by searching PubMed, ISI Web of Science, EMBASE, and the Cochrane library databases from 1966 through July 2013 using the Medical Subject Headings and keywords without restriction in languages. Only case-control studies were included if they had data on serum UA levels in AD patients and healthy controls. Begg's funnel plot and Egger's regression test were applied to assess the potential publication bias. Sensitivity analyses and meta-regression were conducted to explore possible explanations for heterogeneity. Results A total of 11 studies met the inclusion criteria including 2708 participants were abstracted. Serum UA levels were not significantly different in AD patients compared to healthy controls (standardized mean difference (SMD) = −0.50; 95% confidence interval (CI): −1.23 to 0.22). Little evidence of publication bias was observed. Sensitivity analyses showed that the combined SMD was consistent every time omitting any one study, except only one study which greatly influenced the overall results. Meta-regression showed that year of publication, race, sample size, and mean age were not significant sources of heterogeneity. Conclusion Our meta-analysis of case-control studies suggests that serum UA levels do not differ significantly in AD patients, but there may be a trend toward decreased UA in AD after an appropriate interpretation. More well-designed investigations are needed to demonstrate the potential change of serum UA levels in AD patients.
Collapse
|
60
|
Cervellati C, Romani A, Seripa D, Cremonini E, Bosi C, Magon S, Passaro A, Bergamini CM, Pilotto A, Zuliani G. Oxidative balance, homocysteine, and uric acid levels in older patients with Late Onset Alzheimer's Disease or Vascular Dementia. J Neurol Sci 2014; 337:156-61. [DOI: 10.1016/j.jns.2013.11.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 01/01/2023]
|
61
|
Mild systemic oxidative stress in the subclinical stage of Alzheimer's disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:609019. [PMID: 24454987 PMCID: PMC3880752 DOI: 10.1155/2013/609019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 11/08/2013] [Indexed: 11/27/2022]
Abstract
Alzheimer's disease (AD) is a late-onset, progressive degenerative disorder that affects mainly the judgment, emotional stability, and memory domains. AD is the outcome of a complex interaction among several factors which are not fully understood yet; nevertheless, it is clear that oxidative stress and inflammatory pathways are among these factors. 65 elderly subjects (42 cognitively intact and 23 with probable Alzheimer's disease) were selected for this study. We evaluated erythrocyte activities of superoxide dismutase, catalase, and glutathione peroxidase as well as plasma levels of total glutathione, α-tocopherol, β-carotene, lycopene, and coenzyme Q10. These antioxidant parameters were confronted with plasmatic levels of protein and lipid oxidation products. Additionally, we measured basal expression of monocyte HLA-DR and CD-11b, as well as monocyte production of cytokines IL1-α, IL-6, and TNF-α. AD patients presented lower plasmatic levels of α-tocopherol when compared to control ones and also higher basal monocyte HLA-DR expression associated with higher IL-1α production when stimulated by LPS. These findings support the inflammatory theory of AD and point out that this disease is associated with a higher basal activation of circulating monocytes that may be a result of α-tocopherol stock depletion.
Collapse
|
62
|
Schrag M, Mueller C, Zabel M, Crofton A, Kirsch W, Ghribi O, Squitti R, Perry G. Oxidative stress in blood in Alzheimer's disease and mild cognitive impairment: A meta-analysis. Neurobiol Dis 2013; 59:100-10. [DOI: 10.1016/j.nbd.2013.07.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/02/2013] [Accepted: 07/04/2013] [Indexed: 12/26/2022] Open
|
63
|
Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Sijben J, Groenendijk M, Stijnen T. Plasma nutrient status of patients with Alzheimer's disease: Systematic review and meta-analysis. Alzheimers Dement 2013; 10:485-502. [PMID: 24144963 DOI: 10.1016/j.jalz.2013.05.1771] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/02/2013] [Accepted: 05/21/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Alzheimer disease (AD) patients are at risk of nutritional insufficiencies because of physiological and psychological factors. Nutritional compounds are postulated to play a role in the pathophysiological processes that are affected in AD. We here provide the first systematic review and meta-analysis that compares plasma levels of micronutrients and fatty acids in AD patients to those in cognitively intact elderly controls. A secondary objective was to explore the presence of different plasma nutrient levels between AD and control populations that did not differ in measures of protein/energy nourishment. METHODS We screened literature published after 1990 in the Cochrane Central Register of Controlled Trials, Medline, and Embase electronic databases using Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines for AD patients, controls, micronutrient, vitamins, and fatty acids, resulting in 3397 publications, of which 80 met all inclusion criteria. Status of protein/energy malnutrition was assessed by body mass index, mini nutritional assessment score, or plasma albumin. Meta-analysis, with correction for differences in mean age between AD patients and controls, was performed when more than five publications were retrieved for a specific nutrient. RESULTS We identified five or more studies for folate, vitamin A, vitamin B12, vitamin C, vitamin D, vitamin E, copper, iron, and zinc but fewer than five studies for vitamins B1 and B6, long-chain omega-3 fatty acids, calcium, magnesium, manganese, and selenium (the results of the individual publications are discussed). Meta-analysis showed significantly lower plasma levels of folate and vitamin A, vitamin B12, vitamin C, and vitamin E (P < .001), whereas nonsignificantly lower levels of zinc (P = .050) and vitamin D (P = .075) were found in AD patients. No significant differences were observed for plasma levels of copper and iron. A meta-analysis that was limited to studies reporting no differences in protein/energy malnourishment between AD and control populations yielded similar significantly lower plasma levels of folate and vitamin B12, vitamin C, and vitamin E in AD. CONCLUSIONS The lower plasma nutrient levels indicate that patients with AD have impaired systemic availability of several nutrients. This difference appears to be unrelated to the classic malnourishment that is well known to be common in AD, suggesting that compromised micronutrient status may precede protein and energy malnutrition. Contributing factors might be AD-related alterations in feeding behavior and intake, nutrient absorption, alterations in metabolism, and increased utilization of nutrients for AD pathology-related processes. Given the potential role of nutrients in the pathophysiological processes of AD, the utility of nutrition may currently be underappreciated and offer potential in AD management.
Collapse
Affiliation(s)
- Sofia Lopes da Silva
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bruno Vellas
- Gerontopole and UMR INSERM 1027 University Paul Sabatier, Toulouse University Hospital, Toulouse, France
| | - Saskia Elemans
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - José Luchsinger
- Department of Medicine, Columbia University, New York, NY, USA
| | - Patrick Kamphuis
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kristine Yaffe
- Department of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, CA, USA
| | - John Sijben
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands.
| | - Martine Groenendijk
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Theo Stijnen
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
64
|
Abstract
Carotenoids may help to prevent the ageing of the brain. Previous findings regarding β-carotene alone are not consistent. In the present study, we evaluated the cross-time association between a carotenoid-rich dietary pattern (CDP) and subsequent cognitive performance using a sample of 2983 middle-aged adults participating in the SU.VI.MAX (Supplémentation en Vitamines et Minéraux Antioxydants) study. Cognitive performance was assessed in 2007–9 using six neuropsychological tests, and a composite cognitive score was computed. The cognitive data were related to dietary data obtained by repeated 24 h dietary records (1994–6) and to measurements of baseline plasma concentrations of carotenoids (lutein, zeaxanthin, β-cryptoxanthin, lycopene, α-carotene, trans-β-carotene and cis-β-carotene). DP were extracted using the reduced rank regression method for 381 participants and then extrapolated to the whole sample using plasma carotenoid concentrations as response variables. Associations between a CDP and cognitive function measured 13 years later were estimated with ANCOVA providing mean difference values and 95 % CI across the tertiles of CDP. A correlation between CDP and consumption of orange- and green-coloured fruits and vegetables, vegetable oils and soup was observed. CDP was found to be associated with a higher composite cognitive score (mean difference 1·04, 95 % CI 0·20, 1·87, P for trend 0·02), after adjustment for sociodemographic, lifestyle and health factors. Similar findings were obtained for scores obtained in the cued recall task, backward digit span task, trail making test and semantic fluency task (all P for trend < 0·05). Further studies ought to confirm whether a diet providing sufficient quantity and variety of coloured fruits and vegetables may contribute to the preservation of cognitive function during ageing.
Collapse
|
65
|
Abstract
Alzheimer′s disease (AD) represents a highly common form of dementia, but can be diagnosed in the earlier stages before dementia onset. Early diagnosis is crucial for successful therapeutic intervention. The introduction of new diagnostic biomarkers for AD is aimed at detecting underlying brain pathology. These biomarkers reflect structural or biochemical changes related to AD. Examination of cerebrospinal fluid has many drawbacks; therefore, the search for sensitive and specific blood markers is ongoing. Investigation is mainly focused on upstream processes, among which oxidative stress in the brain is of particular interest. Products of oxidative stress may diffuse into the blood and evaluating them can contribute to diagnosis of AD. However, results of blood oxidative stress markers are not consistent among various studies, as documented in this review. To find a specific biochemical marker for AD, we should concentrate on specific metabolic products formed in the brain. Specific fluorescent intermediates of brain lipid peroxidation may represent such candidates as the composition of brain phospholipids is unique. They are small lipophilic molecules and can diffuse into the blood stream, where they can then be detected. We propose that these fluorescent products are potential candidates for blood biomarkers of AD.
Collapse
Affiliation(s)
- Alice Skoumalová
- Department of Medical Chemistry and Biochemistry, Charles University in Prague, 2nd Faculty of Medicine, Prague, Czech Republic.
| | | |
Collapse
|
66
|
Chen X, Wu G, Schwarzschild MA. Urate in Parkinson's disease: more than a biomarker? Curr Neurol Neurosci Rep 2012; 12:367-75. [PMID: 22580741 DOI: 10.1007/s11910-012-0282-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with characteristic motor manifestations. Although appreciation of PD as a multisystem disorder has grown, loss of dopaminergic neurons in the substantia nigra remains a pathological and neurochemical hallmark, accounting for the substantial symptomatic benefits of dopamine replacement therapies. However, currently no treatment has been shown to prevent or forestall the progression of the disease in spite of tremendous efforts. Among multiple environmental and genetic factors that have been implicated in the pathogenesis of PD, oxidative stress is proposed to play a critical role. A recent confluence of clinical, epidemiological, and laboratory evidence identified urate, an antioxidant and end product of purine metabolism, as not only a molecular predictor for both reduced risk and favorable progression of PD but also a potential neuroprotectant for the treatment of PD. This review summarizes recent findings on urate in PD and their clinical implications.
Collapse
Affiliation(s)
- Xiqun Chen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
67
|
Bowman GL. Ascorbic acid, cognitive function, and Alzheimer's disease: a current review and future direction. Biofactors 2012; 38:114-22. [PMID: 22419527 PMCID: PMC3594659 DOI: 10.1002/biof.1002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 12/18/2022]
Abstract
This narrative review appraises the human and animal studies implicating ascorbic acid (AA) in normal cognitive function and Alzheimer's disease. A research framework for how nutrition affects brain aging is proposed with emphasis on AA intake, status, metabolism, and transport into brain tissue. A final synopsis highlights areas for future research regarding AA nourishment and healthy brain aging.
Collapse
Affiliation(s)
- Gene L Bowman
- Department of Neurology, CR-131, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
68
|
|
69
|
Ringman JM, Fithian AT, Gylys K, Cummings JL, Coppola G, Elashoff D, Pratico D, Moskovitz J, Bitan G. Plasma methionine sulfoxide in persons with familial Alzheimer's disease mutations. Dement Geriatr Cogn Disord 2012; 33:219-25. [PMID: 22584618 PMCID: PMC3568669 DOI: 10.1159/000338546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2012] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Convergent evidence suggests that oxidative stress plays a central role in the pathology of Alzheimer's disease (AD). We asked if consequently, oxidation of methionine residues to methionine sulfoxide (MetO) was increased in plasma proteins of persons carrying familial AD (FAD) mutations. METHODS Plasma was collected from 31 persons from families harboring PSEN1 or APP mutations. Using Western blot analysis with a novel anti-MetO polyclonal antibody, MetO levels were measured and compared between FAD mutation carriers (MCs) and non-mutation carrying (NCs) kin. RESULTS A MetO-positive 120-kDa gel band distinguished FAD MCs and NCs (mean 11.4 ± 2.8 vs. 4.0 ± 3.1, p = 0.02). In a subset of subjects for whom both measurements were available, MetO levels correlated well with plasma F2-isoprostane (r = 0.81, p < 0.001) and superoxide dismutase 1 (r = 0.52, p = 0.004) levels. CONCLUSION Our data provide evidence for elevated MetO levels in persons carrying FAD mutations that correlate with other indices of oxidative stress and suggest that plasma oxidative stress markers may be useful for diagnosis of AD.
Collapse
Affiliation(s)
- John M. Ringman
- Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, University of California at Los Angeles, Los Angeles, CA 90095
| | - Andrew T. Fithian
- Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, University of California at Los Angeles, Los Angeles, CA 90095
| | - Karen Gylys
- Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, University of California at Los Angeles, Los Angeles, CA 90095,School of Nursing, University of California at Los Angeles, Los Angeles, CA 90095
| | - Jeffrey L. Cummings
- Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, University of California at Los Angeles, Los Angeles, CA 90095
| | - Giovanni Coppola
- Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, University of California at Los Angeles, Los Angeles, CA 90095
| | - David Elashoff
- Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, University of California at Los Angeles, Los Angeles, CA 90095,Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095
| | | | - Jackob Moskovitz
- Department of Pharmacology and Toxicology School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Gal Bitan
- Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, University of California at Los Angeles, Los Angeles, CA 90095,Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095,Corresponding Author: Gal Bitan, Ph.D., David Geffen School of Medicine, University of California at Los Angeles, Neuroscience Research Building 1, Room 451, 635 Charles E. Young Drive South, Los Angeles, CA 90095-7334, Phone: 310-206 2082, Fax: 310-206 1700,
| |
Collapse
|
70
|
Unno K, Sugiura M, Ogawa K, Takabayashi F, Toda M, Sakuma M, Maeda KI, Fujitani K, Miyazaki H, Yamamoto H, Hoshino M. Beta-cryptoxanthin, plentiful in Japanese mandarin orange, prevents age-related cognitive dysfunction and oxidative damage in senescence-accelerated mouse brain. Biol Pharm Bull 2011; 34:311-7. [PMID: 21372377 DOI: 10.1248/bpb.34.311] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased oxidative stress is known to accelerate age-related pathologies. Beta-cryptoxanthin (β-CRX, (3R)-β,β-caroten-3-ol) is a potent antioxidant that is highly rich in Satsuma mandarin orange (mandarin), which is the most popular fruit in Japan. We investigated the antioxidative and anti-aging effects of β-CRX and mandarin using senescence-accelerated mice (SAMP10), which were characterized by a short lifespan, high generation of superoxide anions in the brain and poor learning ability with aging. β-CRX (0.5-5.0 µg/ml) or mandarin juice (3.8-38.0%) was added to drinking water of SAMP10 one to 12 months of age. β-CRX was dose-dependently incorporated into the cerebral cortex and the contents were similar to the concentration of β-CRX in the human frontal lobe. These mice also had higher learning ability. The level of DNA oxidative damage was significantly lower in the cerebral cortex of mice that ingested β-CRX and mandarin than control mice. In addition, the mice that ingested β-CRX (>1.5 µg/ml) and mandarin (>11.3%) exhibited a higher survival when 12 month-old, the presenile age of SAMP10, than control mice. These results suggest that β-CRX is incorporated into the brain and has an important antioxidative role and anti-aging effect.
Collapse
Affiliation(s)
- Keiko Unno
- Laboratory of Bioorganic Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422–8526, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Lott IT, Doran E, Nguyen VQ, Tournay A, Head E, Gillen DL. Down syndrome and dementia: a randomized, controlled trial of antioxidant supplementation. Am J Med Genet A 2011; 155A:1939-48. [PMID: 21739598 DOI: 10.1002/ajmg.a.34114] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/22/2011] [Indexed: 01/03/2023]
Abstract
Individuals with Down syndrome over age 40 years are at risk for developing dementia of the Alzheimer type and have evidence for chronic oxidative stress. There is a paucity of treatment trials for dementia in Down syndrome in comparison to Alzheimer disease in the general (non-Down syndrome) population. This 2-year randomized, double-blind, placebo-controlled trial assessed whether daily oral antioxidant supplementation (900 IU of alpha-tocopherol, 200 mg of ascorbic acid and 600 mg of alpha-lipoic acid) was effective, safe and tolerable for 53 individuals with Down syndrome and dementia. The outcome measures comprised a battery of neuropsychological assessments administered at baseline and every 6 months. Compared to the placebo group, those individuals receiving the antioxidant supplement showed neither an improvement in cognitive functioning nor a stabilization of cognitive decline. Mean plasma levels of alpha-tocopherol increased ~2-fold in the treatment group and were consistently higher than the placebo group over the treatment period. Pill counts indicated good compliance with the regimen. No serious adverse events attributed to the treatment were noted. We conclude that antioxidant supplementation is safe, though ineffective as a treatment for dementia in individuals with Down syndrome and Alzheimer type dementia. Our findings are similar to studies of antioxidant supplementation in Alzheimer disease in the general population. The feasibility of carrying out a clinical trial for dementia in Down syndrome is demonstrated.
Collapse
Affiliation(s)
- Ira T Lott
- Department of Pediatrics, School of Medicine, University of California, Irvine (UCI), Orange, California, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Afsar B, Elsurer R, Covic A, Johnson RJ, Kanbay M. Relationship between uric acid and subtle cognitive dysfunction in chronic kidney disease. Am J Nephrol 2011; 34:49-54. [PMID: 21659739 DOI: 10.1159/000329097] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 05/04/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Elevated serum uric acid has been associated with cognitive dysfunction and vascular cognitive impairment in the elderly. Serum uric acid is also commonly elevated in chronic kidney disease (CKD), but its relationship with cognitive function in these patients has not been addressed. METHODS Subjects with CKD (defined as eGFR <60/ml/min/1.73 m(2)) were evaluated for cognitive dysfunction using the validated Standardized Mini-Mental State Examination (SMMSE). Individuals with dementia, depression or other psychiatric disorders were excluded, as were subjects on uric acid-lowering therapy or with serious illnesses such as severe anemia or active or ongoing cardiovascular or cerebrovascular disease. RESULTS 247 subjects were enrolled. SMMSE scores showed stepwise deterioration with increasing quartile of serum uric acid (26.4; 26.1; 25.5; 25.3, score range 20-30, p = 0.019). Post-hoc analysis demonstrated that there was no linear trend and only groups 1 and 4 were different with respect to SMMSE scores (p = 0.025). Stepwise multivariate linear regression revealed that age, educational status, presence of cerebrovascular disease, and serum uric acid were independently related to SMMSE scores. CONCLUSION Serum uric acid levels are independently and inversely associated with mild cognitive dysfunction in subjects with CKD.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Medicine, Zonguldak State Hospital, Zonguldak, Turkey
| | | | | | | | | |
Collapse
|
73
|
Abstract
Tomatoes and tomato products are one of the most familiar vegetables in the American diet. Quantitatively, they are the most consumed nonstarchy vegetable and are the most significant source of dietary lycopene; a powerful antioxidant that has greater bioavailability after cooking and processing (eg, canning). A large body of research supports an inverse relationship between consuming tomatoes and tomato products and risk of certain cancers, while emerging research is exploring the protective relationship between tomato intake and a host of conditions, including cardiovascular disease, osteoporosis, ultraviolet light—induced skin damage, and cognitive dysfunction. Initial studies of tomato consumption and disease risk reduction focused on lycopene and antioxidant activity. More recent hypotheses recognize the advantages of the whole tomato; and hence, research on the role of tomato products in health and disease risk reduction extends beyond antioxidant function to include other protective mechanisms such as antithrombotic and anti-inflammatory functions. Increasing daily vegetable intake in the American diet offers the potential to yield significant health benefits. In addition to the specific benefits of tomato consumption, encouraging greater tomato and tomato product consumption may help increase overall vegetable intake because of their wide availability, well-established acceptability, cost-effectiveness, and convenience of multiple forms. Leveraging emerging science about tomatoes and tomato products may be one simple and effective strategy to help individuals increase vegetable intake, leading to improved overall eating patterns, and ultimately, better health.
Collapse
Affiliation(s)
- Britt Burton-Freeman
- National Center for Food Safety & Technology, Illinois Institute of Technology, Summit-Argo, IL
| | | |
Collapse
|
74
|
Keizman D, Ish-Shalom M, Berliner S, Maimon N, Vered Y, Artamonov I, Tsehori J, Nefussy B, Drory V. Low uric acid levels in serum of patients with ALS: Further evidence for oxidative stress? J Neurol Sci 2009; 285:95-9. [DOI: 10.1016/j.jns.2009.06.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/27/2009] [Accepted: 06/01/2009] [Indexed: 12/21/2022]
|
75
|
Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R, Mecocci P. Biomarkers of oxidative and nitrosative damage in Alzheimer's disease and mild cognitive impairment. Ageing Res Rev 2009; 8:285-305. [PMID: 19376275 DOI: 10.1016/j.arr.2009.04.002] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. Products of oxidative and nitrosative stress (OS and NS, respectively) accumulate with aging, which is the main risk factor for AD. This provides the basis for the involvement of OS and NS in AD pathogenesis. OS and NS occur in biological systems due to the dysregulation of the redox balance, caused by a deficiency of antioxidants and/or the overproduction of free radicals. Free radical attack against lipids, proteins, sugars and nucleic acids leads to the formation of bioproducts whose detection in fluids and tissues represents the currently available method for assessing oxidative/nitrosative damage. Post-mortem and in-vivo studies have demonstrated an accumulation of products of free radical damage in the central nervous system and in the peripheral tissues of subjects with AD or mild cognitive impairment (MCI). In addition to their individual role, biomarkers for OS and NS in AD are associated with altered bioenergetics and amyloid-beta (Abeta) metabolism. In this review we discuss the main results obtained in the field of biomarkers of oxidative/nitrosative stress in AD and MCI in humans, in addition to their potential role as a tool for diagnosis, prognosis and treatment efficacy in AD.
Collapse
|
76
|
Aldred S, Bennett S, Mecocci P. Increased low-density lipoprotein oxidation, but not total plasma protein oxidation, in Alzheimer's disease. Clin Biochem 2009; 43:267-71. [PMID: 19733555 DOI: 10.1016/j.clinbiochem.2009.08.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The two most common forms of dementia are Alzheimer's disease (AD), and vascular dementia (VaD). In the overlap of biochemical processes which have been identified in AD and VaD, oxidative stress is believed to contribute to the numerous pathologies of both dementias. DESIGN AND METHODS This study assessed oxidative damage in total plasma proteins, and isolated LDL in AD patients and age matched controls, in addition total antioxidant capacity (TAC) was measured. RESULTS Significantly higher LDL protein carbonylation was observed in AD compared to age-matched controls (AD: 4.17+/-0.73 vs. control: 3.85+/-0.86 nmol/mg LDL; p=0.05, 2-tailed Mann-Whitney), in addition to reduced TAC (AD: 924.708+/-174.429 vs. control: 1078.536+/-252.633 microM; p=0.001, 2-tailed Mann-Whitney). No differences were seen in total plasma protein carbonyl content (AD: 3.88+/-0.31 vs. control: 3.98+/-0.48 nmol/mg protein). CONCLUSION The results further support the view that oxidation events in AD may be specific in nature, and represent functional changes to proteins, rather than random global events.
Collapse
Affiliation(s)
- Sarah Aldred
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | |
Collapse
|
77
|
Voss P, Horakova L, Jakstadt M, Kiekebusch D, Grune T. Ferritin oxidation and proteasomal degradation: Protection by antioxidants. Free Radic Res 2009; 40:673-83. [PMID: 16983994 DOI: 10.1080/10715760500419357] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The accumulation of oxidatively damaged proteins is a well-known hallmark of aging and several neurodegenerative diseases including Alzheimer's, Parkinson's and Huntigton's diseases. These highly oxidized protein aggregates are in general not degradable by the main intracellular proteolytic machinery, the proteasomal system. One possible strategy to reduce the accumulation of such oxidized protein aggregates is the prevention of the formation of oxidized protein derivatives or to reduce the protein oxidation to a degree that can be handled by the proteasome. To do so an antioxidative strategy might be successful. Therefore, we undertook the present study to test whether antioxidants are able to prevent the protein oxidation and to influence the proteasomal degradation of moderate oxidized proteins. As a model protein we choose ferritin. H2O2 induced a concentration dependent increase of protein oxidation accompanied by an increased proteolytic susceptibility. This increase of proteolytic susceptibility is limited to moderate hydrogen peroxide concentrations, whereas higher concentrations are accompanied by protein aggregate formation. Protective effects of the vitamin E derivative Trolox, the pyridoindole derivative Stobadine and of the standardized extracts of flavonoids from bark of Pinus Pinaster Pycnogenol and from leaves of Ginkgo biloba (EGb 761) were studied on moderate damaged ferritin.
Collapse
Affiliation(s)
- Peter Voss
- Research Institute for Environmental Medicine gGmbH, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | | | | | |
Collapse
|
78
|
Irizarry MC, Raman R, Schwarzschild MA, Becerra LM, Thomas RG, Peterson RC, Ascherio A, Aisen PS. Plasma urate and progression of mild cognitive impairment. NEURODEGENER DIS 2008; 6:23-8. [PMID: 19066433 DOI: 10.1159/000170883] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 05/26/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Impaired antioxidant defenses are implicated in neurodegenerative disease. The plasma levels of urate, a water-soluble antioxidant, are reduced in Alzheimer's disease (AD). OBJECTIVE We aimed to test the hypotheses that high plasma urate at baseline is associated with: (1) a reduced rate of conversion from mild cognitive impairment (MCI) to AD and (2) a lower rate of cognitive decline in MCI. METHODS Plasma urate was obtained at baseline from 747 participants in a 3-year, randomized, double-blind, placebo-controlled study of donepezil, vitamin E or placebo for delaying the progression of MCI to AD.The association between baseline urate and conversion from MCI to AD was examined by Cox proportional hazards regression. The relationship between baseline urate and cognitive change on the cognitive subscale of the Alzheimer's Disease Assessment Scale was evaluated by longitudinal analysis. RESULTS Baseline plasma urate was not associated with the rate of conversion of MCI to AD. In the placebo arm, high plasma urate was related to a slower rate of cognitive decline over 3 years, although this was not reproduced in the other treatment arms. CONCLUSION While plasma urate levels did not predict the progression of MCI to AD, high urate may be associated with a reduced rate of cognitive decline in MCI patients not treated with donepezil or vitamin E. The results support the investigation of biomarkers of antioxidant status as risk factors for cognitive decline in MCI.
Collapse
Affiliation(s)
- Michael C Irizarry
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Annanmaki T, Pessala-Driver A, Hokkanen L, Murros K. Uric acid associates with cognition in Parkinson's disease. Parkinsonism Relat Disord 2008; 14:576-8. [DOI: 10.1016/j.parkreldis.2007.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 11/06/2007] [Indexed: 11/25/2022]
|
80
|
Ancelin ML, Christen Y, Ritchie K. Is antioxidant therapy a viable alternative for mild cognitive impairment? Examination of the evidence. Dement Geriatr Cogn Disord 2007; 24:1-19. [PMID: 17495472 DOI: 10.1159/000102567] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2007] [Indexed: 12/14/2022] Open
Abstract
Therapeutic interventions for the prodromal stages of dementia are currently being sought with a view to delaying if not preventing disease onset. Uncertainty as to whether cognitive disorder in a given individual will progress towards dementia and adverse drug side effects has led to hesitancy on the part of drug regulators to instigate preventive pharmacotherapies. In this context, antioxidant therapies may provide a low-risk alternative, targeting very early biological changes. While a growing body of knowledge demonstrates both the importance of oxidative stress in the aetiology of dementia and the efficacy of antioxidant treatment in animal and cellular models, studies in humans are presently inconclusive. While some antioxidants, notably flavonoid- or vitamin-rich diets, appear to lower the relative risk for Alzheimer's disease in humans in observational studies, these results must be interpreted in the light of the biological complexity of the relationship between oxidative stress and neurodegeneration, and the methodological and theoretical shortcomings of studies conducted to date. A clearer understanding of these factors will assist in the interpretation of the results of the intervention studies which are now being undertaken; these studies being the only current means of establishing efficacy for preventive drug treatment of Alzheimer's disease.
Collapse
|
81
|
Polidori MC, Griffiths HR, Mariani E, Mecocci P. Hallmarks of protein oxidative damage in neurodegenerative diseases: focus on Alzheimer’s disease. Amino Acids 2007; 32:553-9. [PMID: 17273806 DOI: 10.1007/s00726-006-0431-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 06/30/2006] [Indexed: 10/23/2022]
Abstract
The pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, has been linked to a condition of oxidative and nitrosative stress, arising from the imbalance between increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) production and antioxidant defences or efficiency of repair or removal systems. The effects of free radicals are expressed by the accumulation of oxidative damage to biomolecules: nucleic acids, lipids and proteins. In this review we focused our attention on the large body of evidence of oxidative damage to protein in Alzheimer's disease brain and peripheral cells as well as in their role in signalling pathways. The progress in the understanding of the molecular alterations underlying Alzheimer's disease will be useful in developing successful preventive and therapeutic strategies, since available drugs can only temporarily stabilize the disease, but are not able to block the neurodegenerative process.
Collapse
Affiliation(s)
- M C Polidori
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
82
|
Bozic B, Cucnik S, Kveder T, Rozman B. Changes in avidity and specificity of IgG during electro-oxidation. Relevance of binding of antibodies to β2-GPI. Autoimmun Rev 2006; 6:28-32. [PMID: 17110313 DOI: 10.1016/j.autrev.2005.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 12/13/2005] [Indexed: 01/09/2023]
Abstract
The immune response may be changed due to altered proteins or modifications of immunoglobulins, including oxidative processes. The susceptibility to oxidative modifications depends greatly on amino-acid moiety composition due to chemical characteristics (instability) of their side-chains. Initial steps of oxidation may change the specificity and avidity of immunoglobulins due to chemical alteration of the hypervariable region. The oxidation of antibodies increases the hydrophilic nature of the paratopes and makes them more susceptible for the binding to cationic surfaces even without the strong surface-to-surface fitting. The electro-oxidation of IgG significantly changes the immunoreactivity and specificity of IgG fractions, regardless of the initial immunoreactivity to a specific autoantigen also in healthy persons. Data are presented on changes in the immunoreactivity as well as the avidity of antibodies against beta2-glycoprotein I after being exposed to direct current. ELISA measurements showed increased reactivity of anti-beta2-glycoprotein I antibodies at the beginning and various, fluctuating results after prolonged exposure to electro-oxidation. Inter-individual differences in chemical stability of immunoglobulins and patient's antioxidative status may influence the range of their alterations and their impact on health/disease balance.
Collapse
Affiliation(s)
- B Bozic
- University Medical Centre, Division of Internal Medicine, Department of Rheumatology, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
83
|
Mielke MM, Zandi PP. Hematologic risk factors of vascular disease and their relation to dementia. Dement Geriatr Cogn Disord 2006; 21:335-52. [PMID: 16508297 DOI: 10.1159/000091789] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2005] [Indexed: 01/08/2023] Open
Abstract
Multiple studies have implicated vascular-related conditions as risk factors for dementia. Clarification of these factors in dementia is important because most are modifiable, and may serve as the basis for preventive strategies. Several hematologic factors are associated with vascular diseases, but their relation to dementia is unclear. This review examines biological and epidemiological evidence concerning the role of these hematologic factors in dementia, and dementia subtypes. Reviewed factors include homocysteine, cholesterol, fatty acids, antioxidants, and C-reactive protein. The vast majority of studies reviewed are cross-sectional. Longitudinal studies with serial hematologic measures are needed to clarify the relationship between these factors and dementia over the lifespan. A necessary step is to examine multiple hematologic factors simultaneously, rather than in isolation, to determine how these factors are interrelated.
Collapse
Affiliation(s)
- Michelle M Mielke
- Center on Aging and Health and the Alzheimer Disease Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
84
|
Kimura H, Mukaida M, Kuwabara K, Ito T, Hashino K, Uchida K, Matsumoto K, Yoshida KI. 4-Hydroxynonenal modifies IgA in rat intestine after lipopolysaccharide injection. Free Radic Biol Med 2006; 41:973-8. [PMID: 16934680 DOI: 10.1016/j.freeradbiomed.2006.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 05/29/2006] [Accepted: 06/06/2006] [Indexed: 01/15/2023]
Abstract
The lipid peroxide 4-hydroxynonenal (HNE) was measured in rat intestinal mucosa after lipopolysaccharide (LPS) injection (0.5 mg/kg, ip) by a highly sensitive time-resolved fluoroimmunoassay. HNE was increased, with a small peak at 20 min followed by a sustained elevation at 2-4 h, after injection of LPS. Immunohistochemistry demonstrated enhanced labeling with anti-IgA and anti-HNE antibodies in the plasma cells followed by diffusion of the labeled materials into the submucosal tissue after LPS injection. Immunoprecipitation with anti-IgA antibody and Western blotting with anti-HNE antibody showed that IgA is modified with HNE after LPS injection. The HNE (5 microM-5 mM) modification in vitro reduced the bactericidal activity of IgA and anti-Escherichia coli serum. The HNE modification in vitro also promoted polymerization of IgA as shown by nondenaturing gel electrophoresis. This is the first demonstration of the modification of IgA with HNE in an in vivo model of intestinal inflammation as well as in vitro effects of HNE on bactericidal activity and polymerization of IgA. These findings will help in understanding the involvement of oxidative stress in the IgA-mediated immune response exerted by plasma cells in early intestinal inflammation.
Collapse
Affiliation(s)
- Hiroko Kimura
- Department of Forensic Medicine, Juntendo University School of Medicine, Hongo 2-1-1, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Martin-Ruiz C, Dickinson HO, Keys B, Rowan E, Kenny RA, Von Zglinicki T. Telomere length predicts poststroke mortality, dementia, and cognitive decline. Ann Neurol 2006; 60:174-80. [PMID: 16685698 DOI: 10.1002/ana.20869] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Long-term cognitive development is variable among stroke survivors, with a high proportion developing dementia. Early identification of those at risk is highly desirable to target interventions for secondary prevention. Telomere length in peripheral blood mononuclear cells was tested as prognostic risk marker. METHODS A cohort of 195 nondemented stroke survivors was followed prospectively from 3 months after stroke for 2 years for cognitive assessment and diagnosis of dementia and for 5 years for survival. Telomere lengths in peripheral blood mononuclear cells were measured at 3 months after stroke by in-gel hybridization. Hazard ratios for survival in relation to telomere length and odds ratios for dementia were estimated using multivariate techniques, and changes in Mini-Mental State Examination scores between baseline and 2 years were related to telomere length using multivariate linear regression. RESULTS Longer telomeres at baseline were associated with reduced risk for death (hazard ratio for linear trend per 1,000 bp = 0.52; 95% confidence interval, 0.28-0.98; p = 0.04, adjusted for age) and dementia (odds ratio for linear trend per 1,000 bp = 0.19; 95% confidence interval, 0.07-0.54; p = 0.002) and less reduction in Mini-Mental State Examination score (p = 0.04, adjusted for baseline score). INTERPRETATION Telomere length is a prognostic marker for poststroke cognitive decline, dementia, and death.
Collapse
Affiliation(s)
- Carmen Martin-Ruiz
- Institute for Ageing and Health, Newcastle General Hospital, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | |
Collapse
|
86
|
van Rensburg SJ, van Zyl JM, Potocnik FCV, Daniels WMU, Uys J, Marais L, Hon D, van der Walt BJ, Erasmus RT. The effect of stress on the antioxidative potential of serum: implications for Alzheimer's disease. Metab Brain Dis 2006; 21:171-9. [PMID: 16770696 DOI: 10.1007/s11011-006-9020-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/24/2005] [Indexed: 11/24/2022]
Abstract
There is growing consensus in the literature that oxidation status is increased in Alzheimer's disease (AD), and that antioxidant supplementation as prevention or treatment strategy should be investigated further. In the present study the total antioxidant status (TAS) was found to be highly significantly lower in 22 AD patients (p < 0.0001) than in 22 age- and gender matched non-demented controls. The TAS was also lower than controls in 22 patients with vascular dementia, but not significantly. The increased oxidation status in AD was verified using the benzoate hydroxylation method. The origin of the enhanced oxidation status in AD has not been elucidated. To determine whether a causal effect between stress and oxidative status of serum can be demonstrated, a rat model was used with two different kinds of stressors, swim stress (exercise) and restraint stress (non-exercise stress). Following swim stress the maximum oxidative effect was observed at one hour post stress (p < 0.001). At 24 h the oxidative status had recovered significantly to below control values. Restraint stress, however, showed progressively increased oxidation which attained significance after 24 h (p < 0.005). It is postulated that stress may contribute to the higher oxidation status in AD patients.
Collapse
Affiliation(s)
- S J van Rensburg
- Department of Chemical Pathology, National Health Laboratory Service, Tygerberg Hospital and Stellenbosch University, P.O. Box 19113, 7505 Tygerberg, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Bischoff HA, Staehelin HB, Willett WC. The Effect of Undernutrition in the Development of Frailty in Older Persons. ACTA ACUST UNITED AC 2006; 61:585-9. [PMID: 16799140 DOI: 10.1093/gerona/61.6.585] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
88
|
Solfrizzi V, D'Introno A, Colacicco AM, Capurso C, Todarello O, Pellicani V, Capurso SA, Pietrarossa G, Santamato V, Capurso A, Panza F. Circulating biomarkers of cognitive decline and dementia. Clin Chim Acta 2006; 364:91-112. [PMID: 16139826 DOI: 10.1016/j.cca.2005.06.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/16/2005] [Accepted: 06/17/2005] [Indexed: 11/24/2022]
Abstract
Plasma and serum biochemical markers proposed for cognitive decline of degenerative (Alzheimer's disease, AD) or vascular origin and predementia syndromes (mild cognitive impairment and other related entities) are based on pathophysiologic processes such as lipoprotein metabolism (total cholesterol, apolipoprotein E, 24S-hydroxy-cholesterol), and vascular disease (homocysteine, lipoprotein(a)); SP formation (amyloid beta(Abeta)-protein, Abeta autoantibodies, platelet APP isoforms), oxidative stress (isoprostanes, vitamin E), and inflammation (cytokines). This review will focus on the current knowledge on circulating serum and plasma biomarkers of cognitive decline and dementia that are linked to cholesterol homeostasis and lipoprotein abnormalities, senile plaque formation and amyloid precursor protein (APP) metabolism, oxidative stress, and inflammatory reactions. Special emphasis will, however, be placed on biomarkers related to lipoprotein metabolism and vascular disease. Analytically, most plasma and serum proteins or metabolites lack reproducibility, sensitivity, or specificity for the diagnosis, risk and progression assessment, or therapeutic monitoring of AD and other dementing disorders. Measures linked to lipoprotein metabolism and vascular disease, APP metabolism, oxidative stress, or inflammation appear altered in AD relative to controls, but lack sufficient discriminatory power. Measures combining several biomarkers or incorporating a range of proteins in plasma and small molecule metabolites are promising approaches for the development of plasma or serum-based diagnostic tests for AD and other dementing disorders, as well as for predementia syndromes.
Collapse
Affiliation(s)
- Vincenzo Solfrizzi
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Policlinico, Piazza Giulio Cesare, 11-70124 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Dhitavat S, Ortiz D, Rogers E, Rivera E, Shea TB. Folate, vitamin E, and acetyl-L-carnitine provide synergistic protection against oxidative stress resulting from exposure of human neuroblastoma cells to amyloid-beta. Brain Res 2005; 1061:114-7. [PMID: 16256963 DOI: 10.1016/j.brainres.2005.05.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 05/19/2005] [Accepted: 05/22/2005] [Indexed: 11/29/2022]
Abstract
Oxidative stress is an early and pivotal factor in Alzheimer's disease (AD). The neurotoxic peptide amyloid-beta (Abeta) contributes to oxidative damage in AD by inducing lipid peroxidation, which in turn generates additional downstream cytosolic free radicals and reactive oxygen species (ROS), leading to mitochondrial and cytoskeletal compromise, depletion of ATP, and ultimate apoptosis. Timely application of antioxidants can prevent all downstream consequences of Abeta exposure in culture, but in situ efficacy is limited, due in part to prior damage as well as difficulty in delivery. Herein, we demonstrate that administration of a combination of vitamin E (which prevents de novo membrane oxidative damage), folate (which maintains levels of the endogenous antioxidant glutathione), and acetyl-L-carnitine (which prevents Abeta-induced mitochondrial damage and ATP depletion) provides superior protection to that derived from each agent alone. These findings support a combinatorial approach in Alzheimer's therapy.
Collapse
Affiliation(s)
- Sirikarnt Dhitavat
- Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts-Lowell, Lowell, MA 01854, USA
| | | | | | | | | |
Collapse
|
90
|
Cherubini A, Ruggiero C, Polidori MC, Mecocci P. Potential markers of oxidative stress in stroke. Free Radic Biol Med 2005; 39:841-52. [PMID: 16140205 DOI: 10.1016/j.freeradbiomed.2005.06.025] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 06/14/2005] [Accepted: 06/30/2005] [Indexed: 12/26/2022]
Abstract
Free radical production is increased in ischemic and hemorrhagic stroke, leading to oxidative stress that contributes to brain damage. The measurement of oxidative stress in stroke would be extremely important for a better understanding of its pathophysiology and for identifying subgroups of patients that might receive targeted therapeutic intervention. Since direct measurement of free radicals and oxidized molecules in the brain is difficult in humans, several biological substances have been investigated as potential peripheral markers. Among lipid peroxidation products, malondialdehyde, despite its relevant methodological limitations, is correlated with the size of ischemic stroke and clinical outcome, while F2-isoprostanes appear to be promising, but they have not been adequately evaluated. 8-Hydroxy-2-deoxyguanosine has been extensively investigated as markers of oxidative DNA damage but no study has been done in stroke patients. Also enzymatic and nonenzymatic antioxidants have been proposed as indirect markers. Among them ascorbic acid, alpha-tocopherol, uric acid, and superoxide dismutase are related to brain damage and clinical outcome. After a critical evaluation of the literature, we conclude that, while an ideal biomarker is not yet available, the balance between antioxidants and by-products of oxidative stress in the organism might be the best approach for the evaluation of oxidative stress in stroke patients.
Collapse
Affiliation(s)
- Antonio Cherubini
- Institute of Gerontology and Geriatrics, University of Perugia Medical School, Policlinico Monteluce-Pad. E, Via Brunamonti 51, 06122 Perugia, Italy.
| | | | | | | |
Collapse
|