51
|
Ribeiro AA, Azcarate-Peril MA, Cadenas MB, Butz N, Paster BJ, Chen T, Bair E, Arnold RR. The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries. PLoS One 2017; 12:e0180621. [PMID: 28678838 PMCID: PMC5498058 DOI: 10.1371/journal.pone.0180621] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/19/2017] [Indexed: 11/19/2022] Open
Abstract
Dental caries is the most prevalent disease in humans globally. Efforts to control it have been invigorated by an increasing knowledge of the oral microbiome composition. This study aimed to evaluate the bacterial diversity in occlusal biofilms and its relationship with clinical surface diagnosis and dietary habits. Anamneses were recorded from thirteen 12-year-old children. Biofilm samples collected from occlusal surfaces of 46 permanent second molars were analyzed by 16S rRNA amplicon sequencing combined with the BLASTN-based search algorithm for species identification. The overall mean decayed, missing and filled surfaces modified index [DMFSm Index, including active white spot lesions (AWSL)] value was 8.77±7.47. Biofilm communities were highly polymicrobial collectively, representing 10 bacterial phyla, 25 classes, 29 orders, 58 families, 107 genera, 723 species. Streptococcus sp_Oral_Taxon_065, Corynebacterium matruchotii, Actinomyces viscosus, Actinomyces sp_Oral_Taxon_175, Actinomyces sp_Oral_Taxon_178, Actinomyces sp_Oral_Taxon_877, Prevotella nigrescens, Dialister micraerophilus, Eubacterium_XI G 1 infirmum were more abundant among surfaces with AWSL, and Streptococcus gordonii, Streptococcus sp._Oral_Taxon_058, Enterobacter sp._str._638 Streptococcus australis, Yersinia mollaretii, Enterobacter cloacae, Streptococcus sp._Oral_Taxon_71, Streptococcus sp._Oral_Taxon_F11, Centipeda sp._Oral_Taxon_D18 were more abundant among sound surfaces. Streptococcus mutans was detected on all surfaces in all patients, while Streptococcus sobrinus was detected only in three patients (mean relative abundances 7.1% and 0.6%, respectively). Neither species differentiated healthy from diseased sites. Diets of nine of the subjects were scored as high in fermentable carbohydrates (≧2X/day between meals). A direct association between relative abundances of bacteria and carbohydrate consumption was observed among 18 species. High consumption of fermentable carbohydrates and sound surfaces were associated with a reduction in bacterial diversity. PCoA plots displayed differences in bacterial community profiles between sound and diseased surfaces. Our study showed that, in addition to mutans streptococci, other species may be associated with the initiation of dental caries on occlusal surfaces, and that biofilm diversity of tooth surfaces is influenced by carbohydrate consumption and a surface's health status.
Collapse
Affiliation(s)
- Apoena Aguiar Ribeiro
- Department of Pediatric Dentistry and Cariology, School of Dentistry, Fluminense Federal University, Nova Friburgo, Brazil
- Department of Diagnostic Sciences, School of Dentistry, University of North Carolina, Chapel Hill, United States of America
| | - Maria Andrea Azcarate-Peril
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, United States of America
- Microbiome Core Facility, School of Medicine, University of North Carolina, Chapel Hill, United States of America
| | - Maria Belen Cadenas
- Microbiome Core Facility, School of Medicine, University of North Carolina, Chapel Hill, United States of America
| | - Natasha Butz
- Microbiome Core Facility, School of Medicine, University of North Carolina, Chapel Hill, United States of America
| | - Bruce J. Paster
- Department of Microbiology, Forsyth Institute, Cambridge, United States of America
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, United States of America
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, United States of America
| | - Eric Bair
- Department of Endodontics and Biostatistics, School of Dentistry, University of North Carolina, Chapel Hill, United States of America
| | - Roland R. Arnold
- Department of Diagnostic Sciences, School of Dentistry, University of North Carolina, Chapel Hill, United States of America
| |
Collapse
|
52
|
Kreth J, Giacaman RA, Raghavan R, Merritt J. The road less traveled - defining molecular commensalism with Streptococcus sanguinis. Mol Oral Microbiol 2017; 32:181-196. [PMID: 27476770 PMCID: PMC5288394 DOI: 10.1111/omi.12170] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 12/15/2022]
Abstract
The commensal oral microbial flora has evolved with the human host to support colonization of the various intraoral sites without triggering a significant immune response. In exchange, the commensal microbes provide critical protection against invading pathogens. The intrinsic ability of the oral flora to create a symbiotic microbial community with the host can be disturbed, selecting for the overgrowth of a dysbiotic community that can result in dental diseases, such as caries and periodontitis. Although the mechanisms of molecular pathogenesis in oral diseases are well characterized, much less is known about the molecular mechanisms used by the commensal flora to maintain oral health. Here we focus on the commensal species Streptococcus sanguinis, which is found in abundance in the early oral biofilm and is strongly correlated with oral health. Streptococcus sanguinis exhibits a variety of features that make it ideally suited as a model organism to explore the molecular basis for commensalism. As such, this review will describe our current mechanistic understanding of S. sanguinis commensalism and speculate upon its molecular traits that may be exploitable to maintain or restore oral health under conditions that would otherwise lead to disease.
Collapse
Affiliation(s)
- Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Rodrigo A. Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), University of Talca, Talca, Chile
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
53
|
Arrigucci R, Pozzi G. Identification of the chain-dispersing peptidoglycan hydrolase LytB of Streptococcus gordonii. PLoS One 2017; 12:e0176117. [PMID: 28414782 PMCID: PMC5393624 DOI: 10.1371/journal.pone.0176117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/05/2017] [Indexed: 12/05/2022] Open
Abstract
Bacterial cell division ends with the separation of the daughter cells, a process that requires peptidoglycan hydrolases (PGHs). Bacteria lacking cell separating PGHs are impaired in cell separation with the formation of long chains or clusters. We identified a gene in Streptococcus gordonii encoding for a putative glucosaminidase (lytB). The lytB isogenic mutant grew in long bacterial chains and resulted in impaired biofilm formation. Purified recombinant LytB showed a murolytic activity on Micrococcus lysodeikticus cell suspension and was able to disperse the long chains of the mutant, restoring the wild type diplococci/short chain phenotype. LytB protein was localized only in culture supernatant cell fraction of S. gordonii, and co-cultures of wild type and lytB mutant showed a significant reduction of bacterial chain length, indicating that LytB is a secreted enzyme. Our results demonstrate that LytB is a secreted peptidoglycan hydrolase required for S. gordonii cell separation.
Collapse
Affiliation(s)
- Riccardo Arrigucci
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
- * E-mail:
| | - Gianni Pozzi
- LAMMB, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
54
|
Lima BP, Shi W, Lux R. Identification and characterization of a novel Fusobacterium nucleatum adhesin involved in physical interaction and biofilm formation with Streptococcus gordonii. Microbiologyopen 2017; 6. [PMID: 28173636 PMCID: PMC5458471 DOI: 10.1002/mbo3.444] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/11/2016] [Accepted: 12/21/2016] [Indexed: 11/24/2022] Open
Abstract
To successfully colonize the oral cavity, bacteria must directly or indirectly adhere to available oral surfaces. Fusobacterium nucleatum plays an important role in oral biofilm community development due to its broad adherence abilities, serving as a bridge between members of the oral biofilm that cannot directly bind to each other. In our efforts to characterize the molecular mechanisms utilized by F. nucleatum to physically bind to key members of the oral community, we investigated the involvement of F. nucleatum outer membrane proteins in its ability to bind to the pioneer biofilm colonizer, Streptococcus gordonii. Here, we present evidence that in addition to the previously characterized fusobacterial adhesin RadD, the interaction between F. nucleatum ATCC 23726 and S. gordonii V288 involves a second outer membrane protein, which we named coaggregation mediating protein A (CmpA). We also characterized the role of CmpA in dual‐species biofilm formation with S. gordonii V288, evaluated growth‐phase‐dependent as well as biofilm expression profiles of radD and cmpA, and confirmed an important role for CmpA, especially under biofilm growth conditions. Our findings underscore the complex set of specific interactions involved in physical binding and thus community integration of interacting bacterial species. This complex set of interactions could have critical implications for the formation and maturation of the oral biofilms in vivo, and could provide clues to the mechanism behind the distribution of organisms inside the human oral cavity.
Collapse
Affiliation(s)
- Bruno P Lima
- Division of Constitutive and Regenerative Sciences, University of California School of Dentistry, Los Angeles, CA, USA
| | - Wenyuan Shi
- Division of Oral Biology and Medicine, University of California School of Dentistry, Los Angeles, CA, USA
| | - Renate Lux
- Division of Constitutive and Regenerative Sciences, University of California School of Dentistry, Los Angeles, CA, USA.,Division of Oral Biology and Medicine, University of California School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
55
|
Banas JA, Zhu M, Dawson DV, Blanchette DR, Drake DR, Gu H, Frost R, McCaulley G, Levy SM. Acidogenicity and acid tolerance of Streptococcus oralis and Streptococcus mitis isolated from plaque of healthy and incipient caries teeth. J Oral Microbiol 2016; 8:32940. [PMID: 27790973 PMCID: PMC5084378 DOI: 10.3402/jom.v8.32940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Non-mutans low pH oral streptococci are postulated to contribute to caries etiology. OBJECTIVE This study was undertaken to investigate whether the acidogenicity and acid tolerance of clinical strains of Streptococcus oralis and Streptococcus mitis correlate with health or early-stage enamel caries. DESIGN S. oralis and S. mitis were isolated from plaque samples taken from the occlusal surfaces of second molars sampled at two different visits 4 years apart. All sites were sound at Visit 1; subjects were segregated into one of three groups based on the status of the site at Visit 2 and caries elsewhere in the dentition. Strains of S. oralis and S. mitis were evaluated for acidogenicity and acid tolerance, and the results correlated with the clinical status of the sites from which they were isolated. Mutans streptococci (MS) isolated from the plaque samples were also quantified, and the presence or absence of growth on pH 5.5 media or on media selective for bifidobacteria was recorded. RESULTS No significant positive correlations were found between the acidogenicity properties of the S. oralis and S. mitis clones and caries at either visit. Similar results were obtained for acid tolerance of S. oralis clones but were inconclusive for S. mitis clones. A statistically significant positive correlation between MS levels and caries (or future caries) was evident at both visits, but there were no statistical correlations with the growth on pH 5.5 media or media selective for bifidobacteria. CONCLUSIONS The low pH potential likely varies considerably among oral streptococcal species and is least likely to be found among strains of S. mitis. Accordingly, the concept and constitution of 'low pH streptococci' may need to be re-evaluated.
Collapse
Affiliation(s)
- Jeffrey A Banas
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA;
| | - Min Zhu
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Deborah V Dawson
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Derek R Blanchette
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - David R Drake
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Hongjie Gu
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Ryan Frost
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Grant McCaulley
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Steven M Levy
- Department of Preventive and Community Dentistry, University of Iowa College of Dentistry Iowa City, IA, USA
| |
Collapse
|
56
|
Jung JE, Cai JN, Cho SD, Song KY, Jeon JG. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis. BIOFOULING 2016; 32:1079-1087. [PMID: 27643392 DOI: 10.1080/08927014.2016.1230607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.
Collapse
Affiliation(s)
- Ji-Eun Jung
- a Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| | - Jian-Na Cai
- a Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| | - Sung-Dae Cho
- b Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| | - Kwang-Yeob Song
- c Department of Prosthodontics, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| | - Jae-Gyu Jeon
- a Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| |
Collapse
|
57
|
Zanni E, Chandraiahgari CR, De Bellis G, Montereali MR, Armiento G, Ballirano P, Polimeni A, Sarto MS, Uccelletti D. Zinc Oxide Nanorods-Decorated Graphene Nanoplatelets: A Promising Antimicrobial Agent against the Cariogenic Bacterium Streptococcus mutans. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E179. [PMID: 28335307 PMCID: PMC5245199 DOI: 10.3390/nano6100179] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022]
Abstract
Nanomaterials are revolutionizing the field of medicine to improve the quality of life due to the myriad of applications stemming from their unique properties, including the antimicrobial activity against pathogens. In this study, the antimicrobial and antibiofilm properties of a novel nanomaterial composed by zinc oxide nanorods-decorated graphene nanoplatelets (ZNGs) are investigated. ZNGs were produced by hydrothermal method and characterized through field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. The antimicrobial activity of ZNGs was evaluated against Streptococcus mutans, the main bacteriological agent in the etiology of dental caries. Cell viability assay demonstrated that ZNGs exerted a strikingly high killing effect on S. mutans cells in a dose-dependent manner. Moreover, FE-SEM analysis revealed relevant mechanical damages exerted by ZNGs at the cell surface of this dental pathogen rather than reactive oxygen species (ROS) generation. In addition, inductively coupled plasma mass spectrometry (ICP-MS) measurements showed negligible zinc dissolution, demonstrating that zinc ion release in the suspension is not associated with the high cell mortality rate. Finally, our data indicated that also S. mutans biofilm formation was affected by the presence of graphene-zinc oxide (ZnO) based material, as witnessed by the safranin staining and growth curve analysis. Therefore, ZNGs can be a remarkable nanobactericide against one of the main dental pathogens. The potential applications in dental care and therapy are very promising.
Collapse
Affiliation(s)
- Elena Zanni
- BBCD, Department of Biology and Biotechnology, Sapienza University of Rome, Rome 00185, Italy.
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, Rome 00185, Italy.
| | - Chandrakanth Reddy Chandraiahgari
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, Rome 00185, Italy.
- DIAEE, Department of Astronautical, Electrical, Energy Engineering, Sapienza University of Rome, Rome 00185, Italy.
| | - Giovanni De Bellis
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, Rome 00185, Italy.
- DIAEE, Department of Astronautical, Electrical, Energy Engineering, Sapienza University of Rome, Rome 00185, Italy.
| | - Maria Rita Montereali
- Sustainable Territorial and Production Systems Department (SSPT) PROTER Division, BioGeoChemistry Laboratory, ENEA, National Agency for New Technologies, Energy and Sustainable Economic Development, Rome 00123, Italy.
| | - Giovanna Armiento
- Sustainable Territorial and Production Systems Department (SSPT) PROTER Division, BioGeoChemistry Laboratory, ENEA, National Agency for New Technologies, Energy and Sustainable Economic Development, Rome 00123, Italy.
| | - Paolo Ballirano
- Department of Earth Science, Sapienza University of Rome, Rome 00185, Italy.
| | - Antonella Polimeni
- Department of Dentistry and Maxillo-Facial Sciences, Unit of Pediatric Dentistry Sapienza University of Rome, Rome 00185, Italy.
| | - Maria Sabrina Sarto
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, Rome 00185, Italy.
- DIAEE, Department of Astronautical, Electrical, Energy Engineering, Sapienza University of Rome, Rome 00185, Italy.
| | - Daniela Uccelletti
- BBCD, Department of Biology and Biotechnology, Sapienza University of Rome, Rome 00185, Italy.
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
58
|
PCR-Based Identification of Oral Streptococcal Species. Int J Dent 2016; 2016:3465163. [PMID: 27703479 PMCID: PMC5039290 DOI: 10.1155/2016/3465163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/18/2016] [Indexed: 11/17/2022] Open
Abstract
The microbial etiology of dental caries is still debated. Among the hypothesized contributors are the "low pH streptococci," a designation given to unusually acid proficient strains among the primary plaque colonizers S. oralis, S. mitis, S. gordonii, and S. anginosus. However, accurate assignment of species is difficult among the oral streptococci. Our objective was to develop a streamlined method for identifying strains of S. oralis and S. mitis from plaque samples so that they could be analyzed in a separate study devoted to low pH streptococci and caries. Two independent PCR amplifications of a locus highly conserved among streptococci were used for presumptive species identification. Multilocus sequence analysis (MLSA) was used to measure accuracy. Sensitivity was 100% for selecting S. oralis and S. mitis among the clones sampled. Specificity was good except for the most closely related species that could not be reliably distinguished even by MLSA. The results with S. oralis and S. mitis were used to identify new primer sets that expanded the utility of the approach to other oral streptococcal species. These novel primer sets offer a convenient means of presumptive identification that will have utility in many studies where large scale, in-depth genomic analyses are not practical.
Collapse
|
59
|
Bandara M, Corey RA, Martin R, Skehel JM, Blocker AJ, Jenkinson HF, Collinson I. Composition and Activity of the Non-canonical Gram-positive SecY2 Complex. J Biol Chem 2016; 291:21474-21484. [PMID: 27551046 PMCID: PMC5076819 DOI: 10.1074/jbc.m116.729806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/14/2016] [Indexed: 11/24/2022] Open
Abstract
The accessory Sec system in Streptococcus gordonii DL1 is a specialized export system that transports a large serine-rich repeat protein, Hsa, to the bacterial surface. The system is composed of core proteins SecA2 and SecY2 and accessory Sec proteins Asp1–Asp5. Similar to canonical SecYEG, SecY2 forms a channel for translocation of the Hsa adhesin across the cytoplasmic membrane. Accessory Sec proteins Asp4 and Asp5 have been suggested to work alongside SecY2 to form the translocon, similar to the associated SecY, SecE, and SecG of the canonical system (SecYEG). To test this theory, S. gordonii secY2, asp4, and asp5 were co-expressed in Escherichia coli. The resultant complex was subsequently purified, and its composition was confirmed by mass spectrometry to be SecY2-Asp4-Asp5. Like SecYEG, the non-canonical complex activates the ATPase activity of the SecA motor (SecA2). This study also shows that Asp4 and Asp5 are necessary for optimal adhesion of S. gordonii to glycoproteins gp340 and fibronectin, known Hsa binding partners, as well as for early stage biofilm formation. This work opens new avenues for understanding the structure and function of the accessory Sec system.
Collapse
Affiliation(s)
- Mikaila Bandara
- From the School of Oral and Dental Sciences, Lower Maudlin Street, Bristol BS1 2LY.,the School of Biochemistry and.,School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, and
| | | | | | - J Mark Skehel
- Biological Mass Spectrometry and Proteomics, Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Ariel J Blocker
- the School of Biochemistry and.,School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, and
| | - Howard F Jenkinson
- From the School of Oral and Dental Sciences, Lower Maudlin Street, Bristol BS1 2LY
| | | |
Collapse
|
60
|
Montero JFD, Barbosa LCA, Pereira UA, Barra GM, Fredel MC, Benfatti CAM, Magini RS, Pimenta AL, Souza JCM. Chemical, microscopic, and microbiological analysis of a functionalized poly-ether-ether-ketone-embedding antibiofilm compounds. J Biomed Mater Res A 2016; 104:3015-3020. [PMID: 27458927 DOI: 10.1002/jbm.a.35842] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/24/2016] [Indexed: 11/12/2022]
Abstract
Poly-ether-ether-ketone (PEEK) is currently introduced as an alternative material for orthopedic implants due to its biocompatibility and low elastic modulus compared to titanium. Also, a sulphonation treatment can functionalize PEEK to embed therapeutical substances. The objective of this work was to functionalize a PEEK film to incorporate novel lactam-based antibiofilms compounds. PEEK samples were functionalized by sulphuric acid treatment and then dissolved in dimethylsulfoxide, where lactams were added to be incorporated into the polymer. A dip-coating technique was used to synthesize a thin film on a glass-based substrate. The degree of sulfonation (DS) and the incorporation of lactams into sulphonated PEEK (sPEEK) were analyzed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, thermogravimetric analysis (TGA), and scanning electron microscopy. A DS of 65% was obtained and TGA curves confirmed the presence of SO3 H and lactams in the sPEEK structure. The growth of Streptococcus mutans biofilm decreased on sPEEK surface containing lactams when compared to sPEEK free of lactams. That indicated the antibiofilm activity of those compounds was maintained after incorporation into sPEEK. Planktonic growth analysis showed no long distant effects of sPEEK containing lactams, indicating that no systemic effects should be expected upon clinical uses of medical devices produced with lactam-treated sPEEK. Results revealed that inclusion of lactams into sPEEK represents a good alternative for the production of biomaterials resistant to bacterial accumulation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3015-3020, 2016.
Collapse
Affiliation(s)
- Juan F D Montero
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - Luiz C A Barbosa
- Department of Chemistry, Federal University of Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil.,Department of Chemistry, Federal University of Viçosa, Viçosa/MG 36570-000, Brazil
| | - Ulisses A Pereira
- Department of Chemistry, Federal University of Viçosa, Viçosa/MG 36570-000, Brazil
| | - Guilherme M Barra
- Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - Márcio C Fredel
- Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - Cesar A M Benfatti
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - Ricardo S Magini
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - Andréa L Pimenta
- Department of Biologie, Université De Cergy Pontoise, 2, Av. Adolphe Chauvin, Cergy Pontoise, 95302, France
| | - Júlio C M Souza
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil. .,Center for Microelectromechanical Systems (CMEMS), Department of Mechanical Engineering (DEM), Guimarães, 4800-058, Portugal.
| |
Collapse
|
61
|
Xavier JG, Geremias TC, Montero JFD, Vahey BR, Benfatti CAM, Souza JCM, Magini RS, Pimenta AL. Lactam inhibiting Streptococcus mutans growth on titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:837-841. [PMID: 27524086 DOI: 10.1016/j.msec.2016.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
The aim of this work was to analyze the activity of novel synthetic lactams on preventing biofilm formation on titanium surfaces. Titanium (Ti6Al4V) samples were exposed to Streptococcus mutans cultures in the presence or absence of a synthetic lactam. After 48h incubation, planktonic growth was determined by spectrophotometry. Biofilm was evaluated by crystal violet staining and colony forming units (CFU·ml(-)(1)), followed by scanning electron microscopy (SEM). Results showed that the average of adhered viable cells was approximately 1.5×10(2)CFU/ml in the presence of lactam and 4×10(2)CFU/ml in its absence. This novel compound was considerable active in reducing biofilm formation over titanium surfaces, indicating its potential for the development of antimicrobial drugs targeting the inhibition of the initial stages of bacterial biofilms on dental implants abutments.
Collapse
Affiliation(s)
- J G Xavier
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - T C Geremias
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - J F D Montero
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - B R Vahey
- Herman Ostrow School of Dentistry of USC, 925 W 34 St, Los Angeles, CA 90089, United States
| | - C A M Benfatti
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - J C M Souza
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - R S Magini
- Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-900, Brazil
| | - A L Pimenta
- Department of Biologia, ERRMECe, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin 95302 Cergy, Pontoise, France; Integrated Laboratories Technologies (InteLab), Dept. Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), Florianópolis/SC, 88040-970, Brazil.
| |
Collapse
|
62
|
Herrero ER, Slomka V, Bernaerts K, Boon N, Hernandez-Sanabria E, Passoni BB, Quirynen M, Teughels W. Antimicrobial effects of commensal oral species are regulated by environmental factors. J Dent 2016; 47:23-33. [DOI: 10.1016/j.jdent.2016.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/15/2022] Open
|
63
|
Draft Genome Sequence of Type Strain Streptococcus gordonii ATCC 10558. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01745-15. [PMID: 26893427 PMCID: PMC4759074 DOI: 10.1128/genomea.01745-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus gordonii ATCC 10558(T) was isolated from a patient with infective endocarditis in 1946 and announced as a type strain in 1989. Here, we report the 2,154,510-bp draft genome sequence of S. gordonii ATCC 10558(T). This sequence will contribute to knowledge about the pathogenesis of infective endocarditis.
Collapse
|
64
|
Dige I, Baelum V, Nyvad B, Schlafer S. Monitoring of extracellular pH in young dental biofilms grown in vivo in the presence and absence of sucrose. J Oral Microbiol 2016; 8:30390. [PMID: 26894480 PMCID: PMC4759832 DOI: 10.3402/jom.v8.30390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/01/2023] Open
Abstract
Background and objective pH in dental biofilms is of central importance for the development of caries. We used the ratiometric pH-sensitive dye C-SNARF-4 in combination with digital image analysis to monitor extracellular pH in dental biofilms grown in situ with and without sucrose supply. Design Dental biofilms (48 h) from 10 individuals were collected on glass slabs mounted on intra-oral appliances. During growth, appliances were immersed extra-orally in either physiological saline or 4% sucrose for 2 min, eight times per day. Fluorescence emissions of C-SNARF-4 in deep layers of the biofilms were recorded ex vivo with confocal microscopy for 15 min or for 1 h after exposure to 0.4% glucose. Extracellular pH was determined ratiometrically using digital image analysis. Results Extracellular pH dropped rapidly in most examined sites after addition of glucose. Distinct pH microenvironments were observed within single biofilms. The variation in pH was similar between sites within the same biofilm and sites from different individuals. pH drop patterns did not differ between biofilms exposed to sucrose-free and sucrose-rich environments. Conclusion The present study is the first of its kind to apply the combination of pH ratiometry and digital image analysis to systematically record extracellular pH in intact dental biofilms from several individuals for up to 1 h. We observed highly heterogeneous pH landscapes and the presence of acidogenic microenvironments – ‘acidogenic hotspots’ – within the biofilms. The data suggest that pH drops in young (48 h) dental biofilms are independent of the sucrose supply during growth.
Collapse
Affiliation(s)
- Irene Dige
- Department of Dentistry, HEALTH, Aarhus University, Aarhus, Denmark;
| | - Vibeke Baelum
- Department of Dentistry, HEALTH, Aarhus University, Aarhus, Denmark
| | - Bente Nyvad
- Department of Dentistry, HEALTH, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
65
|
Microbial Diversity in the Early In Vivo-Formed Dental Biofilm. Appl Environ Microbiol 2016; 82:1881-8. [PMID: 26746720 DOI: 10.1128/aem.03984-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022] Open
Abstract
Although the mature dental biofilm composition is well studied, there is very little information on the earliest phase of in vivo tooth colonization. Progress in dental biofilm collection methodologies and techniques of large-scale microbial identification have made new studies in this field of oral biology feasible. The aim of this study was to characterize the temporal changes and diversity of the cultivable and noncultivable microbes in the early dental biofilm. Samples of early dental biofilm were collected from 11 healthy subjects at 0, 2, 4, and 6 h after removal of plaque and pellicle from tooth surfaces. With the semiquantitative Human Oral Microbiome Identification Microarray (HOMIM) technique, which is based on 16S rRNA sequence hybridizations, plaque samples were analyzed with the currently available 407 HOMIM microbial probes. This led to the identification of at least 92 species, with streptococci being the most abundant bacteria across all time points in all subjects. High-frequency detection was also made with Haemophilus parainfluenzae, Gemella haemolysans, Slackia exigua, and Rothia species. Abundance changes over time were noted for Streptococcus anginosus and Streptococcus intermedius (P = 0.02), Streptococcus mitis bv. 2 (P = 0.0002), Streptococcus oralis (P = 0.0002), Streptococcus cluster I (P = 0.003), G. haemolysans (P = 0.0005), and Stenotrophomonas maltophilia (P = 0.02). Among the currently uncultivable microbiota, eight phylotypes were detected in the early stages of biofilm formation, one belonging to the candidate bacterial division TM7, which has attracted attention due to its potential association with periodontal disease.
Collapse
|
66
|
Maal KB, Bouzari M, Zavareh FA. Biotechnological Applications of Two Novel Lytic Bacteriophages of Streptococcus mutans in Tooth Decay Bio-Controlling. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/crb.2015.90.100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
67
|
Generic determinants of Streptococcus colonization and infection. INFECTION GENETICS AND EVOLUTION 2015; 33:361-70. [DOI: 10.1016/j.meegid.2014.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 11/20/2022]
|
68
|
Back C, Douglas S, Emerson J, Nobbs A, Jenkinson H. Streptococcus gordoniiDL1 adhesin SspB V-region mediates coaggregation via receptor polysaccharide ofActinomyces orisT14V. Mol Oral Microbiol 2015; 30:411-24. [DOI: 10.1111/omi.12106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 01/22/2023]
Affiliation(s)
- C.R. Back
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - S.K. Douglas
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - J.E. Emerson
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - A.H. Nobbs
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - H.F. Jenkinson
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| |
Collapse
|
69
|
Yoshida A, Niki M, Yamamoto Y, Yasunaga A, Ansai T. Proteome analysis identifies the Dpr protein of Streptococcus mutans as an important factor in the presence of early streptococcal colonizers of tooth surfaces. PLoS One 2015; 10:e0121176. [PMID: 25816242 PMCID: PMC4376698 DOI: 10.1371/journal.pone.0121176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/28/2015] [Indexed: 11/19/2022] Open
Abstract
Oral streptococci are primary colonizers of tooth surfaces and Streptococcus mutans is the principal causative agent of dental caries in humans. A number of proteins are involved in the formation of monospecies biofilms by S. mutans. This study analyzed the protein expression profiles of S. mutans biofilms formed in the presence or absence of S. gordonii, a pioneer colonizer of the tooth surface, by two-dimensional gel electrophoresis (2-DE). After identifying S. mutans proteins by Mass spectrometric analysis, their expression in the presence of S. gordonii was analyzed. S. mutans was inoculated with or without S. gordonii DL1. The two species were compartmentalized using 0.2-μl Anopore membranes. The biofilms on polystyrene plates were harvested, and the solubilized proteins were separated by 2-DE. When S. mutans biofilms were formed in the presence of S. gordonii, the peroxide resistance protein Dpr of the former showed 4.3-fold increased expression compared to biofilms that developed in the absence of the pioneer colonizer. In addition, we performed a competition assay using S. mutans antioxidant protein mutants together with S. gordonii and other initial colonizers. Growth of the dpr-knockout S. mutans mutant was significantly inhibited by S. gordonii, as well as by S. sanguinis. Furthermore, a cell viability assay revealed that the viability of the dpr-defective mutant was significantly attenuated compared to the wild-type strain when co-cultured with S. gordonii. Therefore, these results suggest that Dpr might be one of the essential proteins for S. mutans survival on teeth in the presence of early colonizing oral streptococci.
Collapse
Affiliation(s)
- Akihiro Yoshida
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri, Japan
- Division of Community Oral Health Science, Department of Oral Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Mamiko Niki
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuji Yamamoto
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ai Yasunaga
- Division of Community Oral Health Science, Department of Oral Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Toshihiro Ansai
- Division of Community Oral Health Science, Department of Oral Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
70
|
Mandracci P, Mussano F, Ceruti P, Pirri CF, Carossa S. Reduction of bacterial adhesion on dental composite resins by silicon-oxygen thin film coatings. ACTA ACUST UNITED AC 2015; 10:015017. [PMID: 25634298 DOI: 10.1088/1748-6041/10/1/015017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adhesion of bacteria on dental materials can be reduced by modifying the physical and chemical characteristics of their surfaces, either through the application of specific surface treatments or by the deposition of thin film coatings. Since this approach does not rely on the use of drugs or antimicrobial agents embedded in the materials, its duration is not limited by their possible depletion. Moreover it avoids the risks related to possible cytotoxic effects elicited by antibacterial substances released from the surface and diffused in the surrounding tissues. In this work, the adhesion of Streptococcus mutans and Streptococcus mitis was studied on four composite resins, commonly used for manufacturing dental prostheses. The surfaces of dental materials were modified through the deposition of a-SiO(x) thin films by plasma enhanced chemical vapor deposition. The chemical bonding structure of the coatings was analyzed by Fourier-transform infrared spectroscopy. The morphology of the dental materials before and after the coating deposition was assessed by means of optical microscopy and high-resolution mechanical profilometry, while their wettability was investigated by contact angle measurements. The sample roughness was not altered after coating deposition, while a noticeable increase of wettability was detected for all the samples. Also, the adhesion of S. mitis decreased in a statistically significant way on the coated samples, when compared to the uncoated ones, which did not occur for S. mutans. Within the limitations of this study, a-SiO(x) coatings may affect the adhesion of bacteria such as S. mitis, possibly by changing the wettability of the composite resins investigated.
Collapse
Affiliation(s)
- Pietro Mandracci
- Politecnico di Torino, Department of Applied Science and Technology - Materials and Microsystems Laboratory (ChiLab), corso Duca degli Abruzzi 24, I-10129, Torino, Italy
| | | | | | | | | |
Collapse
|
71
|
|
72
|
Jack AA, Daniels DE, Jepson MA, Vickerman MM, Lamont RJ, Jenkinson HF, Nobbs AH. Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans. MICROBIOLOGY-SGM 2014; 161:411-421. [PMID: 25505189 DOI: 10.1099/mic.0.000010] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Candida albicans is a pleiomorphic fungus that forms mixed species biofilms with Streptococcus gordonii, an early colonizer of oral cavity surfaces. Activation of quorum sensing (QS; intercellular signalling) promotes monospecies biofilm development by these micro-organisms, but the role of QS in mixed species communities is not understood. The comCDE genes in S. gordonii encode a sensor-regulator system (ComDE), which is activated by the comC gene product (CSP, competence stimulating peptide) and modulates expression of QS-regulated genes. Dual species biofilms of S. gordonii ΔcomCDE or ΔcomC mutants with C. albicans showed increased biomass compared to biofilms of S. gordonii DL1 wild-type with C. albicans. The ΔcomCDE mutant dual species biofilms in particular contained more extracellular DNA (eDNA), and could be dispersed with DNase I or protease treatment. Exogenous CSP complemented the S. gordonii ΔcomC transformation deficiency, as well as the ΔcomC-C. albicans biofilm phenotype. Purified CSP did not affect C. albicans hyphal filament formation but inhibited monospecies biofilm formation by C. albicans. The results suggest that the S. gordonii comCDE QS-system modulates the production of eDNA and the incorporation of C. albicans into dual species biofilms.
Collapse
Affiliation(s)
- Alison A Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Debbie E Daniels
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK.,School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Mark A Jepson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - M Margaret Vickerman
- Department of Oral Biology, University at Buffalo, 223 Foster Hall, Buffalo, NY 14214, USA
| | - Richard J Lamont
- Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 South Preston Street, Louisville, KY 40202, USA
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Angela H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
73
|
Bamford CV, Nobbs AH, Barbour ME, Lamont RJ, Jenkinson HF. Functional regions of Candida albicans hyphal cell wall protein Als3 that determine interaction with the oral bacterium Streptococcus gordonii. MICROBIOLOGY-SGM 2014; 161:18-29. [PMID: 25332379 DOI: 10.1099/mic.0.083378-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The opportunistic pathogen Candida albicans colonizes the oral cavity and gastrointestinal tract. Adherence to host cells, extracellular matrix and salivary glycoproteins that coat oral surfaces, including prostheses, is an important prerequisite for colonization. In addition, interactions of C. albicans with commensal oral streptococci are suggested to promote retention and persistence of fungal cells in mixed-species communities. The hyphal filament specific cell wall protein Als3, a member of the Als protein family, is a major determinant in C. albicans adherence. Here, we utilized site-specific in-frame deletions within Als3 expressed on the surface of heterologous Saccharomyces cerevisiae to determine regions involved in interactions of Als3 with Streptococcus gordonii. N-terminal region amino acid residue deletions Δ166-225, Δ218-285, Δ270-305 and Δ277-286 were each effective in inhibiting binding of Strep. gordonii to Als3. In addition, these deletions differentially affected biofilm formation, hydrophobicity, and adherence to silicone and human tissue proteins. Deletion of the central repeat domain (Δ434-830) did not significantly affect interaction of Als3 with Strep. gordonii SspB protein, but affected other adherence properties and biofilm formation. Deletion of the amyloid-forming region (Δ325-331) did not affect interaction of Als3 with Strep. gordonii SspB adhesin, suggesting this interaction was amyloid-independent. These findings highlighted the essential function of the N-terminal domain of Als3 in mediating the interaction of C. albicans with S. gordonii, and suggested that amyloid formation is not essential for the inter-kingdom interaction.
Collapse
Affiliation(s)
- Caroline V Bamford
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Angela H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Michele E Barbour
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Richard J Lamont
- School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
74
|
Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms. Infect Immun 2014; 82:4941-51. [PMID: 25183732 DOI: 10.1128/iai.01850-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions.
Collapse
|
75
|
Effect of repeated adjunctive antimicrobial photodynamic therapy on subgingival periodontal pathogens in the treatment of chronic periodontitis. Lasers Med Sci 2014; 30:1647-56. [DOI: 10.1007/s10103-014-1632-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 07/08/2014] [Indexed: 12/18/2022]
|
76
|
Mashima I, Nakazawa F. The influence of oral Veillonella species on biofilms formed by Streptococcus species. Anaerobe 2014; 28:54-61. [PMID: 24862495 DOI: 10.1016/j.anaerobe.2014.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/07/2014] [Accepted: 05/14/2014] [Indexed: 12/20/2022]
Abstract
Oral Veillonella, Veillonella atypica, Veillonella denticariosi, Veillonella dispar, Veillonella parvula, Veillonella rogosae, and Veillonella tobetsuensis are known as early colonizers in oral biofilm formation. To investigate the role of oral Veillonella, biofilms formed by the co-culture of Streptococcus gordonii, Streptococcus mutans, Streptococcus salivarius, or Streptococcus sanguinis, with oral Veillonella were examined at the species level. The amount of biofilm formed by S. mutans, S. gordonii, and S. salivarius in the presence of the six Veillonella species was greater than that formed in the control experiments, with the exception of S. mutans with V. dispar. In contrast, in the case of biofilm formation by S. sanguinis, the presence of Veillonella species reduced the amount of the biofilm, with the exception of V. parvula and V. dispar. The time-dependent changes in the amount of biofilm and the number of planktonic cells were grouped into four patterns over the 24 combinations. Only that of S. gordonii with V. tobetsuensis showed a unique pattern. These results indicate that the mode of action of this combination differed from that of the other combinations with respect to biofilm formation. It is possible that there may be several factors involved in the interaction between Streptococcus and Veillonella species.
Collapse
Affiliation(s)
- Izumi Mashima
- Department of Oral Microbiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Futoshi Nakazawa
- Department of Oral Microbiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| |
Collapse
|
77
|
Hotta M, Morikawa T, Tamura D, Kusakabe S. Adherence of Streptococcus sanguinis and Streptococcus mutans to saliva-coated S-PRG resin blocks. Dent Mater J 2014; 33:261-7. [PMID: 24615002 DOI: 10.4012/dmj.2013-242] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This in vitro study performed elemental analysis of the ions absorbed into the salivary coat covering the surfaces of S-PRG resin blocks and assessed the adherence of Streptococcus sanguinis and Streptococcus mutans to these saliva-coated S-PRG resin blocks. Elemental analysis of ions absorbed into the salivary coat of resin blocks exposed to the saliva was performed using an inductive coupled plasma atomic emission spectrometer and the fluoride electrode method. Quantitative adherence of radio-labeled test bacteria to the resin blocks was determined. As the results, the saliva-coated S-PRG resin showed significantly greater amounts of absorbed B, Al, Si, Sr, and F than the saliva-coated unfilled resin. It was of particular significance that the salivary coating of the S-PRG resin reduced the adherence of S. mutans to this resin. However, in the case of S. sanguinis, no significant difference in adherence could be recognized between saliva-coated S-PRG resin and saliva-coated unfilled resin.
Collapse
Affiliation(s)
- Masato Hotta
- Division of Oral Functional Science and Rehabilitation, Department of Operative Dentistry, Asahi University School of Dentistry
| | | | | | | |
Collapse
|
78
|
Maddi A, Haase E, Scannapieco F. Mass Spectrometric Analysis of Whole Secretome and Amylase-precipitated Secretome Proteins from Streptococcus gordonii.. ACTA ACUST UNITED AC 2014; 7:287-295. [PMID: 25605983 PMCID: PMC4297671 DOI: 10.4172/jpb.1000331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oral biofilm (dental plaque) is formed by the initial adhesion of “pioneer species” to salivary proteins that form the dental pellicle on the tooth surface. One such pioneer species, Streptococcus gordonii, is known to bind salivary amylase through specific amylase-binding proteins such as amylase-binding protein A (AbpA). Recent studies have demonstrated that once bound, salivary amylase appears to modulate gene expression in S. gordonii. However, it is not known if this amylase-induced gene expression leads to secretion of proteins that play a role in plaque biofilm formation. In this study we examined the differences in secreted proteomes between S. gordonii KS1 (wild type) and AbpA-deficient (ΔAbpA) strains. We also examined the differentially precipitated secretome proteins following incubation with salivary amylase. The culture supernatants from KS1 and ΔAbpA were analyzed by nano-LC/MS/MS to characterize the whole secreted proteomes of the KS1 and ΔAbpA. A total of 107 proteins were identified in the KS1 and ΔAbpA secretomes of which 72 proteins were predicted to have an N-terminal signal peptide for secretion. Five proteins were differentially expressed between the KS1 and ΔAbpA secretomes; AbpA and sortase B were expressed exclusively by KS1, whereas Gdh, AdcA and GroEL were expressed only by ΔAbpA. Incubation of culture supernatants from KS1 and ΔAbpA with amylase (50 μg/ml) at room temperature for 2 h resulted in the differential precipitation of secretome proteins. Hypothetical protein (SGO_0483), cation-transporting ATPase YfgQ (Aha1), isocitrate dehydrogenase (Icd), sortase A (SrtA), beta-N-acetylhexosaminidase (SGO_0405), peptide chain release factor 1(PrfA) and cardiolipin synthase (SGO_2037) were precipitated by amylase from the KS1 culture supernatant. Among the identified secreted proteins and amylase-precipitated proteins, transcriptional regulator LytR (SGO_0535) and cation-transporting ATPase YfgQ (Aha1) are potential signaling proteins.
Collapse
Affiliation(s)
- A Maddi
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA ; Periodontics and Endodontics, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Em Haase
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Fa Scannapieco
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
79
|
Jakubovics NS, Yassin SA, Rickard AH. Community interactions of oral streptococci. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:43-110. [PMID: 24581389 DOI: 10.1016/b978-0-12-800261-2.00002-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is now clear that the most common oral diseases, dental caries and periodontitis, are caused by mixed-species communities rather than by individual pathogens working in isolation. Oral streptococci are central to these disease processes since they are frequently the first microorganisms to colonize oral surfaces and they are numerically the dominant microorganisms in the human mouth. Numerous interactions between oral streptococci and other bacteria have been documented. These are thought to be critical for the development of mixed-species oral microbial communities and for the transition from oral health to disease. Recent metagenomic studies are beginning to shed light on the co-occurrence patterns of streptococci with other oral bacteria. Refinements in microscopy techniques and biofilm models are providing detailed insights into the spatial distribution of streptococci in oral biofilms. Targeted genetic manipulation is increasingly being applied for the analysis of specific genes and networks that modulate interspecies interactions. From this work, it is clear that streptococci produce a range of extracellular factors that promote their integration into mixed-species communities and enable them to form social networks with neighboring taxa. These "community integration factors" include coaggregation-mediating adhesins and receptors, small signaling molecules such as peptides or autoinducer-2, bacteriocins, by-products of metabolism including hydrogen peroxide and lactic acid, and a range of extracellular enzymes. Here, we provide an overview of various types of community interactions between oral streptococci and other microorganisms, and we consider the possibilities for the development of new technologies to interfere with these interactions to help control oral biofilms.
Collapse
Affiliation(s)
- Nicholas S Jakubovics
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Sufian A Yassin
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
80
|
Lessons Learned from Clinical Studies: Roles of Mutans Streptococci in the Pathogenesis of Dental Caries. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40496-013-0008-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
81
|
The influence of oral bacteria on epithelial cell migration in vitro. Mediators Inflamm 2013; 2013:154532. [PMID: 24288439 PMCID: PMC3832977 DOI: 10.1155/2013/154532] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/22/2013] [Indexed: 11/17/2022] Open
Abstract
Oral ulcerations often arise as a side effect from chemo- and radiation therapy. In a previous clinical study, Porphyromonas gingivalis was identified as a positive predictor for oral ulcerations after hematopoetic stem cell transplantation, possibly incriminating P. gingivalis in delayed healing of the ulcerations. Therefore, it was tested whether P. gingivalis and its secreted products could inhibit the migration of oral epithelial cells in an in vitro scratch assay. To compare, the oral bacteria Prevotella nigrescens, Prevotella intermedia, Tannerella forsythia, and Streptococcus mitis were included. A standardized scratch was made in a confluent layer of human oral epithelial cells. The epithelial cells were challenged with bacterial cells and with medium containing secretions of these bacteria. Closure of the scratch was measured after 17 h using a phase contrast microscope. P. gingivalis, P. nigrescens, and secretions of P. gingivalis strongly inhibited cell migration. A challenge with 1000 heat-killed bacteria versus 1 epithelial cell resulted in a relative closure of the scratch of 25% for P. gingivalis and 20% for P. nigrescens. Weaker inhibitory effects were found for the other bacteria. The results confirmed our hypothesis that the oral bacteria may be involved in delayed wound healing.
Collapse
|
82
|
Nylander Å, Svensäter G, Senadheera DB, Cvitkovitch DG, Davies JR, Persson K. Structural and functional analysis of the N-terminal domain of the Streptococcus gordonii adhesin Sgo0707. PLoS One 2013; 8:e63768. [PMID: 23691093 PMCID: PMC3656908 DOI: 10.1371/journal.pone.0063768] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/05/2013] [Indexed: 12/02/2022] Open
Abstract
The commensal Streptococcus gordonii expresses numerous surface adhesins with which it interacts with other microorganisms, host cells and salivary proteins to initiate dental plaque formation. However, this Gram-positive bacterium can also spread to non-oral sites such as the heart valves and cause infective endocarditis. One of its surface adhesins, Sgo0707, is a large protein composed of a non-repetitive N-terminal region followed by several C-terminal repeat domains and a cell wall sorting motif. Here we present the crystal structure of the Sgo0707 N-terminal domains, refined to 2.1 Å resolution. The model consists of two domains, N1 and N2. The largest domain, N1, comprises a putative binding cleft with a single cysteine located in its centre and exhibits an unexpected structural similarity to the variable domains of the streptococcal Antigen I/II adhesins. The N2-domain has an IgG-like fold commonly found among Gram-positive surface adhesins. Binding studies performed on S. gordonii wild-type and a Sgo0707 deficient mutant show that the Sgo0707 adhesin is involved in binding to type-1 collagen and to oral keratinocytes.
Collapse
Affiliation(s)
- Åsa Nylander
- Department of Odontology, Division of Oral Microbiology, Umeå University, Umeå, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | | | | | - Julia R. Davies
- Department of Oral Biology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Karina Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
83
|
Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, Lamont RJ, Jenkinson HF. Microbial interactions in building of communities. Mol Oral Microbiol 2013; 28:83-101. [PMID: 23253299 PMCID: PMC3600090 DOI: 10.1111/omi.12012] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/31/2022]
Abstract
Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development.
Collapse
Affiliation(s)
- Christopher J. Wright
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Logan H. Burns
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Alison A. Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Catherine R. Back
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Lindsay C. Dutton
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Richard J. Lamont
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| |
Collapse
|
84
|
Zhang X, Senpuku H. Dynamic Changes in the Initial Colonization of Actinomyces naeslundii and Streptococcus gordonii Using a New Animal Model. Jpn J Infect Dis 2013; 66:11-6. [DOI: 10.7883/yoken.66.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
85
|
Besinis A, De Peralta T, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 2012; 8:1-16. [PMID: 23092443 PMCID: PMC3878355 DOI: 10.3109/17435390.2012.742935] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metal-containing nanomaterials have the potential to be used in dentistry for infection control, but little is known about their antibacterial properties. This study investigated the toxicity of silver (Ag), titanium dioxide and silica nanoparticles (NPs) against the oral pathogenic species of Streptococcus mutans, compared to the routine disinfectant, chlorhexidine. The bacteria were assessed using the minimum inhibitory concentration assay for growth, fluorescent staining for live/dead cells, and measurements of lactate. All the assays showed that Ag NPs had the strongest antibacterial activity of the NPs tested, with bacterial growth also being 25-fold lower than that in chlorhexidine. The survival rate of bacteria under the effect of 100 mg l−1 Ag NPs in the media was 2% compared to 60% with chlorhexidine, while the lactate concentration was 0.6 and 4.0 mM, respectively. Silica and titanium dioxide NPs had limited effects. Dialysis experiments showed negligible silver dissolution. Overall, Ag NPs were the best disinfectant and performed better than chlorhexidine. Improvements to the MIC assay are suggested.
Collapse
Affiliation(s)
- Alexandros Besinis
- School of Biomedical and Biological Sciences, The University of Plymouth , Drake Circus, Plymouth PL4 8AA , UK
| | | | | |
Collapse
|
86
|
Taking the starch out of oral biofilm formation: molecular basis and functional significance of salivary α-amylase binding to oral streptococci. Appl Environ Microbiol 2012; 79:416-23. [PMID: 23144140 DOI: 10.1128/aem.02581-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
α-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary α-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed α-amylase-binding proteins. The functional significance of α-amylase-binding proteins in oral colonization by streptococci is important for understanding how salivary components influence oral biofilm formation by these important dental plaque species. This review summarizes the results of an extensive series of studies that have sought to define the molecular basis for α-amylase binding to the surface of the bacterium as well as the biological significance of this phenomenon in dental plaque biofilm formation.
Collapse
|
87
|
Klein MI, Xiao J, Lu B, Delahunty CM, Yates JR, Koo H. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics. PLoS One 2012; 7:e45795. [PMID: 23049864 PMCID: PMC3458072 DOI: 10.1371/journal.pone.0045795] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/24/2012] [Indexed: 01/15/2023] Open
Abstract
Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other organisms. Our data provide insights about how S. mutans optimizes its metabolism and adapts/survives within the mixed-species community in response to a dynamically changing environment. This reflects the intricate physiological processes linked to expression of virulence by this bacterium within complex biofilms.
Collapse
Affiliation(s)
- Marlise I. Klein
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (MIK); (HK)
| | - Jin Xiao
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, People’s Republic of China
| | - Bingwen Lu
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Claire M. Delahunty
- The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Hyun Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (MIK); (HK)
| |
Collapse
|
88
|
Davis JE, Freel N, Findley A, Tomlin K, Howard KM, Seran CC, Cruz P, Kingsley K. A molecular survey of S. mutans and P. gingivalis oral microbial burden in human saliva using relative endpoint polymerase chain reaction (RE-PCR) within the population of a Nevada dental school revealed disparities among minorities. BMC Oral Health 2012; 12:34. [PMID: 22925755 PMCID: PMC3473244 DOI: 10.1186/1472-6831-12-34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 08/01/2012] [Indexed: 11/24/2022] Open
Abstract
Background The University of Nevada, Las Vegas School of Dental Medicine recently opened an orthodontic treatment clinic to address the needs of the racially and ethnically diverse population of Southern Nevada, primarily focusing on the treatment and care of low-income and minority patients. Although orthodontic treatment and therapy has been shown to induce changes in the oral cavity, much of this evidence was collected from traditional White, teenage orthodontic clinic populations. The primary goal of this study was to describe the microbial burden of the cariogenic and periodontal pathogens, Streptococcus mutans and Porphyromonas gingivalis within the UNLV-SDM patient population. Methods Representative saliva samples were collected from healthy adult patients for DNA isolation. Relative endpoint polymerase chain reaction (RE-PCR) was performed to ascertain the presence and relative microbial burden of these oral pathogens. Results Nearly one quarter (13/56) or 23.3% of these patients had elevated levels of S. mutans, while (10/56) and 17.8% of these samples were found to have elevated levels of P. gingivalis, - with (90%) of P. gingivalis-positive samples from minority patients (X2 = 17.921, d.f. = 1; p < 0.0001). Conclusions These findings of elevated P. gingivalis levels, primarily among minority patients, may suggest underlying oral health practices contributing to adverse oral health conditions within this population. Oral health knowledge and practices among minority patients may be strongly influenced by other factors, including education and socioeconomic status, suggesting additional research may be needed to accurately determine the most appropriate standards for care and oral health education within this patient population.
Collapse
Affiliation(s)
- Jay Ericksen Davis
- Orthodontic Residency Program, School of Dental Medicine, University of Nevada, Las Vegas, NV, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Tomczyk J. Comments on Soltysiak's paper: "Comment: low dental caries rate in Neandertals: the result of diet or the oral flora compositions?". HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2012; 63:311-4. [PMID: 22858155 DOI: 10.1016/j.jchb.2012.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/09/2012] [Indexed: 11/25/2022]
Abstract
A low frequency of dental caries in Neandertal population is still puzzling. Many authors stress that the lower frequency of dental caries was related to a meat diet. However, a recent publication in HOMO - Journal Comparative Human Biology presented a new interpretation of dental caries in Neandertals. In this article, Soltysiak supports the thesis that the lower frequency of caries in the Neandertal population from the Near East could not be related to the low-sugar diet, but rather to the absence of cariogenic bacteria species (S. mutans). Although this hypothesis is interesting, I suspect it to be based on several erroneous assumptions, and a misunderstanding of caries as a disease. Although he stressed that the caries lesion is related to many different factors, in his argument he considers one of two alternatives "a low-sugar diet or a lack of cariogenic bacterial species".
Collapse
Affiliation(s)
- Jacek Tomczyk
- Department of Anthropology, Cardinal Stefan Wyszyński University, ul. Woycickiego 1/3, Warsaw 01-938, Poland.
| |
Collapse
|
90
|
Tamura M, Ochiai K. Exploring the possible applications of catechin (gel) for oral care of the elderly and disabled individuals. JAPANESE DENTAL SCIENCE REVIEW 2012. [DOI: 10.1016/j.jdsr.2012.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
91
|
Takahashi N, Washio J, Mayanagi G. Metabolomic approach to oral biofilm characterization—A future direction of biofilm research. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
92
|
Influence of thermoplastic retainers on Streptococcus mutans and Lactobacillus adhesion. Am J Orthod Dentofacial Orthop 2012; 141:598-603. [PMID: 22554754 DOI: 10.1016/j.ajodo.2011.11.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 11/22/2022]
Abstract
INTRODUCTION This study was designed to test the hypothesis that thermoplastic retainers influence oral microbial flora during the retention period because they prevent the flushing effect of saliva on dental and mucous tissues. METHODS Twenty-four orthodontic patients finished the study. After debonding, the patients were given thermoplastic retainers (Essix ACE 0.040-in plastic, Dentsply International, York, Pa) for both jaws and instructed to wear them all day. Plaque samples from tooth surfaces and saliva samples were collected from each patient just after debonding (T0), and on day 15 (T1), day 30 (T2), and day 60 (T3) of retention. The jaws were divided into 6 regions, and the data for each region were evaluated separately. Total viable Lactobacillus and Streptococcus mutans colonies were counted, and the numbers of the viable microorganisms were calculated. RESULTS The numbers of Lactobacillus colonies at T3 were higher than at T0, T1, and T2, and the difference between T0 and T3 was statistically significant (P <0.05). The numbers of S mutans colonies at T3 were higher than at T0, T1, and T2, and the differences between T0 and T1, and T1 and T2 were statistically significant (P <0.05). CONCLUSIONS Retention with thermoplastic retainers might create oral conditions conducive to S mutans and Lactobacillus colonization on dental surfaces.
Collapse
|
93
|
The role of hydrogen peroxide in environmental adaptation of oral microbial communities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:717843. [PMID: 22848782 PMCID: PMC3405655 DOI: 10.1155/2012/717843] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/11/2012] [Indexed: 11/17/2022]
Abstract
Oral streptococci are able to produce growth-inhibiting amounts of hydrogen peroxide (H(2)O(2)) as byproduct of aerobic metabolism. Several recent studies showed that the produced H(2)O(2) is not a simple byproduct of metabolism but functions in several aspects of oral bacterial biofilm ecology. First, the release of DNA from cells is closely associated to the production of H(2)O(2) in Streptococcus sanguinis and Streptococcus gordonii. Extracellular DNA is crucial for biofilm development and stabilization and can also serve as source for horizontal gene transfer between oral streptococci. Second, due to the growth inhibiting nature of H(2)O(2), H(2)O(2) compatible species associate with the producers. H(2)O(2) production therefore might help in structuring the initial biofilm development. On the other hand, the oral environment harbors salivary peroxidases that are potent in H(2)O(2) scavenging. Therefore, the effects of biofilm intrinsic H(2)O(2) production might be locally confined. However, taking into account that 80% of initial oral biofilm constituents are streptococci, the influence of H(2)O(2) on biofilm development and environmental adaptation might be under appreciated in current research.
Collapse
|
94
|
Amplification of oral streptococcal DNA from human incisors and bite marks. Curr Microbiol 2012; 65:207-11. [PMID: 22638842 DOI: 10.1007/s00284-012-0148-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
Challenges to the evidentiary value of morphometric determinations have led to a requirement for scientifically substantiated approaches to the forensic analysis of bite marks. Human teeth support genotypically distinctive populations of bacteria that could be exploited for forensic purposes. This study explored the feasibility of directly amplifying bacterial DNA from bite marks for comparison with that from teeth. Samples from self-inflicted experimental bite marks (n = 24) and human incisors were amplified by PCR using primers specific for streptococcal 16S ribosomal DNA. Amplicon profiles (resolved by denaturing gradient gel electrophoresis) from bite mark samples aligned significantly more closely with profiles generated from the teeth responsible than with those from other teeth. Streptococcal amplicons were generated from dental samples applied to excised porcine skin for up to 48 h. These findings indicate that streptococcal DNA can be amplified directly from bite marks, and have potential application in bite mark analysis.
Collapse
|
95
|
Claro-Pereira D, Sampaio-Maia B, Ferreira C, Rodrigues A, Melo LF, Vasconcelos MR. In situ evaluation of a new silorane-based composite resin's bioadhesion properties. Dent Mater 2011; 27:1238-45. [DOI: 10.1016/j.dental.2011.08.401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/24/2011] [Accepted: 08/24/2011] [Indexed: 11/27/2022]
|
96
|
Abstract
AIM This review intends to provide a brief overview regarding quorum sensing among bacteria in biofilms and also attempts to throw light on the new research focusing on interference with the quorum sensing. BACKGROUND Dental plaque is an example of microbial biofilm leading to periodontal disease and dental caries. Quorum sensing is widely employed by a variety of gram-positive and gram-negative bacterial species to coordinate various activities in biofilms. Quorum-sensing-interfering compounds have either a positive or a negative effect on the expression of bacterial phenotypes regulated by quorum sensing. These studies of bacterial quorum sensing have also suggested several ideal targets for drug design which can be promising in preventive and therapeutic aspects of periodontal diseases and dental caries. RESULTS Studies have shown that periodontal disease and dental caries is caused by plaque biofilm bacteria. Quorum sensing is the means of communication between these bacteria to regulate a wide range of behavior patterns among them. The in vitro studies reviewed here have a vital role in opening up this field, because they reveal the basic machinery of cell--cell signaling in microbial communities. The signal machinery bacteria use to coordinate a variety of their activities is identified by these studies. Further, this review aims to discuss several natural and synthetic methods which were used for manipulating bacterial quorum sensing. CONCLUSION The future challenge lies in the ability of the dental research to develop additional mechanisms for interfering with bacterial quorum sensing which can be used as preventive and therapeutic tools for combating oral polymicrobial diseases. CLINICAL SIGNIFICANCE This article aims at reviewing the literature and helping us to understand the ways of communication among bacteria in biofilms, which further open up the prospects in the treatment of diseases caused by biofilms.
Collapse
Affiliation(s)
- Baswaraj Biradar
- Department of Prosthodontics, Indira Gandhi Institute of Dental Sciences, Puducherry, India.
| | | |
Collapse
|
97
|
Comparative study on the microbial adhesion to preveneered and stainless steel crowns. Indian J Dent 2011. [DOI: 10.1016/s0975-962x(11)60031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
98
|
Schlafer S, Raarup MK, Meyer RL, Sutherland DS, Dige I, Nyengaard JR, Nyvad B. pH landscapes in a novel five-species model of early dental biofilm. PLoS One 2011; 6:e25299. [PMID: 21966490 PMCID: PMC3179500 DOI: 10.1371/journal.pone.0025299] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/31/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate. METHODOLOGY/PRINCIPAL FINDINGS Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours. CONCLUSIONS/SIGNIFICANCE The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed insight into the pH landscape of living biofilms and contributes to our general understanding of metabolic processes in in-vivo-grown bacterial biofilms.
Collapse
Affiliation(s)
- Sebastian Schlafer
- iNANO The Interdisciplinary Nanoscience Center, Faculty of Science, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
99
|
Takahashi N, Washio J. Metabolomic effects of xylitol and fluoride on plaque biofilm in vivo. J Dent Res 2011; 90:1463-8. [PMID: 21940519 DOI: 10.1177/0022034511423395] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dental caries is initiated by demineralization of the tooth surface through acid production from sugar by plaque biofilm. Fluoride and xylitol have been used worldwide as caries-preventive reagents, based on in vitro-proven inhibitory mechanisms on bacterial acid production. We attempted to confirm the inhibitory mechanisms of fluoride and xylitol in vivo by performing metabolome analysis on the central carbon metabolism in supragingival plaque using the combination of capillary electrophoresis and a time-of-flight mass spectrometer. Fluoride (225 and 900 ppm F(-)) inhibited lactate production from 10% glucose by 34% and 46%, respectively, along with the increase in 3-phosphoglycerate and the decrease in phosphoenolpyruvate in the EMP pathway in supragingival plaque. These results confirmed that fluoride inhibited bacterial enolase in the EMP pathway and subsequently repressed acid production in vivo. In contrast, 10% xylitol had no effect on acid production and the metabolome profile in supragingival plaque, although xylitol 5-phosphate was produced. These results suggest that xylitol is not an inhibitor of plaque acid production but rather a non-fermentative sugar alcohol. Metabolome analyses of plaque biofilm can be applied for monitoring the efficacy of dietary components and medicines for plaque biofilm, leading to the development of effective plaque control.
Collapse
Affiliation(s)
- N Takahashi
- Division of Oral Ecology and Biochemistry, Department of Oral Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | |
Collapse
|
100
|
|