51
|
Ohnsorg PM, Mary JL, Rohrer L, Pech M, Fingerle J, von Eckardstein A. Trimerized apolipoprotein A-I (TripA) forms lipoproteins, activates lecithin:cholesterol acyltransferase, elicits lipid efflux, and is transported through aortic endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1115-23. [DOI: 10.1016/j.bbalip.2011.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/11/2011] [Accepted: 09/02/2011] [Indexed: 02/03/2023]
|
52
|
Le Lay S, Rodriguez M, Jessup W, Rentero C, Li Q, Cartland S, Grewal T, Gaus K. Caveolin-1-mediated apolipoprotein A-I membrane binding sites are not required for cholesterol efflux. PLoS One 2011; 6:e23353. [PMID: 21858084 PMCID: PMC3155548 DOI: 10.1371/journal.pone.0023353] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022] Open
Abstract
Caveolin-1 (Cav1), a structural protein required for the formation of invaginated membrane domains known as caveolae, has been implicated in cholesterol trafficking and homeostasis. Here we investigated the contribution of Cav1 to apolipoprotein A-I (apoA-I) cell surface binding and intracellular processing using mouse embryonic fibroblasts (MEFs) derived from wild type (WT) or Cav1-deficient (Cav1(-/-)) animals. We found that cells expressing Cav1 have 2.6-fold more apoA-I binding sites than Cav1(-/-) cells although these additional binding sites are not associated with detergent-free lipid rafts. Further, Cav1-mediated binding targets apoA-I for internalization and degradation and these processes are not correlated to cholesterol efflux. Despite lower apoA-I binding, cholesterol efflux from Cav1(-/-) MEFs is 1.7-fold higher than from WT MEFs. Stimulation of ABCA1 expression with an LXR agonist enhances cholesterol efflux from both WT and Cav1(-/-) cells without increasing apoA-I surface binding or affecting apoA-I processing. Our results indicate that there are at least two independent lipid binding sites for apoA-I; Cav1-mediated apoA-I surface binding and uptake is not linked to cholesterol efflux, indicating that membrane domains other than caveolae regulate ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Soazig Le Lay
- Centre de Recherche des Cordeliers, INSERM, U872, Paris, France
| | - Macarena Rodriguez
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Wendy Jessup
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Carles Rentero
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Qiong Li
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Siân Cartland
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, Australia
| | - Katharina Gaus
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
53
|
Woollett LA. Review: Transport of maternal cholesterol to the fetal circulation. Placenta 2011; 32 Suppl 2:S218-21. [PMID: 21300403 DOI: 10.1016/j.placenta.2011.01.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 11/19/2022]
Abstract
Data obtained from recent studies in humans, rodents, and cell culture demonstrate that circulating maternal cholesterol can be transported to the fetus. The two major cell types responsible for the transport are trophoblasts and endothelial cells of the fetoplacental vasculature. Maternal lipoprotein-cholesterol is initially taken up by trophoblasts via receptor-mediated and receptor-independent processes, is transported by any number of the sterol transport proteins expressed by cells, and is effluxed or secreted out of the basal side via protein-mediated processes or by aqueous diffusion. This cholesterol is then taken up by the endothelium and effluxed to acceptors within the fetal circulation. The ability to manipulate the mass of maternal cholesterol that is taken up by the placenta and crosses to the fetus could positively impact development of fetuses affected with the Smith-Lemli-Opitz Syndrome (SLOS) that have reduced ability to synthesize cholesterol and possibly impact growth of fetuses unaffected by SLOS but with low birthweights.
Collapse
Affiliation(s)
- L A Woollett
- University of Cincinnati, Metabolic Diseases Institute, Department of Pathology, Cincinnati, OH 45236-507, USA.
| |
Collapse
|
54
|
Ohnsorg PM, Rohrer L, Perisa D, Kateifides A, Chroni A, Kardassis D, Zannis VI, von Eckardstein A. Carboxyl terminus of apolipoprotein A-I (ApoA-I) is necessary for the transport of lipid-free ApoA-I but not prelipidated ApoA-I particles through aortic endothelial cells. J Biol Chem 2011; 286:7744-7754. [PMID: 21209084 DOI: 10.1074/jbc.m110.193524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) must leave the circulation and pass the endothelium to exert their atheroprotective actions in the arterial wall. We previously demonstrated that the transendothelial transport of apoA-I involves ATP-binding cassette transporter (ABC) A1 and re-secretion of lipidated particles. Transendothelial transport of HDL is modulated by ABCG1 and the scavenger receptor BI (SR-BI). We hypothesize that apoA-I transport is started by the ABCA1-mediated generation of a lipidated particle which is then transported by ABCA1-independent pathways. To test this hypothesis we analyzed the endothelial binding and transport properties of initially lipid-free as well as prelipidated apoA-I mutants. Lipid-free apoA-I mutants with a defective carboxyl-terminal domain showed an 80% decreased specific binding and 90% decreased specific transport by aortic endothelial cells. After prior cell-free lipidation of the mutants, the resulting HDL-like particles were transported through endothelial cells by an ABCG1- and SR-BI-dependent process. ApoA-I mutants with deletions of either the amino terminus or both the amino and carboxyl termini showed dramatic increases in nonspecific binding but no specific binding or transport. Prior cell-free lipidation did not rescue these anomalies. Our findings of stringent structure-function relationships underline the specificity of transendothelial apoA-I transport and suggest that lipidation of initially lipid-free apoA-I is necessary but not sufficient for specific transendothelial transport. Our data also support the model of a two-step process for the transendothelial transport of apoA-I in which apoA-I is initially lipidated by ABCA1 and then further processed by ABCA1-independent mechanisms.
Collapse
Affiliation(s)
- Pascale M Ohnsorg
- From the Institute of Clinical Chemistry, University Hospital of Zurich, 8091 Zurich, Switzerland,; the Competence Center for Systems Physiology and Metabolic Diseases, ETH and University of Zurich, 8091 Zurich, Switzerland
| | - Lucia Rohrer
- From the Institute of Clinical Chemistry, University Hospital of Zurich, 8091 Zurich, Switzerland,; the Center for Integrative Human Physiology, University of Zurich, 8091 Zurich, Switzerland
| | - Damir Perisa
- From the Institute of Clinical Chemistry, University Hospital of Zurich, 8091 Zurich, Switzerland,; the Center for Integrative Human Physiology, University of Zurich, 8091 Zurich, Switzerland
| | - Andreas Kateifides
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118,; the Department of Biochemistry, Division of Basic Sciences, Institute of Molecular Biology and Biotechnology, University of Crete Medical School, 71201 Crete, Greece
| | - Angeliki Chroni
- the National Centre of Scientific Research "Demokritos," Institute of Biology, 15310 Athens, Greece, and
| | - Dimitris Kardassis
- the Department of Biochemistry, Division of Basic Sciences, Institute of Molecular Biology and Biotechnology, University of Crete Medical School, 71201 Crete, Greece
| | - Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118,; the Department of Biochemistry, Division of Basic Sciences, Institute of Molecular Biology and Biotechnology, University of Crete Medical School, 71201 Crete, Greece
| | - Arnold von Eckardstein
- From the Institute of Clinical Chemistry, University Hospital of Zurich, 8091 Zurich, Switzerland,; the Competence Center for Systems Physiology and Metabolic Diseases, ETH and University of Zurich, 8091 Zurich, Switzerland,; the Center for Integrative Human Physiology, University of Zurich, 8091 Zurich, Switzerland,.
| |
Collapse
|
55
|
The β-subunit of ATP synthase is involved in cellular uptake and resecretion of apoA-I but does not control apoA-I-induced lipid efflux in adipocytes. Mol Cell Biochem 2010; 348:155-64. [PMID: 21069432 DOI: 10.1007/s11010-010-0650-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
Cellular uptake and resecretion of apoA-I (apoA-I recycling) could be an important factor in determining the circulating plasma levels of apoA-I and/or HDL. Using a novel method to study protein recycling, we have recently demonstrated recycling of apoA-I by adipocytes and suggested that this is a receptor mediated process independent of ABCA1 function. In the present study, it is shown that apoA-I recycling by adipocytes can be blocked by a monoclonal antibody against the β-subunit of ATP synthase, a protein that had been previously identified as an apoA-I receptor. Investigation of the cellular recycling of two other proteins, an apolipoprotein and a small globular protein, showed that recycling of apoA-I is a selective process. The present study also shows that blocking apoA-I recycling has no effect on the rate of apoA-I-induced cholesterol or phospholipid efflux. It is concluded that cellular recycling of apoA-I is a selective process that involves the ectopically expressed β-subunit of ATP synthase. The physiological function of apoA-I recycling remains to be elucidated. However, this study shows that the process of apoA-I uptake and resecretion is not required for apoA-I lipidation.
Collapse
|
56
|
Zhao Y, Van Berkel TJ, Van Eck M. Relative roles of various efflux pathways in net cholesterol efflux from macrophage foam cells in atherosclerotic lesions. Curr Opin Lipidol 2010; 21:441-53. [PMID: 20683325 DOI: 10.1097/mol.0b013e32833dedaa] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cholesterol efflux mechanisms are essential for macrophage cholesterol homeostasis. HDL, an important cholesterol efflux acceptor, comprises a class of heterogeneous particles that induce cholesterol efflux via distinct pathways. This review focuses on the understanding of the different cholesterol efflux pathways and physiological acceptors involved, and their regulation in atherosclerotic lesions. RECENT FINDINGS The synergistic interactions of ATP-binding cassette transporters A1 and G1 as well as ATP-binding cassette transporter A1 and scavenger receptor class B type I are essential for cellular cholesterol efflux and the prevention of macrophage foam cell formation. However, the importance of aqueous diffusion should also not be underestimated. Significant progress has been made in understanding the mechanisms underlying ATP-binding cassette A1-mediated cholesterol efflux and regulation of its expression and trafficking. Conditions locally in the atherosclerotic lesion, for example, lipids, cytokines, oxidative stress, and hypoxia, as well as systemic factors, including inflammation and diabetes, critically influence the expression of cholesterol transporters on macrophage foam cells. Furthermore, HDL modification and remodeling in atherosclerosis, inflammation, and diabetes impairs its function as an acceptor for cellular cholesterol. SUMMARY Recent advances in the understanding of the regulation of cholesterol transporters and their acceptors in atherosclerotic lesions indicate that HDL-based therapies should aim to enhance the activity of cholesterol transporters and improve both the quantity and quality of HDL.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Leiden, The Netherlands
| | | | | |
Collapse
|
57
|
Mani O, Körner M, Sorensen MT, Sejrsen K, Wotzkow C, Ontsouka CE, Friis RR, Bruckmaier RM, Albrecht C. Expression, localization, and functional model of cholesterol transporters in lactating and nonlactating mammary tissues of murine, bovine, and human origin. Am J Physiol Regul Integr Comp Physiol 2010; 299:R642-54. [DOI: 10.1152/ajpregu.00723.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Members of the ATP-binding cassette (ABC) transporters play a pivotal role in cellular lipid efflux. To identify candidate cholesterol transporters implicated in lipid homeostasis and mammary gland (MG) physiology, we compared expression and localization of ABCA1, ABCG1, and ABCA7 and their regulatory genes in mammary tissues of different species during the pregnancy-lactation cycle. Murine and bovine mammary glands (MGs) were investigated during different functional stages. The abundance of mRNAs was determined by quantitative RT-PCR. Furthermore, transporter proteins were localized in murine, bovine, and human MGs by immunohistochemistry. In the murine MG, ABCA1 mRNA abundance was elevated during nonlactating compared with lactating stages, whereas ABCA7 and ABCA1 mRNA profiles were not altered. In the bovine MG, ABCA1, ABCG1, and ABCA7 mRNAs abundances were increased during nonlactating stages compared with lactation. Furthermore, associations between mRNA levels of transporters and their regulatory genes LXRα, PPARγ, and SREBPs were found. ABCA1, ABCG1, and ABCA7 proteins were localized in glandular MG epithelial cells (MEC) during lactation, whereas during nonlactating stages, depending on species, the proteins showed distinct localization patterns in MEC and adipocytes. Our results demonstrate that ABCA1, ABCG1, and ABCA7 are differentially expressed between lactation and nonlactating stages and in association with regulatory genes. Combined expression and localization data suggest that the selected cholesterol transporters are universal MG transporters involved in transport and storage of cholesterol and in lipid homeostasis of MEC. Because of the species-specific expression patterns of transporters in mammary tissue, mechanisms of cholesterol homeostasis seem to be differentially regulated between species.
Collapse
Affiliation(s)
- Orlando Mani
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Meike Körner
- Institute of Pathology, University of Bern, Switzerland
| | - Martin T. Sorensen
- Department of Animal Health, Welfare and Nutrition, Aarhus University, Tjele, Denmark
| | - Kristen Sejrsen
- Department of Animal Health, Welfare and Nutrition, Aarhus University, Tjele, Denmark
| | - Carlos Wotzkow
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Corneille E. Ontsouka
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Robert R. Friis
- Department of Clinical Research, University of Bern, Bern, Switzerland; and
| | | | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
58
|
Fu Y. Rate-limiting factors of cholesterol efflux in reverse cholesterol transport: Acceptors and donors. Clin Exp Pharmacol Physiol 2010; 37:703-9. [DOI: 10.1111/j.1440-1681.2010.05386.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
59
|
|
60
|
Pandey NR, Renwick J, Rabaa S, Misquith A, Kouri L, Twomey E, Sparks DL. An induction in hepatic HDL secretion associated with reduced ATPase expression. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1777-87. [PMID: 19717637 DOI: 10.2353/ajpath.2009.090082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Linoleic acid-phospholipids stimulate high-density lipoprotein (HDL) net secretion from liver cells by blocking the endocytic recycling of apoA-I. Experiments were undertaken to determine whether apoA-I accumulation in the cell media is associated with membrane ATPase expression. Treatment of HepG2 cells with dilinoeoylphosphatidylcholine (DLPC) increased apoA-I secretion fourfold. DLPC also significantly reduced cell surface F1-ATPase expression and reduced cellular ATP binding cassette (ABC)A1 and ABCG1 protein levels by approximately 50%. In addition, treatment of HepG2 cells with the ABC transporter inhibitor, glyburide, stimulated the apoA-I secretory effects of both DLPC and clofibrate. Pretreatment of HepG2 cells with compounds that increased ABC transport protein levels (TO901317, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal, and resveratrol) blocked the DLPC-induced stimulation in apoA-I net secretion. Furthermore, whereas HepG2 cells normally secrete nascent prebeta-HDL, DLPC treatment promoted secretion of alpha-migrating HDL particles. These data show that an linoleic acid-phospholipid induced stimulation in hepatic HDL secretion is related to the expression and function of membrane ATP metabolizing proteins.
Collapse
Affiliation(s)
- Nihar R Pandey
- Lipoprotein and Atherosclerosis Research Group, The University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | | | |
Collapse
|
61
|
Radojkovic C, Genoux A, Pons V, Combes G, de Jonge H, Champagne E, Rolland C, Perret B, Collet X, Tercé F, Martinez LO. Stimulation of Cell Surface F1-ATPase Activity by Apolipoprotein A-I Inhibits Endothelial Cell Apoptosis and Promotes Proliferation. Arterioscler Thromb Vasc Biol 2009; 29:1125-30. [DOI: 10.1161/atvbaha.109.187997] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Claudia Radojkovic
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Annelise Genoux
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Véronique Pons
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Guillaume Combes
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Hugo de Jonge
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Eric Champagne
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Corinne Rolland
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Bertrand Perret
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Xavier Collet
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - François Tercé
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| | - Laurent O. Martinez
- From the INSERM U563 (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), Département Lipoprotéines et Médiateurs Lipidiques, Toulouse, France; Université de Toulouse (C.R., A.G., V.P., G.C., E.C., C.R., B.P., X.C., F.T., L.O.M.), UPS, IFR150, IFR-BMT, Toulouse, France; the Departamento de Bioquímica Clínica e Inmunología (C.R.), Facultad de Farmacia, Universidad de Concepción, Concepción, Chile; Growth Factors Group (H.d.J.), MRC Centre, Cambridge, UK; the Division of
| |
Collapse
|
62
|
von Eckardstein A, Rohrer L. Transendothelial lipoprotein transport and regulation of endothelial permeability and integrity by lipoproteins. Curr Opin Lipidol 2009; 20:197-205. [PMID: 19395962 DOI: 10.1097/mol.0b013e32832afd63] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Previously, the endothelium was considered as a passive exchange barrier of lipoproteins between plasma and extravascular tissues. This dogma is challenged by recent findings on a dual relationship between lipoproteins and endothelial permeability. RECENT FINDINGS LDL and HDL as well as apolipoprotein A-I pass the intact endothelium through transcytosis by processes, which involve caveolin-1, the LDL-receptor, ATP-binding cassette transporters A1 and G1 or scavenger receptor BI. Moreover, HDL help the endothelium to maintain structural integrity and hence selective permeability for biomolecules by keeping interendothelial junctions closed, by inhibiting endothelial cell apoptosis and by stimulating endothelial proliferation, migration and tube formation as well as the recruitment and differentiation of endothelial progenitor cells in damaged parts of the endothelium. Both apolipoprotein A-I and sphingosin-1-phosphate mediate many of the protective effects of HDL on the endothelium by interacting with endothelial scavenger receptor BI and sphingosin-1-phosphate receptors, respectively, and by activating intracellular signalling cascades, including the small G protein Rac, src-kinase, phosphoinositol 3 kinase, protein kinase B (Akt) and mitogen-activated protein kinases. SUMMARY The endothelium actively controls the trafficking of lipoproteins between intravascular and extravascular compartments. In addition, lipoproteins affect the integrity and permeability of the endothelium.
Collapse
Affiliation(s)
- Arnold von Eckardstein
- Institute of Clinical Chemistry and Zurich Centre for Integrative Human Physiology, University Hospital and University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
63
|
|
64
|
Rohrer L, Ohnsorg PM, Lehner M, Landolt F, Rinninger F, von Eckardstein A. High-density lipoprotein transport through aortic endothelial cells involves scavenger receptor BI and ATP-binding cassette transporter G1. Circ Res 2009; 104:1142-50. [PMID: 19372466 DOI: 10.1161/circresaha.108.190587] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cholesterol efflux from macrophage foam cells is a rate-limiting step in reverse cholesterol transport. In this process cholesterol acceptors like high-density lipoproteins (HDL) and apolipoprotein (apo)A-I must cross the endothelium to get access to the donor cells in the arterial intima. Previously, we have shown that apoA-I passes a monolayer of aortic endothelial cells (ECs) from the apical to the basolateral side by transcytosis, which is modulated by the ATP-binding cassette transporter (ABC)A1. Here, we analyzed the interaction of mature HDL with ECs. ECs bind HDL in a specific and saturable manner. Both cell surface biotinylation experiments and immunofluorescence microscopy of HDL recovered approximately 30% of the cell-associated HDL intracellularly. Cultivated on inserts ECs bind, internalize, and translocate HDL from the apical to the basolateral compartment in a specific and temperature-dependent manner. The size of the translocated particle was reduced, but its protein moiety remained intact. Using RNA interference, we investigated the impact of SR-BI, ABCA1, and ABCG1 on binding, internalization, and transcytosis of HDL by ECs. HDL binding was reduced by 50% and 30% after silencing of SR-BI and ABCG1, respectively, but not at all after diminishing ABCA1 expression. Knock down of SR-BI and, even more so, ABCG1 reduced HDL transcytosis but did not affect inulin permeability. Cosilencing of both proteins did not further reduce HDL binding, internalization, or transport. In conclusion, ECs transcytose HDL by mechanisms that involve either SR-BI or ABCG1 but not ABCA1.
Collapse
Affiliation(s)
- Lucia Rohrer
- Institute of Clinical Chemistry, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
65
|
Stefulj J, Panzenboeck U, Becker T, Hirschmugl B, Schweinzer C, Lang I, Marsche G, Sadjak A, Lang U, Desoye G, Wadsack C. Human Endothelial Cells of the Placental Barrier Efficiently Deliver Cholesterol to the Fetal Circulation via ABCA1 and ABCG1. Circ Res 2009; 104:600-8. [DOI: 10.1161/circresaha.108.185066] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although maternal–fetal cholesterol transfer may serve to compensate for insufficient fetal cholesterol biosynthesis under pathological conditions, it may have detrimental consequences under conditions of maternal hypercholesterolemia leading to preatherosclerotic lesion development in fetal aortas. Maternal cholesterol may enter fetal circulation by traversing syncytiotrophoblast and endothelial layers of the placenta. We hypothesized that endothelial cells (ECs) of the fetoplacental vasculature display a high and tightly regulated capacity for cholesterol release. Using ECs isolated from human term placenta (HPECs), we investigated cholesterol release capacity and examined transporters involved in cholesterol efflux pathways controlled by liver-X-receptors (LXRs). HPECs demonstrated 2.5-fold higher cholesterol release to lipid-free apolipoprotein (apo)A-I than human umbilical vein ECs (HUVECs), whereas both cell types showed similar cholesterol efflux to high-density lipoproteins (HDLs). Interestingly, treatment of HPECs with LXR activators increased cholesterol efflux to both types of acceptors, whereas no such response could be observed for HUVECs. In line with enhanced cholesterol efflux, LXR activation in HPECs increased expression of ATP-binding cassette transporters ABCA1 and ABCG1, while not altering expression of ABCG4 and scavenger receptor class B type I (SR-BI). Inhibition of ABCA1 or silencing of ABCG1 decreased cholesterol efflux to apoA-I (−70%) and HDL
3
(−57%), respectively. Immunohistochemistry localized both transporters predominantly to the apical membranes of placental ECs in situ. Thus, ECs of human term placenta exhibit unique, efficient and LXR-regulated cholesterol efflux mechanisms. We propose a sequential pathway mediated by ABCA1 and ABCG1, respectively, by which HPECs participate in forming mature HDL in the fetal blood.
Collapse
Affiliation(s)
- Jasminka Stefulj
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Ute Panzenboeck
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Tatjana Becker
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Birgit Hirschmugl
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Cornelia Schweinzer
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Ingrid Lang
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gunther Marsche
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Anton Sadjak
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Uwe Lang
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gernot Desoye
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Christian Wadsack
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW Aberrations in cerebral cholesterol homeostasis can lead to severe neurological diseases and have been linked to Alzheimer's disease. Many proteins involved in peripheral cholesterol metabolism are also present in the brain. Yet, brain cholesterol metabolism is very different from that in the remainder of the body. This review reports on present insights into the regulation of cerebral cholesterol homeostasis, focusing on cholesterol trafficking between astrocytes and neurons. RECENT FINDINGS Astrocytes are a major site of cholesterol synthesis. They secrete cholesterol in the form of apolipoprotein E-containing HDL-like particles. After birth, neurons are thought to reduce their cholesterol synthesis and rely predominantly on astrocytes for their cholesterol supply. How exactly neurons regulate their cholesterol supply is largely unknown. A role for the brain-specific cholesterol metabolite, 24(S)-hydroxycholesterol, in this process was recently proposed. Recent findings strengthen the link between brain cholesterol metabolism and factors involved in synaptic plasticity, a process essential for learning and memory functions, as well as regeneration, which are affected in Alzheimer's disease. SUMMARY Insight into the regulation of cerebral cholesterol homeostasis will provide possibilities to modulate the key steps involved and may lead to the development of therapies for the prevention as well as treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Monique Mulder
- Department of Internal Medicine and Division of Pharmacology, Vascular and Metabolic diseases, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
67
|
|
68
|
Abstract
The development of a single-celled fertilized egg, through the blastocyst stage of a ball of cells and the embryonic stage when almost all organ systems begin to develop, and finally to the fetal stage where growth and physiological maturation occurs, is a complex and multifaceted process. A change in metabolism during gestation, especially when organogenesis occurs, can lead to abnormal development and congenital defects. Although many studies have described the roles of specific proteins in development, the roles of specific lipids, such as sterols, have not been studied as intensely. Sterol's functions in development range from being a structural component of membranes to regulating the patterning of the forebrain through sonic hedgehog to regulating expression of key proteins involved in metabolic processes. This review focuses on the roles of sterols in embryonic and fetal development and metabolism. Potential sources of cholesterol for the fetus and embryo are also discussed.
Collapse
Affiliation(s)
- Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| |
Collapse
|
69
|
Simionescu M, Popov D, Sima A. Endothelial transcytosis in health and disease. Cell Tissue Res 2008; 335:27-40. [PMID: 18836747 DOI: 10.1007/s00441-008-0688-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 08/25/2008] [Indexed: 01/26/2023]
Abstract
The visionaries predicted the existence of transcytosis in endothelial cells; the cell biologists deciphered its mechanisms and (in part) the molecules involved in the process; the cell pathologists unravelled the presence of defective transcytosis in some diseases. The optimistic perspective is that transcytosis, in general, and receptor-mediated transcytosis, in particular, will be greatly exploited in order to target drugs and genes to exclusive sites in and on endothelial cells (EC) or underlying cells. The current recognition that plasmalemmal vesicles (caveolae) are the vehicles involved in EC transcytosis has moved through various phases from initial considerations of caveolae as unmovable sessile non-functional plasmalemma invaginations to the present identification of a multitude of molecules and a crowd of functions associated with these ubiquitous structures of endothelial and epithelial cells. Further understanding of the molecular machinery that precisely guides caveolae through the cells so as to reach the target membrane (fission, docking, and fusion), to avoid lysosomes, or on the contrary, to reach the lysosomes, and discharge the cargo molecules will assist in the design of pathways that, by manipulating the physiological route of caveolae, will carry molecules of choice (drugs, genes) at controlled concentrations to precise destinations.
Collapse
Affiliation(s)
- Maya Simionescu
- Institute of Cellular Biology and Pathology, Nicolae Simionescu, Bucharest, Romania.
| | | | | |
Collapse
|
70
|
Boadu E, Bilbey NJ, Francis GA. Cellular cholesterol substrate pools for adenosine-triphosphate cassette transporter A1-dependent high-density lipoprotein formation. Curr Opin Lipidol 2008; 19:270-6. [PMID: 18460918 DOI: 10.1097/mol.0b013e3282feea99] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The removal of cellular cholesterol and phospholipids to apolipoprotein A-I (apoA-I), facilitated by the membrane transporter ATP-binding cassette transporter A1 (ABCA1), is the rate-limiting step in the formation of high density lipoprotein particles. This review summarizes recent literature concerning the relative contributions of different cellular pools of cholesterol used by ABCA1 in the initial lipidation of apoA-I for high density lipoprotein particle formation. RECENT FINDINGS Cell culture studies have shown that apart from lipidating apoA-I directly, ABCA1 can also mediate cholesterol delivery indirectly to apoA-I in the plasma membrane. Moreover, it is now clear that the late endosome/lysosome pool of cholesterol is a critical part of the total cholesterol substrate pool for ABCA1. Internalization of ABCA1 appears to be a requirement for maximum ABCA1-mediated cholesterol mobilization for high density lipoprotein formation. SUMMARY Current evidence suggests that ABCA1-mediated cholesterol efflux to apoA-I involves mobilization of cholesterol from plasma membrane, endoplasmic reticulum, trans-Golgi network, late endocytic and lysosomal compartments, and cholesteryl ester droplets. Apart from lipidating apoA-I directly, ABCA1 has also been found to efflux cholesterol indirectly to apoA-I in plasma membranes.
Collapse
Affiliation(s)
- Emmanuel Boadu
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research and Division of Endocrinology and Metabolism, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
71
|
|
72
|
Lyly A, Marjavaara SK, Kyttälä A, Uusi-Rauva K, Luiro K, Kopra O, Martinez LO, Tanhuanpää K, Kalkkinen N, Suomalainen A, Jauhiainen M, Jalanko A. Deficiency of the INCL protein Ppt1 results in changes in ectopic F1-ATP synthase and altered cholesterol metabolism. Hum Mol Genet 2008; 17:1406-17. [DOI: 10.1093/hmg/ddn028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
73
|
Hassan HH, Bailey D, Lee DYD, Iatan I, Hafiane A, Ruel I, Krimbou L, Genest J. Quantitative analysis of ABCA1-dependent compartmentalization and trafficking of apolipoprotein A-I: implications for determining cellular kinetics of nascent high density lipoprotein biogenesis. J Biol Chem 2008; 283:11164-75. [PMID: 18218626 DOI: 10.1074/jbc.m707720200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms underlying the apoA-I/ABCA1 endocytic trafficking pathway in relation to high density lipoprotein (HDL) formation remain poorly understood. We have developed a quantitative cell surface biotinylation assay to determine the compartmentalization and trafficking of apoA-I between the plasma membrane (PM) and intracellular compartments (ICCs). Here we report that (125)I-apoA-I exhibited saturable association with the PM and ICCs in baby hamster kidney cells stably overexpressing ABCA1 and in fibroblasts. The PM was found to have a 2-fold higher capacity to accommodate apoA-I as compared with ICCs. Overexpressing various levels of ABCA1 in baby hamster kidney cells promoted the association of apoA-I with PM and ICCs compartments. The C-terminal deletion of apoA-I Delta(187-243) and reconstituted HDL particles exhibited reduced association of apoA-I with both the PM and ICCs. Interestingly, cell surface biotinylation with a cleavable biotin revealed that apoA-I induces ABCA1 endocytosis. Such endocytosis was impaired by naturally occurring mutations of ABCA1 (Q597R and C1477R). To better understand the role of the endocytotic pathway in the dynamics of the lipidation of apoA-I, a pulse-chase experiment was performed, and the dissociation (re-secretion) of (125)I-apoA-I from both PM and ICCs was monitored over a 6-h period. Unexpectedly, we found that the time required for 50% dissociation of (125)I-apoA-I from the PM was 4-fold slower than that from ICCs at 37 degrees C. Finally, treatment of the cells with phosphatidylcholine-specific phospholipase C, increased the dissociation of apoA-I from the PM. This study provides evidence that the lipidation of apoA-I occurs in two kinetically distinguishable compartments. The finding that apoA-I specifically mediates the continuous endocytic recycling of ABCA1, together with the kinetic data showing that apoA-I associated with ICCs is rapidly re-secreted, suggests that the endocytotic pathway plays a central role in the genesis of nascent HDL.
Collapse
Affiliation(s)
- Houssein Hajj Hassan
- Cardiovascular Genetics Laboratory, Division of Cardiology, McGill University Health Centre/Royal Victoria Hospital, Montréal, Québec H3A 1A1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Lee MYK, Tse HF, Siu CW, Zhu SG, Man RYK, Vanhoutte PM. Genomic changes in regenerated porcine coronary arterial endothelial cells. Arterioscler Thromb Vasc Biol 2007; 27:2443-9. [PMID: 17942849 DOI: 10.1161/atvbaha.107.141705] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Genomic changes were defined in cultures of regenerated porcine coronary endothelial cells to explain the alterations that underlie their dysfunction. METHODS AND RESULTS Regeneration of the endothelium was triggered in vivo by endothelial balloon denudation. After 28 days, both left circumflex (native cells) and left anterior descending (regenerated cells) coronary arteries were dissected, their endothelial cells harvested, and primary cultures established. The basal cyclic GMP production was reduced in regenerated cells without significant reduction in the response to bradykinin and A23187. The mRNA expression levels in both native and regenerated cells were measured by microarray and RT-PCR. The comparison revealed genomic changes related to vasomotor control (cyclooxygenase-1, angiotensin II receptor), coagulation (F2 and TFPI), oxidative stress (Mn SOD, GPX3, and GSR), lipid metabolism (PLA2 and HPGD), and extracellular matrix (MMPs). A-FABP and MMP7 were induced by regeneration. RT-PCR revealed upregulation of A-FABP and downregulation of eNOS and TR. The differential gene expression profiles were confirmed at the protein level by Western blotting for eNOS, F2, Mn SOD, MMP7, and TR. CONCLUSIONS Cultures from regenerated coronary endothelial cells exhibit genomic changes explaining endothelial dysfunction and suggesting facilitation of coagulation, lipid peroxidation, and extracellular matrix remodeling.
Collapse
Affiliation(s)
- Mary Y K Lee
- Department of Pharmacology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2F Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
75
|
Hassan HH, Denis M, Lee DYD, Iatan I, Nyholt D, Ruel I, Krimbou L, Genest J. Identification of an ABCA1-dependent phospholipid-rich plasma membrane apolipoprotein A-I binding site for nascent HDL formation: implications for current models of HDL biogenesis. J Lipid Res 2007; 48:2428-42. [PMID: 17656736 DOI: 10.1194/jlr.m700206-jlr200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well accepted that both apolipoprotein A-I (apoA-I) and ABCA1 play crucial roles in HDL biogenesis and in the human atheroprotective system. However, the nature and specifics of apoA-I/ABCA1 interactions remain poorly understood. Here, we present evidence for a new cellular apoA-I binding site having a 9-fold higher capacity to bind apoA-I compared with the ABCA1 site in fibroblasts stimulated with 22-(R)-hydroxycholesterol/9-cis-retinoic acid. This new cellular apoA-I binding site was designated "high-capacity binding site" (HCBS). Glyburide drastically reduced (125)I-apoA-I binding to the HCBS, whereas (125)I-apoA-I showed no significant binding to the HCBS in ABCA1 mutant (Q597R) fibroblasts. Furthermore, reconstituted HDL exhibited reduced affinity for the HCBS. Deletion of the C-terminal region of apoA-I (Delta187-243) drastically reduced the binding of apoA-I to the HCBS. Interestingly, overexpressing various levels of ABCA1 in BHK cells promoted the formation of the HCBS. The majority of the HCBS was localized to the plasma membrane (PM) and was not associated with membrane raft domains. Importantly, treatment of cells with phosphatidylcholine-specific phospholipase C, but not sphingomyelinase, concomitantly reduced the binding of (125)I-apoA-I to the HCBS, apoA-I-mediated cholesterol efflux, and the formation of nascent apoA-I-containing particles. Together, these data suggest that a functional ABCA1 leads to the formation of a major lipid-containing site for the binding and the lipidation of apoA-I at the PM. Our results provide a biochemical basis for the HDL biogenesis pathway that involves both ABCA1 and the HCBS, supporting a two binding site model for ABCA1-mediated nascent HDL genesis.
Collapse
Affiliation(s)
- Houssein Hajj Hassan
- Cardiovascular Genetics Laboratory, Cardiology Division, McGill University Health Centre/Royal Victoria Hospital, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|