51
|
Delekta PC, Apel IJ, Gu S, Siu K, Hattori Y, McAllister-Lucas LM, Lucas PC. Thrombin-dependent NF-{kappa}B activation and monocyte/endothelial adhesion are mediated by the CARMA3·Bcl10·MALT1 signalosome. J Biol Chem 2010; 285:41432-42. [PMID: 21041303 DOI: 10.1074/jbc.m110.158949] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thrombin is a potent modulator of endothelial function and, through stimulation of NF-κB, induces endothelial expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). These cell surface adhesion molecules recruit inflammatory cells to the vessel wall and thereby participate in the development of atherosclerosis, which is increasingly recognized as an inflammatory condition. The principal receptor for thrombin on endothelial cells is protease-activated receptor-1 (PAR-1), a member of the G protein-coupled receptor superfamily. Although it is known that PAR-1 signaling to NF-κB depends on initial PKC activation, the subsequent steps leading to stimulation of the canonical NF-κB machinery have remained unclear. Here, we demonstrate that a complex of proteins containing CARMA3, Bcl10, and MALT1 links PAR-1 activation to stimulation of the IκB kinase complex. IκB kinase in turn phosphorylates IκB, leading to its degradation and the release of active NF-κB. Further, we find that although this CARMA3·Bcl10·MALT1 signalosome shares features with a CARMA1-containing signalosome found in lymphocytes, there are significant differences in how the signalosomes communicate with their cognate receptors. Specifically, whereas the CARMA1-containing lymphocyte complex relies on 3-phosphoinositide-dependent protein kinase 1 for assembly and activation, the CARMA3-containing endothelial signalosome functions completely independent of 3-phosphoinositide-dependent protein kinase 1 and instead relies on β-arrestin 2 for assembly. Finally, we show that thrombin-dependent adhesion of monocytes to endothelial cells requires an intact endothelial CARMA3·Bcl10·MALT1 signalosome, underscoring the importance of the signalosome in mediating one of the most significant pro-atherogenic effects of thrombin.
Collapse
Affiliation(s)
- Phillip C Delekta
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Rohani MG, DiJulio DH, An JY, Hacker BM, Dale BA, Chung WO. PAR1- and PAR2-induced innate immune markers are negatively regulated by PI3K/Akt signaling pathway in oral keratinocytes. BMC Immunol 2010; 11:53. [PMID: 21029417 PMCID: PMC2988058 DOI: 10.1186/1471-2172-11-53] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 10/28/2010] [Indexed: 11/10/2022] Open
Abstract
Background Protease-Activated Receptors (PARs), members of G-protein-coupled receptors, are activated by proteolytic activity of various proteases. Activation of PAR1 and PAR2 triggers innate immune responses in human oral keratinocytes (HOKs), but the signaling pathways downstream of PAR activation in HOKs have not been clearly defined. In this study, we aimed to determine if PAR1- and PAR2-mediated signaling differs in the induction of innate immune markers CXCL3, CXCL5 and CCL20 via ERK, p38 and PI3K/Akt. Results Our data show the induction of innate immunity by PAR1 requires both p38 and ERK MAP kinases, while PAR2 prominently signals via p38. However, inhibition of PI3K enhances expression of innate immune markers predominantly via suppressing p38 phosphorylation signaled by PAR activation. Conclusion Our data indicate that proteases mediating PAR1 and PAR2 activation differentially signal via MAP kinase cascades. In addition, the production of chemokines induced by PAR1 and PAR2 is suppressed by PI3K/Akt, thus keeping the innate immune responses of HOK in balance. The results of our study provide a novel insight into signaling pathways involved in PAR activation.
Collapse
Affiliation(s)
- Maryam G Rohani
- Department of Medicine/Dermatology, University of Washington, Seattle, WA 98195-6524, USA
| | | | | | | | | | | |
Collapse
|
53
|
Thippegowda PB, Singh V, Sundivakkam PC, Xue J, Malik AB, Tiruppathi C. Ca2+ influx via TRPC channels induces NF-kappaB-dependent A20 expression to prevent thrombin-induced apoptosis in endothelial cells. Am J Physiol Cell Physiol 2009; 298:C656-64. [PMID: 20032510 DOI: 10.1152/ajpcell.00456.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NF-kappaB signaling is known to induce the expression of antiapoptotic and proinflammatory genes in endothelial cells (ECs). We have shown recently that Ca(2+) influx through canonical transient receptor potential (TRPC) channels activates NF-kappaB in ECs. Here we show that Ca(2+) influx signal prevents thrombin-induced apoptosis by inducing NF-kappaB-dependent A20 expression in ECs. Knockdown of TRPC1 expressed in human umbilical vein ECs with small interfering RNA (siRNA) suppressed thrombin-induced Ca(2+) influx and NF-kappaB activation in ECs. Interestingly, we observed that thrombin induced >25% of cell death (apoptosis) in TRPC1-knockdown ECs whereas thrombin had no effect on control or control siRNA-transfected ECs. To understand the basis of EC survival, we performed gene microarray analysis using ECs. Thrombin stimulation increased only a set of NF-kappaB-regulated genes 3- to 14-fold over basal levels in ECs. Expression of the antiapoptotic gene A20 was the highest among these upregulated genes. Like TRPC1 knockdown, thrombin induced apoptosis in A20-knockdown ECs. To address the importance of Ca(2+) influx signal, we measured thrombin-induced A20 expression in control and TRPC1-knockdown ECs. Thrombin-induced p65/RelA binding to A20 promoter-specific NF-kappaB sequence and A20 protein expression were suppressed in TRPC1-knockdown ECs compared with control ECs. Furthermore, in TRPC1-knockdown ECs, thrombin induced the expression of proapoptotic proteins caspase-3 and BAX. Importantly, thrombin-induced apoptosis in TRPC1-knockdown ECs was prevented by adenovirus-mediated expression of A20. These results suggest that Ca(2+) influx via TRPC channels plays a critical role in the mechanism of cell survival signaling through A20 expression in ECs.
Collapse
Affiliation(s)
- Prabhakar B Thippegowda
- Dept. of Pharmacology, College of Medicine, Univ. of Illinois, 835 South Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
54
|
Quan L, Jian Z, Ping Z, Weiming L. Proteinase-activated receptor-1 mediates allogeneic CD8(+) T cell-induced apoptosis of vascular endothelial cells. Med Oncol 2009; 26:379-85. [PMID: 19082770 DOI: 10.1007/s12032-008-9132-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
Vascular endothelial-cells injury plays a pivotal role in the pathogenesis of graft-versus-host disease (GVHD) and transplant-associated endothelial injury syndrome. Vascular endothelial cells are an exposed target tissue for immune-mediated injury during GVHD. Early endothelial injury syndromes share common features with acute GVHD. Chronic GVHD leads to a rarefaction of microvessels caused by the infiltration of alloreactive cytotoxic T lymphocytes. In this context, allogeneic reactive cytotoxic T cell may contribute to apoptosis of vascular endothelial cells. The involvement of proteinase-activated receptor (PAR-1) in regulation of apoptosis has been recently recognized in many cell types. We hypothesized that apoptosis of vascular endothelial cells induced by allogeneic cytotoxic T cell are mediated via the PAR-1. Allogeneic CD8(+) T cell, PAR-1 agonist peptide (SFLLRN) induced apoptosis of human umbilical vein endothelial cells (HUVECs) and human dermal microvascular endothelial cells (HDMECs) as assessed by AnnexinV-FITC labeling. To ascertain the mechanism of endothelial apoptosis, we determined that allogeneic CD8(+) T cell, SFLLRN enhanced cleavage of caspase-3 and led to p38MAPK activation as assessed by Western blot. The effects of allogeneic CD8(+) T cell and SFLLRN on apoptosis of vascular endothelial cells were largely prevented by a cleavage-blocking anti-human PAR-1-antibody (ATAP2) and a specific inhibitor of p38MAPK. In concert, these observations provide strong evidence that allogeneic CD8(+) T cell induces apoptosis of human vascular endothelial cells through PAR-1-dependent modulation of intrinsic apoptotic pathway via alterations of p38MAPK and caspase-3.
Collapse
Affiliation(s)
- Li Quan
- Institute of Hematology, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | |
Collapse
|
55
|
Knezevic N, Tauseef M, Thennes T, Mehta D. The G protein betagamma subunit mediates reannealing of adherens junctions to reverse endothelial permeability increase by thrombin. ACTA ACUST UNITED AC 2009; 206:2761-77. [PMID: 19917775 PMCID: PMC2806626 DOI: 10.1084/jem.20090652] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The inflammatory mediator thrombin proteolytically activates protease-activated receptor (PAR1) eliciting a transient, but reversible increase in vascular permeability. PAR1-induced dissociation of Gα subunit from heterotrimeric Gq and G12/G13 proteins is known to signal the increase in endothelial permeability. However, the role of released Gβγ is unknown. We now show that impairment of Gβγ function does not affect the permeability increase induced by PAR1, but prevents reannealing of adherens junctions (AJ), thereby persistently elevating endothelial permeability. We observed that in the naive endothelium Gβ1, the predominant Gβ isoform is sequestered by receptor for activated C kinase 1 (RACK1). Thrombin induced dissociation of Gβ1 from RACK1, resulting in Gβ1 interaction with Fyn and focal adhesion kinase (FAK) required for FAK activation. RACK1 depletion triggered Gβ1 activation of FAK and endothelial barrier recovery, whereas Fyn knockdown interrupted with Gβ1-induced barrier recovery indicating RACK1 negatively regulates Gβ1-Fyn signaling. Activated FAK associated with AJ and stimulated AJ reassembly in a Fyn-dependent manner. Fyn deletion prevented FAK activation and augmented lung vascular permeability increase induced by PAR1 agonist. Rescuing FAK activation in fyn−/− mice attenuated the rise in lung vascular permeability. Our results demonstrate that Gβ1-mediated Fyn activation integrates FAK with AJ, preventing persistent endothelial barrier leakiness.
Collapse
Affiliation(s)
- Nebojsa Knezevic
- Center for Lung and Vascular Biology, Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
56
|
Tissue-type plasminogen activator (t-PA) induces stromelysin-1 (MMP-3) in endothelial cells through activation of lipoprotein receptor–related protein. Blood 2009; 114:3352-8. [DOI: 10.1182/blood-2009-02-203919] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Tissue-type plasminogen activator (t-PA) is approved for treatment of ischemic stroke patients, but it increases the risk of intracranial bleeding (ICB). Previously, we have shown in a mouse stroke model that stromelysin-1 (matrix metalloproteinase-3 [MMP-3]) induced in endothelial cells was critical for ICB induced by t-PA. In the present study, using bEnd.3 cells, a mouse brain–derived endothelial cell line, we showed that MMP-3 was induced by both ischemic stress and t-PA treatment. This induction by t-PA was prevented by inhibition either of low-density lipoprotein receptor–related protein (LRP) or of nuclear factor-κB activation. LRP was up-regulated by ischemic stress, both in bEnd.3 cells in vitro and in endothelial cells at the ischemic damage area in the mouse stroke model. Furthermore, inhibition of LRP suppressed both MMP-3 induction in endothelial cells and the increase in ICB by t-PA treatment after stroke. These findings indicate that t-PA deteriorates ICB via MMP-3 induction in endothelial cells, which is regulated through the LRP/nuclear factor-κB pathway.
Collapse
|
57
|
Han J, Liu G, Profirovic J, Niu J, Voyno-Yasenetskaya T. Zyxin is involved in thrombin signaling via interaction with PAR-1 receptor. FASEB J 2009; 23:4193-206. [PMID: 19690217 DOI: 10.1096/fj.09-131862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protease-activated receptor 1 (PAR-1) mediates thrombin signaling in human endothelial cells. As a G-protein-coupled receptor, PAR-1 transmits thrombin signal through activation of the heterotrimeric G proteins, Gi, Gq, and G12/13. In this study, we demonstrated that zyxin, a LIM-domain-containing protein, is involved in thrombin-mediated actin cytoskeleton remodeling and serum response element (SRE)-dependent gene transcription. We determined that zyxin binds to the C-terminal domain of PAR-1, providing a possible mechanism of involvement of zyxin as a signal transducer in PAR-1 signaling. Data showing that disruption of PAR-1-zyxin interaction inhibited thrombin-induced stress fiber formation and SRE activation supports this hypothesis. Similarly, depletion of zyxin using siRNA inhibited thrombin-induced actin stress fiber formation and SRE-dependent gene transcription. In addition, depletion of zyxin resulted in delay of endothelial barrier restoration after thrombin treatment. Notably, down-regulation of zyxin did not affect thrombin-induced activation of RhoA or Gi, Gq, and G12/13 heterotrimeric G proteins, implicating a novel signaling pathway regulated by PAR-1 that is not mediated by G-proteins. The observation that zyxin targets VASP, a partner of zyxin in regulation of actin assembly and dynamics, to focal adhesions and along stress fibers on thrombin stimulation suggests that zyxin may participate in thrombin-induced cytoskeletal remodeling through recruitment of VASP. In summary, this study establishes a crucial role of zyxin in thrombin signaling in endothelial cells and provides evidence for a novel PAR-1 signaling pathway mediated by zyxin.
Collapse
Affiliation(s)
- Jingyan Han
- Department of Pharmacology (MC 868), University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
58
|
Hou CH, Lin J, Huang SC, Hou SM, Tang CH. Ultrasound stimulates NF-κB activation and iNOS expression via the Ras/Raf/MEK/ERK signaling pathway in cultured preosteoblasts. J Cell Physiol 2009; 220:196-203. [DOI: 10.1002/jcp.21751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
59
|
Xue J, Thippegowda PB, Hu G, Bachmaier K, Christman JW, Malik AB, Tiruppathi C. NF-kappaB regulates thrombin-induced ICAM-1 gene expression in cooperation with NFAT by binding to the intronic NF-kappaB site in the ICAM-1 gene. Physiol Genomics 2009; 38:42-53. [PMID: 19351910 PMCID: PMC2696150 DOI: 10.1152/physiolgenomics.00012.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Activation of NF-kappaB is essential for protease-activated receptor-1 (PAR-1)-mediated ICAM-1 expression in endothelial cells. Here we show that PAR-1 activation induces binding of both p65/RelA and NFATc1 to the NF-kappaB binding site localized in intron-1 of the ICAM-1 gene to initiate transcription in endothelial cells. We discovered the presence of two NF-kappaB binding sites in intron-1 (+70, NF-kappaB site 1; +611, NF-kappaB site 2) of the human ICAM-1 gene. Chromatin immunoprecipitation results showed that thrombin induced binding of p65/RelA and of NFATc1 specifically to intronic NF-kappaB site 1 of the ICAM-1 gene. Electrophoretic mobility shift and supershift assays confirmed the binding of p65/RelA and NFATc1 to the intronic NF-kappaB site 1 in thrombin-stimulated cells. Thrombin increased the expression of ICAM-1-promoter-intron 1-reporter (-1,385 to +234) construct approximately 25-fold and mutation of intronic NF-kappaB site 1 markedly reduced thrombin-induced reporter expression. Moreover, inhibition of calcineurin, knockdown of either NFATc1 or p65/RelA with siRNA significantly reduced thrombin-induced ICAM-1 expression and polymorphonuclear leukocyte adhesion to endothelial cells. In contrast, NFATc1 knockdown had no effect on TNF-alpha-induced ICAM-1 expression. Thus these results suggest that p65/RelA and NFATc1 bind to the intronic NF-kappaB site 1 sequence to induce optimal transcription of the ICAM-1 gene in response to thrombin in endothelial cells.
Collapse
Affiliation(s)
- Jiaping Xue
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Stable adhesion of leukocytes to endothelium is crucial for transendothelial migration (TEM) of leukocytes evoked during inflammatory responses, immune surveillance, and homing and mobilization of hematopoietic progenitor cells. The basis of stable adhesion involves expression of intercellular adhesion molecule-1 (ICAM-1), an inducible endothelial adhesive protein that serves as a counter-receptor for beta(2)-integrins on leukocytes. Interaction of ICAM-1 with beta(2)-integrins enables leukocytes to adhere firmly to the vascular endothelium and subsequently, to migrate across the endothelial barrier. The emerging paradigm is that ICAM-1, in addition to firmly capturing leukocytes, triggers intracellular signaling events that may contribute to active participation of the endothelium in facilitating the TEM of adherent leukocytes. The nature, duration, and intensity of ICAM-1-dependent signaling events may contribute to the determination of the route (paracellular vs. transcellular) of leukocyte passage; these aspects of ICAM-1 signaling may in turn be influenced by density and distribution of ICAM-1 on the endothelial cell surface, the source of endothelial cells it is present on, and the type of leukocytes with which it is engaged. This review summarizes our current understanding of the "ICAM-1 paradigm" of TEM with an emphasis on the signaling events mediating ICAM-1 expression and activated by ICAM-1 engagement in endothelial cells.
Collapse
Affiliation(s)
- Arshad Rahman
- Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
61
|
Wilson TJ, Nannuru KC, Singh RK. Cathepsin G Recruits Osteoclast Precursors via Proteolytic Activation of Protease-Activated Receptor-1. Cancer Res 2009; 69:3188-95. [DOI: 10.1158/0008-5472.can-08-1956] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
62
|
Novel signaling pathways promote a paracrine wave of prostacyclin-induced vascular smooth muscle differentiation. J Mol Cell Cardiol 2009; 46:682-94. [PMID: 19302827 DOI: 10.1016/j.yjmcc.2009.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 12/23/2008] [Accepted: 01/16/2009] [Indexed: 11/22/2022]
Abstract
The important athero-protective role of prostacyclin is becoming increasingly evident as recent studies have revealed adverse cardiovascular effects in mice lacking the prostacyclin receptor, in patients taking selective COX-2 inhibitors, and in patients in the presence of a dysfunctional prostacyclin receptor genetic variant. We have recently reported that this protective mechanism includes the promotion of a quiescent differentiated phenotype in human vascular smooth muscle cells (VSMC). Herein, we address the intriguing question of how localized endothelial release of the very unstable eicosanoid, prostacyclin, exerts a profound effect on the vascular media, often 30 cell layers thick. We report a novel PKA-, Akt-1- and ERK1/2-dependent prostacyclin-induced prostacyclin release that appears to play an important role in propagation of the quiescent, differentiated phenotype through adjacent arterial smooth muscle cells in the vascular media. Treating VSMC with the prostacyclin analog iloprost induced differentiation (contractile protein expression and contractile morphology), and also up-regulated COX-2 expression, leading to prostacyclin release by VSMC. This paracrine prostacyclin release, in turn, promoted differentiation and COX-2 induction in neighboring VSMC that were not exposed to iloprost. Using siRNA and pharmacologic inhibitors, we report that this positive feedback mechanism, prostacyclin-induced prostacyclin release, is mediated by cAMP/PKA signaling, ERK1/2 activation, and a novel prostacyclin receptor signaling pathway, inhibition of Akt-1. Furthermore, these pathways appear to be regulated by the prostacyclin receptor independently of one another. We conclude that prevention of de-differentiation and proliferation through a paracrine positive feedback mechanism is a major cardioprotective function of prostacyclin.
Collapse
|
63
|
Takimoto E, Koitabashi N, Hsu S, Ketner EA, Zhang M, Nagayama T, Bedja D, Gabrielson KL, Blanton R, Siderovski DP, Mendelsohn ME, Kass DA. Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J Clin Invest 2009; 119:408-20. [PMID: 19127022 DOI: 10.1172/jci35620] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 11/12/2008] [Indexed: 01/19/2023] Open
Abstract
The heart initially compensates for hypertension-mediated pressure overload by enhancing its contractile force and developing hypertrophy without dilation. Gq protein-coupled receptor pathways become activated and can depress function, leading to cardiac failure. Initial adaptation mechanisms to reduce cardiac damage during such stimulation remain largely unknown. Here we have shown that this initial adaptation requires regulator of G protein signaling 2 (RGS2). Mice lacking RGS2 had a normal basal cardiac phenotype, yet responded rapidly to pressure overload, with increased myocardial Gq signaling, marked cardiac hypertrophy and failure, and early mortality. Swimming exercise, which is not accompanied by Gq activation, induced a normal cardiac response, while Rgs2 deletion in Galphaq-overexpressing hearts exacerbated hypertrophy and dilation. In vascular smooth muscle, RGS2 is activated by cGMP-dependent protein kinase (PKG), suppressing Gq-stimulated vascular contraction. In normal mice, but not Rgs2-/- mice, PKG activation by the chronic inhibition of cGMP-selective phosphodiesterase 5 (PDE5) suppressed maladaptive cardiac hypertrophy, inhibiting Gq-coupled stimuli. Importantly, PKG was similarly activated by PDE5 inhibition in myocardium from both genotypes, but PKG plasma membrane translocation was more transient in Rgs2-/- myocytes than in controls and was unaffected by PDE5 inhibition. Thus, RGS2 is required for early myocardial compensation to pressure overload and mediates the initial antihypertrophic and cardioprotective effects of PDE5 inhibitors.
Collapse
Affiliation(s)
- Eiki Takimoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Bair AM, Thippegowda PB, Freichel M, Cheng N, Ye RD, Vogel SM, Yu Y, Flockerzi V, Malik AB, Tiruppathi C. Ca2+ entry via TRPC channels is necessary for thrombin-induced NF-kappaB activation in endothelial cells through AMP-activated protein kinase and protein kinase Cdelta. J Biol Chem 2009; 284:563-574. [PMID: 18990707 PMCID: PMC2610508 DOI: 10.1074/jbc.m803984200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/17/2008] [Indexed: 01/12/2023] Open
Abstract
The transient receptor potential canonical (TRPC) family channels are proposed to be essential for store-operated Ca2+ entry in endothelial cells. Ca2+ signaling is involved in NF-kappaB activation, but the role of store-operated Ca2+ entry is unclear. Here we show that thrombin-induced Ca2+ entry and the resultant AMP-activated protein kinase (AMPK) activation targets the Ca2+-independent protein kinase Cdelta (PKCdelta) to mediate NF-kappaB activation in endothelial cells. We observed that thrombin-induced p65/RelA, AMPK, and PKCdelta activation were markedly reduced by knockdown of the TRPC isoform TRPC1 expressed in human endothelial cells and in endothelial cells obtained from Trpc4 knock-out mice. Inhibition of Ca2+/calmodulin-dependent protein kinase kinase beta downstream of the Ca2+ influx or knockdown of the downstream Ca2+/calmodulin-dependent protein kinase kinase beta target kinase, AMPK, also prevented NF-kappaB activation. Further, we observed that AMPK interacted with PKCdelta and phosphorylated Thr505 in the activation loop of PKCdelta in thrombin-stimulated endothelial cells. Expression of a PKCdelta-T505A mutant suppressed the thrombin-induced but not the TNF-alpha-induced NF-kappaB activation. These findings demonstrate a novel mechanism for TRPC channels to mediate NF-kappaB activation in endothelial cells that involves the convergence of the TRPC-regulated signaling at AMPK and PKCdelta and that may be a target of interference of the inappropriate activation of NF-kappaB associated with thrombosis.
Collapse
Affiliation(s)
- Angela M Bair
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Prabhakar B Thippegowda
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Marc Freichel
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Ni Cheng
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Richard D Ye
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Stephen M Vogel
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Yanni Yu
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Veit Flockerzi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Asrar B Malik
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, Illinois 60612 and Institut fur Pharmakologie und Toxikologie, Universitat des Saarlandes, 66421 Homburg, Germany.
| |
Collapse
|
65
|
Liu G, Han J, Profirovic J, Strekalova E, Voyno-Yasenetskaya TA. Galpha13 regulates MEF2-dependent gene transcription in endothelial cells: role in angiogenesis. Angiogenesis 2008; 12:1-15. [PMID: 19093215 DOI: 10.1007/s10456-008-9123-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 11/13/2008] [Indexed: 11/28/2022]
Abstract
The alpha subunit of heterotrimeric G13 protein is required for the embryonic angiogenesis (Offermanns et al., Science 275:533-536, 1997). However, the molecular mechanism of Galpha13-dependent angiogenesis is not understood. Here, we show that myocyte-specific enhancer factor-2 (MEF2) mediates Galpha13-dependent angiogenesis. Our data showed that constitutively activated Galpha13Q226L stimulated MEF2-dependent gene transcription. In addition, downregulation of endogenous Galpha13 inhibited thrombin-stimulated MEF2-dependent gene transcription in endothelial cells. Both Ca(2+)/calmodulin-dependent kinase IV (CaMKIV) and histone deacetylase 5 (HDAC5) were involved in Galpha13-mediated MEF2-dependent gene transcription. Galpha13Q226L also increased Ca(2+)/calmodulin-independent CaMKIV activity, while dominant negative mutant of CaMKIV inhibited MEF2-dependent gene transcription induced by Galpha13Q226L. Furthermore, Galpha13Q226L was able to derepress HDAC5-mediated repression of gene transcription and induce the translocation of HDAC5 from nucleus to cytoplasm. Finally, downregulation of endogenous Galpha13 and MEF2 proteins in endothelial cells reduced cell proliferation and capillary tube formation. Decrease of endothelial cell proliferation that was caused by the Galpha13 downregulation was partially restored by the constitutively active MEF2-VP16. Our studies suggest that MEF2 proteins are an important component in Galpha13-mediated angiogenesis.
Collapse
Affiliation(s)
- Guoquan Liu
- Department of Pharmacology, University of Illinois, 835 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
66
|
Minhajuddin M, Bijli KM, Fazal F, Sassano A, Nakayama KI, Hay N, Platanias LC, Rahman A. Protein kinase C-delta and phosphatidylinositol 3-kinase/Akt activate mammalian target of rapamycin to modulate NF-kappaB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells. J Biol Chem 2008; 284:4052-61. [PMID: 19074768 DOI: 10.1074/jbc.m805032200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have shown that the mammalian target of rapamycin (mTOR) down-regulates thrombin-induced ICAM-1 expression in endothelial cells by suppressing the activation of NF-kappaB. However, the mechanisms by which mTOR is activated to modulate these responses remain to be addressed. Here, we show that thrombin engages protein kinase C (PKC)-delta and phosphattidylinositol 3-kinase (PI3K)/Akt pathways to activate mTOR and thereby dampens NF-kappaB activation and intercellular adhesion molecule 1 (ICAM-1) expression. Stimulation of human vascular endothelial cells with thrombin induced the phosphorylation of mTOR and its downstream target p70 S6 kinase in a PKC-delta- and PI3K/Akt-dependent manner. Consistent with this, thrombin-induced phosphorylation of p70 S6 kinase was defective in embryonic fibroblasts from mice with targeted disruption of PKC-delta (Pkc-delta(-)(/)(-)), p85alpha and p85beta subunits of the PI3K (p85alpha(-)(/)(-)beta(-)(/)(-)), or Akt1 and Akt2 (Akt1(-)(/)(-)2(-)(/)(-)). Furthermore, we observed that expression of the constitutively active form of PKC-delta or Akt was sufficient to induce NF-kappaB activation and ICAM-1 expression, and that co-expression of mTOR suppressed these responses. In reciprocal experiments, inhibition/depletion of mTOR augmented NF-kappaB activation and ICAM-1 expression induced by PKC-delta or Akt. In control experiments, increasing or impairing mTOR signaling by the above approaches produced similar effects on NF-kappaB activation and ICAM-1 expression induced by thrombin. Thus, these data reveal an important role of PKC-delta and PI3K/Akt pathways in activating mTOR as an endogenous modulator to ensure a tight regulation of NF-kappaB signaling of ICAM-1 expression in endothelial cells.
Collapse
Affiliation(s)
- Mohd Minhajuddin
- Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Chan B, Sukhatme VP. Receptor tyrosine kinase EphA2 mediates thrombin-induced upregulation of ICAM-1 in endothelial cells in vitro. Thromb Res 2008; 123:745-52. [PMID: 18768213 DOI: 10.1016/j.thromres.2008.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 03/08/2008] [Accepted: 07/17/2008] [Indexed: 02/07/2023]
Abstract
Thrombin potently induces endothelial inflammation. One of the responses is upregulation of adhesion molecules such as ICAM-1, resulting in enhanced leukocyte attachment to the endothelium. In this report, we examine the contribution of EphA2 in thrombin-induced expression of ICAM-1 in human umbilical vein endothelial cells (HUVECs). We showed that thrombin transiently induced tyrosine- phosphorylation of EphA2 in a Src-kinase dependent manner. This transactivation was mediated through PAR-1, because a PAR-1 specific agonistic peptide also transactivated EphA2. Expression knockdown of endogenous EphA2 by siRNAs blocked ICAM-1 upregulation and leukocyte/endothelium attachment induced by thrombin. Overexpression of exogenous mouse EphA2 rescued both ICAM-1 expression and leukocyte attachment induced by thrombin in endogenous EphA2-knockdown HUVECs. Mechanistically, we showed EphA2 knockdown suppressed thrombin-induced serine 536 phosphorylation of NFkappaB, an event critical of ICAM-1 transcriptional upregulation. Collectively, our results strongly suggest EphA2 is a necessary component for thrombin-induced ICAM-1 upregulation.
Collapse
Affiliation(s)
- Barden Chan
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RW 563, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
68
|
Sun B, Zou X, Chen Y, Zhang P, Shi G. Preconditioning of carbon monoxide releasing molecule-derived CO attenuates LPS-induced activation of HUVEC. Int J Biol Sci 2008; 4:270-8. [PMID: 18726003 PMCID: PMC2519837 DOI: 10.7150/ijbs.4.270] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/20/2008] [Indexed: 01/04/2023] Open
Abstract
Objective: To investigate the effects and potential mechanisms of preconditioning of tricarbonyldichlororuthenium (III) dimer (CORM-2)-liberated CO on LPS-induced activation of endothelial cells (HUVEC). Methods: HUVEC were pretreated with CORM-2 at the concentration of 50 or 100μM for 2 hrs, washed and stimulated with LPS (10μg/ml) for additional 4 hrs. Activation (oxidative stress) of HUVEC was assessed by measuring intracellular oxidation of DHR 123 or nitration of DAF-FM, specific H2O2 and NO fluorochromes, respectively. The expression of HO-1, iNOS (Western blot) and ICAM-1 (cell ELISA) proteins and activation of inflammation-relevant transcription factor, NF-κB (EMSA) were assessed. In addition, PMN adhesion to HUVEC was also assessed. Results: The obtained data indicate that pretreatment of HUVEC with CORM-2 results in: 1) decrease of LPS-induced production of ROS and NO; 2) up-regulation of HO-1 but decrease in iNOS at the protein levels; 3) inhibition of LPS-induced activation of NF-κB; and 4) downregulation of expression of ICAM-1, and this was accompanied by a decrease of PMN adhesion to LPS-stimulated HUVEC. Conclusions: Preconditioning of CO liberated by CORM-2 elicited its anti-inflammatory effects by interfering with the induction of intracellular oxidative stress. In addition, it also supports the notion that CO is a potent inhibitor of iNOS and NF-κB.
Collapse
Affiliation(s)
- Bingwei Sun
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, PR China.
| | | | | | | | | |
Collapse
|
69
|
Sun B, Sun Z, Jin Q, Chen X. CO-releasing molecules (CORM-2)-liberated CO attenuates leukocytes infiltration in the renal tissue of thermally injured mice. Int J Biol Sci 2008; 4:176-83. [PMID: 18566696 PMCID: PMC2430988 DOI: 10.7150/ijbs.4.176] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 06/16/2008] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To determine whether the CO-releasing molecule -liberated CO attenuates infiltration of leukocytes in the renal tissue of thermally injured mice. MATERIALS AND METHODS Twenty-eight mice were assigned to four groups. Mice in sham group (n=7) were underwent sham thermal injury, whereas mice in burn group (n=7) received 15% total body surface area (TBSA) full-thickness thermal injury. Mice in burn+CORM-2 group (n=7) underwent thermal injury followed by immediate administration of CORM-2 (8mg/kg, i.v.), whereas mice in burn+iCORM-2 group (n=7) underwent thermal injury followed by administration of iCORM-2 (an inactive compound used as negative control). Histological alterations and granulocytes infiltration in kidney were assessed alongised PMN accumulation, activation of NF-kBeta, expressions of ICAM-1 and HO-1 expression in renal tissues. RESULTS Treatment of thermally injured mice with CORM-2 significantly attenuated PMN accumulation and prevented activation of NF-kBeta in the kidney. This was accompanied by a decrease of the expression of ICAM-1 and an increase in HO-1 expression. In parallel, burn-induced granulocytes infiltration in renal tissue was markedly decreased by treatment with CORM-2. CONCLUSIONS CO delivered by CORM-2 attenuates leukocytes infiltration in the kidney of burned mice by interfering with NF-kBeta activation, protein expression of ICAM-1 and therefore suppressing endothelial cells pro-adhesive phenotype.
Collapse
Affiliation(s)
- Bingwei Sun
- Department of Burns, Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, PR China.
| | | | | | | |
Collapse
|
70
|
Schubl S, Tsai S, Ryer EJ, Wang C, Hu J, Kent KC, Liu B. Upregulation of protein kinase cdelta in vascular smooth muscle cells promotes inflammation in abdominal aortic aneurysm. J Surg Res 2008; 153:181-7. [PMID: 18952226 DOI: 10.1016/j.jss.2008.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/03/2008] [Accepted: 04/17/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of abdominal aortic aneurysms (AAAs) involves a complex interplay of extracellular matrix degradation, inflammation, and apoptosis. We have previously shown that protein kinase Cdelta (PKCdelta) plays a critical role in vascular smooth muscle cell (vSMC) apoptosis in the setting of oxidative stresses. Here, we show that PKCdelta is also involved in the signaling that draws inflammatory cells to aneurismal tissue. MATERIALS AND METHODS Immunostaining for monocyte chemotactic factor (MCP)-1 and PKCdelta was performed on paraffin-fixed arterial sections. Enzyme-linked immunosorbent assay to detect MCP-1 produced by vSMCs was performed on media from cultured rat A10 cells after cytokine induction with or without the PKCdelta-specific inhibitor rottlerin. Migration of isolated lymphocytes was evaluated in response to media from activated A10 cells. RESULTS Human AAAs show widespread and elevated expression of PKCdelta that is not seen in normal aortic tissues. Cytokine stimulation of cultured vSMCs induced vigorous production of the key chemotactant MCP-1, the expression of which was PKCdelta dependent. Stimulated vSMCs were capable of inducing the migration of leukocytes, and this effect was also dependent on PKCdelta activity. Staining of human AAA tissue for MCP-1 showed an expression pattern that was identical to that of PKCdelta and smooth muscle specific alpha-actin. CONCLUSIONS PKCdelta is widely expressed in human AAA vessel walls and mediates MCP-1 expression by vSMCs, which could contribute to the inflammatory process. These findings, coupled with earlier studies of PKCdelta, suggest that PKCdelta plays a central role in the pathogenesis of AAAs and may be a potential target for future therapies.
Collapse
Affiliation(s)
- Sebastian Schubl
- Department of Surgery, Division of Vascular Surgery, New York Presbyterian Hospital, and Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Bijli KM, Fazal F, Minhajuddin M, Rahman A. Activation of Syk by protein kinase C-delta regulates thrombin-induced intercellular adhesion molecule-1 expression in endothelial cells via tyrosine phosphorylation of RelA/p65. J Biol Chem 2008; 283:14674-84. [PMID: 18362147 DOI: 10.1074/jbc.m802094200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C-delta (PKC-delta) plays a pivotal role in mediating thrombin-induced NF-kappaB activation and ICAM-1 expression in endothelial cells. However, the downstream mechanisms mediating its function are unclear. In this study, we show that PKC-delta-mediated activation of protein-tyrosine kinase Syk plays an important role in thrombin signaling of NF-kappaB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells. Stimulation of human vascular endothelial cells with thrombin resulted in a time-dependent phosphorylation of Syk on tyrosine 525 and 526, an indication of Syk activation. Inhibition of PKC-delta by pharmacological and genetic approaches prevented Syk activation by thrombin. These results place Syk downstream of PKC-delta in transmitting thrombin-activated signaling in endothelial cells. Consistent with this, thrombin-induced NF-kappaB activity and ICAM-1 expression were prevented by the expression of a kinase-defective mutant or RNA interference knockdown of Syk. Similarly, inhibiting Syk also impaired NF-kappaB activity and ICAM-1 expression induced by a constitutively active mutant of PKC-delta. Analysis of the NF-kappaB pathway showed that Syk contributes to thrombin-induced NF-kappaB activation by controlling its transactivation potential and that this response is associated with tyrosine phosphorylation of RelA/p65. Thus, these data unveil a novel pathway in which Syk signals downstream of PKC-delta to mediate thrombin induced ICAM-1 expression in endothelial cells by increasing transcriptional capacity of NF-kappaB via a mechanism that relies on tyrosine phosphorylation of RelA/p65.
Collapse
Affiliation(s)
- Kaiser M Bijli
- Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
72
|
Sun BW, Jin Q, Sun Y, Sun ZW, Chen X, Chen ZY, Cepinskas G. Carbon liberated from CO-releasing molecules attenuates leukocyte infiltration in the small intestine of thermally injured mice. World J Gastroenterol 2008. [PMID: 18069757 DOI: 10.3748/wjg.13.6183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether Carbon (CO) liberated from CO-releasing molecules attenuates leukocyte infiltration in the small intestine of thermally injured mice. METHODS Thirty-six mice were assigned to four groups. Mice in the sham group (n = 9) were underwent to sham thermal injury; mice in the burn group (n = 9) received 15% total body surface area full-thickness thermal injury; mice in the burn + CORM-2 group (n = 9) were underwent to the same thermal injury with immediate administration of tricarbonyldichlororuthenium (II) dimer CORM-2 (8 mg/kg, i.v.); and mice in the burn+DMSO group (n = 9) were underwent to the same thermal injury with immediate administration of 160 muL bolus injection of 0.5% DMSO/saline. Histological alterations and granulocyte infiltration of the small intestine were assessed. Polymorphonuclear neutrophil (PMN) accumulation (myeloperoxidase assay) was assessed in mice mid-ileum. Activation of nuclear factor (NF)-kappa B, expression levels of intercellular adhesion molecule-1 (ICAM-1) and inducible heme oxygenase in mid-ileum were assessed. RESULTS Treatment of thermally injured mice with CORM-2 attenuated PMN accumulation and prevented activation of NF-kappa B in the small intestine. This was accompanied by a decrease in the expression of ICAM-1. In parallel, burn-induced granulocyte infiltration in mid-ileum was markedly decreased in the burn mice treated with CORM-2. CONCLUSION CORM-released CO attenuates leukocyte infiltration in the small intestine of thermally injured mice by interfering with NF-kappa B activation and protein expression of ICAM-1, and therefore suppressing the pro-adhesive phenotype of endothelial cells.
Collapse
Affiliation(s)
- Bing-Wei Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, 438 Jiefang Rd, Zhenjiang 212001, Jiangsu Province, China.
| | | | | | | | | | | | | |
Collapse
|
73
|
Tang CH, Chuang JY, Fong YC, Maa MC, Way TD, Hung CH. Bone-derived SDF-1 stimulates IL-6 release via CXCR4, ERK and NF-kappaB pathways and promotes osteoclastogenesis in human oral cancer cells. Carcinogenesis 2008; 29:1483-92. [PMID: 18310089 PMCID: PMC2516485 DOI: 10.1093/carcin/bgn045] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Oral squamous cell carcinoma (SCC) has a striking tendency to invade to bone. The chemokine stromal cell-derived factor-1 (SDF-1) is constitutively secreted by osteoblasts and plays a key role in homing of hematopoietic cells to the bone marrow. Interleukin (IL)-6 plays an important role in osteoclastogenesis. Herein, we found that SDF-1α increased the secretion of IL-6 in cultured human SCC cells, as shown by reverse transcriptase–polymerase chain reaction and enzyme-linked immunosorbent assay. SDF-1α also increased the surface expression of chemokine receptor 4 (CXCR4) in SCC cells. CXCR4-neutralizing antibody, CXCR4-specific inhibitor (AMD3100) or small interfering RNA against CXCR4 inhibited SDF-1α-induced increase IL-6 production. The transcriptional regulation of IL-6 by SDF-1α was mediated by phosphorylation of extracellular signal-regulated kinases (ERKs) and activation of the nuclear factor-kappa B (NF-κB) components p65 and p50. The binding of p65 and p50 to the NF-κB element on the IL-6 promoter was enhanced by SDF-1α. In addition, IL-6 antibody antagonized the SCC-conditioned medium-increased osteoclastogenesis. These results suggested that SDF-1α from osteoblasts could induce release of IL-6 in human SCC cells via activation of CXCR4, ERK and NF-κB pathway and thereby promote osteoclastogenesis.
Collapse
Affiliation(s)
- Chih-Hsin Tang
- Department of Pharmacology, China Medical University, Taichung 404, Taiwan.
| | | | | | | | | | | |
Collapse
|
74
|
Nakashima H, Frank GD, Shirai H, Hinoki A, Higuchi S, Ohtsu H, Eguchi K, Sanjay A, Reyland ME, Dempsey PJ, Inagami T, Eguchi S. Novel role of protein kinase C-delta Tyr 311 phosphorylation in vascular smooth muscle cell hypertrophy by angiotensin II. Hypertension 2008; 51:232-8. [PMID: 18180404 DOI: 10.1161/hypertensionaha.107.101253] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have shown previously that activation of protein kinase C-delta (PKC delta) is required for angiotensin II (Ang II)-induced migration of vascular smooth muscle cells (VSMCs). Here, we have hypothesized that PKC delta phosphorylation at Tyr(311) plays a critical role in VSMC hypertrophy induced by Ang II. Immunoblotting was used to monitor PKC delta phosphorylation at Tyr(311), and cell size and protein measurements were used to detect hypertrophy in VSMCs. PKC delta was rapidly (0.5 to 10.0 minutes) phosphorylated at Tyr(311) by Ang II. This phosphorylation was markedly blocked by an Src family kinase inhibitor and dominant-negative Src but not by an epidermal growth factor receptor kinase inhibitor. Ang II-induced Akt phosphorylation and hypertrophic responses were significantly enhanced in VSMCs expressing PKC delta wild-type compared with VSMCs expressing control vector, whereas the enhancements were markedly diminished in VSMCs expressing a PKC delta Y311F mutant. Also, these responses were significantly inhibited in VSMCs expressing kinase-inactive PKC delta K376A compared with VSMCs expressing control vector. From these data, we conclude that not only PKC delta kinase activation but also the Src-dependent Tyr(311) phosphorylation contributes to Akt activation and subsequent VSMC hypertrophy induced by Ang II, thus signifying a novel molecular mechanism for enhancement of cardiovascular diseases induced by Ang II.
Collapse
Affiliation(s)
- Hidekatsu Nakashima
- Cardiovascular Research Center, Department of Physiology, Temple University School of Medicine, 3420 N Broad St, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sun BW, Jin Q, Sun Y, Sun ZW, Chen X, Chen ZY, Cepinskas G. Carbon liberated from CO-releasing molecules attenuates leukocyte infiltration in the small intestine of thermally injured mice. World J Gastroenterol 2007; 13:6183-90. [PMID: 18069757 PMCID: PMC4171227 DOI: 10.3748/wjg.v13.i46.6183] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether Carbon (CO) liberated from CO-releasing molecules attenuates leukocyte infiltration in the small intestine of thermally injured mice.
METHODS: Thirty-six mice were assigned to four groups. Mice in the sham group (n = 9) were underwent to sham thermal injury; mice in the burn group (n = 9) received 15% total body surface area full-thickness thermal injury; mice in the burn + CORM-2 group (n = 9) were underwent to the same thermal injury with immediate administration of tricarbonyldichlororuthenium (II) dimer CORM-2 (8 mg/kg, i.v.); and mice in the burn+DMSO group (n = 9) were underwent to the same thermal injury with immediate administration of 160 μL bolus injection of 0.5% DMSO/saline. Histological alterations and granulocyte infiltration of the small intestine were assessed. Polymorphonuclear neutrophil (PMN) accumulation (myeloperoxidase assay) was assessed in mice mid-ileum. Activation of nuclear factor (NF)-κΒ, expression levels of intercellular adhesion molecule-1 (ICAM-1) and inducible heme oxygenase in mid-ileum were assessed.
RESULTS: Treatment of thermally injured mice with CORM-2 attenuated PMN accumulation and prevented activation of NF-κΒ in the small intestine. This was accompanied by a decrease in the expression of ICAM-1. In parallel, burn-induced granulocyte infiltration in mid-ileum was markedly decreased in the burn mice treated with CORM-2.
CONCLUSION: CORM-released CO attenuates leukocyte infiltration in the small intestine of thermally injured mice by interfering with NF-κΒ activation and protein expression of ICAM-1, and therefore suppressing the pro-adhesive phenotype of endothelial cells.
Collapse
|
76
|
Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 2007; 153 Suppl 1:S263-82. [PMID: 18059329 DOI: 10.1038/sj.bjp.0707507] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteinases like thrombin, trypsin and tissue kallikreins are now known to regulate cell signaling by cleaving and activating a novel family of G-protein-coupled proteinase-activated receptors (PARs 1-4) via exposure of a tethered receptor-triggering ligand. On their own, short synthetic PAR-selective PAR-activating peptides (PAR-APs) mimicking the tethered ligand sequences can activate PARs 1, 2 and 4 and cause physiological responses both in vitro and in vivo. Using the PAR-APs as sentinel probes in vivo, it has been found that PAR activation can affect the vascular, renal, respiratory, gastrointestinal, musculoskeletal and nervous systems (both central and peripheral nervous system) and can promote cancer metastasis and invasion. In general, responses triggered by PARs 1, 2 and 4 are in keeping with an innate immune inflammatory response, ranging from vasodilatation to intestinal inflammation, increased cytokine production and increased or decreased nociception. Further, PARs have been implicated in a number of disease states, including cancer and inflammation of the cardiovascular, respiratory, musculoskeletal, gastrointestinal and nervous systems. In addition to activating PARs, proteinases can cause hormone-like effects by other signalling mechanisms, like growth factor receptor activation, that may be as important as the activation of PARs. We, therefore, propose that the PARs themselves, their activating serine proteinases and their associated signalling pathways can be considered as attractive targets for therapeutic drug development. Thus, proteinases in general must now be considered as 'hormone-like' messengers that can signal either via PARs or other mechanisms.
Collapse
|
77
|
Tang CH, Chiu YC, Tan TW, Yang RS, Fu WM. Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-kappa B pathway. THE JOURNAL OF IMMUNOLOGY 2007; 179:5483-92. [PMID: 17911635 DOI: 10.4049/jimmunol.179.8.5483] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Articular adipose tissue is a ubiquitous component of human joints, and adiponectin is a protein hormone secreted predominantly by differentiated adipocytes and involved in energy homeostasis. We investigated the signaling pathway involved in IL-6 production caused by adiponectin in both rheumatoid arthritis synovial fibroblasts and osteoarthritis synovial fibroblasts. Rheumatoid arthritis synovial fibroblasts and osteoarthritis synovial fibroblasts expressed the AdipoR1 and AdipoR2 isoforms of the adiponectin receptor. Adiponectin caused concentration- and time-dependent increases in IL-6 production. Adiponectin-mediated IL-6 production was attenuated by AdipoR1 and 5'-AMP-activated protein kinase (AMPK)alpha1 small interference RNA. Pretreatment with AMPK inhibitor (araA and compound C), p38 inhibitor (SB203580), NF-kappaB inhibitor, IkappaB protease inhibitor, and NF-kappaB inhibitor peptide also inhibited the potentiating action of adiponectin. Adiponectin increased the kinase activity and phosphorylation of AMPK and p38. Stimulation of synovial fibroblasts with adiponectin activated IkappaB kinase alpha/beta (IKK alpha/beta), IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser (276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Adiponectin-mediated an increase of IKK alpha/beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element and was inhibited by compound C, SB203580 and AdipoR1 small interference RNA. Our results suggest that adiponectin increased IL-6 production in synovial fibroblasts via the AdipoR1 receptor/AMPK/p38/IKKalphabeta and NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Chih-Hsin Tang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan.
| | | | | | | | | |
Collapse
|
78
|
Trivedi CM, Patel RC, Patel CV. Differential regulation of HOXA9 expression by nuclear factor kappa B (NF-kappaB) and HOXA9. Gene 2007; 408:187-95. [PMID: 18068911 DOI: 10.1016/j.gene.2007.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/30/2007] [Accepted: 11/02/2007] [Indexed: 11/24/2022]
Abstract
HOXA9 is a homeobox transcription factor expressed in endothelial cells (EC) and its expression is rapidly downregulated during EC activation by inflammatory signals like tumor necrosis factor-alpha (TNF-alpha) and lipopolysaccharide (LPS). Recently, we have shown that HOXA9 overexpression prevents EC activation by inhibiting NF-kappaB activity, which suggests that HOXA9 downregulation is an essential event for EC activation. The present study is directed towards understanding the mechanism of HOXA9 regulation during EC activation. Here we show that nuclear factor-kappaB (NF-kappaB) activation is an essential step for HOXA9 downregulation. Deletion analyses of HOXA9 promoter in EC and NF-kappaB knockout cells have shown that NF-kappaB is a major transcription factor that is absolutely required for HOXA9 downregulation. Our 5' deletion analysis of HOXA9 promoter shows that NF-kappaB response element is localized within first 400 nucleotides, while minimal basal promoter is within 100 nucleotides upstream of its transcriptional start site. We demonstrate that HOXA9 regulates its own expression by positive feedback mechanism. To define mechanism by which HOXA9 autoregulates its expression, we show that HOXA9 DNA binding and transactivation domains are essential.
Collapse
Affiliation(s)
- Chinmay M Trivedi
- Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | | | | |
Collapse
|
79
|
Rudack C, Steinhoff M, Mooren F, Buddenkotte J, Becker K, von Eiff C, Sachse F. PAR-2 activation regulates IL-8 and GRO-alpha synthesis by NF-kappaB, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium. Clin Exp Allergy 2007; 37:1009-22. [PMID: 17581194 DOI: 10.1111/j.1365-2222.2007.02686.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The effects of protease-activated receptor-2 (PAR-2) stimulation on inflammation mechanisms of chronic rhinosinusitis (CRS) are still unknown. METHODS PAR-2 receptor expression was investigated by immunohistochemistry and Taqman mRNA analysis in the mucosa of different rhinosinusitis entities. In primary nasal epithelial cell cultures, the function of PAR-2 and its ability to produce CXC, CC chemokines, and IL-6 were measured by calcium mobilization and stimulation tests. Inhibition tests were performed using cortisone, serine protease inhibitors, cysteine protease inhibitors, Pertussis toxin (PTX) and nuclear transcription factor (NF-kappaB) inhibition (BAY 11-7085). Signal transduction pathways were analysed by electromobility shift assays (EMSA) and NF-kappaB binding studies. RESULTS The expression of PAR-2 was found to be increased in CRS specimens. The activation of PAR by trypsin or PAR-2-specific activating peptide (AP) caused an increase in cytosolic calcium, as well as the release of the CXC chemokines IL-8 and growth-related oncogene (GRO)-alpha, but not the release of CC chemokines or IL-6. AP-induced CXC chemokine was sensitive to PTX and activation of NF-kappaB was inhibited by BAY11-7085. Furthermore, a serine protease inhibitor significantly inhibited chemokine synthesis stimulated by trypsin and culture supernatants of staphylococci, whereas steroids and cysteine protease inhibitors had little effect. CONCLUSION PAR-2 plays a role in serine protease-mediated regulation - staphylococcal and non-staphylococcal origin - of IL-8 and GRO-alpha in nasal epithelial cells, but not in the regulation of CC chemokines. PAR-2 may therefore be involved in the pathophysiology of CRS and NP at different sites of activation, namely (i) proteases, (ii) the PAR-2 receptor itself or (iii) the application of novel agents that block NF-kappaB/IkappaB-alpha signalling.
Collapse
Affiliation(s)
- C Rudack
- Department of Otorhinolaryngology, Head and Neck Surgery, IZK Münster and Boltzmann Institute for Immunobiology of the Skin, Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
80
|
|
81
|
Uehara A, Iwashiro A, Sato T, Yokota S, Takada H. Antibodies to proteinase 3 prime human monocytic cells via protease-activated receptor-2 and NF-κB for Toll-like receptor- and NOD-dependent activation. Mol Immunol 2007; 44:3552-62. [DOI: 10.1016/j.molimm.2007.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
|
82
|
Trivedi CM, Patel RC, Patel CV. Homeobox gene HOXA9 inhibits nuclear factor-kappa B dependent activation of endothelium. Atherosclerosis 2007; 195:e50-60. [PMID: 17586512 DOI: 10.1016/j.atherosclerosis.2007.04.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/05/2007] [Accepted: 04/30/2007] [Indexed: 10/23/2022]
Abstract
Cytokine-induced expression of adhesion molecules such as ICAM-1, VCAM-1, and E-selectin, on activated endothelial cells (EC) plays an essential role in the development of inflammatory diseases like atherosclerosis. Transcription factor nuclear factor-kappa B (NF-kappaB) is mainly responsible for the induced expression of these adhesion molecules in response to pro-inflammatory cytokines. The mechanisms that maintain EC in a "basal" state and negatively regulate EC activation remain to be characterized. HOXA9 is a homeobox transcription factor expressed in EC and its expression is rapidly down-regulated in response to inflammatory signals. In the present study, we demonstrate that HOXA9 overexpression inhibits the induction of ICAM-1, VCAM-1, and E-selectin in response to pro-inflammatory cytokines. HOXA9 inhibits the adhesion molecule expression by inhibiting NF-kappaB dependent transcriptional activation of these promoters. HOXA9 inhibits EC activation downstream of NF-kappaB nuclear localization by interfering with NF-kappaB DNA binding, but not transactivation capacity. Trichostatin A (TSA) rescues HOXA9 mediated suppression of NF-kappaB activity, but HOXA9 interaction with p300 is not responsible for inhibition of EC activation. Thus, our results suggest involvement of HOXA9 in maintaining the "basal" state of EC and demonstrate that downregulation of HOXA9 is an essential event during EC activation in response to inflammatory signals.
Collapse
Affiliation(s)
- Chinmay M Trivedi
- Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC-29209, USA
| | | | | |
Collapse
|
83
|
White RJ, Meoli DF, Swarthout RF, Kallop DY, Galaria II, Harvey JL, Miller CM, Blaxall BC, Hall CM, Pierce RA, Cool CD, Taubman MB. Plexiform-like lesions and increased tissue factor expression in a rat model of severe pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 293:L583-90. [PMID: 17586694 DOI: 10.1152/ajplung.00321.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Severe pulmonary arterial hypertension (PAH) occurs in idiopathic form and in association with diverse diseases. The pathological hallmarks are distal smooth muscle hypertrophy, obliteration of small pulmonary arteriole lumens, and disorganized cellular proliferation in plexiform lesions. In situ thrombosis is also observed. A detailed understanding of the disease progression has been hampered by the absence of an animal model bearing all the pathological features of human disease. To create a model with these characteristics, we gave young (200-g) rats monocrotaline 1 wk following left pneumonectomy; controls with vehicle treatment or sham operation were also studied. In experimental rats, pulmonary arteries had distal smooth muscle hypertrophy and proliferative perivascular lesions. The lesions had a plexiform appearance, occurred early in disease development, and were composed of cells expressing endothelial antigens. Three-dimensional microangiography revealed severe vascular pruning and disorganized vascular networks. We found that expression of tissue factor (TF), the membrane glycoprotein that initiates coagulation, facilitates angiogenesis, and mediates arterial injury in the systemic circulation, was increased in the pulmonary arterioles and plexiform-like lesions of the rats. TF was also heavily expressed in the vessels and plexiform lesions of humans with pulmonary arterial hypertension. We conclude that plexiform-like lesions can be reproduced in rats, and this model will facilitate experiments to address controversies about the role of these lesions in PAH. Increased TF expression may contribute to the prothrombotic diathesis and vascular cell proliferation typical of human disease.
Collapse
Affiliation(s)
- R James White
- Division of Pulmonary and Critical Care Medicine, Univ. of Rochester, 601 Elmwood Ave., Box 692, Rochester, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
|
85
|
Yoshida K. PKCdelta signaling: mechanisms of DNA damage response and apoptosis. Cell Signal 2007; 19:892-901. [PMID: 17336499 DOI: 10.1016/j.cellsig.2007.01.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 01/02/2023]
Abstract
The cellular response to genotoxic stress that damages DNA includes cell cycle arrest, activation of DNA repair, and in the event of irreparable damage, induction of apoptosis. However, the signals that determine cell fate, that is, survival or apoptosis, are largely unknown. The delta isoform of protein kinase C (PKCdelta) has been implicated in many important cellular processes, including regulation of apoptotic cell death. The available information supports a model in which certain sensors of DNA lesions activate PKCdelta. This activation is triggered in part by tyrosine phosphorylation of PKCdelta by c-Abl tyrosine kinase. PKCdelta is further proteolytically activated by caspase-3. The cleaved catalytic fragment of PKCdelta translocates to the nucleus and induces apoptosis. Importantly, accumulating data have revealed the nuclear targets for PKCdelta in the induction of apoptosis. A pro-apoptotic function of activated PKCdelta is mediated by at least several downstream effectors known to be associated with the elicitation of apoptosis. Recent findings also demonstrated that PKCdelta is involved in cell cycle-specific activation and induction of apoptotic cell death. Moreover, previous studies have shown that PKCdelta regulates transcription by phosphorylating various transcription factors, including the p53 tumor suppressor that is critical for cell cycle arrest and apoptosis in response to DNA damage. These findings collectively support a pivotal role for PKCdelta in the induction of apoptosis with significant impact. This review is focused on the current views regarding the regulation of cell fate by PKCdelta signaling in response to DNA damage.
Collapse
Affiliation(s)
- Kiyotsugu Yoshida
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
86
|
Bijli KM, Minhajuddin M, Fazal F, O'Reilly MA, Platanias LC, Rahman A. c-Src interacts with and phosphorylates RelA/p65 to promote thrombin-induced ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol 2007; 292:L396-404. [PMID: 17012367 DOI: 10.1152/ajplung.00163.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The procoagulant thrombin promotes polymorphonuclear leukocyte (PMN) adhesion to endothelial cells by a mechanism involving expression of intercellular adhesion molecule-1 (ICAM-1) via an NF-kappaB-dependent pathway. We now provide evidence that activation of c-Src is crucial in signaling thrombin-induced ICAM-1 expression via tyrosine phosphorylation of RelA/p65. Stimulation of human umbilical vein endothelial cells with thrombin resulted in a time-dependent activation of c-Src, with maximal activation occurring at 30 min after thrombin challenge. Inhibition of c-Src by pharmacological and genetic approaches impaired thrombin-induced NF-kappaB-dependent reporter activity and ICAM-1 expression. Analysis of the NF-kappaB pathway revealed that the effect of c-Src inhibition occurred independently of IkappaBalpha degradation and NF-kappaB DNA binding function and was not associated with exchange of NF-kappaB dimers. Phosphorylation of RelA/p65 at Ser(536), an event mediating the transcriptional activity of DNA-bound RelA/p65, was also insensitive to c-Src inhibition. Interestingly, thrombin induced association of c-Src with RelA/p65, and inhibition of c-Src prevented this response, indicating that this interaction is contingent on activation of c-Src. We also observed that thrombin induced tyrosine phosphorylation of RelA/p65, and this phosphorylation was lost upon inhibition of c-Src, consistent with the requirement of activated c-Src for interaction with RelA/p65. These data implicate an important role of c-Src in phosphorylating RelA/p65 to promote the transcriptional activity of NF-kappaB and thereby ICAM-1 expression in endothelial cells.
Collapse
Affiliation(s)
- Kaiser M Bijli
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
87
|
Heijink IH, Marcel Kies P, van Oosterhout AJM, Postma DS, Kauffman HF, Vellenga E. Der p, IL-4, and TGF-beta cooperatively induce EGFR-dependent TARC expression in airway epithelium. Am J Respir Cell Mol Biol 2006; 36:351-9. [PMID: 17023689 DOI: 10.1165/rcmb.2006-0160oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Thymus and Activation-Regulated Chemokine (TARC) may be critical in Th2 cell recruitment in allergic inflammation; however, the mechanisms of allergen-induced TARC release are unclear. Since airway epithelium is the first line of defense to inhaled allergens, we questioned whether house dust mite allergen (Der p) can induce TARC expression in bronchial epithelial cells, how this is regulated at the molecular level, and if micro-environmental cytokines augment this effect. We examined the effects of Der p and the cytokines IL-4 and TGF-beta on TARC expression in 16HBE cells and primary bronchial asthma epithelium. Real-time PCR and immunofluorescence demonstrated that Der p induces TARC expression in bronchial epithelium. Supernatants from Der p-stimulated 16HBE cells were able to induce TARC-dependent T cell trafficking. IL-4 and TGF-beta cooperatively enhanced Der p-induced TARC expression in 16HBE cells. Specific inhibitors, immunodetection, and gel-shifts revealed that these effects are mediated by phosphorylation of the epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK) signaling and subsequent nuclear factor (NF)-kappaB activation. A Disintegrin And Metalloproteinase (ADAM), a family of proteins involved in shedding of various growth factors, was shown to be responsible for EGFR activation. The increase in TARC production by direct interaction of Der p with the bronchial epithelium may be an important initial step in the generation of allergic inflammation, which is further potentiated by micro-environmental cytokines. Interference with ADAM or EGFR activity may be a novel promising target to prevent TARC release and subsequent allergic inflammation.
Collapse
Affiliation(s)
- Irene H Heijink
- Department of Allergology, Pulmonology, and Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, NL-9713 GZ, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
88
|
Lin CH, Cheng HW, Hsu MJ, Chen MC, Lin CC, Chen BC. c-Src Mediates Thrombin-Induced NF-κB Activation and IL-8/CXCL8 Expression in Lung Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3427-38. [PMID: 16920985 DOI: 10.4049/jimmunol.177.5.3427] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we examined the regulation of NF-kappaB activation and IL-8/CXCL8 expression by thrombin in human lung epithelial cells (EC). Thrombin caused a concentration-dependent increase in IL-8/CXCL8 release in a human lung EC line (A549) and primary normal human bronchial EC. In A549 cells, thrombin, SFLLRN-NH2 (a protease-activated receptor 1 (PAR1) agonist peptide), and GYPGQV-NH2 (a PAR4 agonist peptide), but not TFRGAP-NH2 (a PAR3 agonist peptide), induced an increase in IL-8/CXCL8-luciferase (Luc) activity. The thrombin-induced IL-8/CXCL8 release was attenuated by D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (a thrombin inhibitor), U73122 (a phosphoinositide-phospholipase C inhibitor), Ro-32-0432 (a protein kinsase C alpha (PKC alpha) inhibitor), an NF-kappaB inhibitor peptide, and Bay 117082 (an IkappaB phosphorylation inhibitor). Thrombin-induced increase in IL-8/CXCL8-Luc activity was inhibited by the dominant-negative mutant of c-Src and the cells transfected with the kappaB site mutation of the IL-8/CXCL8 construct. Thrombin caused time-dependent increases in phosphorylation of c-Src at tyrosine 416 and c-Src activity. Thrombin-elicited c-Src activity was inhibited by Ro-32-0432. Stimulation of cells with thrombin activated IkappaB kinase alphabeta (IKK alphabeta), IkappaB alpha phosphorylation, IkappaB alpha degradation, p50 and p65 translocation from the cytosol to the nucleus, NF-kappaB-specific DNA-protein complex formation, and kappaB-Luc activity. Pretreatment of A549 cells with Ro-32-4032 and the dominant-negative mutant of c-Src DN inhibited thrombin-induced IKK alphabeta activity, kappaB-Luc activity, and NF-kappaB-specific DNA-protein complex formation. Further studies revealed that thrombin induced PKC alpha, c-Src, and IKK alphabeta complex formation. These results show for the first time that thrombin, acting through PAR1 and PAR4, activates the phosphoinositide-phospholipase C/PKC alpha/c-Src/IKK alphabeta signaling pathway to induce NF-kappaB activation, which in turn induces IL-8/CXCL8 expression and release in human lung EC.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan
| | | | | | | | | | | |
Collapse
|
89
|
Toro-Castillo C, Thapliyal A, Gonzalez-Ochoa H, Adams BA, Meza U. Muscarinic modulation of Cav2.3 (R-type) calcium channels is antagonized by RGS3 and RGS3T. Am J Physiol Cell Physiol 2006; 292:C573-80. [PMID: 16855219 DOI: 10.1152/ajpcell.00219.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) influx through voltage-gated R-type (Ca(V)2.3) Ca(2+) channels is important for hormone and neurotransmitter secretion and other cellular events. Previous studies have shown that Ca(V)2.3 is both inhibited and stimulated through signaling mechanisms coupled to muscarinic ACh receptors. We previously demonstrated that muscarinic stimulation of Ca(V)2.3 is blocked by regulator of G protein signaling (RGS) 2. Here we investigated whether muscarinic inhibition of Ca(V)2.3 is antagonized by RGS3. RGS3 is particularly interesting because it contains a lengthy ( approximately 380 residue) amino-terminal domain of uncertain physiological function. Ca(V)2.3, M(2) muscarinic ACh receptors (M(2)R), and various deletion mutants of RGS3, including its native isoform RGS3T, were expressed in HEK293 cells, and agonist-dependent inhibition of Ca(V)2.3 was quantified using whole cell patch-clamp recordings. Full-length RGS3, RGS3T, and the core domain of RGS3 were equally effective in antagonizing inhibition of Ca(V)2.3 through M(2)R. These results identify RGS3 and RGS3T as potential physiological regulators of R-type Ca(2+) channels. Furthermore, they suggest that the signaling activity of RGS3 is unaffected by its extended amino-terminal domain. Confocal microscopy was used to examine the intracellular locations of four RGS3-enhanced green fluorescent protein fusion proteins. The RGS3 core domain was uniformly distributed throughout both cytoplasm and nucleus. By contrast, full-length RGS3, RGS3T, and the amino-terminal domain of RGS3 were restricted to the cytoplasm. These observations suggest that the amino terminus of RGS3 may serve to confine it to the cytoplasmic compartment where it can interact with cell surface receptors, heterotrimeric G proteins, and other signaling proteins.
Collapse
Affiliation(s)
- Carmen Toro-Castillo
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, San Luis Potosí, SLP, 78210 México
| | | | | | | | | |
Collapse
|
90
|
Paria BC, Bair AM, Xue J, Yu Y, Malik AB, Tiruppathi C. Ca2+ influx induced by protease-activated receptor-1 activates a feed-forward mechanism of TRPC1 expression via nuclear factor-kappaB activation in endothelial cells. J Biol Chem 2006; 281:20715-20727. [PMID: 16709572 DOI: 10.1074/jbc.m600722200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin activation of protease-activated receptor-1 induces Ca(2+) influx through store-operated cation channel TRPC1 in endothelial cells. We examined the role of Ca(2+) influx induced by the depletion of Ca(2+) stores in signaling TRPC1 expression in endothelial cells. Both thrombin and a protease-activated receptor-1-specific agonist peptide induced TRPC1 expression in human umbilical vein endothelial cells, which was coupled to an augmented store-operated Ca(2+) influx and increase in endothelial permeability. To delineate the mechanisms of thrombin-induced TRPC1 expression, we transfected in endothelial cells TRPC1-promoter-luciferase (TRPC1-Pro-Luc) construct containing multiple nuclear factor-kappaB (NF-kappaB) binding sites. Co-expression of dominant negative IkappaBalpha mutant prevented the thrombin-induced increase in TRPC1 expression, indicating the key role of NF-kappaB activation in mediating the response. Using TRPC1 promoter-deletion mutant constructs, we showed that NF-kappaB binding sites located between -1623 and -871 in the TRPC1 5'-regulatory region were required for thrombin-induced TRPC1 expression. Electrophoretic mobility shift assay utilizing TRPC1 promoter-specific oligonucleotides identified that the DNA binding activities of NF-kappaB to NF-kappaB consensus sites were located in this domain. Supershift assays using NF-kappaB protein-specific antibodies demonstrated the binding of p65 homodimer to the TRPC1 promoter. Inhibition of store Ca(2+) depletion, buffering of intracellular Ca(2+), or down-regulation of protein kinase Calpha downstream of Ca(2+) influx all blocked thrombin-induced NF-kappaB activation and the resultant TRPC1 expression in endothelial cells. Thus, Ca(2+) influx via TRPC1 is a critical feed-forward pathway responsible for TRPC1 expression. The NF-kappaB-regulated TRPC1 expression may be an essential mechanism of vascular inflammation and, hence, a novel therapeutic target.
Collapse
Affiliation(s)
- Biman C Paria
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Angela M Bair
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Jiaping Xue
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Yanni Yu
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Asrar B Malik
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612.
| |
Collapse
|
91
|
Minami T, Miura M, Aird WC, Kodama T. Thrombin-induced autoinhibitory factor, Down syndrome critical region-1, attenuates NFAT-dependent vascular cell adhesion molecule-1 expression and inflammation in the endothelium. J Biol Chem 2006; 281:20503-20. [PMID: 16627481 DOI: 10.1074/jbc.m513112200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Activation and dysfunction of the endothelium underlie many vascular disorders including atherosclerosis, tumor growth, and inflammation. We recently reported that thrombin and vascular endothelial growth factor, but not tumor necrosis factor-alpha, results in dramatic up-regulation of Down syndrome critical region (DSCR)-1 gene in endothelial cells, a negative feedback regulator of calcineurin-NFAT signaling. Constitutive expression of DSCR-1 in activated endothelial cells markedly impaired NFAT nuclear localization, proliferation, tube formation, and tumor growth. The goal of the present study was to elucidate the relative roles of NFAT/DSCR-1 and NF-kappaB/I-kappaB in mediating thrombin-responsive gene expression in endothelial cells. DNA microarrays of thrombin-treated human umbilical vein endothelial cells overexpressing DSCR-1 or constitutive active IkappaBalpha revealed genes that were dependent on NFAT and/or NF-kappaB activity. Vascular cell adhesion molecule-1 was inhibited both by DSCR-1 and I-kappaB at the level of mRNA, protein, promoter activity, and function (monocyte adhesion). Using a combination of transient transfections, electrophoretic mobility shift assays, and chromatin immunoprecipitation, thrombin was shown to induce time-dependent coordinate binding of RelA and NFATc to a tandem NF-kappaB element in the upstream promoter region of vascular cell adhesion molecule-1. Together, these findings suggest that thrombin-mediated activation of endothelial cells involves an interplay between NFAT and NF-kappaB signaling pathways and their negative feedback inhibitors, DSCR-1 and I-kappaB, respectively. As natural brakes in the inflammatory process, DSCR-1 and I-kappaB may lend themselves to therapeutic manipulation in vasculopathic disease states.
Collapse
Affiliation(s)
- Takashi Minami
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan.
| | | | | | | |
Collapse
|
92
|
Inhibitory effects of polymyxin B on NF-κB activation and expression of procollagen I, III in pre-eclamptic umbilical artery smooth muscle cells. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200603010-00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
93
|
Abstract
The microvascular endothelial cell monolayer localized at the critical interface between the blood and vessel wall has the vital functions of regulating tissue fluid balance and supplying the essential nutrients needed for the survival of the organism. The endothelial cell is an exquisite “sensor” that responds to diverse signals generated in the blood, subendothelium, and interacting cells. The endothelial cell is able to dynamically regulate its paracellular and transcellular pathways for transport of plasma proteins, solutes, and liquid. The semipermeable characteristic of the endothelium (which distinguishes it from the epithelium) is crucial for establishing the transendothelial protein gradient (the colloid osmotic gradient) required for tissue fluid homeostasis. Interendothelial junctions comprise a complex array of proteins in series with the extracellular matrix constituents and serve to limit the transport of albumin and other plasma proteins by the paracellular pathway. This pathway is highly regulated by the activation of specific extrinsic and intrinsic signaling pathways. Recent evidence has also highlighted the importance of the heretofore enigmatic transcellular pathway in mediating albumin transport via transcytosis. Caveolae, the vesicular carriers filled with receptor-bound and unbound free solutes, have been shown to shuttle between the vascular and extravascular spaces depositing their contents outside the cell. This review summarizes and analyzes the recent data from genetic, physiological, cellular, and morphological studies that have addressed the signaling mechanisms involved in the regulation of both the paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Dolly Mehta
- Center of Lung and Vascular Biology, Dept. of Pharmacology (M/C 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
94
|
Tantivejkul K, Loberg RD, Mawocha SC, Day LL, John LS, Pienta BA, Rubin MA, Pienta KJ. PAR1-mediated NFkappaB activation promotes survival of prostate cancer cells through a Bcl-xL-dependent mechanism. J Cell Biochem 2005; 96:641-52. [PMID: 16052512 DOI: 10.1002/jcb.20533] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have previously reported that protease-activated receptor 1 (PAR1 or thrombin receptor) is over-expressed in metastatic prostate cancer cell lines compared to prostate epithelial cells. In this study, we examined 1,074 prostate biopsies by tissue microarray analysis and demonstrated that PAR1 expression is significantly increased in prostate cancer compared to normal prostate epithelial cells and benign prostatic hyperplasia. We hypothesized that PAR1 activation contributed to prostate cancer cell progression. We demonstrated that stimulation of PAR1 by thrombin or thrombin receptor activating peptide (TRAP6), in androgen-independent DU145 and PC-3 cells resulted in increased DNA binding activity of the NFkappaB p65 subunit. IL-6 and IL-8 levels were also elevated in conditioned media by at least two-fold within 4-6 h of PAR1 activation. This induction of cytokine production was abrogated by pretreatment of cells with the NFkappaB inhibitor caffeic acid phorbol ester. The p38 and ERK1/2 MAPK signaling cascades were also activated by PAR1 stimulation, whereas the SAPK/JNK pathway was unaffected. Inhibition of p38 and ERK1/2 by SB-203589 and PD-098059, respectively, did not abrogate NFkappaB activity, suggesting an independent induction of NFkappaB by PAR1 stimulation. Furthermore, TUNEL assay showed that activation of PAR1 attenuated docetaxel induced apoptosis through the upregulation of the Bcl-2 family protein Bcl-xL. Akt activation was not observed, suggesting that drug resistance induced by PAR1 was independent of PI3K signaling pathway. Because thrombin and PAR1 are over-expressed in prostate cancer patients, targeting the inhibition of their interaction may attenuate NFkappaB signaling transduction resulting in decreased drug resistance and subsequent survival of prostate cancer cells.
Collapse
Affiliation(s)
- Kwanchanit Tantivejkul
- Department of Urology, The Michigan Urology Center, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Spiegelberg BD, Hamm HE. Gβγ Binds Histone Deacetylase 5 (HDAC5) and Inhibits Its Transcriptional Co-repression Activity. J Biol Chem 2005; 280:41769-76. [PMID: 16221676 DOI: 10.1074/jbc.m504066200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a yeast two-hybrid screen designed to identify novel effectors of the G betagamma subunit of heterotrimeric G proteins, we found that G betagamma binds to histone deacetylase 5 (HDAC5), an enzyme involved in a pathway not previously recognized to be directly impacted by G proteins. Formation of the G beta1gamma2-HDAC5 complex in mammalian cells can be blocked by overexpression of G alpha(o), and this inhibition is relieved by activation of alpha2A-adrenergic receptor, suggesting that the interaction occurs in a signal-dependent manner. The C-terminal domain of HDAC5 binds directly to G betagamma through multiple motifs, and overexpression of this domain mimics the C terminus of G protein-coupled receptor kinase 2, a known G betagamma scavenger, in its ability to inhibit the G betagamma/HDAC5 interaction. The C terminus of HDAC4 shares significant similarity with that of HDAC5, and accordingly, HDAC4 is also able to form complexes with G beta1gamma2 in cultured cells, suggesting that the C-terminal domain of class II HDACs is a general G betagamma binding motif. Activation of a G(i/o)-coupled receptor results in a time-dependent activation of MEF2C, an HDAC5-regulated transcription factor, whereas inhibition of the interaction with a G betagamma scavenger inhibits MEF2C activity, suggesting a reduced potency of HDAC5-mediated inhibition. Taken together, these data imply that HDAC5 and possibly other class II HDACs can be added to the growing list of G betagamma effectors.
Collapse
Affiliation(s)
- Bryan D Spiegelberg
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
96
|
Uehara A, Muramoto K, Imamura T, Nakayama K, Potempa J, Travis J, Sugawara S, Takada H. Arginine-specific gingipains from Porphyromonas gingivalis stimulate production of hepatocyte growth factor (scatter factor) through protease-activated receptors in human gingival fibroblasts in culture. THE JOURNAL OF IMMUNOLOGY 2005; 175:6076-84. [PMID: 16237103 DOI: 10.4049/jimmunol.175.9.6076] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cystein proteinases (gingipains) from Porphyromonas gingivalis cleave a broad range of in-host proteins and are considered to be key virulence factors in the onset and development of adult periodontitis and host defense evasion. In periodontitis, an inflammatory disease triggered by bacterial infection, the production of hepatocyte growth factor (HGF) is induced not only by various factors derived from the host, such as inflammatory cytokines, but also by bacterial components. In this study we examined the possible enhanced production of HGF produced by human gingival fibroblasts upon stimulation with gingipains. Arginine-specific gingipain (Rgp) caused a marked production of HGF into the supernatant, the induction of HGF expression on the cell surface, and the up-regulation of HGF mRNA expression in a dose-dependent and an enzymatic activity-dependent manner. Because it has been reported that Rgp activated protease-activated receptors (PARs), we examined whether the induction of HGF triggered by Rgps on human gingival fibroblasts occurred through PARs. An RNA interference assay targeted to PAR-1 and PAR-2 mRNA revealed that gingipains-induced secretion of HGF was significantly inhibited by RNA interference targeted to PAR-1 and PAR-2. In addition, the Rgps-mediated HGF induction was completely inhibited by the inhibition of phospholipase C and was clearly inhibited by RNA interference targeted to p65, which is an NF-kappaB component. These results suggest that Rgps activated human gingival fibroblasts to secrete HGF in the inflamed sites and the mechanism(s) involved may actively participate in both inflammatory and reparative processes in periodontal diseases.
Collapse
Affiliation(s)
- Akiko Uehara
- Department of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Huang WC, Chen CC. Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol Cell Biol 2005; 25:6592-602. [PMID: 16024795 PMCID: PMC1190347 DOI: 10.1128/mcb.25.15.6592-6602.2005] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PI3K/Akt pathway plays a critical role in the regulation of gene expression induced by numerous stimuli. p300, a transcriptional coactivator, acts in concert with transcription factors to facilitate gene expression. Here, we show that Akt is activated and translocated to the nucleus in response to tumor necrosis factor alpha. Nuclear Akt associates with p300 and phosphorylates its Ser-1834 both in vivo and in vitro. The phosphorylation induces recruitment of p300 to the ICAM-1 promoter, leading to the acetylation of histones in chromatin and association with the basal transcriptional machinery RNA polymerase II. These two events facilitate ICAM-1 gene expression and are abolished by the p300 S1834A mutant, inhibitors of PI3K/Akt, or small interfering RNA of Akt. Histone acetylation is attributed to the Akt-enhanced intrinsic histone acetyltransferase (HAT) activity of p300 and its association with another HAT, p/CAF. Our study provides a new insight into the molecular mechanism by which Akt promotes the transcriptional potential of p300.
Collapse
Affiliation(s)
- Wei-Chien Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road, 1st Section, Taipei 10018, Taiwan
| | | |
Collapse
|
98
|
Chu AJ. Tissue factor mediates inflammation. Arch Biochem Biophys 2005; 440:123-32. [PMID: 16036212 DOI: 10.1016/j.abb.2005.06.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 06/10/2005] [Indexed: 02/06/2023]
Abstract
The role of tissue factor (TF) in inflammation is mediated by blood coagulation. TF initiates the extrinsic blood coagulation that proceeds as an extracellular signaling cascade by a series of active serine proteases: FVIIa, FXa, and thrombin (FIIa) for fibrin clot production in the presence of phospholipids and Ca2+. TF upregulation resulting from its enhanced exposure to clotting factor FVII/FVIIa often manifests not only hypercoagulable but also inflammatory state. Coagulant mediators (FVIIa, FXa, and FIIa) are proinflammatory, which are largely transmitted by protease-activated receptors (PAR) to elicit inflammation including the expression of tissue necrosis factor, interleukins, adhesion molecules (MCP-1, ICAM-1, VCAM-1, selectins, etc.), and growth factors (VEGF, PDGF, bFGF, etc.). In addition, fibrin, and its fragments are also able to promote inflammation. In the event of TF hypercoagulability accompanied by the elevations in clotting signals including fibrin overproduction, the inflammatory consequence could be enormous. Antagonism to coagulation-dependent inflammation includes (1) TF downregulation, (2) anti-coagulation, and (3) PAR blockade. TF downregulation and anti-coagulation prevent and limit the proceeding of coagulation cascade in the generation of proinflammatory coagulant signals, while PAR antagonists block the transmission of such signals. These approaches are of significance in interrupting the coagulation-inflammation cycle in contribution to not only anti-inflammation but also anti-thrombosis for cardioprotection.
Collapse
Affiliation(s)
- Arthur J Chu
- MRC, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
99
|
Huang Q, Shao L, He M, Chen H, Liu D, Luo Y, Dai Y. Inhibitory effects of sasanquasaponin on over-expression of ICAM-1 and on enhancement of capillary permeability induced by burns in rats. Burns 2005; 31:637-42. [PMID: 15993308 DOI: 10.1016/j.burns.2005.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to investigate the effects of sasanquasaponin (SQS) on ICAM-1 expression and capillary permeability induced by burns in rats. Male adult Sprague-Dawley (SD) rats were subjected to burns in the presence or absence of SQS, and then intravenously injected with Evans blue (60.0 mg/kg body weight). The levels of soluble ICAM-1 (sICAM-1) in sera were assayed using ELISA and the expression levels of transmembrane ICAM-1 (mICAM-1) in aorta were determined by Western blots and ICAM-1 mRNA levels were measured using semi-quantification RT-PCR. The capillary permeability was determined spectrophotometrically. The results showed that SQS markedly lowered the levels of sICAM-1 in sera, and considerably inhibited the over-expression as well as transcription of mICAM-1 in rat aorta. In addition, SQS dramatically inhibited the enhancement of dermal capillary permeability induced by burns in a dose-dependent manner. These results suggest that SQS, developed from Chinese traditional herbs, might be effective in decreasing inflammation induced by burns.
Collapse
Affiliation(s)
- Qiren Huang
- Department of Pharmacology, Jiangxi Medical College, Ba-Yi Road 603, Nanchang 330006, PR China.
| | | | | | | | | | | | | |
Collapse
|
100
|
Minhajuddin M, Fazal F, Bijli KM, Amin MR, Rahman A. Inhibition of mammalian target of rapamycin potentiates thrombin-induced intercellular adhesion molecule-1 expression by accelerating and stabilizing NF-kappa B activation in endothelial cells. THE JOURNAL OF IMMUNOLOGY 2005; 174:5823-9. [PMID: 15843586 DOI: 10.4049/jimmunol.174.9.5823] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We addressed the regulatory function of mammalian target of rapamycin (mTOR) in the mechanism of thrombin-induced ICAM-1 gene expression in endothelial cells. Pretreatment of HUVECs with rapamycin, an inhibitor of mTOR, augmented thrombin-induced ICAM-1 expression. Inhibition of mTOR by this approach promoted whereas over-expression of mTOR inhibited thrombin-induced transcriptional activity of NF-kappaB, an essential regulator of ICAM-1 transcription. Analysis of the NF-kappaB signaling pathway revealed that inhibition of mTOR potentiated IkappaB kinase activation resulting in a rapid and persistent phosphorylation of IkappaBalpha on Ser32 and Ser36, a requirement for IkappaBalpha degradation. Consistent with these data, we observed a more efficient and stable nuclear localization of RelA/p65 and, subsequently, the DNA binding activity of NF-kappaB by thrombin following mTOR inhibition. These data define a novel role of mTOR in down-regulating thrombin-induced ICAM-1 expression in endothelial cells by controlling a delayed and transient activation of NF-kappaB.
Collapse
Affiliation(s)
- Mohd Minhajuddin
- Department of Pediatrics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|