51
|
Leonova EI, Chirinskaite AV, Sopova JV. Atherosclerosis is a side effect of cellular senescence. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.81358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Atherosclerosis is a systemic autoimmune disease of the arterial wall characterized by chronic inflammation, high blood pressure, oxidative stress, and progressive loss of cell and organ function with aging. An imbalance of macrophage polarization is associated with many aging diseases, including atherosclerosis. The polarization toward the pro-inflammatory M1 macrophage is a major promoter of the atheroma formation. It is known that efferocytosis, or ingestion of apoptotic cells, is stimulated by M2 macrophage polarization. A failure of efferocytosis leads to the prolongation of chronic pathology in tissue. In addition, fat-laden macrophages contribute to the plague progression by transforming into foam cells in response to excess lipid deposition in arteries. In spite of the generally accepted theory that macrophages capture oxidized low-density lipoprotein by phagocytosis and become foam cells, we postulate that the main source of lipid accumulation in foam cells are senescent erythrocytes. Senescent erythrocytes lose their plasticity, which affects the rheological blood properties. It is known that their membrane contains high levels of cholesterol. There is evidence that senescent erythrocytes play a pathogenic role in the atheroma formation after breaking down during flowing through an artery bifurcation. Here we review the current knowledge on the impact of age-associated immune cells and red blood cells modifications on atherogenesis.
Graphical abstract:
Collapse
|
52
|
Anti-Restenotic Technologies in the SFA: Balloons and Stents. Tech Vasc Interv Radiol 2022; 25:100842. [PMID: 35842257 DOI: 10.1016/j.tvir.2022.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
53
|
Lin C, Xu L, Tang X, Li X, Lu C, Cheng Q, Jiang J, Shen Y, Yan D, Qian R, Fu W, Guo D. Clock Gene Bmal1 Disruption in Vascular Smooth Muscle Cells Worsens Carotid Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 2022; 42:565-579. [PMID: 35236106 DOI: 10.1161/atvbaha.121.316480] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Clock system disruptions are associated with cardiovascular diseases. We previously demonstrated Bmal1 (brain muscle aryl nuclear translocase like-1) expression is significantly attenuated in plaque-derived vascular smooth muscle cells (VSMCs). However, the influence of Bmal1 disruption in VSMCs and its molecular targets are still unclear. Here, we aim to define how Bmal1 disruption in VSMCs influences the atherosclerosis lesions. METHODS The relationship among Bmal1, neurological symptoms, and plaque stability was investigated. VSMC Bmal1-/- and VSMC Bmal1+/+mice were generated and injected with adeno associated virus encoding mutant proprotein convertase subtilisin/kexin type 9 to induce atherosclerosis. Carotid artery ligation and cuff placement were performed in these mice to confirm the role of Bmal1 in atherosclerosis progression. The relevant molecular mechanisms were then explored. RESULTS Bmal1 expression in the carotid plague was significantly lower in symptomatic patients as well as in unstable plaques. Moreover, Bmal1 reduction is an independent risk factor for neurological symptoms and plaque instability. Besides, VSMC Bmal1-/- mice exhibit aggravated atherosclerotic lesions. Further study demonstrated that Bmal1 downregulation in VSMCs increased VSMC migration, monocyte transmigration, reactive oxygen species levels, and VSMCs apoptosis. As for the mechanism, we revealed that Bmal1 suppresses VSMCs migration by inhibiting RAC1 activity in 2 ways: by activating the transcription of RhoGDIα and by interacting with RAC1. Besides, Bmal1 was shown to preserve antioxidant function in VSMCs by activating Nrf2 (nuclear factor erythroid 2-related factor 2) and Bcl-2 transcription. CONCLUSIONS Bmal1 disruption in VSMCs worsens atherosclerosis by promoting VSMC migration and monocyte transmigration and impairing antioxidant function. Therefore, Bmal1 may be a potential therapeutic target and biomarker of atherosclerosis in the future.
Collapse
Affiliation(s)
- Changpo Lin
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Lirong Xu
- National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Xiaobo Li
- Department of Pathology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, China (L.X.).,Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Chao Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Qianyun Cheng
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Junhao Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Dong Yan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| |
Collapse
|
54
|
Su E, Yu P, Zhang B, Zhang A, Xie S, Zhang C, Li S, Zou Y, Liu M, Jiang H, Ge J. Endothelial Intracellular ANG (Angiogenin) Protects Against Atherosclerosis by Decreasing Endoplasmic Reticulum Stress. Arterioscler Thromb Vasc Biol 2022; 42:305-325. [PMID: 35045729 DOI: 10.1161/atvbaha.121.317339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND ANG (angiogenin) is essential for cellular adaptation to endoplasmic reticulum (ER) stress, a process closely associated with cardiovascular diseases, including atherosclerosis. We aimed to investigate the role of ANG in the progression of atherosclerosis and elucidate its underlying molecular mechanisms. METHODS We constructed adenoassociated virus 9 ANG overexpression vectors and endothelial ANG- and ApoE (apolipoprotein E)-deficient mice to determine the effects of ANG on ER stress and atherosclerotic lesions. RNA sequencing of endothelial ANG- and ApoE-deficient mice identified ANG-dependent downregulation of ST3GAL5 (ST3 beta-galactoside alpha-2,3-sialyltransferase 5) expression, and the direct regulation of ST3GAL5 by ANG was verified by chromatin immunoprecipitation sequencing and luciferase reporter assay results. RESULTS Reanalysis of expression profiling datasets indicated decreased ANG levels in patients' atherosclerotic lesions, and these data were validated in aortas from ApoE-/- mice. ER stress marker and adhesion molecule levels, aortic root lesions and macrophage deposition were substantially reduced in ApoE-/- mice injected with an adenoassociated virus 9 ANG without signal peptide (ANG-ΔSP) overexpression vector compared with empty and full-length ANG overexpression vectors. Endothelial ANG deficiency significantly elevated ER stress and increased adhesion molecule expression, which aggravated atherosclerotic lesions and enhanced THP-1 monocyte adhesion to endothelial cells in vivo and in vitro, respectively. Furthermore, ANG-ΔSP overexpression significantly attenuated oxidized low-density lipoprotein-induced ER stress and THP-1 monocyte adhesion to endothelial cells, which were reversed by ST3GAL5 inhibition. CONCLUSIONS These results suggest that endothelial intracellular ANG is a novel therapeutic against atherosclerosis and exerts atheroprotective effects via ST3GAL5-mediated ER stress suppression.
Collapse
Affiliation(s)
- Enyong Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Yu
- Department of Endocrinology and Metabolism (P.Y.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baoli Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anjing Zhang
- Department of Neurorehabilitation Medicine, Kongjiang Branch, the First Rehabilitation Hospital of Shanghai, China (A.Z.)
| | - Shiyao Xie
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyu Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Su Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Liu
- Department of Health Management Center (M.L.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Jiang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases (E.S., B.Z., S.X., C.Z., S.L., Y.Z., H.J., J.G.), Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
55
|
Wang J, Zhang H, Ji J, Wang L, Lv W, He Y, Li X, Feng G, Chen K. A histological study of atherosclerotic characteristics in age-related macular degeneration. Heliyon 2022; 8:e08973. [PMID: 35252605 PMCID: PMC8891972 DOI: 10.1016/j.heliyon.2022.e08973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/19/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
This study investigated the pathogenesis of age-related macular degeneration (AMD) using histological methods that are commonly used for atherosclerotic vascular disease (ASVD). 1 normal, 3 early dry AMD, and 1 late dry AMD eyes were obtained from the Lions Eye Bank of Oregon and systematically dissected. They were stained with hematoxylin and eosin, Oil red O, Masson, Elastica van Gieson, Alizarin red, and Prussian blue. Additionally, the normal and late dry AMD eyes were immunostained for a-smooth muscle actin, CD45, and CD68 with Nile red and DAPI. Correlations were found between severity of AMD and lipid accumulation in the deep sclera (+), numbers of drusen between the Bruch's membrane and retinal pigment epithelium (RPE) (+), amount of collagen in the deep sclera (+), and amount of elastin in the deep sclera (-) (P < 0.1). Geographic atrophy, RPE detachment, and abnormal capillary shape and distribution in the choriocapillaris were observed in the fovea of late AMD. There were no stenosis, plaque, hemorrhage, and calcification. Additionally, late AMD tended to have higher smooth muscle thicknesses of the choroidal vascular walls, lower numbers of T lymphocytes in the choroid, and higher numbers of macrophages near the RPE and in the choroid relative to normal (P < 0.1). Macrophages-derived foam cells were detected near the Bruch's membrane in late AMD. Therefore, the present study showed many histological characteristics of ASVD in AMD, which suggests an association between them; however, there were also some histological characteristics of ASVD that were not found in AMD, which indicates that there exist pathogenic differences between them. The results generally support the vascular model of AMD, but some details still need clarification.
Collapse
|
56
|
Sano M, Sasaki T, Baba S, Inuzuka K, Katahashi K, Kayama T, Yamanaka Y, Tsuyuki H, Endo Y, Sato K, Takeuchi H, Unno N. Differences in Vasa Vasorum Distribution in Human Aortic Aneurysms and Atheromas. Angiology 2022; 73:546-556. [DOI: 10.1177/00033197211063655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pathophysiological difference between aortic atheromas and aneurysms is unknown. We focused on the vasa vasorum (VV), which play a critical role in maintaining aortic homeostasis and are also involved in vascular diseases. We investigated the differences in VV between the atheromas and aneurysms. Human abdominal aortic samples were obtained from patients with abdominal aortic aneurysm during surgery or autopsy cases. Autopsy cases were divided into 2 groups according to atheromas. The VV were evaluated using immunohistochemical staining for von Willebrand factor. Intimal VV increased in both the atheroma and aneurysm groups, medial VV increased, and adventitial VV decreased only in the aneurysm group. We also observed that the medial VV were connected to the adventitial VV in the atheroma group and to intimal VV in the aneurysm group. We suggest the outside-in VV or inside-out VV theories. Atheroma induces hypoxia of aortic walls, and angiogenic factors might induce an increase of intimal VV derived from adventitial VV (outside-in VV). However, adventitial VV decrease induces hypoxia of aortic walls, and angiogenic factors might induce an increase of intimal VV derived from aortic lumen (inside-out VV). These differences of VV may contribute in elucidating the pathophysiology of aortic diseases.
Collapse
Affiliation(s)
- Masaki Sano
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kazunori Inuzuka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kazuto Katahashi
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Kayama
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yuta Yamanaka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hajime Tsuyuki
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yusuke Endo
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kohji Sato
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Naoki Unno
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Vascular Surgery, Hamamatsu Medical Center, Hamamatsu 432-8580, Japan
| |
Collapse
|
57
|
Kelley R, Bir S. Carotid atherosclerotic disease: A systematic review of pathogenesis and management. Brain Circ 2022; 8:127-136. [PMID: 36267431 PMCID: PMC9578307 DOI: 10.4103/bc.bc_36_22] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022] Open
Abstract
Carotid stenosis is an important contributor to ischemic stroke risk with resultant significant impact on neurological disability and death in adults and with worldwide implications. Management of carotid stenosis is impacted by whether there are associated symptoms along with the degree of stenosis. Understanding of the pathogenesis of carotid atherosclerosis or stenosis is important in management of carotid stenosis. Atherosclerotic plaque formation is a chronic insidious process with a number of potential contributors to the formation of such a plaque. The definition of atherosclerosis is not simply limited to abnormal deposition of lipid but also includes a chronic, complex, inflammatory process. Molecularly, in atherosclerosis, there is decreasing nitric oxide (NO) bioavailability, activity and/or expression of endothelial NO synthase, or increasing degradation of NO secondary to enhanced superoxide production. These above changes cause endothelial dysfunction leading to formation of foam cell followed by formation on lipid plaque. After lipid plaque formation, stable or unstable atherosclerotic plaque is formed depending on the calcium deposition over the lipid plaque. It continues to be clearly established that carotid intervention for symptomatic high-grade carotid stenosis is best managed with intervention either by carotid endarterectomy or carotid stenting. However, asymptomatic carotid stenosis is the subject of considerable controversy in terms of optimal management. This review of carotid atherosclerosis is an attempt to incorporate the information provided by more recent studies on pathogenesis and management which may help in the decision-making process for optimal management for protection against stroke.
Collapse
|
58
|
Yamasaki G, Sakurada M, Kitagawa K, Kondo T, Takahashi M, Ueno Y. Effect of FURIN SNP rs17514846 on coronary atherosclerosis in human cardiac specimens: An autopsy study of 106 cases. Leg Med (Tokyo) 2021; 55:102006. [PMID: 35008003 DOI: 10.1016/j.legalmed.2021.102006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Coronary artery disease (CAD), including coronary atherosclerosis (CAS), is one of the most common causes of death. The FURIN SNP rs17514846 is assumed to be a risk factor for CAD. We evaluated this relationship using autopsy specimens and autopsy data, such as the histopathological degree of CAS. MATERIALS AND METHODS A total of 106 samples were genotyped from obtained blood samples. Myocardial and coronary arterial FURIN levels were quantified by ELISA. The degree of CAS was classified histopathologically according to the Stary classification, and the localization of FURIN was examined by immunostaining. The obtained data were analyzed statistically. RESULTS FURIN expression was widely observed in the myocardium, vascular smooth muscle cells, endothelial cells, adipocytes, and macrophages. FURIN level in the myocardium of cases with the AA genotype at the FURIN SNP rs17514846 was higher than that in CC cases. Additionally, FURIN levels in both coronary arteries and myocardium were higher at the early stage of CAS than at the late stage microscopically. CONCLUSION Our study suggested that the A allele of rs17514846 is associated with higher FURIN level in the heart and that FURIN exhibits a higher level in the early stage of CAS. These findings deepen our understanding of the mechanism of CAS.
Collapse
Affiliation(s)
- Gentaro Yamasaki
- Division of Legal Medicine, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Makoto Sakurada
- Forensic Science Laboratory, Hyogo Prefectural Police Headquarters, Kobe, Japan
| | - Koichi Kitagawa
- Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Takeshi Kondo
- Division of Legal Medicine, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Motonori Takahashi
- Division of Legal Medicine, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Ueno
- Division of Legal Medicine, Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
59
|
Jianu DC, Jianu SN, Dan TF, Munteanu G, Bîrdac CD, Motoc AGM, Docu Axelerad A, Petrica L, Gogu AE. Ultrasound Technologies and the Diagnosis of Giant Cell Arteritis. Biomedicines 2021; 9:biomedicines9121801. [PMID: 34944617 PMCID: PMC8698303 DOI: 10.3390/biomedicines9121801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
Giant cell arteritis (GCA) is a primary autoimmune vasculitis that specifically affects medium-sized extracranial arteries, like superficial temporal arteries (TAs). The most important data to be considered for the ultrasound (US) diagnosis of temporal arteritis are stenosis, acute occlusions and “dark halo” sign, which represent the edema of the vascular wall. The vessel wall thickening of large vessels in GCA can be recognized by the US, which has high sensitivity and is facile to use. Ocular complications of GCA are common and consist especially of anterior arterial ischemic optic neuropathies or central retinal artery occlusion with sudden, painless, and sharp loss of vision in the affected eye. Color Doppler imaging of the orbital vessels (showing low-end diastolic velocities and a high resistance index) is essential to quickly differentiate the mechanism of ocular involvement (arteritic versus non-arteritic), since the characteristics of TAs on US do not correspond with ocular involvement on GCA. GCA should be cured immediately with systemic corticosteroids to avoid further visual loss of the eyes.
Collapse
Affiliation(s)
- Dragoș Cătălin Jianu
- Department of Neurosciences-Division of Neurology, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.C.J.); (A.E.G.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), Department of Neurosciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (C.D.B.); (A.G.M.M.); (A.D.A.); (L.P.)
- First Department of Neurology, Pius Brânzeu Emergency County Hospital, 300041 Timișoara, Romania
| | - Silviana Nina Jianu
- Department of Internal Medicine II, Centre for Molecular Research in Nephrology and Vascular Pathology, Victor Babeş University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Traian Flavius Dan
- Department of Neurosciences-Division of Neurology, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.C.J.); (A.E.G.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), Department of Neurosciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (C.D.B.); (A.G.M.M.); (A.D.A.); (L.P.)
- First Department of Neurology, Pius Brânzeu Emergency County Hospital, 300041 Timișoara, Romania
- Correspondence: (T.F.D.); (G.M.); Tel.: +40-745035178 (T.F.D.); +40-746151426 (G.M.)
| | - Georgiana Munteanu
- Department of Neurosciences-Division of Neurology, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.C.J.); (A.E.G.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), Department of Neurosciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (C.D.B.); (A.G.M.M.); (A.D.A.); (L.P.)
- First Department of Neurology, Pius Brânzeu Emergency County Hospital, 300041 Timișoara, Romania
- Department of Internal Medicine II, Centre for Molecular Research in Nephrology and Vascular Pathology, Victor Babeş University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Correspondence: (T.F.D.); (G.M.); Tel.: +40-745035178 (T.F.D.); +40-746151426 (G.M.)
| | - Claudiu Dumitru Bîrdac
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), Department of Neurosciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (C.D.B.); (A.G.M.M.); (A.D.A.); (L.P.)
- First Department of Neurology, Pius Brânzeu Emergency County Hospital, 300041 Timișoara, Romania
| | - Andrei Gheorghe Marius Motoc
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), Department of Neurosciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (C.D.B.); (A.G.M.M.); (A.D.A.); (L.P.)
- Department of Anatomy and Embryology, Victor Babeş University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Any Docu Axelerad
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), Department of Neurosciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (C.D.B.); (A.G.M.M.); (A.D.A.); (L.P.)
- Department of Neurology, General Medicine Faculty, Ovidius University, 900527 Constanța, Romania
| | - Ligia Petrica
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), Department of Neurosciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (C.D.B.); (A.G.M.M.); (A.D.A.); (L.P.)
- Department of Internal Medicine II-Division of Nephrology, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Anca Elena Gogu
- Department of Neurosciences-Division of Neurology, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.C.J.); (A.E.G.)
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), Department of Neurosciences, Victor Babeș University of Medicine and Pharmacy, 300041 Timișoara, Romania; (C.D.B.); (A.G.M.M.); (A.D.A.); (L.P.)
- First Department of Neurology, Pius Brânzeu Emergency County Hospital, 300041 Timișoara, Romania
| |
Collapse
|
60
|
Corti A, Colombo M, Migliavacca F, Rodriguez Matas JF, Casarin S, Chiastra C. Multiscale Computational Modeling of Vascular Adaptation: A Systems Biology Approach Using Agent-Based Models. Front Bioeng Biotechnol 2021; 9:744560. [PMID: 34796166 PMCID: PMC8593007 DOI: 10.3389/fbioe.2021.744560] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
The widespread incidence of cardiovascular diseases and associated mortality and morbidity, along with the advent of powerful computational resources, have fostered an extensive research in computational modeling of vascular pathophysiology field and promoted in-silico models as a support for biomedical research. Given the multiscale nature of biological systems, the integration of phenomena at different spatial and temporal scales has emerged to be essential in capturing mechanobiological mechanisms underlying vascular adaptation processes. In this regard, agent-based models have demonstrated to successfully embed the systems biology principles and capture the emergent behavior of cellular systems under different pathophysiological conditions. Furthermore, through their modular structure, agent-based models are suitable to be integrated with continuum-based models within a multiscale framework that can link the molecular pathways to the cell and tissue levels. This can allow improving existing therapies and/or developing new therapeutic strategies. The present review examines the multiscale computational frameworks of vascular adaptation with an emphasis on the integration of agent-based approaches with continuum models to describe vascular pathophysiology in a systems biology perspective. The state-of-the-art highlights the current gaps and limitations in the field, thus shedding light on new areas to be explored that may become the future research focus. The inclusion of molecular intracellular pathways (e.g., genomics or proteomics) within the multiscale agent-based modeling frameworks will certainly provide a great contribution to the promising personalized medicine. Efforts will be also needed to address the challenges encountered for the verification, uncertainty quantification, calibration and validation of these multiscale frameworks.
Collapse
Affiliation(s)
- Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Monika Colombo
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.,Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Jose Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Stefano Casarin
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States.,Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, United States.,Houston Methodist Academic Institute, Houston, TX, United States
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.,PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
61
|
van den Hoek AM, de Jong JCBC, Worms N, van Nieuwkoop A, Voskuilen M, Menke AL, Lek S, Caspers MPM, Verschuren L, Kleemann R. Diet and exercise reduce pre-existing NASH and fibrosis and have additional beneficial effects on the vasculature, adipose tissue and skeletal muscle via organ-crosstalk. Metabolism 2021; 124:154873. [PMID: 34478753 DOI: 10.1016/j.metabol.2021.154873] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) has become one of the most common liver diseases and is still without approved pharmacotherapy. Lifestyle interventions using exercise and diet change remain the current treatment of choice and even a small weight loss (5-7%) can already have a beneficial effect on NASH. However, the underlying molecular mechanisms of exercise and diet interventions remain largely elusive, and it is unclear whether they exert their health effects via similar or different pathways. METHODS Ldlr-/-.Leiden mice received a high fat diet (HFD) for 30 weeks to establish a severe state of NASH/fibrosis with simultaneous atherosclerosis development. Groups of mice were then either left untreated (control group) or were treated for 20 weeks with exercise (running wheel), diet change (switch to a low fat chow diet) or the combination thereof. The liver and distant organs including heart, white adipose tissue (WAT) and muscle were histologically examined. Comprehensive transcriptome analysis of liver, WAT and muscle revealed the organ-specific effects of exercise and diet and defined the underlying pathways. RESULTS Exercise and dietary change significantly reduced body weight, fat mass, adipocyte size and improved myosteatosis and muscle function with additive effects of combination treatment. WAT inflammation was significantly improved by diet change, tended to be reduced with exercise, and combination therapy had no additive effect. Hepatic steatosis and inflammation were almost fully reversed by exercise and diet change, while hepatic fibrosis tended to be improved with exercise and was significantly improved with diet change. Additive effects for the combination therapy were shown for liver steatosis and associated liver lipids, and atherosclerosis, but not for hepatic inflammation and fibrosis. Pathway analysis revealed complementary effects on metabolic pathways and lipid handling processes, thereby substantiating the added value of combined lifestyle treatment. CONCLUSIONS Exercise, diet change and the combination thereof can reverse established NASH/fibrosis in obese Ldlr-/-.Leiden mice. In addition, the lifestyle interventions had beneficial effects on atherosclerosis, WAT inflammation and muscle function. For steatosis and other parameters related to adiposity or lipid metabolism, exercise and dietary change affected more distinct pathways that acted complementary when the interventions were combined resulting in an additive effect for the combination therapy on important endpoints including NASH and atherosclerosis. For inflammation, exercise and diet change shared several underlying pathways resulting in a net similar effect when the interventions were combined.
Collapse
MESH Headings
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- Atherosclerosis/diet therapy
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/therapy
- Diet, Fat-Restricted
- Diet, High-Fat
- Lipid Metabolism
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis/diet therapy
- Liver Cirrhosis/pathology
- Liver Cirrhosis/therapy
- Mice
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Non-alcoholic Fatty Liver Disease/diet therapy
- Non-alcoholic Fatty Liver Disease/genetics
- Non-alcoholic Fatty Liver Disease/pathology
- Non-alcoholic Fatty Liver Disease/therapy
- Physical Conditioning, Animal/physiology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands.
| | - Jelle C B C de Jong
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands; Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Anita van Nieuwkoop
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Marijke Voskuilen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Serene Lek
- Clinnovate Health UK Ltd, Glasgow, United Kingdom
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands; Department of Vascular Surgery, Leiden University Medical Center, Leiden (LUMC), the Netherlands
| |
Collapse
|
62
|
Torzewski M. The Initial Human Atherosclerotic Lesion and Lipoprotein Modification-A Deep Connection. Int J Mol Sci 2021; 22:11488. [PMID: 34768918 PMCID: PMC8584004 DOI: 10.3390/ijms222111488] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis research typically focuses on the evolution of intermediate or advanced atherosclerotic lesions rather than on prelesional stages of atherogenesis. Yet these early events may provide decisive leads on the triggers of the pathologic process, before lesions become clinically overt. Thereby, it is mandatory to consider extracellular lipoprotein deposition at this stage as the prerequisite of foam cell formation leading to a remarkable accumulation of LDL (Low Density Lipoproteins). As progression of atherosclerosis displays the characteristic features of a chronic inflammatory process on the one hand and native LDL lacks inflammatory properties on the other hand, the lipoprotein must undergo biochemical modification to become atherogenic. During the last 25 years, evidence was accumulated in support of a different concept on atherogenesis proposing that modification of native LDL occurs through the action of ubiquitous hydrolytic enzymes (enzymatically modified LDL or eLDL) rather than oxidation and contending that the physiological events leading to macrophage uptake and reverse transport of eLDL first occur without inflammation (initiation with reversion). Preventing or reversing initial atherosclerotic lesions would avoid the later stages and therefore prevent clinical manifestations. This concept is in accordance with the response to retention hypothesis directly supporting the strategy of lowering plasma levels of atherogenic lipoproteins as the most successful therapy for atherosclerosis and its sequelae. Apart from but unquestionable closely related to this concept, there are several other hypotheses on atherosclerotic lesion initiation favoring an initiating role of the immune system ('vascular-associated lymphoid tissue' (VALT)), defining foam cell formation as a variant of lysosomal storage disease, relating to the concept of the inflammasome with crystalline cholesterol and/or mitochondrial DAMPs (damage-associated molecular patterns) being mandatory in driving arterial inflammation and, last but not least, pointing to miRNAs (micro RNAs) as pivotal players. However, direct anti-inflammatory therapies may prove successful as adjuvant components but will likely never be used in the absence of strategies to lower plasma levels of atherogenic lipoproteins, the key point of the perception that atherosclerosis is not simply an inevitable result of senescence. In particular, given the importance of chemical modifications for lipoprotein atherogenicity, regulation of the enzymes involved might be a tempting target for pharmacological research.
Collapse
Affiliation(s)
- Michael Torzewski
- Department of Laboratory Medicine and Hospital Hygiene, Robert Bosch-Hospital, 70376 Stuttgart, Germany
| |
Collapse
|
63
|
Liu C, Chen G, Chen Y, Dang Y, Nie G, Wu D, Li J, Chen Z, Yang H, He D, Li X, Sun J, Lu J, Wang L. Danlou Tablets Inhibit Atherosclerosis in Apolipoprotein E-Deficient Mice by Inducing Macrophage Autophagy: The Role of the PI3K-Akt-mTOR Pathway. Front Pharmacol 2021; 12:724670. [PMID: 34566648 PMCID: PMC8455997 DOI: 10.3389/fphar.2021.724670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis (AS) is a type of chronic vascular disease, and its etiology is not yet fully understood. AS is characterized by lipid deposition, atherosclerotic plaque formation, vascular stenosis or even complete blockage of the blood vessel wall. Clinical studies have shown that Danlou tablets (DLTs) can improve the heart function, quality of life, and prognosis of patients with coronary heart disease and myocardial infarction. However, its mechanism of action remains unknown. Our study revealed that DLTs ameliorated ApoE−/−AS mouse aortic atherosclerotic plaques [hematoxylin-eosin (HE) staining and small animal ultrasound] and reduced CD68+ macrophage infiltration, the expression of the inflammatory factor interferon-gamma (IFN-γ), vascular smooth muscle α-actin, and serum lipid levels. In vitro, in the macrophage foaming model, DLTs partially restored the activity of RAW264.7 cells, reduced the uptake of lipid droplets, and inhibited lipid droplet accumulation and apoptosis within BMDMs. We also found that Torin1, an autophagy agonist, reduced intracellular lipid deposition in BMDMs, as did DLTs. Moreover, DLTs upregulated the expression of the autophagy-related protein LC3II and decreased p62 accumulation in RAW264.7 cells. DLTs also inhibited the phosphorylation of p-PI3K, p-Akt, and p-mTOR, leading to upregulated autophagy in RAW264.7 cells. In summary, our results suggested that DLTs can promote autophagy in macrophages by inhibiting the PI3K/Akt/mTOR signaling pathway, thereby reducing foam cell formation and improving atherosclerosis.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Cardiovascular Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Guiling Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of National Institute of Stem Cell Clinical Research, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yanfen Chen
- Puning Hospital of Traditional Chinese Medicine, Puning, China
| | - Yue Dang
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Guangning Nie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dinghong Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinhua Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zide Chen
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Hailong Yang
- Department of Cardiovascular Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Dongyue He
- Department of Cardiovascular Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiong Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingbo Sun
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Cardiovascular Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
64
|
ZORLU Ç. Aortic arch calcification is strongly associated with obstructive sleep apnea. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2021. [DOI: 10.32322/jhsm.948441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
65
|
Nakagawa K, Tanaka M, Hahm TH, Nguyen HN, Matsui T, Chen YX, Nakashima Y. Accumulation of Plasma-Derived Lipids in the Lipid Core and Necrotic Core of Human Atheroma: Imaging Mass Spectrometry and Histopathological Analyses. Arterioscler Thromb Vasc Biol 2021; 41:e498-e511. [PMID: 34470476 DOI: 10.1161/atvbaha.121.316154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kazunori Nakagawa
- Pathophysiological and Experimental Pathology, Graduate School of Medical Sciences (K.N., Y.-X.C., Y.N.), Kyushu University, Fukuoka, Japan
| | - Mitsuru Tanaka
- Laboratory of Food Analysis, Department of Bioscience and Biotechnology, Faculty of Agriculture (M.T., T.-H.H., T.M.), Kyushu University, Fukuoka, Japan
| | - Tae-Hun Hahm
- Laboratory of Food Analysis, Department of Bioscience and Biotechnology, Faculty of Agriculture (M.T., T.-H.H., T.M.), Kyushu University, Fukuoka, Japan
| | - Huu-Nghi Nguyen
- Department of Science and International Collaboration, Institute for Research and Development of Organic Products, Hanoi, Vietnam (H.-N.N.)
| | - Toshiro Matsui
- Laboratory of Food Analysis, Department of Bioscience and Biotechnology, Faculty of Agriculture (M.T., T.-H.H., T.M.), Kyushu University, Fukuoka, Japan
| | - Yong-Xiang Chen
- Pathophysiological and Experimental Pathology, Graduate School of Medical Sciences (K.N., Y.-X.C., Y.N.), Kyushu University, Fukuoka, Japan.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Alberta, Canada (Y.-X.C.)
| | - Yutaka Nakashima
- Pathophysiological and Experimental Pathology, Graduate School of Medical Sciences (K.N., Y.-X.C., Y.N.), Kyushu University, Fukuoka, Japan
| |
Collapse
|
66
|
Dettori P, Paliogiannis P, Pascale RM, Zinellu A, Mangoni AA, Pintus G. Blood Cell Count Indexes of Systemic Inflammation in Carotid Artery Disease: Current Evidence and Future Perspectives. Curr Pharm Des 2021; 27:2170-2179. [PMID: 33355049 DOI: 10.2174/1381612826666201222155630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022]
Abstract
Carotid artery disease is commonly encountered in clinical practice and accounts for approximately 30% of ischemic strokes in the general population. Numerous biomarkers have been investigated as predictors of the onset and progression of carotid disease, the occurrence of cerebrovascular complications, and overall prognosis. Among them, blood cell count (BCC) indexes of systemic inflammation might be particularly useful, from a pathophysiological and clinical point of view, given the inflammatory nature of the atherosclerotic process. The aim of this review is to discuss the available evidence regarding the role of common BCC indexes, such as the neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), platelet to lymphocyte ratio (PLR), mean platelet volume (MPV), platelet distribution width (PDW), and red cell distribution width (RDW), in the diagnosis and risk stratification of carotid artery disease, and their potential clinical applications.
Collapse
Affiliation(s)
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Rosa M Pascale
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
67
|
Saba L, Brinjikji W, Spence JD, Wintermark M, Castillo M, Borst GJD, Yang Q, Yuan C, Buckler A, Edjlali M, Saam T, Saloner D, Lal BK, Capodanno D, Sun J, Balu N, Naylor R, Lugt AVD, Wasserman BA, Kooi ME, Wardlaw J, Gillard J, Lanzino G, Hedin U, Mikulis D, Gupta A, DeMarco JK, Hess C, Goethem JV, Hatsukami T, Rothwell P, Brown MM, Moody AR. Roadmap Consensus on Carotid Artery Plaque Imaging and Impact on Therapy Strategies and Guidelines: An International, Multispecialty, Expert Review and Position Statement. AJNR Am J Neuroradiol 2021; 42:1566-1575. [PMID: 34326105 DOI: 10.3174/ajnr.a7223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
Current guidelines for primary and secondary prevention of stroke in patients with carotid atherosclerosis are based on the quantification of the degree of stenosis and symptom status. Recent publications have demonstrated that plaque morphology and composition, independent of the degree of stenosis, are important in the risk stratification of carotid atherosclerotic disease. This finding raises the question as to whether current guidelines are adequate or if they should be updated with new evidence, including imaging for plaque phenotyping, risk stratification, and clinical decision-making in addition to the degree of stenosis. To further this discussion, this roadmap consensus article defines the limits of luminal imaging and highlights the current evidence supporting the role of plaque imaging. Furthermore, we identify gaps in current knowledge and suggest steps to generate high-quality evidence, to add relevant information to guidelines currently based on the quantification of stenosis.
Collapse
Affiliation(s)
- L Saba
- From the Department of Radiology (L.S.), University of Cagliari, Cagliari, Italy
| | | | - J D Spence
- Stroke Prevention and Atherosclerosis Research Centre (J.D.S.), Robarts Research Institute, Western University, London, Ontario, Canada
| | - M Wintermark
- Department of Neuroradiology (M.W.), Stanford University and Healthcare System, Stanford, California
| | - M Castillo
- Department of Radiology (M.C.), University of North Carolina, Chapel Hill, North Carolina
| | - G J D Borst
- Department of Vascular Surgery (G.J.D.B.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - Q Yang
- Department of Radiology (Q.Y.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - C Yuan
- Departments of Radiology (C.Y., J.S., N.B.)
| | - A Buckler
- Elucid Bioimaging (A.B.), Boston, Massachusetts
| | - M Edjlali
- Department of Neuroradiology (M.E.), Université Paris-Descartes-Sorbonne-Paris-Cité, IMABRAIN-INSERM-UMR1266, DHU-Neurovasc, Centre Hospitalier Sainte-Anne, Paris, France
| | - T Saam
- Department of Radiology (T.S.), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,Radiologisches Zentrum (T.S.), Rosenheim, Germany
| | - D Saloner
- Departments of Radiology and Biomedical Imaging (D.S., C.H.), University of California San Francisco, San Francisco, California
| | - B K Lal
- Department of Vascular Surgery (B.K.L.), University of Maryland School of Medicine, Baltimore, Maryland
| | - D Capodanno
- Division of Cardiology (D.C.), A.O.U. Policlinico "G. Rodolico-San Marco," University of Catania, Italy
| | - J Sun
- Departments of Radiology (C.Y., J.S., N.B.)
| | - N Balu
- Departments of Radiology (C.Y., J.S., N.B.)
| | - R Naylor
- The Leicester Vascular Institute (R.N.), Glenfield Hospital, Leicester, UK
| | - A V D Lugt
- Department of Radiology and Nuclear Medicine (A.v.d.L.), Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - B A Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Science (B.A.W.), Johns Hopkins Hospital, Baltimore, Maryland
| | - M E Kooi
- Department of Radiology and Nuclear Medicine (M.E.K.), CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J Wardlaw
- Centre for Clinical Brain Sciences (J.W.), United Kingdom Dementia Research Institute and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - J Gillard
- Christ's College (J.G.), Cambridge, UK
| | - G Lanzino
- Neurosurgery (G.L.) Mayo Clinic, Rochester, Minnesota
| | - U Hedin
- Department of Molecular Medicine and Surgery (U.H.), Karolinska Institutet, Stockholm, Sweden.,Department of Vascular Surgery (U.H.), Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - D Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory (D.M.), University Health Network, Toronto, Ontario, Canada
| | - A Gupta
- Department of Radiology (A.G.), Weill Cornell Medical College, New York, New York
| | - J K DeMarco
- Walter Reed National Military Medical Center and Uniformed Services University of the Health Sciences (J.K.D.), Bethesda, Maryland
| | - C Hess
- Departments of Radiology and Biomedical Imaging (D.S., C.H.), University of California San Francisco, San Francisco, California
| | - J V Goethem
- Faculty of Biomedical Sciences (J.V.G.), University of Antwerp, Antwerp, Belgium
| | - T Hatsukami
- Surgery (T.H.), University of Washington, Seattle, Washington
| | - P Rothwell
- Centre for Prevention of Stroke and Dementia (P.R.), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | - M M Brown
- Stroke Research Centre (M.M.B.), Department of Brain Repair and Rehabilitation, University College of London Queen Square Institute of Neurology, University College London, UK
| | - A R Moody
- Department of Medical Imaging (A.R.M.), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
68
|
Dos Santos VP, Pozzan G, Castelli V, Caffaro RA. Arteriosclerosis, atherosclerosis, arteriolosclerosis, and Monckeberg medial calcific sclerosis: what is the difference? J Vasc Bras 2021; 20:e20200211. [PMID: 34290756 PMCID: PMC8276643 DOI: 10.1590/1677-5449.200211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/06/2021] [Indexed: 01/25/2023] Open
Abstract
Cardiovascular diseases are the main cause of death in contemporary times. Arteriosclerosis, atherosclerosis, arteriolosclerosis, and Monckeberg's arteriosclerosis are terms that are often used interchangeably, but they refer to different vascular pathologies. The objective of this study is to review the concepts of atherosclerosis, atherosclerosis, arteriosclerosis and Monckeberg medial calcific sclerosis (MMCS). The term arteriosclerosis is more generic, meaning the stiffening and consequent loss of elasticity of the arterial wall, and encompasses the other terms. Atherosclerosis is an inflammatory disease secondary to lesions in the intimal layer and whose main complication is acute and chronic obstruction of the arterial lumen. Arteriolosclerosis refers to thickening of arterioles, particularly in association with systemic arterial hypertension. MMCS refers to non-obstructive calcification in the internal elastic lamina or the tunica media of muscular arteries. Vascular calcifications, which include atherosclerotic lesions and MMCS, have been studied as a risk factor for cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
| | - Geanete Pozzan
- Faculdade de Ciências Médicas da Santa Casa de São Paulo - FCMSCSP, São Paulo, SP, Brasil
| | - Valter Castelli
- Faculdade de Ciências Médicas da Santa Casa de São Paulo - FCMSCSP, São Paulo, SP, Brasil
| | | |
Collapse
|
69
|
Abazid RM, Romsa JG, Akincioglu C, Warrington JC, Bureau Y, Kiaii B, Vezina WC. Coronary artery calcium progression after coronary artery bypass grafting surgery. Open Heart 2021; 8:openhrt-2021-001684. [PMID: 34127533 PMCID: PMC8204154 DOI: 10.1136/openhrt-2021-001684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/31/2021] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Accelerated atherosclerosis is a well-established phenomenon after coronary artery bypass grafting surgery (CABG). In this study, we analysed coronary artery calcium (CCS) progression after CABG. METHODS We retrospectively measured the CCS Agatston score (AS), volume score (VS) and mass score (MS) of 39 patients before and after CABG. The annualised CCS change and annualised CCS percent change of each coronary artery, coronary artery segments proximal and distal to anastomosis were analysed. RESULTS Mean age at the time of the surgery was 59.8±8.5 years. Follow-up period between the first and second CT scans was 6.7±2.8 (range, 1.1-12.8) years. Annualised CCS percent change (AS, VS and MS) of the coronary segments proximal-to-anastomosis did not differ from that of the non-grafted coronary arteries as follow: segments proximal-to-anastomosis: median (Q1-Q3) 12.8 (5.0-37.4), 13.7 (6.1-41.1) and 14.9 (5.4-53.7), left main coronary artery 12.6 (7.4-43.8), 22.0 (8.1-44.4) and 18.2 (7.3-57.4), non-grafted left circumflex artery: 13.5 (4.4-38.1), 10.5 (2.9-45.2) and 11.5 (7.1-47.9) and non-grafted right coronary artery: 31.4 (14.4-74.5), 25.2 (16.7-62.0) and 31.3 (23.8-85.6), respectively. Likewise, annualised percent change (AS, VS and MS) was similar between the native coronary arteries. Multivariate regression analysis showed that diabetes mellitus was the only predictor of annualised percent progression of the total CCS of >15% (HR, 8.12; 95% CI, 1.05 to 26.6; p=0.04). CONCLUSION The CCS post-CABG did not follow an accelerated progression process. Among coronary artery disease risk factors, diabetes mellitus is the only predictor of annualised CCS percent progression of >15% post-CABG.
Collapse
Affiliation(s)
- Rami M Abazid
- London Health Sciences Centre, London, Ontario, Canada
| | | | | | - James C Warrington
- Nuclear Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Yves Bureau
- London Health Sciences Centre, London, Ontario, Canada
| | - Bob Kiaii
- Division of Cardiac Surgery, University of California Davis, Davis, California, USA
| | | |
Collapse
|
70
|
Wei X, Zhang Y, Xie L, Wang K, Wang X. Pharmacological inhibition of EZH2 by GSK126 decreases atherosclerosis by modulating foam cell formation and monocyte adhesion in apolipoprotein E-deficient mice. Exp Ther Med 2021; 22:841. [PMID: 34149887 PMCID: PMC8210282 DOI: 10.3892/etm.2021.10273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Histone modifications play an important role in the occurrence and development of atherosclerosis in human and atherosclerosis-prone mice. Histone methylation in macrophages, monocytes and endothelial cells markedly influence the progression of atherosclerosis. However, it remains unclear whether treatment with a histone methyltransferase enhancer of zeste homolog 2 (EZH2) inhibitor may suppress atherosclerosis. The present study aimed to determine the effects of the EZH2 inhibitor, GSK126, on the suppression and regression of atherosclerosis in apolipoprotein E-deficient mouse models. In vitro, it was found that pharmacological inhibition of EZH2 by GSK126 markedly reduced lipid transportation and monocyte adhesion during atherogenesis, predominantly through increasing the expression levels of ATP-binding cassette transporter A1 and suppressing vascular cell adhesion molecule 1 in human THP-1 cells. In vivo, it was found that atherosclerotic plaques in GSK126-treated mice were significantly decreased when comparing with the vehicle-treated animals. These results indicated that the GSK126 has the ability to attenuate the progression of atherosclerosis by reducing macrophage foam cell formation and monocyte adhesion in cell and mouse models. In conclusion, the present study provided new insights into the molecular mechanism behind the action of GSK126 and suggested its therapeutic potential for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xianjing Wei
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116023, P.R. China
| | - Ying Zhang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116023, P.R. China
| | - Lianna Xie
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116023, P.R. China
| | - Kaijun Wang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116023, P.R. China
| | - Xiaoqing Wang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
71
|
Biscetti F, Tinelli G, Rando MM, Nardella E, Cecchini AL, Angelini F, Straface G, Filipponi M, Arena V, Pitocco D, Gasbarrini A, Massetti M, Flex A. Association between carotid plaque vulnerability and high mobility group box-1 serum levels in a diabetic population. Cardiovasc Diabetol 2021; 20:114. [PMID: 34044825 PMCID: PMC8161555 DOI: 10.1186/s12933-021-01304-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background Carotid atherosclerosis represents one of the complications of diabetes mellitus. In particular, plaque instability contributes to disease progression and stroke incidence. High mobility group box-1 (HMGB1) is a nuclear protein involved in promotion and progression of atherosclerosis and cardiovascular diseases. The aim of this study was to analyze the relationship between HMGB1 serum levels, main inflammatory cytokines, the presence of internal carotid stenosis and unstable plaque in a diabetic population. Research design and methods We studied 873 diabetic patients, including 347 patients with internal carotid artery stenosis (ICAS) who underwent carotid endarterectomy and 526 diabetic patients without internal carotid artery stenosis (WICAS). At baseline, HMGB1 and the main inflammatory cytokines serum levels were evaluated. For ICAS patients, the histological features of carotid plaque were also collected to differentiate them in patients with stable or unstable atherosclerotic lesions. Results We found that HMGB1 serum levels, osteoprotegerin, high-sensitivity C-reactive protein, tumor necrosis factor-alpha and interleukin-6, were significantly higher in diabetic ICAS patients compared to diabetic WICAS patients. Among ICAS patients, individuals with unstable plaque had higher levels of these cytokines, compared to patients with stable plaque. A multivariable stepwise logistic regression analysis showed that HMGB1 and osteoprotegerin remained independently associated with unstable plaque in ICAS patients. Conclusions The present study demonstrated that HMGB1 is an independent risk factor for carotid plaque vulnerability in an Italian population with diabetes mellitus, representing a promising biomarker of carotid plaque instability and a possible molecular target to treat unstable carotid plaques and to prevent stroke.
Collapse
Affiliation(s)
- Federico Biscetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy. .,Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University School of Medicine, Largo Francesco Vito, 1, 00168, Roma, Italy. .,Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Giovanni Tinelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Vascular Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maria Margherita Rando
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University School of Medicine, Largo Francesco Vito, 1, 00168, Roma, Italy
| | - Elisabetta Nardella
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Flavia Angelini
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giuseppe Straface
- Department of Internal Medicine, St. M. Goretti Hospital, Roma, Italy
| | | | - Vincenzo Arena
- Department of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Dario Pitocco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy.,Diabetology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Gasbarrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy.,Department of Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Massimo Massetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy.,Cardiovascular Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Andrea Flex
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University School of Medicine, Largo Francesco Vito, 1, 00168, Roma, Italy.,Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, Roma, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
72
|
Regensburger AP, Brown E, Krönke G, Waldner MJ, Knieling F. Optoacoustic Imaging in Inflammation. Biomedicines 2021; 9:483. [PMID: 33924983 PMCID: PMC8145174 DOI: 10.3390/biomedicines9050483] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Optoacoustic or photoacoustic imaging (OAI/PAI) is a technology which enables non-invasive visualization of laser-illuminated tissue by the detection of acoustic signals. The combination of "light in" and "sound out" offers unprecedented scalability with a high penetration depth and resolution. The wide range of biomedical applications makes this technology a versatile tool for preclinical and clinical research. Particularly when imaging inflammation, the technology offers advantages over current clinical methods to diagnose, stage, and monitor physiological and pathophysiological processes. This review discusses the clinical perspective of using OAI in the context of imaging inflammation as well as in current and emerging translational applications.
Collapse
Affiliation(s)
- Adrian P. Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Loschgestr. 15, D-91054 Erlangen, Germany;
| | - Emma Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Gerhard Krönke
- Department of Medicine 3, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Maximilian J. Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Ulmenweg 18, D-91054 Erlangen, Germany;
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Loschgestr. 15, D-91054 Erlangen, Germany;
| |
Collapse
|
73
|
Ogata T, Shimada H, Inoue T, Takeshita S, Tsuboi Y, Uesugi N, Fujiwara M, Sata M, Yamada H. Quantification of Carotid Plaque Histology Using iPlaque Software. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:928-931. [PMID: 33408050 DOI: 10.1016/j.ultrasmedbio.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The iPlaque software package can use integrated backscatter (IB) values of carotid plaque to extract information on tissue composition. The aim of this study was to evaluate the association between the plaque histologic classification and IB values evaluated by iPlaque. In 49 patients undergoing carotid endarterectomy, IB values of whole carotid plaque were measured using iPlaque from the long-axis ultrasonographic image. Histologic findings of resected plaques were defined using the classification of the American Heart Association. The average IB values were statistically compared with the classification. Plaque samples from 49 patients were categorized into V, VI and VII, (13, 32 and 4 cases, respectively). Both the average and standard deviation of the IB values in each plaque sample significantly differed among the three classifications (p = 0.001). The IB of carotid plaque obtained by iPlaque analysis was associated with its histologic characteristics.
Collapse
Affiliation(s)
- Toshiyasu Ogata
- Department of Neurology, Fukuoka University, Fukuoka, Japan.
| | - Hirofumi Shimada
- Department of Laboratory Medicine, Fukuoka University, Fukuoka, Japan
| | - Tooru Inoue
- Department of Neurosurgery, Fukuoka University, Fukuoka, Japan
| | - Sho Takeshita
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Noriko Uesugi
- Department of Pathology, Fukuoka University, Fukuoka, Japan
| | - Mika Fujiwara
- Department of Cardiovascular Medicine, Takamatsu Municipal Hospital, Takamatsu, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirotsugu Yamada
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
74
|
Stein S, Weber J, Nusser-Stein S, Pahla J, Zhang HE, Mohammed SA, Oppi S, Gaul DS, Paneni F, Tailleux A, Staels B, von Meyenn F, Ruschitzka F, Gorrell MD, Lüscher TF, Matter CM. Deletion of fibroblast activation protein provides atheroprotection. Cardiovasc Res 2021; 117:1060-1069. [PMID: 32402085 DOI: 10.1093/cvr/cvaa142] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Fibroblast activation protein (FAP) is upregulated at sites of tissue remodelling including chronic arthritis, solid tumours, and fibrotic hearts. It has also been associated with human coronary atherosclerotic plaques. Yet, the causal role of FAP in atherosclerosis remains unknown. To investigate the cause-effect relationship of endogenous FAP in atherogenesis, we assessed the effects of constitutive Fap deletion on plaque formation in atherosclerosis-prone apolipoprotein E (Apoe) or low-density lipoprotein receptor (Ldlr) knockout mice. METHODS AND RESULTS Using en face analyses of thoraco-abdominal aortae and aortic sinus cross-sections, we demonstrate that Fap deficiency decreased plaque formation in two atherosclerotic mouse models (-46% in Apoe and -34% in Ldlr knockout mice). As a surrogate of plaque vulnerability fibrous cap thickness was used; it was increased in Fap-deficient mice, whereas Sirius red staining demonstrated that total collagen content remained unchanged. Using polarized light, atherosclerotic lesions from Fap-deficient mice displayed increased FAP targets in terms of enhanced collagen birefringence in plaques and increased pre-COL3A1 expression in aortic lysates. Analyses of the Stockholm Atherosclerosis Gene Expression data revealed that FAP expression was increased in human atherosclerotic compared to non-atherosclerotic arteries. CONCLUSIONS Our data provide causal evidence that constitutive Fap deletion decreases progression of experimental atherosclerosis and increases features of plaque stability with decreased collagen breakdown. Thus, inhibition of FAP expression or activity may not only represent a promising therapeutic target in atherosclerosis but appears safe at the experimental level for FAP-targeted cancer therapies.
Collapse
MESH Headings
- Animals
- Aorta/enzymology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Case-Control Studies
- Collagen/genetics
- Collagen/metabolism
- Disease Models, Animal
- Endopeptidases/deficiency
- Endopeptidases/genetics
- Fibrosis
- Gene Deletion
- Humans
- Lipids/blood
- Male
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Plaque, Atherosclerotic
- Proteome
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Transcriptome
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Julien Weber
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Stefanie Nusser-Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Jürgen Pahla
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Hui E Zhang
- Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, NSW 2050, Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, Australia
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Sara Oppi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Daniel S Gaul
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Anne Tailleux
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, 42 Rue Paul Duez, 59000 Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, 42 Rue Paul Duez, 59000 Lille, France
| | - Ferdinand von Meyenn
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Schorenstrasse 16 CH-8603 Schwerzenbach, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Mark D Gorrell
- Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, The University of Sydney Faculty of Medicine and Health, Sydney, NSW 2050, Liver Enzymes in Metabolism and Inflammation Program, Centenary Institute, Australia
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
- Cardiology, Royal Brompton & Harefield Hospital Trust, Imperial College London, 77 Wimpole Street, London SW3 6NP, UK
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| |
Collapse
|
75
|
Kozuń M, Chwiłkowska A, Pezowicz C, Kobielarz M. Influence of atherosclerosis on anisotropy and incompressibility of the human thoracic aortic wall. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2020.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
76
|
Manandhar S, Sinha P, Ejiwale G, Bhatia M. Hydrogen Sulfide and its Interaction with Other Players in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:129-159. [PMID: 34302691 DOI: 10.1007/978-981-16-0991-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) plays a vital role in human physiology and in the pathophysiology of several diseases. In addition, a substantial role of H2S in inflammation has emerged. This chapter will discuss the involvement of H2S in various inflammatory diseases. Furthermore, the contribution of reactive oxygen species (ROS), adhesion molecules, and leukocyte recruitment in H2S-mediated inflammation will be discussed. The interrelationship of H2S with other gasotransmitters in inflammation will also be examined. There is mixed literature on the contribution of H2S to inflammation due to studies reporting both pro- and anti-inflammatory actions. These apparent discrepancies in the literature could be resolved with further studies.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Grace Ejiwale
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
77
|
Hypolipidemic and Hepatoprotective Effects of Polysaccharides Extracted from Liriope spicata Var. Prolifera in C57BL/6J Mice with High-Fat Diet-Induced Hyperlipidemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8013189. [PMID: 33376498 PMCID: PMC7746456 DOI: 10.1155/2020/8013189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
In this study, C57BL/6J mice with high-fat diet- (HFD-) induced hyperlipidemia were treated with total Liriope spicata var. prolifera polysaccharides (TLSP: 200, 400, and 800 mg/kg body weight), simvastatin (3 mg/kg body weight), or saline for 8 weeks, respectively. The results showed that TLSP had strong lipid-lowering and hepatoprotective effects on C57BL/6J mice with HFD-induced hyperlipidemia. TLSP administration significantly reduced serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels and downregulated the expressions of peroxisome proliferator-activated receptor (PPAR)γ and fatty acid synthase (FAS) in the adipose and liver tissues of the mice. TLSP exerted hypolipidemic and hepatoprotective effects by activating lipid/bile acid metabolism via the FXH-SHP/CYP7A1 and SEBP-1c/FAC/ACC signaling pathways. Thus, TLPS is a promising natural polymer with hepatoprotective and hypolipidemic properties.
Collapse
|
78
|
Lv R, Maehara A, Matsumura M, Wang L, Wang Q, Zhang C, Guo X, Samady H, Giddens DP, Zheng J, Mintz GS, Tang D. Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study. Biomed Eng Online 2020; 19:90. [PMID: 33256759 PMCID: PMC7706023 DOI: 10.1186/s12938-020-00832-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/17/2020] [Indexed: 11/11/2022] Open
Abstract
Background Detecting coronary vulnerable plaques in vivo and assessing their vulnerability have been great challenges for clinicians and the research community. Intravascular ultrasound (IVUS) is commonly used in clinical practice for diagnosis and treatment decisions. However, due to IVUS limited resolution (about 150–200 µm), it is not sufficient to detect vulnerable plaques with a threshold cap thickness of 65 µm. Optical Coherence Tomography (OCT) has a resolution of 15–20 µm and can measure fibrous cap thickness more accurately. The aim of this study was to use OCT as the benchmark to obtain patient-specific coronary plaque cap thickness and evaluate the differences between OCT and IVUS fibrous cap quantifications. A cap index with integer values 0–4 was also introduced as a quantitative measure of plaque vulnerability to study plaque vulnerability. Methods Data from 10 patients (mean age: 70.4; m: 6; f: 4) with coronary heart disease who underwent IVUS, OCT, and angiography were collected at Cardiovascular Research Foundation (CRF) using approved protocol with informed consent obtained. 348 slices with lipid core and fibrous caps were selected for study. Convolutional Neural Network (CNN)-based and expert-based data segmentation were performed using established methods previously published. Cap thickness data were extracted to quantify differences between IVUS and OCT measurements. Results For the 348 slices analyzed, the mean value difference between OCT and IVUS cap thickness measurements was 1.83% (p = 0.031). However, mean value of point-to-point differences was 35.76%. Comparing minimum cap thickness for each plaque, the mean value of the 20 plaque IVUS-OCT differences was 44.46%, ranging from 2.36% to 91.15%. For cap index values assigned to the 348 slices, the disagreement between OCT and IVUS assignments was 25%. However, for the OCT cap index = 2 and 3 groups, the disagreement rates were 91% and 80%, respectively. Furthermore, the observation of cap index changes from baseline to follow-up indicated that IVUS results differed from OCT by 80%. Conclusions These preliminary results demonstrated that there were significant differences between IVUS and OCT plaque cap thickness measurements. Large-scale patient studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Rui Lv
- School of Biological Science and Medical Engineering, Southeast University, #2 SiPailou, Nanjing, China
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, USA
| | - Mitsuaki Matsumura
- The Cardiovascular Research Foundation, Columbia University, New York, USA
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, #2 SiPailou, Nanjing, China
| | - Qingyu Wang
- School of Biological Science and Medical Engineering, Southeast University, #2 SiPailou, Nanjing, China
| | - Caining Zhang
- School of Biological Science and Medical Engineering, Southeast University, #2 SiPailou, Nanjing, China
| | - Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Don P Giddens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Gary S Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, USA
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, #2 SiPailou, Nanjing, China. .,Mathematical Sciences Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
79
|
Konijn LC, Takx RA, de Jong PA, Spreen MI, Veger HT, Mali WP, van Overhagen H. Arterial calcification and long-term outcome in chronic limb-threatening ischemia patients. Eur J Radiol 2020; 132:109305. [DOI: 10.1016/j.ejrad.2020.109305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
|
80
|
Liu Y, Cui X, Wang C, Zhao S. LncRNA HCG11 regulates proliferation and apoptosis of vascular smooth muscle cell through targeting miR-144-3p/FOXF1 axis in atherosclerosis. Biol Res 2020; 53:44. [PMID: 33008472 PMCID: PMC7532112 DOI: 10.1186/s40659-020-00306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Atherosclerosis (AS) is the main pathological basis of coronary heart disease, cerebral infarction and peripheral vascular disease, which seriously endanger people's life and health. In recent years, long non-coding RNA (lncRNA) has been found to be involved in gene expression regulation, but the research on AS is still in the initial stage. In this study, we mainly studied the role of HCG11 in patients with AS. Quantitative Real-time Polymerase Chain Reaction (QRT-PCR) was used to detect the expression of HCG11 and miR-144 in the serum of AS patients and healthy volunteers. Oxidation Low Lipoprotein (Ox-LDL), interleukin-6 (IL-6) and tumor necrosis factor α (TNF α) radiation were used to establish human vascular smooth muscle cells (VSMCs) in vitro model. Cell proliferation was determined by Cell Counting Kit-8 (CCK-8) assay. The apoptosis rate was determined by flow cytometry (FACS) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL) staining. The expression levels of Forkhead box protein F1 (FOXF1), B cell lymphoma-2 (Bcl-2) and BCL2-Associated X (Bax) were detected by qRT-PCR. Luciferase gene reporter and RNA pull down experiments confirmed the relationship between HCG11 and miR-144, miR-144 and FOXF1. RESULTS This study showed that HCG11 was significantly upregulated in patients with AS, while miR-144 was down-regulated in patients with AS. Ox-LDL and IL-6 in VSMCs induced up-regulation of HCG11 and down-regulation of miR-144. Overexpression of HCG11 promoted the proliferation and inhibited apoptosis of VSMCs. Luciferase gene reporter gene assay showed that HCG11 could bind to miR-144, and miR-144 could bind to FOXF1. Overexpression of miR-144 reversed the effect of HCG11 on VSMCs. CONCLUSIONS LncRNA HCG11 regulates proliferation and apoptosis of vascular smooth muscle cell through targeting miR-144-3p/FOXF1 axis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Clinical laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiyun Cui
- Department of Clinical Laboratory, Weapon Industry 206 Hospital, Xi'an, Shaanxi, 710061, China
| | - Cong Wang
- Department of Clinical laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
81
|
Ma R, Qi Y, Zhao X, Li X, Sun X, Niu P, Li Y, Guo C, Chen R, Sun Z. Amorphous silica nanoparticles accelerated atherosclerotic lesion progression in ApoE -/- mice through endoplasmic reticulum stress-mediated CD36 up-regulation in macrophage. Part Fibre Toxicol 2020; 17:50. [PMID: 33008402 PMCID: PMC7531166 DOI: 10.1186/s12989-020-00380-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Background The biosafety concern of silica nanoparticles (SiNPs) is rapidly expanding alongside with its mass production and extensive applications. The cardiovascular effects of SiNPs exposure have been gradually confirmed, however, the interaction between SiNPs exposure and atherosclerosis, and the underlying mechanisms still remain unknown. Thereby, this study aimed to explore the effects of SiNPs on the progression of atherosclerosis, and to investigate related mechanisms. Results We firstly investigated the in vivo effects of SiNPs exposure on atherosclerosis via intratracheal instillation of ApoE−/− mice fed a Western diet. Ultrasound microscopy showed a significant increase of pulse wave velocity (PWV) compared to the control group, and the histopathological investigation reflected a greater plaque burden in the aortic root of SiNPs-exposed ApoE−/− mice. Compared to the control group, the serum levels of total triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) were elevated after SiNPs exposure. Moreover, intensified macrophage infiltration and endoplasmic reticulum (ER) stress was occurred in plaques after SiNPs exposure, as evidenced by the upregulated CD68 and CHOP expressions. Further in vitro, SiNPs was confirmed to activate ER stress and induce lipid accumulation in mouse macrophage, RAW264.7. Mechanistic analyses showed that 4-PBA (a classic ER stress inhibitor) pretreatment greatly alleviated SiNPs-induced macrophage lipid accumulation, and reversed the elevated CD36 expression induced by SiNPs. Conclusions Our results firstly revealed the acceleratory effect of SiNPs on the progression of atherosclerosis in ApoE−/− mice, which was related to lipid accumulation caused by ER stress-mediated upregulation of CD36 expression in macrophage. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yi Qi
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xuejing Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China. .,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
82
|
Mura M, Della Schiava N, Long A, Chirico EN, Pialoux V, Millon A. Carotid intraplaque haemorrhage: pathogenesis, histological classification, imaging methods and clinical value. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1273. [PMID: 33178805 PMCID: PMC7607119 DOI: 10.21037/atm-20-1974] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vulnerable carotid atherosclerotic plaques are characterised by several risk factors, such as inflammation, neovascularization and intraplaque haemorrhage (IPH). Vulnerable plaques can lead to ischemic events such as stroke. Many studies reported a relationship between IPH, plaque rupture, and ischemic stroke. Histology is the gold standard to evaluate IPH, but it required carotid endarterectomy (CEA) surgery to collect the tissue sample. In this context, several imaging methods can be used as a non-invasive way to evaluate plaque vulnerability and detect IPH. Most imaging studies showed that IPH is associated with plaque vulnerability and stroke, with magnetic resonance imaging (MRI) being the most sensitive and specific to detect IPH as a predictor of ischemic events. These conclusions are however still debated because of the limited number of patients included in these studies; further studies are required to better assess risks associated with different IPH stages. Moreover, IPH is implicated in plaque vulnerability with other risk factors which need to be considered to predict ischemic risk. In addition, MRI sequences standardization is required to compare results from different studies and agree on biomarkers that need to be considered to predict plaque rupture. In these circumstances, IPH detection by MRI could be an efficient clinical method to predict stroke. The goal of this review article is to first describe the pathophysiological process responsible for IPH, its histological detection in carotid plaques and its correlation with plaque rupture. The second part will discuss the benefits and limitations of imaging the carotid plaque, and finally the clinical interest of imaging IPH to predict plaque rupture, focusing on MRI-IPH.
Collapse
Affiliation(s)
- Mathilde Mura
- Univ Lyon, University Claude Bernard Lyon 1, Interuniversity Laboratory of Human Movement Biology EA7424, Lyon, France
| | - Nellie Della Schiava
- Department of Vascular and Endovascular Surgery, Groupement Hospitalier Est, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France.,Institut National des Sciences Appliquées Lyon, Laboratoire de Génie Electrique et Ferroélectricité EA 682, Villeurbanne, France
| | - Anne Long
- Univ Lyon, University Claude Bernard Lyon 1, Interuniversity Laboratory of Human Movement Biology EA7424, Lyon, France.,Departement of Internal Medicine and Vascular Medicine, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Erica N Chirico
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Vincent Pialoux
- Univ Lyon, University Claude Bernard Lyon 1, Interuniversity Laboratory of Human Movement Biology EA7424, Lyon, France.,Institut Universitaire de France, Paris, France
| | - Antoine Millon
- Department of Vascular and Endovascular Surgery, Groupement Hospitalier Est, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France.,Univ Lyon, University Claude Bernard Lyon 1, CarMeN Laboratory, INSERM U1060, Bron, France
| |
Collapse
|
83
|
A Translational Mouse Model for NASH with Advanced Fibrosis and Atherosclerosis Expressing Key Pathways of Human Pathology. Cells 2020; 9:cells9092014. [PMID: 32883049 PMCID: PMC7565967 DOI: 10.3390/cells9092014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a fast-growing liver disorder that is associated with an increased incidence of cardiovascular disease and type 2 diabetes. Animal models adequately mimicking this condition are scarce. We herein investigate whether Ldlr−/−. Leiden mice on different high-fat diets represent a suitable NASH model. Ldlr−/−. Leiden mice were fed a healthy chow diet or fed a high-fat diet (HFD) containing lard or a fast food diet (FFD) containing milk fat. Additionally, the response to treatment with obeticholic acid (OCA) was evaluated. Both high-fat diets induced obesity, hyperlipidemia, hyperinsulinemia, and increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Mice on both diets developed progressive macro- and microvesicular steatosis, hepatic inflammation, and fibrosis, along with atherosclerosis. HFD induced more severe hyperinsulinemia, while FFD induced more severe hepatic inflammation with advanced (F3) bridging fibrosis, as well as more severe atherosclerosis. OCA treatment significantly reduced hepatic inflammation and fibrosis, and it did not affect atherosclerosis. Hepatic transcriptome analysis was compared with human NASH and illustrated similarity. The present study defines a translational model of NASH with progressive liver fibrosis and simultaneous atherosclerosis development. By adaptation of the fat content of the diet, either insulin resistance (HFD) or hepatic inflammation and fibrosis (FFD) can be aggravated.
Collapse
|
84
|
Clément M, Lareyre F, Loste A, Sannier A, Burel-Vandenbos F, Massiot N, Carboni J, Jean-Baptiste E, Caligiuri G, Nicoletti A, Raffort J. Vascular Remodeling and Immune Cell Infiltration in Splenic Artery Aneurysms. Angiology 2020; 72:539-549. [PMID: 32851875 DOI: 10.1177/0003319720952290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rupture of splenic artery aneurysms (SAAs) is associated with a high mortality rate. The aim of this study was to identify the features of SAAs. Tissue sections from SAAs were compared to nonaneurysmal splenic arteries using various stains. The presence of intraluminal thrombus (ILT), vascular smooth muscle cells (VSMCs), cluster of differentiation (CD)-68+ phagocytes, myeloperoxidase+ neutrophils, CD3+, and CD20+ adaptive immune cells were studied using immunofluorescence microscopy. Analysis of SAAs revealed the presence of atherosclerotic lesions, calcifications, and ILT. Splenic artery aneurysms were characterized by a profound vascular remodeling with a dramatic loss of VSMCs, elastin degradation, adventitial fibrosis associated with enhanced apoptosis, and increased matrix metalloproteinase 9 expression. We observed an infiltration of immune cells comprising macrophages, neutrophils, T, and B cells. The T and B cells were found in the adventitial layer of SAAs, but their organization into tertiary lymphoid organs was halted. We failed to detect germinal centers even in the most organized T/B cell follicles and these lymphoid clusters lacked lymphoid stromal cells. This detailed histopathological characterization of the vascular remodeling during SAA showed that lymphoid neogenesis was incomplete, suggesting that critical mediators of their development must be missing.
Collapse
Affiliation(s)
- Marc Clément
- Université de Paris, LVTS, 121283INSERM U1148, Paris, France
| | - Fabien Lareyre
- Department of Vascular Surgery, 26992University Hospital of Nice, France.,Department of Vascular Surgery, University Hospital of Antibes-Juan-les-Pins, France.,439710Université Côte d'Azur, CHU, INSERM U1065, C3M, Nice, France
| | - Alexia Loste
- Université de Paris, LVTS, 121283INSERM U1148, Paris, France
| | - Aurélie Sannier
- Université de Paris, LVTS, 121283INSERM U1148, Paris, France
| | | | - Nicolas Massiot
- Department of Vascular Surgery, 26992University Hospital of Nice, France
| | - Joseph Carboni
- Department of Vascular Surgery, 26992University Hospital of Nice, France
| | - Elixène Jean-Baptiste
- Department of Vascular Surgery, 26992University Hospital of Nice, France.,439710Université Côte d'Azur, CHU, INSERM U1065, C3M, Nice, France
| | | | | | - Juliette Raffort
- 439710Université Côte d'Azur, CHU, INSERM U1065, C3M, Nice, France.,Clinical Chemistry Laboratory, 121283University Hospital of Nice, France
| |
Collapse
|
85
|
He C, Li Z, Wang J, Huang Y, Yin Y, Li Z. Atherosclerotic Plaque Tissue Characterization: An OCT-Based Machine Learning Algorithm With ex vivo Validation. Front Bioeng Biotechnol 2020; 8:749. [PMID: 32714918 PMCID: PMC7343706 DOI: 10.3389/fbioe.2020.00749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/11/2020] [Indexed: 11/13/2022] Open
Abstract
There is a need to develop a validated algorithm for plaque characterization which can help to facilitate the standardization of optical coherence tomography (OCT) image interpretation of plaque morphology, and improve the efficiency and accuracy in the application of OCT imaging for the quantitative assessment of plaque vulnerability. In this study, a machine learning algorithm was implemented for characterization of atherosclerotic plaque components by intravascular OCT using ex vivo carotid plaque tissue samples. A total of 31 patients underwent carotid endarterectomy and the ex vivo carotid plaques were imaged with OCT. Optical parameter, texture features and relative position of pixels were extracted within the region of interest and then used to quantify the tissue characterization of plaque components. The potential of individual and combined feature set to discriminate tissue components was quantified using sensitivity, specificity, accuracy. The results show there was a lower classification accuracy in the calcified tissue than the fibrous tissue and lipid tissue. The pixel-wise classification accuracy obtained by the developed method, to characterize the fibrous, calcified and lipid tissue by comparing with histology, were 80.0, 62.0, and 83.1, respectively. The developed algorithm was capable of characterizing plaque components with an excellent accuracy using the combined feature set.
Collapse
Affiliation(s)
- Chunliu He
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhonglin Li
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Jiaqiu Wang
- School of Mechanical, Medical, Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yuxiang Huang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yifan Yin
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhiyong Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- School of Mechanical, Medical, Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
86
|
Park LK, Parks EJ, Pettit-Mee RJ, Woodford ML, Ghiarone T, Smith JA, Sales ARK, Martinez-Lemus LA, Manrique-Acevedo C, Padilla J. Skeletal muscle microvascular insulin resistance in type 2 diabetes is not improved by eight weeks of regular walking. J Appl Physiol (1985) 2020; 129:283-296. [PMID: 32614687 DOI: 10.1152/japplphysiol.00174.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We aimed to examine whether individuals with type 2 diabetes (T2D) exhibit suppressed leg vascular conductance and skeletal muscle capillary perfusion in response to a hyperinsulinemic-euglycemic clamp and to test whether these two variables are positively correlated. Subsequently, we examined whether T2D-associated skeletal muscle microvascular insulin resistance, as well as overall vascular dysfunction, would be ameliorated by an 8-wk walking intervention (45 min at 60% of heart rate reserve, 5 sessions/week). We report that, relative to healthy subjects, overweight and obese individuals with T2D exhibit depressed insulin-stimulated increases in leg vascular conductance, skeletal muscle capillary perfusion, and Akt phosphorylation. Notably, we found that within individuals with T2D, those with lesser increases in leg vascular conductance in response to insulin exhibited the lowest increases in muscle capillary perfusion, suggesting that limited muscle capillary perfusion may be, in part, linked to the impaired ability of the upstream resistance vessels to dilate in response to insulin. Furthermore, we show that the 8-wk walking intervention, which did not evoke weight loss, was insufficient to ameliorate skeletal muscle microvascular insulin resistance in previously sedentary, overweight/obese subjects with T2D, despite high adherence and tolerance. However, the walking intervention did improve (P < 0.05) popliteal artery flow-mediated dilation (+4.52%) and reduced HbA1c (-0.75%). It is possible that physical activity interventions that are longer in duration, engage large muscle groups with recruitment of the maximum number of muscle fibers, and lead to a robust reduction in metabolic risk factors may be required to overhaul microvascular insulin resistance in T2D.NEW & NOTEWORTHY This report provides evidence that in sedentary subjects with type 2 diabetes diminished insulin-stimulated increases in leg vascular conductance and ensuing blunted capillary perfusion in skeletal muscle are not restorable by increased walking alone. More innovative physical activity interventions that ultimately result in a robust mitigation of metabolic risk factors may be vital for reestablishing skeletal muscle microvascular insulin sensitivity in type 2 diabetes.
Collapse
Affiliation(s)
- Lauren K Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan J Pettit-Mee
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Allan R K Sales
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
87
|
Vedder VL, Aherrahrou Z, Erdmann J. Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Front Cardiovasc Med 2020; 7:109. [PMID: 32714944 PMCID: PMC7344238 DOI: 10.3389/fcvm.2020.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases, such as atherosclerosis, are the leading cause of death worldwide. Although mice are currently the most commonly used model for atherosclerosis, zebrafish are emerging as an alternative, especially for inflammatory and lipid metabolism studies. Here, we review the history of in vivo atherosclerosis models and highlight the potential for future studies on inflammatory responses in lipid deposits in zebrafish, based on known immune reactions in humans and mice, in anticipation of new zebrafish models with more advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Viviana L Vedder
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| |
Collapse
|
88
|
Doneen AL, Bale BF, Vigerust DJ, Leimgruber PP. Cardiovascular Prevention: Migrating From a Binary to a Ternary Classification. Front Cardiovasc Med 2020; 7:92. [PMID: 32528979 PMCID: PMC7256212 DOI: 10.3389/fcvm.2020.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
Migrating from a binary approach to risk assessment to a ternary model of disease identification allows for individualized, optimal disease management. Redefining the disease/inflammatory approach has been proven to identify, stabilize, and regress atherosclerosis while adding understanding to the progression of vascular disease. Our previously published results show the beneficial effect of comprehensive, evidence-based management on subclinical atherosclerosis and vulnerable plaque. We argue that this approach does not mitigate the value of utilizing standard risk factor identification, but rather augments it for the benefit of the individual patient.
Collapse
Affiliation(s)
- Amy Lynn Doneen
- College of Medicine, Washington State University, Spokane, WA, United States
| | - Bradley Field Bale
- College of Medicine, Washington State University, Spokane, WA, United States
| | | | | |
Collapse
|
89
|
Chai D, Kong X, Lu S, Zhang J. CD4+/CD8+ ratio positively correlates with coronary plaque instability in unstable angina pectoris patients but fails to predict major adverse cardiovascular events. Ther Adv Chronic Dis 2020; 11:2040622320922020. [PMID: 32489573 PMCID: PMC7238310 DOI: 10.1177/2040622320922020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/30/2020] [Indexed: 01/28/2023] Open
Abstract
Background: The association between CD4+/CD8+ ratio and coronary plaque instability in
patients with unstable angina pectoris (UAP) has not been investigated. We
sought to elucidate the correlation between CD4+/CD8+ ratio and plaque
instability in this patient population. Methods: We enrolled 266 UAP patients who underwent pre-intervention optical coherence
tomography (OCT) examination and percutaneous coronary intervention in our
center from January 2016 to January 2018. Features of coronary plaques in
the culprit arteries were classified as unstable plaque and stable plaque.
Primary endpoint was occurrence of a major adverse cardiovascular event
(MACE). Receiver operating characteristic (ROC) analyses were used to
determine the predictive efficacy of the CD4+/CD8+ ratio for a group of
unstable plaque patients, and binary logistic regression analysis was
performed to evaluate potential independent predictors of plaque
instability. All-cause mortality and MACE between the two groups were
analyzed. Results: UAP patients with unstable plaque had a higher CD4/CD8 ratio compared with
stable plaque patients (p < 0.05). Results of binary
logistic regression analyses showed that CD4+/CD8+ ratio ⩾1.725 and prior
stroke were predictors and risk factors of plaque instability
(p < 0.05). ROC analyses showed that CD4+/CD8+ ratio
⩾1.725 was predictive of plaque instability in UAP patients. However, the
Kaplan–Meier estimate for MACE and all-cause mortality showed no statistical
significance. Conclusions: Higher CD4+/CD8+ ratio is associated with higher risk of plaque instability
in our cohort of UAP patients. However, CD4+/CD8+ ratio was not an
independent predictor of 1-year MACE or all-cause mortality.
Collapse
Affiliation(s)
- Dayang Chai
- Department of Cardiology, The First People's Hospital of Taicang, The Affiliated Taicang Hospital of Soochow University, Taicang, China
| | - Xiangquan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shu Lu
- Department of Cardiology, The First People's Hospital of Taicang, The Affiliated Taicang Hospital of Soochow University, No. 58 Changsheng Road, Taicang, 215400, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, No. 68 Changle Road, Nanjing, 210006, China
| |
Collapse
|
90
|
Wang D, Xu X, Zhao M, Wang X. Accelerated miniature swine models of advanced atherosclerosis: A review based on morphology. Cardiovasc Pathol 2020; 49:107241. [PMID: 32554057 DOI: 10.1016/j.carpath.2020.107241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
In order to accelerate development of atherosclerosis(AS) in miniature swine models, varieties of strategies and methods have been explored. In addition to traditional methods such as high cholesterol feeding and balloon injury, new methods such as familial hypercholesterolemia induced by gene editing and intramural injection have been applied in recent years. Although it has been claimed that these methods have successfully aggravated lesion areas and stenosis, lesion features induced by different strategies have shown heterogeneity in morphology. In addition, time consumption, high cost, and unavailability are problems that restrict application of these AS models. Here, we summarize strategies and methods to accelerate AS models and further analyze their values, advantages, and shortcomings.
Collapse
Affiliation(s)
- Dayang Wang
- Cardiovascular Department, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China.
| | - Xiaoqing Xu
- Third Department of Neurology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China.
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Xian Wang
- Cardiovascular Insititute, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
91
|
Oppi S, Nusser-Stein S, Blyszczuk P, Wang X, Jomard A, Marzolla V, Yang K, Velagapudi S, Ward LJ, Yuan XM, Geiger MA, Guillaumon AT, Othman A, Hornemann T, Rancic Z, Ryu D, Oosterveer MH, Osto E, Lüscher TF, Stein S. Macrophage NCOR1 protects from atherosclerosis by repressing a pro-atherogenic PPARγ signature. Eur Heart J 2020; 41:995-1005. [PMID: 31529020 DOI: 10.1093/eurheartj/ehz667] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/28/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022] Open
Abstract
AIMS Nuclear receptors and their cofactors regulate key pathophysiological processes in atherosclerosis development. The transcriptional activity of these nuclear receptors is controlled by the nuclear receptor corepressors (NCOR), scaffolding proteins that form the basis of large corepressor complexes. Studies with primary macrophages demonstrated that the deletion of Ncor1 increases the expression of atherosclerotic molecules. However, the role of nuclear receptor corepressors in atherogenesis is unknown. METHODS AND RESULTS We generated myeloid cell-specific Ncor1 knockout mice and crossbred them with low-density lipoprotein receptor (Ldlr) knockouts to study the role of macrophage NCOR1 in atherosclerosis. We demonstrate that myeloid cell-specific deletion of nuclear receptor corepressor 1 (NCOR1) aggravates atherosclerosis development in mice. Macrophage Ncor1-deficiency leads to increased foam cell formation, enhanced expression of pro-inflammatory cytokines, and atherosclerotic lesions characterized by larger necrotic cores and thinner fibrous caps. The immunometabolic effects of NCOR1 are mediated via suppression of peroxisome proliferator-activated receptor gamma (PPARγ) target genes in mouse and human macrophages, which lead to an enhanced expression of the CD36 scavenger receptor and subsequent increase in oxidized low-density lipoprotein uptake in the absence of NCOR1. Interestingly, in human atherosclerotic plaques, the expression of NCOR1 is reduced whereas the PPARγ signature is increased, and this signature is more pronounced in ruptured compared with non-ruptured carotid plaques. CONCLUSIONS Our findings show that macrophage NCOR1 blocks the pro-atherogenic functions of PPARγ in atherosclerosis and suggest that stabilizing the NCOR1-PPARγ binding could be a promising strategy to block the pro-atherogenic functions of plaque macrophages and lesion progression in atherosclerotic patients.
Collapse
Affiliation(s)
- Sara Oppi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Stefanie Nusser-Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Przemyslaw Blyszczuk
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Clinical Immunology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Xu Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Anne Jomard
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Vincenzo Marzolla
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Kangmin Yang
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Srividya Velagapudi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Liam J Ward
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Xi-Ming Yuan
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Martin A Geiger
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, 13083-970 Campinas, Brazil
| | - Ana T Guillaumon
- Vascular Diseases Discipline, Clinics Hospital of the University of Campinas, 13083-970 Campinas, Brazil
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Zoran Rancic
- Clinic for Vascular Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, 16419 Suwon, Republic of Korea
| | - Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Elena Osto
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, Royal Brompton & Harefield Hospital Trust, London, SW3 6NP, UK
- Imperial College London, London, SW7 2AZ, UK
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
92
|
Deng F, Mu C, Yang L, Li H, Xiang X, Li K, Yang Q. Carotid plaque magnetic resonance imaging and recurrent stroke risk: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e19377. [PMID: 32221065 PMCID: PMC7220511 DOI: 10.1097/md.0000000000019377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND MRI findings of carotid plaque components have been studied recently as a tool to predict recurrent ischemic events. We performed a systematic review and meta-analysis to summarize the association of MRI-determined intraplaque hemorrhage, lipid-rich necrotic core, and thinning/rupture of the fibrous cap with recurrent ischemic events. METHODS Electronic search was performed in PUBMED, EMBASE, Cochrane Controlled Register of Trials (CENTRAL) from inception to Oct 30, 2018. We included cohort studies with an average follow-up time of more than 1 month in which intraplaque hemorrhage, lipid-rich necrotic core, or thinning/rupture of the fibrous cap were associated with recurrent ipsilateral stroke or ischemic events. We performed heterogeneity assessment before carrying out meta-analysis. According to the heterogeneity, we selected fixed-effect model for meta-analysis of the included cohort studies. RESULTS Using a prespecified search strategy, of the 2128 articles, 6 studies with a total number of 621 participants met eligibility for systematic review and meta-analysis. The hazard ratios of intra-plaque hemorrhage, thinning/rupture of the fibrous cap and lipid rich necrotic core as recurrent Stroke/Transient ischemic attack (TIA) were 7.14(95% confidence interval, 4.32 to 11.82), 5.68(95% confidence interval, 2.40 to 13.47), and 2.73(95% confidence interval, 1.04 to 7.16), respectively. No significant heterogeneity was found in the 3 meta-analyses. CONCLUSIONS The presence of intraplaque hemorrhage, lipid-rich necrotic core, and thinning/rupture of the fibrous cap on MRI of carotid plaque are strong predictors of recurrent stroke events. However, due to the lack of original studies, larger cohort studies are warranted.
Collapse
Affiliation(s)
- Fengbin Deng
- Radiology Department, Chongqing General Hospital, University of Chinese Academy of Science
- Jane lab, Big Data Research Center, University of Electronic Science and Technology of China, China
| | - Changping Mu
- Radiology Department, Chongqing General Hospital, University of Chinese Academy of Science
- Jane lab, Big Data Research Center, University of Electronic Science and Technology of China, China
| | - Ling Yang
- Radiology Department, Chongqing General Hospital, University of Chinese Academy of Science
| | - Huaqinag Li
- Radiology Department, Chongqing General Hospital, University of Chinese Academy of Science
| | - Xuemei Xiang
- Jane lab, Big Data Research Center, University of Electronic Science and Technology of China, China
| | - Kang Li
- Radiology Department, Chongqing General Hospital, University of Chinese Academy of Science
| | - Qingjun Yang
- Radiology Department, Chongqing General Hospital, University of Chinese Academy of Science
| |
Collapse
|
93
|
Corti A, Chiastra C, Colombo M, Garbey M, Migliavacca F, Casarin S. A fully coupled computational fluid dynamics – agent-based model of atherosclerotic plaque development: Multiscale modeling framework and parameter sensitivity analysis. Comput Biol Med 2020; 118:103623. [DOI: 10.1016/j.compbiomed.2020.103623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
|
94
|
Buja LM. Innovators in atherosclerosis research: A historical review. Int J Cardiol 2020; 307:8-14. [PMID: 32070483 DOI: 10.1016/j.ijcard.2020.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
This review presents a retrospective analysis of the significance of the contributions of pathologists and kindred investigators in the latter half of the twentieth century to the advancement of understanding of atherosclerosis, a major disease and affliction of humankind. These outstanding investigators contributed importantly to the development of a large body of evidence encompassing population-based autopsy studies, experimental animal studies and cell biological investigations that, coupled with insights from epidemiological studies, serve as the underpinning for the current dominant response to injury theory of atherogenesis. Their collective contributions have been highly meritorious and will remain seminally important into the future.
Collapse
Affiliation(s)
- L Maximilian Buja
- McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Chief, Cardiovascular Pathology, Texas Heart Institute, Houston, TX, United States of America..
| |
Collapse
|
95
|
Scuruchi M, Potì F, Rodríguez-Carrio J, Campo GM, Mandraffino G. Biglycan and atherosclerosis: Lessons from high cardiovascular risk conditions. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158545. [PMID: 31672572 DOI: 10.1016/j.bbalip.2019.158545] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/26/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis (ATH) is a chronic, dynamic, evolutive process involving morphological and structural subversion of artery walls, leading to the formation of atherosclerotic plaques. ATH generally initiates during the childhood, occurring as a result of a number of changes in the intima tunica and in the media of arteries. A key event occurring during the pathobiology of ATH is the accumulation of lipoproteins in the sub-intimal spaces mediated by extracellular matrix (ECM) molecules, especially by the chondroitin sulfate/dermatan sulfate (CS/DS) -containing proteoglycans (CS/DSPGs). Among them, the proteoglycan biglycan (BGN) is critically involved in the onset and progression of ATH and evidences show that BGN represents the missing link between the pro-atherogenic status induced by both traditional and non-traditional cardiovascular risk factors and the development and progression of vascular damage. In the light of these findings, the role of BGN in dyslipidemia, hypertension, cigarette smoking, diabetes, chronic kidney disease and inflammatory status is briefly analyzed and discussed in order to shed new light on the underlying mechanisms governing the association between BGN and ATH.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Potì
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Parma, Italy
| | - Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain; Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación Nefrológica, REDinREN Del ISCIII, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
96
|
Ledard N, Liboz A, Blondeau B, Babiak M, Moulin C, Vallin B, Guillas I, Mateo V, Jumeau C, Blirando K, Meilhac O, Limon I, Glorian M. Slug, a Cancer-Related Transcription Factor, is Involved in Vascular Smooth Muscle Cell Transdifferentiation Induced by Platelet-Derived Growth Factor-BB During Atherosclerosis. J Am Heart Assoc 2020; 9:e014276. [PMID: 31959031 PMCID: PMC7033846 DOI: 10.1161/jaha.119.014276] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Heart attacks and stroke often result from occlusive thrombi following the rupture of vulnerable atherosclerotic plaques. Vascular smooth muscle cells (VSMCs) play a pivotal role in plaque vulnerability because of their switch towards a proinflammatory/macrophage-like phenotype when in the context of atherosclerosis. The prometastatic transcription factor Slug/Snail2 is a critical regulator of cell phenotypic transition. Here, we aimed to investigate the role of Slug in the transdifferentiation process of VSMCs occurring during atherogenesis. Methods and Results In rat and human primary aortic smooth muscle cells, Slug protein expression is strongly and rapidly increased by platelet-derived growth factor-BB (PDGF-BB). PDGF-BB increases Slug protein without affecting mRNA levels indicating that this growth factor stabilizes Slug protein. Immunocytochemistry and subcellular fractionation experiments reveal that PDGF-BB triggers a rapid accumulation of Slug in VSMC nuclei. Using pharmacological tools, we show that the PDGF-BB-dependent mechanism of Slug stabilization in VSMCs involves the extracellular signal-regulated kinase 1/2 pathway. Immunohistochemistry experiments on type V and type VI atherosclerotic lesions of human carotids show smooth muscle-specific myosin heavy chain-/Slug-positive cells surrounding the prothrombotic lipid core. In VSMCs, Slug siRNAs inhibit prostaglandin E2 secretion and prevent the inhibition of cholesterol efflux gene expression mediated by PDGF-BB, known to be involved in plaque vulnerability and/or thrombogenicity. Conclusions Our results highlight, for the first time, a role of Slug in aortic smooth muscle cell transdifferentiation and enable us to consider Slug as an actor playing a role in the atherosclerotic plaque progression towards a life-threatening phenotype. This also argues for common features between acute cardiovascular events and cancer.
Collapse
Affiliation(s)
- Nahéma Ledard
- Institut de Biologie Paris-Seine (IBPS) Biological Adaptation and Ageing UMR 8256 Sorbonne Université Paris France
| | - Alexandrine Liboz
- INSERM Saint-Antoine Research Center Sorbonne Université Paris France
| | - Bertrand Blondeau
- INSERM Saint-Antoine Research Center Sorbonne Université Paris France
| | - Mégane Babiak
- Institut de Biologie Paris-Seine (IBPS) Biological Adaptation and Ageing UMR 8256 Sorbonne Université Paris France
| | - Célia Moulin
- Institut de Biologie Paris-Seine (IBPS) Biological Adaptation and Ageing UMR 8256 Sorbonne Université Paris France
| | - Benjamin Vallin
- Institut de Biologie Paris-Seine (IBPS) Biological Adaptation and Ageing UMR 8256 Sorbonne Université Paris France
| | - Isabelle Guillas
- National Institute for Health and Medical Research (INSERM) Faculté de Médecine Pitié Salpétrière UMR-S 1166 ICAN Sorbonne Université Paris France
| | - Véronique Mateo
- CIMI-Paris INSERM U1135 Faculté de Médecine Sorbonne-Université Site Pitié-Salpêtrière Sorbonne Université Paris France
| | | | - Karl Blirando
- Institut de Biologie Paris-Seine (IBPS) Biological Adaptation and Ageing UMR 8256 Sorbonne Université Paris France
| | - Olivier Meilhac
- Université de La Réunion Diabète, Athérothrombose, Thérapies, Réunion, Océan Indien (UMR DéTROI U1188) - -CYROI- Sainte Clotilde La Réunion
| | - Isabelle Limon
- Institut de Biologie Paris-Seine (IBPS) Biological Adaptation and Ageing UMR 8256 Sorbonne Université Paris France
| | - Martine Glorian
- Institut de Biologie Paris-Seine (IBPS) Biological Adaptation and Ageing UMR 8256 Sorbonne Université Paris France
| |
Collapse
|
97
|
Rijlaarsdam-Hermsen D, Lo-Kioeng-Shioe M, van Domburg RT, Deckers JW, Kuijpers D, van Dijkman PRM. Stress-Only Adenosine CMR Improves Diagnostic Yield in Stable Symptomatic Patients With Coronary Artery Calcium. JACC Cardiovasc Imaging 2020; 13:1152-1160. [PMID: 31954641 DOI: 10.1016/j.jcmg.2019.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES This study assessed whether adenosine stress-only perfusion cardiac magnetic resonance (CMR) following a positive coronary artery calcium (CAC) score improved the diagnostic yield of invasive coronary angiography (CAG) in patients with stable chest pain. The study also established the association between positive CAC scores and stress-induced myocardial ischemia. BACKGROUND The diagnostic yield of catheterization among patients with suspected coronary artery disease (CAD) is low. Improved patient selection and diagnostic testing are necessary. The CAC score can minimize unnecessary diagnostic testing, and in low-risk patients, normal CMR results have a high negative predictive value. Less comprehensive protocols may be sufficient to guide further work-up. METHODS A total of 642 consecutive patients (mean age: 63 years; 50% women) with stable chest pain and CAC scores of >0 who were referred for CMR were enrolled. Patients with a perfusion defect were subsequently examined by CAG. Patients were followed up for 1 year. Outcome was obstructive CAD. RESULTS Obstructive CAD was present in 12% of patients. For CAD diagnosis, the sensitivity of adenosine CMR was 90.9% (95% confidence interval [CI]: 88.7 to 93.1), specificity was 98.7% (95% CI: 97.9 to 99.6), positive predictive value was 92.0% (95% CI: 89.8 to 94.1), and negative predictive value was 98.6% (95% CI: 97.6 to 99.5). A CAC score between 0.1 and 100 without typical angina was associated with obstructive CAD in only 3% of patients. Patients with nonanginal chest pain and a CAC score ≥400 had obstructive CAD (16%). CONCLUSIONS Stress-only adenosine CMR had high diagnostic accuracy and served as an efficient gatekeeper to CAG in stable patients with a CAC score >0. Patients with CAC scores between 0.1 and 100 could be deferred from further testing in the absence of clinical features that suggested high risk. However, in patients with CAC score ≥400, functional testing should be indicated, regardless of the type of chest pain.
Collapse
Affiliation(s)
- Dorine Rijlaarsdam-Hermsen
- Haaglanden Medical Center Bronovo, Department of Cardiology, The Hague, the Netherlands; Haaglanden Medical Center Bronovo, Department of Radiology, The Hague, the Netherlands; Erasmus Medical Center, Department of Cardiology, Rotterdam, the Netherlands
| | | | - Ron T van Domburg
- Erasmus Medical Center, Department of Cardiology, Rotterdam, the Netherlands
| | - Jaap W Deckers
- Erasmus Medical Center, Department of Cardiology, Rotterdam, the Netherlands.
| | - Dirkjan Kuijpers
- Haaglanden Medical Center Bronovo, Department of Radiology, The Hague, the Netherlands
| | - Paul R M van Dijkman
- Haaglanden Medical Center Bronovo, Department of Cardiology, The Hague, the Netherlands
| |
Collapse
|
98
|
Yakala GK, Cabrera-Fuentes HA, Crespo-Avilan GE, Rattanasopa C, Burlacu A, George BL, Anand K, Mayan DC, Corlianò M, Hernández-Reséndiz S, Wu Z, Schwerk AMK, Tan ALJ, Trigueros-Motos L, Chèvre R, Chua T, Kleemann R, Liehn EA, Hausenloy DJ, Ghosh S, Singaraja RR. FURIN Inhibition Reduces Vascular Remodeling and Atherosclerotic Lesion Progression in Mice. Arterioscler Thromb Vasc Biol 2020; 39:387-401. [PMID: 30651003 PMCID: PMC6393193 DOI: 10.1161/atvbaha.118.311903] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective- Atherosclerotic coronary artery disease is the leading cause of death worldwide, and current treatment options are insufficient. Using systems-level network cluster analyses on a large coronary artery disease case-control cohort, we previously identified PCSK3 (proprotein convertase subtilisin/kexin family member 3; FURIN) as a member of several coronary artery disease-associated pathways. Thus, our objective is to determine the role of FURIN in atherosclerosis. Approach and Results- In vitro, FURIN inhibitor treatment resulted in reduced monocyte migration and reduced macrophage and vascular endothelial cell inflammatory and cytokine gene expression. In vivo, administration of an irreversible inhibitor of FURIN, α-1-PDX (α1-antitrypsin Portland), to hyperlipidemic Ldlr-/- mice resulted in lower atherosclerotic lesion area and a specific reduction in severe lesions. Significantly lower lesional macrophage and collagen area, as well as systemic inflammatory markers, were observed. MMP2 (matrix metallopeptidase 2), an effector of endothelial function and atherosclerotic lesion progression, and a FURIN substrate was significantly reduced in the aorta of inhibitor-treated mice. To determine FURIN's role in vascular endothelial function, we administered α-1-PDX to Apoe-/- mice harboring a wire injury in the common carotid artery. We observed significantly decreased carotid intimal thickness and lower plaque cellularity, smooth muscle cell, macrophage, and inflammatory marker content, suggesting protection against vascular remodeling. Overexpression of FURIN in this model resulted in a significant 67% increase in intimal plaque thickness, confirming that FURIN levels directly correlate with atherosclerosis. Conclusions- We show that systemic inhibition of FURIN in mice decreases vascular remodeling and atherosclerosis. FURIN-mediated modulation of MMP2 activity may contribute to the atheroprotection observed in these mice.
Collapse
Affiliation(s)
- Gopala K Yakala
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Hector A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.).,National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.).,Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany (H.A.C.-F.).,Department of Microbiology, Kazan Federal University, Russian Federation (H.A.C.-F.).,Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Centro de Biotecnologia-FEMSA, Nuevo Leon, México (H.A.C.-F.)
| | - Gustavo E Crespo-Avilan
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.).,National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.)
| | - Chutima Rattanasopa
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.).,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.)
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania (A.B.)
| | - Benjamin L George
- National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.)
| | - Kaviya Anand
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - David Castaño Mayan
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Maria Corlianò
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Sauri Hernández-Reséndiz
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.).,National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.)
| | - Zihao Wu
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Anne M K Schwerk
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden (A.M.K.S., R.K.)
| | - Amberlyn L J Tan
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Laia Trigueros-Motos
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Raphael Chèvre
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Tricia Chua
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden (A.M.K.S., R.K.).,Department of Vascular Surgery, Leiden University Medical Center, the Netherlands (R.K.)
| | - Elisa A Liehn
- National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.).,Institute of Molecular Cardiovascular Research, RWTH, Aachen, Germany (E.A.L.).,Human Genetic Laboratory, University of Medicine, Craiova, Romania (E.A.L.)
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.).,National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.).,Yong Loo Lin School of Medicine, National University Singapore (D.J.H.).,The Hatter Cardiovascular Institute, University College London, United Kingdom (D.J.H.).,The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, United Kingdom (D.J.H.).,Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom (D.J.H.)
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore (H.A.C.-F., G.E.C.-A., C.R., S.H.-R., D.J.H., S.G.).,National Heart Research Institute, National Heart Centre Singapore (H.A.C.-F., G.E.C.-A., B.L.G., S.H.-R., E.A.L., D.J.H., S.G.)
| | - Roshni R Singaraja
- From the Translational Laboratories in Genetic Medicine, A*STAR Institute, and Yong Loo Lin School of Medicine, National University of Singapore (G.K.Y., C.R., K.A., D.C.M., M.C., Z.W., A.L.J.T., L.T.-M., R.C., T.C., R.R.S.)
| |
Collapse
|
99
|
Zhang F, Yang L, Gan L, Fan Z, Zhou B, Deng Z, Dey D, Berman DS, Li D, Xie Y. Spotty Calcium on Cervicocerebral Computed Tomography Angiography Associates With Increased Risk of Ischemic Stroke. Stroke 2020; 50:859-866. [PMID: 30879439 DOI: 10.1161/strokeaha.118.023273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Cervicocerebral vascular calcification on computed tomography angiography is a known sign of advanced atherosclerosis. However, the clinical significance of calcification pattern remains unclear. In this study, we aimed to investigate the potential association between spotty calcium and acute ischemic stroke. Methods- This study included patients with first-time nonlacunar ischemic stroke (N=50) confirmed by brain magnetic resonance imaging or nonenhanced head computed tomography, as well as control subjects with asymptomatic carotid atherosclerosis (N=50) confirmed by carotid ultrasonography. Subjects in both groups underwent contrast-enhanced cervicocerebral computed tomography angiography within a week after the initial imaging examination. Spotty calcification was evaluated at 11 arterial segments commonly affected by atherosclerosis along the carotid and vertebrobasilar circulation. Statistical analysis was performed comparing the frequency and spatial pattern of spotty calcification between the 2 groups. Results- Spotty calcification in the Stroke group was markedly more prevalent than that in the Control group (total SC count: 8.74±4.96 versus 1.84±1.82, P<0.001). The odds ratio (95% CI) for stroke was 2.49 (1.55-4.00) for spotty calcification at bilateral carotid bifurcation, 1.52 (1.13-2.04) at carotid siphon, and 1.98 (1.45-2.69) at all evaluated locations. A total number of 3 spotty calcifications were determined as the optimal cutoff threshold for increased risk of stroke. Spotty calcium showed significantly greater area under the receiver operating characteristics curve than total calcium volume irrespective of size (0.88 versus 0.77). Within the Stroke group, ipsilateral lateral side showed significantly more spotty calcium than the contralateral side (5.18±3.05 versus 3.56±2.67, P<0.001). Conclusions- Nonlacunar ischemia stroke was associated with markedly increased incidence of spotty calcification with a distinct spatial pattern on cervicocerebral computed tomography compared with subclinical atherosclerosis, suggesting the potential role of spotty calcification for improving the risk stratification for ischemic stroke.
Collapse
Affiliation(s)
- Fan Zhang
- From the Department of Radiology, Hainan Branch of Chinese People's Liberation Army General Hospital, Sanya, Hainan, China (F.Z.).,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (F.Z., Z.F., B.Z., Z.D., D.D., D.S.B., D.L., Y.X.)
| | - Li Yang
- Department of Radiology, Chinese People's Liberation Army General Hospital, Beijing, China (L.Y.)
| | - Lu Gan
- Department of Radiology, Tiantan Hospital, Capital Medical University, Beijing, China (L.G.)
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (F.Z., Z.F., B.Z., Z.D., D.D., D.S.B., D.L., Y.X.).,Department of Bioengineering (Z.F., Z.D., D.L.), University of California, Los Angeles.,Department of Medicine (Z.F., B.Z., D.L.), University of California, Los Angeles
| | - Bill Zhou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (F.Z., Z.F., B.Z., Z.D., D.D., D.S.B., D.L., Y.X.).,Department of Medicine (Z.F., B.Z., D.L.), University of California, Los Angeles
| | - Zixin Deng
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (F.Z., Z.F., B.Z., Z.D., D.D., D.S.B., D.L., Y.X.).,Department of Bioengineering (Z.F., Z.D., D.L.), University of California, Los Angeles
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (F.Z., Z.F., B.Z., Z.D., D.D., D.S.B., D.L., Y.X.)
| | - Daniel S Berman
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (F.Z., Z.F., B.Z., Z.D., D.D., D.S.B., D.L., Y.X.)
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (F.Z., Z.F., B.Z., Z.D., D.D., D.S.B., D.L., Y.X.).,Department of Bioengineering (Z.F., Z.D., D.L.), University of California, Los Angeles.,Department of Medicine (Z.F., B.Z., D.L.), University of California, Los Angeles
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (F.Z., Z.F., B.Z., Z.D., D.D., D.S.B., D.L., Y.X.)
| |
Collapse
|
100
|
Diet-induced leukocyte telomere shortening in a baboon model for early stage atherosclerosis. Sci Rep 2019; 9:19001. [PMID: 31831784 PMCID: PMC6908639 DOI: 10.1038/s41598-019-55348-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Reported associations between leukocyte telomere length (LTL) attrition, diet and cardiovascular disease (CVD) are inconsistent. This study explores effects of prolonged exposure to a high cholesterol high fat (HCHF) diet on LTL in a baboon model of atherosclerosis. We measured LTL by qPCR in pedigreed baboons fed a chow (n = 105) or HCHF (n = 106) diet for 2 years, tested for effects of diet on LTL, and association between CVD risk factors and atherosclerotic lesions with LTL. Though not different at baseline, after 2 years median LTL is shorter in HCHF fed baboons (P < 0.0001). Diet predicts sex- and age-adjusted LTL and LTL attrition (P = 0.0009 and 0.0156, respectively). Serum concentrations of CVD biomarkers are associated with LTL at the 2-year endpoint and LTL accounts approximately 6% of the variance in aortic lesions (P = 0.04). Although heritable at baseline (h2 = 0.27, P = 0.027) and after 2 years (h2 = 0.46, P = 0.0038), baseline LTL does not predict lesion extent after 2 years. Atherogenic diet influences LTL, and LTL is a potential biomarker for early atherosclerosis. Prolonged exposure to an atherogenic diet decreases LTL and increases LTL attrition, and shortened LTL is associated with early-stage atherosclerosis in pedigreed baboons.
Collapse
|