51
|
Abstract
The proepicardium is a transient extracardiac embryonic tissue that gives rise to the epicardium and a number of coronary vascular cell lineages. This important extracardiac tissue develops through multiple steps of inductive events, from specification of multiple cell lineages to morphogenesis. This article will review our current understanding of inductive events involved in patterning of the proepicardium precursor field, specification of cell types within the proepicardium, and their extension and attachment to the heart.
Collapse
Affiliation(s)
- Lisandro Maya-Ramos
- University of California San Francisco, Cardiovascular Research Institute. San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
52
|
Tian X, Hu T, Zhang H, He L, Huang X, Liu Q, Yu W, He L, Yang Z, Zhang Z, Zhong TP, Yang X, Yang Z, Yan Y, Baldini A, Sun Y, Lu J, Schwartz RJ, Evans SM, Gittenberger-de Groot AC, Red-Horse K, Zhou B. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res 2013; 23:1075-90. [PMID: 23797856 PMCID: PMC3760626 DOI: 10.1038/cr.2013.83] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/16/2013] [Accepted: 05/15/2013] [Indexed: 01/03/2023] Open
Abstract
Coronary arteries bring blood flow to the heart muscle. Understanding the developmental program of the coronary arteries provides insights into the treatment of coronary artery diseases. Multiple sources have been described as contributing to coronary arteries including the proepicardium, sinus venosus (SV), and endocardium. However, the developmental origins of coronary vessels are still under intense study. We have produced a new genetic tool for studying coronary development, an AplnCreER mouse line, which expresses an inducible Cre recombinase specifically in developing coronary vessels. Quantitative analysis of coronary development and timed induction of AplnCreER fate tracing showed that the progenies of subepicardial endothelial cells (ECs) both invade the compact myocardium to form coronary arteries and remain on the surface to produce veins. We found that these subepicardial ECs are the major sources of intramyocardial coronary vessels in the developing heart. In vitro explant assays indicate that the majority of these subepicardial ECs arise from endocardium of the SV and atrium, but not from ventricular endocardium. Clonal analysis of Apln-positive cells indicates that a single subepicardial EC contributes equally to both coronary arteries and veins. Collectively, these data suggested that subepicardial ECs are the major source of intramyocardial coronary arteries in the ventricle wall, and that coronary arteries and veins have a common origin in the developing heart.
Collapse
Affiliation(s)
- Xueying Tian
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
|
54
|
Microsurgical Procedures for Studying the Developmental Significance of the Proepicardium and Epicardium in Avian Embryos: PE-Blocking, PE-Photoablation, and PE-Grafting. J Dev Biol 2013. [DOI: 10.3390/jdb1010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
55
|
Epicardial HIF signaling regulates vascular precursor cell invasion into the myocardium. Dev Biol 2013; 376:136-49. [PMID: 23384563 DOI: 10.1016/j.ydbio.2013.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/17/2013] [Accepted: 01/25/2013] [Indexed: 11/20/2022]
Abstract
During cardiogenesis, a subset of epicardial cells undergoes epithelial-mesenchymal-transition (EMT) and the resulting epicardial-derived cells (EPDCs) contribute to the formation of coronary vessels. Our previous data showed hypoxia inducible factor-1α (HIF-1α) expression at specific sites within the epicardium and support a link between hypoxia inducible factors (HIFs) and the patterning of coronary vasculogenesis. To better understand the autocrine role of HIFs in the epicardium, we transduced adenovirus mediated expression of constitutively active HIF-1α (AdcaHIF1α) into the embryonic avian epicardium where the vascular precursors reside. We found that introducing caHIF1α into the epicardial mesothelium prevented EPDCs from proper migration into the myocardium. In vitro collagen gel assays and ex vivo organ culture data further confirmed that infection with AdcaHIF1α impaired the ability of EPDCs to invade. However, the proficiency of epicardial cells to undergo EMT was enhanced while the movement of EPDCs within the sub-epicardium and their differentiation into smooth muscle cells were not disrupted by caHIF1α. We also showed that the transcript level of Flt-1 (VEGFR1), which can act as a VEGF signaling inhibitor, increased several fold after introducing caHIF1α into epicardial cells. Blocking the activation of the VEGF pathway in epicardial cells recapitulated the inhibition of EPDC invasion. These results suggest that caHIF1α mediated up-regulation of Flt-1, which blocks the activation of the VEGF pathway, is responsible for the inhibition of EPDC myocardial migration. In conclusion, our studies demonstrate that HIF signaling potentially regulates the degree of epicardial EMT and the extent of EPDC migration into the myocardium, both of which are likely critical in patterning the coronary vasculature during early cardiac vasculogenesis. These signals could explain why the larger coronaries appear and remain on the epicardial surface.
Collapse
|
56
|
Nakajima Y, Imanaka-Yoshida K. New insights into the developmental mechanisms of coronary vessels and epicardium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:263-317. [PMID: 23445813 DOI: 10.1016/b978-0-12-407697-6.00007-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During heart development, the epicardium, which originates from the proepicardial organ (PE), is a source of coronary vessels. The PE develops from the posterior visceral mesoderm of the pericardial coelom after stimulation with a combination of weak bone morphogenetic protein and strong fibroblast growth factor (FGF) signaling. PE-derived cells migrate across the heart surface to form the epicardial sheet, which subsequently seeds multipotent subepicardial mesenchymal cells via epithelial-mesenchymal transition, which is regulated by several signaling pathways including retinoic acid, FGF, sonic hedgehog, Wnt, transforming growth factor-β, and platelet-derived growth factor. Subepicardial endothelial progenitors eventually generate the coronary vascular plexus, which acquires an arterial or venous phenotype, connects with the sinus venosus and aortic sinuses, and then matures through the recruitment of vascular smooth muscle cells under the regulation of complex growth factor signaling pathways. These developmental programs might be activated in the adult heart after injury and play a role in the regeneration/repair of the myocardium.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | | |
Collapse
|
57
|
|
58
|
von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res 2012; 110:1628-45. [PMID: 22679138 DOI: 10.1161/circresaha.111.259960] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epithelial to mesenchymal transition (EMT) converts epithelial cells to mobile and developmentally plastic mesenchymal cells. All cells in the heart arise from one or more EMTs. Endocardial and epicardial EMTs produce most of the noncardiomyocyte lineages of the mature heart. Endocardial EMT generates valve progenitor cells and is necessary for formation of the cardiac valves and for complete cardiac septation. Epicardial EMT is required for myocardial growth and coronary vessel formation, and it generates cardiac fibroblasts, vascular smooth muscle cells, a subset of coronary endothelial cells, and possibly a subset of cardiomyocytes. Emerging studies suggest that these developmental mechanisms are redeployed in adult heart valve disease, in cardiac fibrosis, and in myocardial responses to ischemic injury. Redirection and amplification of disease-related EMTs offer potential new therapeutic strategies and approaches for treatment of heart disease. Here, we review the role and molecular regulation of endocardial and epicardial EMT in fetal heart development, and we summarize key literature implicating reactivation of endocardial and epicardial EMT in adult heart disease.
Collapse
Affiliation(s)
- Alexander von Gise
- Department of Cardiology, Children's Hospital Boston, 300 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
59
|
Flaht A, Jankowska-Steifer E, Radomska D, Madej M, Gula G, Kujawa M, Ratajska A. Cellular phenotypes and spatio-temporal patterns of lymphatic vessel development in embryonic mouse hearts. Dev Dyn 2012; 241:1473-86. [DOI: 10.1002/dvdy.23827] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2012] [Indexed: 01/08/2023] Open
|
60
|
Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 2012; 125:1795-808. [PMID: 22492947 DOI: 10.1161/circulationaha.111.040352] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
61
|
van den Akker NMS, Caolo V, Molin DGM. Cellular decisions in cardiac outflow tract and coronary development: an act by VEGF and NOTCH. Differentiation 2012; 84:62-78. [PMID: 22683047 DOI: 10.1016/j.diff.2012.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/28/2012] [Accepted: 04/10/2012] [Indexed: 01/09/2023]
Abstract
Congenital cardiac abnormalities are, due to their relatively high frequency and severe impact on quality of life, an important focus in cardiovascular research. Recently, various human studies have revealed a high coincidence of VEGF and NOTCH polymorphisms with cardiovascular outflow tract anomalies, such as bicuspid aortic valves and Tetralogy of Fallot, next to predisposition for cardiovascular pathologies, including atherosclerosis and aortic valve calcification. This genetic association between VEGF/NOTCH mutations and congenital cardiovascular defects in humans has been supported by substantial proof from animal models, revealing interaction of both pathways in cellular processes that are crucial for cardiac development. This review focuses on the role of VEGF and NOTCH signaling and their interplay in cardiogenesis with special interest to coronary and outflow tract development. An overview of the association between congenital malformations and VEGF/NOTCH polymorphisms in humans will be discussed along with their potential mechanisms and processes as revealed by transgenic mouse models. The molecular and cellular interaction of VEGF and subsequent Notch-signaling in these processes will be highlighted.
Collapse
Affiliation(s)
- Nynke M S van den Akker
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | |
Collapse
|
62
|
Schlueter J, Brand T. Epicardial progenitor cells in cardiac development and regeneration. J Cardiovasc Transl Res 2012; 5:641-53. [PMID: 22653801 DOI: 10.1007/s12265-012-9377-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/15/2012] [Indexed: 01/25/2023]
Abstract
The epicardium forms an epithelial layer on the surface of the heart. It is derived from a cluster of mesothelial cells, which is termed the proepicardium. The proepicardium gives rise not only to the epicardium but also to epicardium-derived cells. These cells populate the myocardial wall and differentiate into smooth muscle cells, fibroblast, and possibly endothelial cells. In this review, the formation of the proepicardium is discussed. Marker genes, suitable to identify these cells in the embryo and in the adult, are introduced. Recent evidence suggests that the PE is made up of distinct cell populations. These cell lineages can be distinguished on the basis of marker gene expression and differ in their differentiation potential. The role of the epicardium as a resource for cardiac stem cells and its importance in cardiac regeneration is also discussed.
Collapse
Affiliation(s)
- Jan Schlueter
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, Middlesex, UK
| | | |
Collapse
|
63
|
Gittenberger-de Groot AC, Winter EM, Bartelings MM, Goumans MJ, DeRuiter MC, Poelmann RE. The arterial and cardiac epicardium in development, disease and repair. Differentiation 2012; 84:41-53. [PMID: 22652098 DOI: 10.1016/j.diff.2012.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 02/01/2023]
Abstract
The importance of the epicardium covering the heart and the intrapericardial part of the great arteries has reached a new summit. It has evolved as a major cellular component with impact both in development, disease and more recently also repair potential. The role of the epicardium in development, its differentiation from a proepicardial organ at the venous pole (vPEO) and the differentiation capacities of the vPEO initiating cardiac epicardium (cEP) into epicardium derived cells (EPDCs) have been extensively described in recent reviews on growth and transcription factor pathways. In short, the epicardium is the source of the interstitial, the annulus fibrosus and the adventitial fibroblasts, and differentiates into the coronary arterial smooth muscle cells. Furthermore, EPDCs induce growth of the compact myocardium and differentiation of the Purkinje fibers. This review includes an arterial pole located PEO (aPEO) that provides the epicardium covering the intrapericardial great vessels. In avian and mouse models disturbance of epicardial outgrowth and maturation leads to a broad spectrum of cardiac anomalies with main focus on non-compaction of the myocardium, deficient annulus fibrosis, valve malformations and coronary artery abnormalities. The discovery that in disease both arterial and cardiac epicardium can again differentiate into EPDCs and thus reactivate its embryonic program and potential has highly broadened the scope of research interest. This reactivation is seen after myocardial infarction and also in aneurysm formation of the ascending aorta. Use of EPDCs for cell therapy show their positive function in paracrine mediated repair processes which can be additive when combined with the cardiac progenitor stem cells that probably share the same embryonic origin with EPDCs. Research into the many cell-autonomous and cell-cell-based capacities of the adult epicardium will open up new realistic therapeutic avenues.
Collapse
Affiliation(s)
- Adriana C Gittenberger-de Groot
- Department of Cardiology, Leiden University Medical Center, Postal zone: S-5-24, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
64
|
Sánchez NS, Barnett JV. TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway. Cell Signal 2012; 24:539-548. [PMID: 22033038 PMCID: PMC3237859 DOI: 10.1016/j.cellsig.2011.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 01/19/2023]
Abstract
Coronary vessel development requires transfer of mesothelial cells to the heart surface to form the epicardium where some cells subsequently undergo epithelial-mesenchymal transformation (EMT) and invade the subepicardial matrix. Tgfbr3(-/-) mice die due to failed coronary vessel formation associated with decreased epicardial cell invasion but the mediators downstream of TGFβR3 are not well described. TGFβR3-dependent endocardial EMT stimulated by either TGFβ2 or BMP-2 requires activation of the Par6/Smurf1/RhoA 1pathway where Activin Receptor Like Kinase (ALK5) signals Par6 to act downstream of TGFβ to recruit Smurf1 to target RhoA for degradation to regulate apical-basal polarity and tight junction dissolution. Here we asked if this pathway was operant in epicardial cells and if TGFβR3 was required to access this pathway. Targeting of ALK5 in Tgfbr3(+/+) cells inhibited loss of epithelial character and invasion. Overexpression of wild-type (wt) Par6, but not dominant negative (dn) Par6, induced EMT and invasion while targeting Par6 by siRNA inhibited EMT and invasion. Overexpression of Smurf1 and dnRhoA induced loss of epithelial character and invasion. Targeting of Smurf1 by siRNA or overexpression of constitutively active (ca) RhoA inhibited EMT and invasion. In Tgfbr3(-/-) epicardial cells which have a decreased ability to invade collagen gels in response to TGFβ2, overexpression of wtPar6, Smurf1, or dnRhoA had a diminished ability to induce invasion. Overexpression of TGFβR3 in Tgfbr3(-/-) cells, followed by siRNA targeting of Par6 or Smurf1, diminished the ability of TGFβR3 to rescue invasion demonstrating that the Par6/Smurf1/RhoA pathway is activated downstream of TGFβR3 in epicardial cells.
Collapse
Affiliation(s)
- Nora S Sánchez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232 USA.
| | - Joey V Barnett
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232 USA.
| |
Collapse
|
65
|
Hill CR, Sanchez NS, Love JD, Arrieta JA, Hong CC, Brown CB, Austin AF, Barnett JV. BMP2 signals loss of epithelial character in epicardial cells but requires the Type III TGFβ receptor to promote invasion. Cell Signal 2012; 24:1012-22. [PMID: 22237159 DOI: 10.1016/j.cellsig.2011.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/28/2011] [Indexed: 12/21/2022]
Abstract
Coronary vessel development depends on a subpopulation of epicardial cells that undergo epithelial to mesenchymal transformation (EMT) and invade the subepicardial space and myocardium. These cells form the smooth muscle of the vessels and fibroblasts, but the mechanisms that regulate these processes are poorly understood. Mice lacking the Type III Transforming Growth Factor β Receptor (TGFβR3) die by E14.5 due to failed coronary vessel development accompanied by reduced epicardial cell invasion. BMP2 signals via TGFβR3 emphasizing the importance of determining the relative contributions of the canonical BMP signaling pathway and TGFβR3-dependent signaling to BMP2 responsiveness. Here we examined the role of TGFβR3 in BMP2 signaling in epicardial cells. Whereas TGFβ induced loss of epithelial character and smooth muscle differentiation, BMP2 induced an ALK3-dependent loss of epithelial character and modestly inhibited TGFβ-stimulated differentiation. Tgfbr3(-/-) cells respond to BMP2 indicating that TGFβR3 is not required. However, Tgfbr3(-/-) cells show decreased invasion in response to BMP2 and overexpression of TGFβR3 in Tgfbr3(-/-) cells rescued invasion. Invasion was dependent on ALK5, ALK2, ALK3, and Smad4. Expression of TGFβR3 lacking the 3 C-terminal amino acids required to interact with the scaffolding protein GIPC (GAIP-interacting protein, C terminus) did not rescue. Knockdown of GIPC in Tgfbr3(+/+) or Tgfbr3(-/-) cells rescued with TGFβR3 decreased BMP2-stimulated invasion confirming a requirement for TGFβR3/GIPC interaction. Our results reveal the relative roles of TGFβR3-dependent and TGFβR3-independent signaling in the actions of BMP2 on epicardial cell behavior and demonstrate the critical role of TGFβR3 in mediating BMP2-stimulated invasion.
Collapse
|
66
|
|
67
|
Abstract
Abstract
The embryonic heart initially consists of only two cell layers, the endocardium and the myocardium. The epicardium, which forms an epithelial layer on the surface of the heart, is derived from a cluster of mesothelial cells developing at the base of the venous inflow tract of the early embryonic heart. This cell cluster is termed the proepicardium and gives rise not only to the epicardium but also to epicardium-derived cells. These cells populate the myocardial wall and differentiate into smooth muscle cells and fibroblasts, while the contribution to the vascular endothelial lineage is uncertain. In this review we will discuss the signaling molecules involved in recruiting mesodermal cells to undergo proepicardium formation and guide these cells to the myocardial surface. Marker genes which are suitable to follow these cells during proepicardium formation and cell migration will be introduced. We will address whether the proepicardium consists of a homogenous cell population or whether different cell lineages are present. Finally the role of the epicardium as a source for cardiac stem cells and its importance in cardiac regeneration, in particular in the zebrafish and mouse model systems is discussed.
Collapse
Affiliation(s)
- Jan Schlueter
- 1Harefield Heart Science Centre, National Heart
and Lung Institute, Imperial College London, Hill End Road, Harefield,
Middlesex, UB9 6JH, United Kingdom
| | - Thomas Brand
- 1Harefield Heart Science Centre, National Heart
and Lung Institute, Imperial College London, Hill End Road, Harefield,
Middlesex, UB9 6JH, United Kingdom
| |
Collapse
|
68
|
Cossette S, Misra R. The identification of different endothelial cell populations within the mouse proepicardium. Dev Dyn 2011; 240:2344-53. [PMID: 21932312 DOI: 10.1002/dvdy.22724] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2011] [Indexed: 12/18/2022] Open
Abstract
The proepicardium is a transient embryonic structure that is a source of precursors of the epicardium, coronary smooth muscle cells, and may be a source of coronary endothelial cells (EC). To better understand proepicardium development a systematic analysis of EC appearance was performed. Multiple marker analysis showed that EC are present in the mouse proepicardium at embryonic day (E) 9.0 through E9.75. Distinct populations of EC were found that were associated with the liver bud, and the sinus venosus, as well as a population that do not appear to be associated with either of these structures. There was a temporal increase in the number of EC and temporal changes in the distribution of EC within the different populations during PE development. These findings indicate that EC exist in the proepicardium before coronary vasculogenesis, and support a model in which there is a heterogeneous origin for EC in the proepicardium.
Collapse
|
69
|
Sánchez NS, Hill CR, Love JD, Soslow JH, Craig E, Austin AF, Brown CB, Czirok A, Camenisch TD, Barnett JV. The cytoplasmic domain of TGFβR3 through its interaction with the scaffolding protein, GIPC, directs epicardial cell behavior. Dev Biol 2011; 358:331-43. [PMID: 21871877 DOI: 10.1016/j.ydbio.2011.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/18/2011] [Accepted: 08/10/2011] [Indexed: 11/28/2022]
Abstract
The epicardium is a major contributor of the cells that are required for the formation of coronary vessels. Mice lacking both copies of the gene encoding the Type III Transforming Growth Factor β Receptor (TGFβR3) fail to form the coronary vasculature, but the molecular mechanism by which TGFβR3 signals coronary vessel formation is unknown. We used intact embryos and epicardial cells from E11.5 mouse embryos to reveal the mechanisms by which TGFβR3 signals and regulates epicardial cell behavior. Analysis of E13.5 embryos reveals a lower rate of epicardial cell proliferation and decreased epicardially derived cell invasion in Tgfbr3(-/-) hearts. Tgfbr3(-/-) epicardial cells in vitro show decreased proliferation and decreased invasion in response to TGFβ1 and TGFβ2. Unexpectedly, loss of TGFβR3 also decreases responsiveness to two other important regulators of epicardial cell behavior, FGF2 and HMW-HA. Restoring full length TGFβR3 in Tgfbr3(-/-) cells rescued deficits in invasion in vitro in response TGFβ1 and TGFβ2 as well as FGF2 and HMW-HA. Expression of TGFβR3 missing the 3 C-terminal amino acids that are required to interact with the scaffolding protein GIPC1 did not rescue any of the deficits. Overexpression of GIPC1 alone in Tgfbr3(-/-) cells did not rescue invasion whereas knockdown of GIPC1 in Tgfbr3(+/+) cells decreased invasion in response to TGFβ2, FGF2, and HMW-HA. We conclude that TGFβR3 interaction with GIPC1 is critical for regulating invasion and growth factor responsiveness in epicardial cells and that dysregulation of epicardial cell proliferation and invasion contributes to failed coronary vessel development in Tgfbr3(-/-) mice.
Collapse
Affiliation(s)
- Nora S Sánchez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Karuparthi P, Nickelson K, Baklanov D. Effects of endothelial growth media on proepicardial cell gene expression and morphogenesis in 3D collagen matrices. In Vitro Cell Dev Biol Anim 2011; 45:633-41. [PMID: 19690924 DOI: 10.1007/s11626-009-9233-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
Abstract
Proepicardial cells (PE) contribute to embryonic coronary vessel and epicardial development. Cells from the PE region can differentiate into coronary vascular smooth muscle cells and fibroblasts in vitro, but the endothelial specification capability of these cells is controversial. We sought to examine the effects of endothelial cell growth media on gene expression and the morphogenic properties of proepicardial cells in three-dimensional (3D) matrices. A primary culture of avian PE cells was subjected to molecular characterization with selected endothelial specific markers. Morphogenic properties of PE cells were assessed by in vitro assays of coronary vasculogenesis and invasion, which utilized highly defined, serum free, three-dimensional matrix conditions. PE cells maintained mixed cell population properties in the culture based on morphogenic features, immunohistochemistry, and the gene expression data. When suspended in a 3D vasculogenesis in vitro assay, PE cells formed intracellular vacuoles and assembled into multicellular tubes. Further, ultrastructural analysis revealed the presence of pinocytic vacuoles, intercellular junctions, and endothelial specific Weibel Palade bodies. In the invasion assay, PE cells spontaneously invaded control matrices. This invasion was markedly enhanced by lysophosphatidic acid (94±9.6 vs. 285.6±54.9, p<0.05) and was completely blocked with synthetic broad-spectrum metalloproteinase inhibitor GM6001. Isolated PE cells grown in endothelial cell media represent mixed-cell population, characterized by both smooth muscle and endothelial gene expression. When placed in 3D in vitro assays, PE cells manifest morphogenic properties, including multicellular tube assembly and invasion.
Collapse
Affiliation(s)
- Poorna Karuparthi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, USA.
| | | | | |
Collapse
|
71
|
Tenascin C may regulate the recruitment of smooth muscle cells during coronary artery development. Differentiation 2011; 81:299-306. [DOI: 10.1016/j.diff.2011.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 12/13/2022]
|
72
|
Civelek M, Manduchi E, Riley RJ, Stoeckert CJ, Davies PF. Coronary artery endothelial transcriptome in vivo: identification of endoplasmic reticulum stress and enhanced reactive oxygen species by gene connectivity network analysis. ACTA ACUST UNITED AC 2011; 4:243-52. [PMID: 21493819 DOI: 10.1161/circgenetics.110.958926] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelial function is central to the localization of atherosclerosis. The in vivo endothelial phenotypic footprints of arterial bed identity and site-specific atherosusceptibility are addressed. METHODS AND RESULTS Ninety-eight endothelial cell samples from 13 discrete coronary and noncoronary arterial regions of varying susceptibilities to atherosclerosis were isolated from 76 normal swine. Transcript profiles were analyzed to determine the steady-state in vivo endothelial phenotypes. An unsupervised systems biology approach using weighted gene coexpression networks showed highly correlated endothelial genes. Connectivity network analysis identified 19 gene modules, 12 of which showed significant association with circulatory bed classification. Differential expression of 1300 genes between coronary and noncoronary artery endothelium suggested distinct coronary endothelial phenotypes, with highest significance expressed in gene modules enriched for biological functions related to endoplasmic reticulum (ER) stress and unfolded protein binding, regulation of transcription and translation, and redox homeostasis. Furthermore, within coronary arteries, comparison of endothelial transcript profiles of susceptible proximal regions to protected distal regions suggested the presence of ER stress conditions in susceptible sites. Accumulation of reactive oxygen species throughout coronary endothelium was greater than in noncoronary endothelium consistent with coronary artery ER stress and lower endothelial expression of antioxidant genes in coronary arteries. CONCLUSIONS Gene connectivity analyses discriminated between coronary and noncoronary endothelial transcript profiles and identified differential transcript levels associated with increased ER and oxidative stress in coronary arteries consistent with enhanced susceptibility to atherosclerosis.
Collapse
Affiliation(s)
- Mete Civelek
- Department of Bioengineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
73
|
Abstract
As the developing heart grows and the chamber walls thicken, passive diffusion of oxygen and nutrients is replaced by a vascular plexus which remodels and expands to form a mature coronary vascular system. The coronary arteries and veins ensure the continued development of the heart and facilitate cardiac output with progression towards birth. Many aspects of coronary vessel development are surprisingly not well understood and recently there has been much debate surrounding both the developmental origin and tissue contribution of cardiovascular cells alongside the specific signals that determine their fate and function. What is clear is that an understanding of the cellular and molecular cues to vascularize the heart of the embryo has significant implications for adult heart disease and regeneration, as we move towards targeted cell-based therapies for neovascularization and coronary bypass engraftment. This review will focus on the proposed cellular origins for the coronary endothelium with due consideration to the pro-epicardial organ/epicardium, sinus venosus and endocardium as potential sources, and we will explore the outstanding questions and technical limitations with respect to accurate labelling and lineage tracing of the developing coronaries. We will briefly document canonical vascular signalling that induces vessels in the heart alongside a focus on the potential for developmental reprogramming and putative mechanisms underpinning venous vs. arterial cell fate. Finally, we will extrapolate directly from development to address adult maintenance of the coronaries, vascular homeostasis and remodelling in response to pathology, aligned with the potential for revascularizing the injured adult heart.
Collapse
Affiliation(s)
- Paul R Riley
- Molecular Medicine Unit, UCL-Institute of Child Health, London WC1N 1EH, UK.
| | | |
Collapse
|
74
|
The epicardium in cardiac repair: From the stem cell view. Pharmacol Ther 2011; 129:82-96. [DOI: 10.1016/j.pharmthera.2010.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/09/2010] [Indexed: 12/12/2022]
|
75
|
Hanato T, Nakagawa M, Okamoto N, Nishijima S, Fujino H, Shimada M, Takeuchi Y, Imanaka-Yoshida K. Developmental defects of coronary vasculature in rat embryos administered bis-diamine. ACTA ACUST UNITED AC 2010; 92:10-6. [PMID: 21312320 DOI: 10.1002/bdrb.20279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/08/2010] [Indexed: 12/28/2022]
Abstract
BACKGROUND Conotruncal anomalies are often associated with abnormal coronary arteries. Although bis-diamine is known to induce conotruncal defects, its pathological effects on coronary vascular development have not been demonstrated. This study sought to assess the teratogenic effects of bis-diamine on coronary vascular development and the pathogenesis of this anomalous association. METHODS AND RESULTS A single 200 mg dose of bis-diamine was administered to pregnant Wistar rats at 10.5 days of gestation. Fifty-two embryos from 10 mother rats underwent morphological analysis of the coronary arteries. Three embryos each were removed from four mothers on embryonic days (ED) 14.5, 15.5, 16.5, and 17.5 and used for immunohistochemical studies using the anti-vascular cell adhesion molecule (VCAM)-1 antibody. Conotruncal anomalies were detected in 48 of 52 embryos, and an aplastic or hypoplastic left coronary artery was found in all of them. In control embryos at ED 16.5, VCAM-1-positive epicardial cells were transformed into mesenchymal cells in vascular plexus, which appeared to differentiate into the endothelial cells of coronary vasculature. In the heart at ED 17.5, coronary vasculature was well developed and connected with coronary ostia near the aorta. However, poor epicardial-mesenchymal transformation and subsequent differentiation was revealed in bis-diamine-treated embryos at EDs 16.5 and 17.5, causing abnormal development of the coronary vasculature and incomplete connections with coronary ostia of the aorta. CONCLUSIONS Anomalous coronary arteries in the bis-diamine-treated embryos are induced by the disruption of epicardial-mesenchymal transformation and subsequent poor development of coronary vasculature. Incomplete hatching of the coronary ostium is associated with abnormal truncal division.
Collapse
Affiliation(s)
- Takashi Hanato
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
76
|
van Wijk B, van den Hoff M. Epicardium and myocardium originate from a common cardiogenic precursor pool. Trends Cardiovasc Med 2010; 20:1-7. [PMID: 20685570 DOI: 10.1016/j.tcm.2010.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During development, the epicardium, an epithelial layer that covers the heart, gives rise to a large portion of the nonmyocardial cells present in the heart. The epicardium arises from a structure, called the proepicardium, which forms at the inflow of the developing heart. By epithelial-to-mesenchymal transformation, mesenchymal cells are formed that will subsequently populate the stroma of the proepicardium and the subepicardium. Based on labeling analysis, the proepicardium and part of the myocardium have been shown to be derived from a common cardiogenic precursor population. In this review, we will discuss the common cardiogenic origin of proepicardial and myocardial cells, the underlying processes and factors that play a role in the separation of the lineages, and their potential role in cardiac regenerative approaches.
Collapse
Affiliation(s)
- Bram van Wijk
- Heart Failure Research Center, Academic Medical Center, 1105AZ Amsterdam, The Netherlands
| | | |
Collapse
|
77
|
Wu M, Smith CL, Hall JA, Lee I, Luby-Phelps K, Tallquist MD. Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell 2010; 19:114-25. [PMID: 20643355 DOI: 10.1016/j.devcel.2010.06.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 05/12/2010] [Accepted: 05/21/2010] [Indexed: 11/25/2022]
Abstract
During heart morphogenesis, epicardial cells undergo an epithelial-to-mesenchymal transition (EMT) and migrate into the subepicardium. The cellular signals controlling this process are poorly understood. Here, we show that epicardial cells exhibit two distinct mitotic spindle orientations, directed either parallel or perpendicular to the basement membrane. Cells undergoing perpendicular cell division subsequently enter the myocardium. We found that loss of beta-catenin led to a disruption of adherens junctions and a randomization of mitotic spindle orientation. Loss of adherens junctions also disrupted Numb localization within epicardial cells, and disruption of Numb and Numblike expression in the epicardium led to randomized mitotic spindle orientations. Taken together, these data suggest that directed mitotic spindle orientation contributes to epicardial EMT and implicate a junctional complex of beta-catenin and Numb in the regulation of spindle orientation.
Collapse
Affiliation(s)
- Mingfu Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | | | | | | | |
Collapse
|
78
|
González-Rosa JM, Padrón-Barthe L, Torres M, Mercader N. [Lineage tracing of epicardial cells during development and regeneration]. Rev Esp Cardiol 2010; 63 Suppl 2:36-48. [PMID: 20540899 DOI: 10.1016/s0300-8932(10)70151-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tracing the history of individual cells during embryonic morphogenesis in a structure as complex as the cardiovascular system is one of the major challenges of developmental biology. It involves determining the relationships between the various lineages of cells forming an organ at different stages, describing the topological rearrangements tissues undergo during morphogenesis, and characterizing the interactions between cells in different structures. However, despite the great expectations raised in the field of regenerative medicine, only limited progress has been made in using regenerative therapy to repair the cardiovascular system. Recent research has highlighted the role of the epicardium during cardiac regeneration, but it is still unclear whether it is important for molecular signaling or acts as a source of progenitor cells during this process. Consequently, increasing knowledge about the origin, diversification and potential of epicardial cells during development and homeostasis and under pathological conditions is of fundamental importance both for basic research and for the development of effective cellular therapies. The aims of this article were to provide a general overview of the classical techniques used for tracing cell lineages, including their potential and limitations, and to describe novel techniques for studying the origin and differentiation of the epicardium and its role in cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Departamento de Biología del Desarrollo Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, Instituto de Salud Carlos III, Madrid, España
| | | | | | | |
Collapse
|
79
|
Coronary arteries form by developmental reprogramming of venous cells. Nature 2010; 464:549-53. [PMID: 20336138 DOI: 10.1038/nature08873] [Citation(s) in RCA: 392] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/04/2010] [Indexed: 12/31/2022]
Abstract
Coronary artery disease is the leading cause of death worldwide. Determining the coronary artery developmental program could aid understanding of the disease and lead to new treatments, but many aspects of the process, including their developmental origin, remain obscure. Here we show, using histological and clonal analysis in mice and cardiac organ culture, that coronary vessels arise from angiogenic sprouts of the sinus venosus-the vein that returns blood to the embryonic heart. Sprouting venous endothelial cells dedifferentiate as they migrate over and invade the myocardium. Invading cells differentiate into arteries and capillaries; cells on the surface redifferentiate into veins. These results show that some differentiated venous cells retain developmental plasticity, and indicate that position-specific cardiac signals trigger their dedifferentiation and conversion into coronary arteries, capillaries and veins. Understanding this new reprogramming process and identifying the endogenous signals should suggest more natural ways of engineering coronary bypass grafts and revascularizing the heart.
Collapse
|
80
|
Misra RP. The role of serum response factor in early coronary vasculogenesis. Pediatr Cardiol 2010; 31:400-7. [PMID: 20091302 PMCID: PMC3866703 DOI: 10.1007/s00246-009-9614-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/08/2009] [Indexed: 11/24/2022]
Affiliation(s)
- Ravi P. Misra
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA,
| |
Collapse
|
81
|
Icardo JM, Guerrero A, Durán AC, Colvee E, Domezain A, Sans-Coma V. The development of the epicardium in the sturgeon Acipenser naccarii. Anat Rec (Hoboken) 2009; 292:1593-601. [PMID: 19714666 DOI: 10.1002/ar.20939] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This article reports on the development of the epicardium in alevins of the sturgeon Acipenser naccarii, aged 4-25 days post-hatching (dph). Epicardial development starts at 4 dph with formation of the proepicardium (PE) that arises as a bilateral structure at the boundary between the sinus venosus and the duct of Cuvier. The PE later becomes a midline organ arising from the wall of the sinus venosus and ending at the junction between the liver, the sinus venosus and the transverse septum. This relative displacement appears related to venous reorganization at the caudal pole of the heart. The mode and time of epicardium formation is different in the various heart chambers. The conus epicardium develops through migration of a cohesive epithelium from the PE villi, and is completed through bleb-like aggregates detached from the PE. The ventricular epicardium develops a little later, and mostly through bleb-like aggregates. The bulbus epicardium appears to derive from the mesothelium located at the junction between the outflow tract and the pericardial cavity. Strikingly, formation of the epicardium of the atrium and the sinus venosus is a very late event occurring after the third month of development. Associated to the PE, a sino-ventricular ligament develops as a permanent connection. This ligament contains venous vessels that communicate the subepicardial coronary plexus and the sinus venosus, and carries part of the heart innervation. The development of the sturgeon epicardium shares many features with that of other vertebrate groups. This speaks in favour of conservative mechanisms across the evolutionary scale.
Collapse
Affiliation(s)
- José M Icardo
- Department of Anatomy and Cell Biology, University of Cantabria, Polígono de Cazoña, s/n, Santander, Spain.
| | | | | | | | | | | |
Collapse
|
82
|
Rhee DY, Zhao XQ, Francis RJB, Huang GY, Mably JD, Lo CW. Connexin 43 regulates epicardial cell polarity and migration in coronary vascular development. Development 2009; 136:3185-93. [PMID: 19700622 DOI: 10.1242/dev.032334] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Connexin 43 knockout (Cx43 KO) mice exhibit conotruncal malformations and coronary artery defects. We observed epicardial blisters in the Cx43 KO hearts that suggest defects in epicardial epithelial-mesenchymal transformation (EMT), a process that generates coronary vascular progenitors. Analysis using a three-dimensional collagen gel invasion assay showed that Cx43 KO epicardial cells are less invasive and that, unlike wild-type epicardial cells, they fail to organize into thin vessel-like projections. Examination of Cx43 KO hearts using Wt1 as an epicardial marker revealed a disorganized pattern of epicardial cell infiltration. Time-lapse imaging and motion analysis using epicardial explants showed a defect in directional cell migration. This was associated with changes in the actin/tubulin cytoskeleton. A defect in cell polarity was indicated by a failure of the microtubule-organizing center to align with the direction of cell migration. Forced expression of Cx43 constructs in epicardial explants showed the Cx43 tubulin-binding domain is required for Cx43 modulation of cell polarity and cell motility. Pecam staining revealed early defects in remodeling of the primitive coronary vascular plexuses in the Cx43 KO heart. Together, these findings suggest an early defect in coronary vascular development arising from a global perturbation of the cytoarchitecture of the cell. Consistent with this, we found aberrant myocardialization of the outflow tract, a process also known to be EMT dependent. Together, these findings suggest cardiac defects in the Cx43 KO mice arise from the disruption of cell polarity, a process that may be dependent on Cx43-tubulin interactions.
Collapse
Affiliation(s)
- David Y Rhee
- Laboratory of Developmental Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
83
|
Siney L, Lewis MJ. Nitric Oxide Modulates Endothelin Release from Porcine Cultured Endocardial Endothelium. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329409088472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
84
|
Lang D, Shah AM, Lewis MJ. Aniotensin-Converting Enzyme (ACE) Activity: Aortic ancf Endocardial Endothelium Compared. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329609024681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
85
|
Nesbitt TL, Roberts A, Tan H, Junor L, Yost MJ, Potts JD, Dettman RW, Goodwin RL. Coronary endothelial proliferation and morphogenesis are regulated by a VEGF-mediated pathway. Dev Dyn 2009; 238:423-30. [PMID: 19161222 DOI: 10.1002/dvdy.21847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Though development of the coronary vasculature is a critical event during embryogenesis, the molecular mechanisms that regulate its formation are not well characterized. Two unique approaches were used to investigate interactions between cardiac myocytes and proepicardial (PE) cells, which are the coronary anlagen. One of these experimental approaches used a 3-D collagen scaffold system on which specific cell-cell and cell-matrix interactions were studied. The other approach used a whole heart culture system that allowed for the analysis of epicardial to mesenchymal transformation (EMT). The VEGF signaling system has been implicated previously as an important regulator of coronary development. Our results demonstrated that a specific isoform of VEGF-A, VEGF(164), increased PE-derived endothelial cell proliferation and also increased EMT. However, VEGF-stimulated endothelial cells did not robustly coalesce into endothelial tubes as they did when cocultured with cardiac myocytes. Interestingly, blocking VEGF signaling via flk-1 inhibition reduced endothelial tube formation despite the presence of cardiac myocytes. These results indicate that VEGF signaling is complex during coronary development and that combinatorial signaling by other VEGF-A isoforms or other flk-1-binding VEGFs are likely to regulate endothelial tube formation.
Collapse
Affiliation(s)
- Tresa L Nesbitt
- Departments of Cell and Developmental Biology and Surgery, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Smart N, Dubé KN, Riley PR. Coronary vessel development and insight towards neovascular therapy. Int J Exp Pathol 2009; 90:262-83. [PMID: 19563610 PMCID: PMC2697550 DOI: 10.1111/j.1365-2613.2009.00646.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/21/2008] [Indexed: 12/20/2022] Open
Abstract
Formation of the coronary arteries consists of a precisely orchestrated series of morphogenetic and molecular events which can be divided into three distinct processes: vasculogenesis, angiogenesis and arteriogenesis (Risau 1997; Carmeliet 2000). Even subtle perturbations in this process may lead to congenital coronary artery anomalies, as occur in 0.2-1.2% of the general population (von Kodolitsch et al. 2004). Contrary to the previously held dogma, the process of vasculogenesis is not limited to prenatal development. Both vasculogenesis and angiogenesis are now known to actively occur within the adult heart. When the need for regeneration arises, for example in the setting of coronary artery disease, a reactivation of embryonic processes ensues, redeploying many of the same molecular regulators. Thus, an understanding of the mechanisms of embryonic coronary vasculogenesis and angiogenesis may prove invaluable in developing novel strategies for cardiovascular regeneration and therapeutic coronary angiogenesis.
Collapse
Affiliation(s)
- Nicola Smart
- Molecular Medicine Unit, UCL-Institute of Child Health, London, UK
| | | | | |
Collapse
|
87
|
Scholz H, Wagner KD, Wagner N. Role of the Wilms' tumour transcription factor, Wt1, in blood vessel formation. Pflugers Arch 2008; 458:315-23. [PMID: 19052773 DOI: 10.1007/s00424-008-0621-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/21/2008] [Indexed: 12/23/2022]
Abstract
Blood vessel formation is important for normal organ development and tumour growth. A highly specialised developmental program of vessel formation exists in the heart and is essential for normal cardiogenesis. From mouse models, it became clear that the Wilms' tumour protein Wt1 is required for normal heart development. Originally identified as a tumour suppressor gene based on its mutational inactivation in Wilms' tumour or nephroblastoma, Wt1 is nowadays recognised to have much broader functions in organogenesis and pathophysiology. The multiple tasks of Wt1 are not only limited to the kidney but involve the heart and vascular system as well. In this review, we focus on recent findings about the importance of Wt1 in heart and coronary vessel development and the identified molecular mechanisms. In addition, we discuss the implication of Wt1 in the vascular response to myocardial ischaemia and its oncogenic potential as a promoter of tumour angiogenesis.
Collapse
Affiliation(s)
- Holger Scholz
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | | | |
Collapse
|
88
|
Abstract
This article concerns the development of myocardial architecture--crucial for contractile performance of the heart and its conduction system, essential for generation and coordinated spread of electrical activity. Topics discussed include molecular determination of cardiac phenotype (contractile and conducting), remodeling of ventricular wall architecture and its blood supply, and relation of trabecular compaction to noncompaction cardiomyopathy. Illustrated are the structure and function of the tubular heart, time course of trabecular compaction, and development of multilayered spiral systems of the compact layer.
Collapse
Affiliation(s)
- David Sedmera
- Institute of Animal Physiology and Genetics, Prague, Czech Republic.
| | | |
Collapse
|
89
|
Juszyński M, Ciszek B, Stachurska E, Jabłońska A, Ratajska A. Development of lymphatic vessels in mouse embryonic and early postnatal hearts. Dev Dyn 2008; 237:2973-86. [DOI: 10.1002/dvdy.21693] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
90
|
Van den Akker NMS, Winkel LCJ, Nisancioglu MH, Maas S, Wisse LJ, Armulik A, Poelmann RE, Lie-Venema H, Betsholtz C, Gittenberger-de Groot AC. PDGF-B signaling is important for murine cardiac development: its role in developing atrioventricular valves, coronaries, and cardiac innervation. Dev Dyn 2008; 237:494-503. [PMID: 18213589 DOI: 10.1002/dvdy.21436] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We hypothesized that PDGF-B/PDGFR-beta-signaling is important in the cardiac contribution of epicardium-derived cells and cardiac neural crest, cell lineages crucial for heart development. We analyzed hearts of different embryonic stages of both Pdgf-b-/- and Pdgfr-beta-/- mouse embryos for structural aberrations with an established causal relation to defective contribution of these cell lineages. Immunohistochemical staining for alphaSMA, periostin, ephrinB2, EphB4, VEGFR-2, Dll1, and NCAM was performed on wild-type and knockout embryos. We observed that knockout embryos showed perimembranous and muscular ventricular septal defects, maldevelopment of the atrioventricular cushions and valves, impaired coronary arteriogenesis, and hypoplasia of the myocardium and cardiac nerves. The abnormalities correspond with models in which epicardial development is impaired and with neuronal neural crest-related innervation deficits. This implies a role for PDGF-B/PDGFR-beta-signaling specifically in the contribution of these cell lineages to cardiac development.
Collapse
Affiliation(s)
- Nynke M S Van den Akker
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol 2008; 319:258-66. [PMID: 18508041 DOI: 10.1016/j.ydbio.2008.04.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 03/21/2008] [Accepted: 04/08/2008] [Indexed: 02/03/2023]
Abstract
Dissecting the molecular mechanisms that guide the proper development of epicardial cell lineages is critical for understanding the etiology of both congenital and adult forms of human cardiovascular disease. In this study, we describe the function of BAF180, a polybromo protein in ATP-dependent SWI/SNF chromatin remodeling complexes, in coronary development. Ablation of BAF180 leads to impaired epithelial-to-mesenchymal-transition (EMT) and arrested maturation of epicardium around E11.5. Three-dimensional collagen gel assays revealed that the BAF180 mutant epicardial cells indeed possess significantly compromised migrating and EMT potentials. Consequently, the mutant hearts form abnormal surface nodules and fail to develop the fine and continuous plexus of coronary vessels that cover the entire ventricle around E14. PECAM and *-SMA staining assays indicate that these nodules are defective structures resulting from the failure of endothelial and smooth muscle cells within them to form coronary vessels. PECAM staining also reveal that there are very few coronary vessels inside the myocardium of mutant hearts. Consistent with this, quantitative RT-PCR analysis indicate that the expression of genes involved in FGF, TGF, and VEGF pathways essential for coronary development are down-regulated in mutant hearts. Together, these data reveal for the first time that BAF180 is critical for coronary vessel formation.
Collapse
|
92
|
Austin AF, Compton LA, Love JD, Brown CB, Barnett JV. Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFbeta. Dev Dyn 2008; 237:366-76. [PMID: 18213583 DOI: 10.1002/dvdy.21421] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cells derived from the epicardium are required for coronary vessel development. Transforming growth factor beta (TGFbeta) induces loss of epithelial character and smooth muscle differentiation in chick epicardial cells. Here, we show that epicardial explants from embryonic day (E) 11.5 mouse embryos incubated with TGFbeta1 or TGFbeta2 lose epithelial character and undergo smooth muscle differentiation. To further study TGFbeta Signaling, we generated immortalized mouse epicardial cells. Cells from E10.5, 11.5, and 13.5 formed tightly packed epithelium and expressed the epicardial marker Wilm's tumor 1 (WT1). TGFbeta induced the loss of zonula occludens-1 (ZO-1) and the appearance of SM22alpha and calponin consistent with smooth muscle differentiation. Inhibition of activin receptor-like kinase (ALK) 5 or p160 rho kinase activity prevented the effects of TGFbeta while inhibition of p38 mitogen activated protein (MAP) kinase did not. These data demonstrate that TGFbeta induces epicardial cell differentiation and that immortalized epicardial cells provide a suitable model for differentiation.
Collapse
Affiliation(s)
- Anita F Austin
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | |
Collapse
|
93
|
Abstract
This chapter summarizes experimental techniques used to study coronary vessel development from its origins in the proepicardium (PE) to the final assembled network of arteries, veins, and capillaries present in the mature heart. Methods are described for microdissection and culture of the PE and embryonic epicardial cells, isolation of total RNA from single PE primordia and analysis by RT-PCR, imaging of the epicardium and coronary vessels by whole-mount confocal microscopy and by scanning electron microscopy, and the preparation of coronary vascular corrosion casts to visualize the entire coronary artery network structure. These techniques form the basic tools to study the cellular and molecular pathways that guide development and remodeling of coronary vessels.
Collapse
Affiliation(s)
- Xiu Rong Dong
- Carolina Cardiovascular Biology Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
94
|
Durán AC, Fernández MC, Fernández B, Fernández-Gallego T, Arqué JM, Sans-Coma V. Number of Coronary Ostia in Syrian Hamsters (Mesocricetus auratus) with Normal and Anomalous Coronary Arteries. Anat Histol Embryol 2007; 36:460-5. [DOI: 10.1111/j.1439-0264.2007.00788.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
95
|
Zamora M, Männer J, Ruiz-Lozano P. Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proc Natl Acad Sci U S A 2007; 104:18109-14. [PMID: 17989236 PMCID: PMC2084304 DOI: 10.1073/pnas.0702415104] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Indexed: 11/18/2022] Open
Abstract
We have previously identified several members of the Wnt/beta-catenin pathway that are differentially expressed in a mouse model with deficient coronary vessel formation. Systemic ablation of beta-catenin expression affects mouse development at gastrulation with failure of both mesoderm development and axis formation. To circumvent this early embryonic lethality and study the specific role of beta-catenin in coronary arteriogenesis, we have generated conditional beta-catenin-deletion mutant animals in the proepicardium by interbreeding with a Cre-expressing mouse that targets coronary progenitor cells in the proepicardium and its derivatives. Ablation of beta-catenin in the proepicardium results in lethality between embryonic day 15 and birth. Mutant mice display impaired coronary artery formation, whereas the venous system and microvasculature are normal. Analysis of proepicardial beta-catenin mutant cells in the context of an epicardial tracer mouse reveals that the formation of the proepicardium, the migration of proepicardial cells to the heart, and the formation of the primitive epicardium are unaffected. However, subsequent processes of epicardial development are dramatically impaired in epicardial-beta-catenin mutant mice, including failed expansion of the subepicardial space, blunted invasion of the myocardium, and impaired differentiation of epicardium-derived mesenchymal cells into coronary smooth muscle cells. Our data demonstrate a functional role of the epicardial beta-catenin pathway in coronary arteriogenesis.
Collapse
Affiliation(s)
- Mónica Zamora
- Development and Aging Program, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
96
|
Abstract
During cardiogenesis, the epicardium grows from the proepicardial organ to form the outermost layer of the early heart. Part of the epicardium undergoes epithelial-mesenchymal transformation, and migrates into the myocardium. These epicardium- derived cells differentiate into interstitial fibroblasts, coronary smooth muscle cells, and perivascular fibroblasts. Moreover, epicardium-derived cells are important regulators of formation of the compact myocardium, the coronary vasculature, and the Purkinje fiber network, thus being essential for proper cardiac development. The fibrous structures of the heart such as the fibrous heart skeleton and the semilunar and atrioventricular valves also depend on a contribution of these cells during development. We hypothesise that the essential properties of epicardium-derived cells can be recapitulated in adult diseased myocardium. These cells can therefore be considered as a novel source of adult stem cells useful in clinical cardiac regeneration therapy.
Collapse
Affiliation(s)
- E. M. Winter
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - A. C. Gittenberger-de Groot
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
97
|
Montaudon M, Latrabe V, Iriart X, Caix P, Laurent F. Congenital coronary arteries anomalies: review of the literature and multidetector computed tomography (MDCT)-appearance. Surg Radiol Anat 2007; 29:343-55. [PMID: 17563833 DOI: 10.1007/s00276-007-0217-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 04/13/2007] [Indexed: 02/03/2023]
Abstract
The prevalence of coronary arteries congenital anomalies is 1 to 2% in the general population. Although the spectrum of their clinical manifestations is very broad from total inocuity to lethal, anomalies of coronary arteries need to be recognized by clinicians in certain circumstances: they are the first cause of death in young adults under physical exercise and an abnormal course of a coronary artery can complicate a cardiac surgery. Therefore, a non-invasive test is highly suitable for detecting anomalies of coronary arteries and multidetector computed tomography (MDCT) is likely to be the best one. To understand how anomalies of coronary arteries may occur, we have reviewed the recent literature about their development. Then, the main types of anomalies are presented with their clinical context, and representative MDCT images from our personal database are used for illustration.
Collapse
Affiliation(s)
- M Montaudon
- Laboratoire d'Anatomie Médico-Chirurgicale Appliquée, Université Bordeaux 2, 146 rue Léo Saignat, 33000 Bordeaux, France.
| | | | | | | | | |
Collapse
|
98
|
Wilting J, Buttler K, Schulte I, Papoutsi M, Schweigerer L, Männer J. The proepicardium delivers hemangioblasts but not lymphangioblasts to the developing heart. Dev Biol 2007; 305:451-9. [PMID: 17383624 DOI: 10.1016/j.ydbio.2007.02.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 02/07/2007] [Accepted: 02/21/2007] [Indexed: 11/25/2022]
Abstract
The mass of the myocardium and endocardium of the vertebrate heart derive from the heart-forming fields of the lateral plate mesoderm. Further components of the mature heart such as the epicardium, cardiac interstitium and coronary blood vessels originate from a primarily extracardiac progenitor cell population: the proepicardium (PE). The coronary blood vessels are accompanied by lymph vessels, suggesting a common origin of the two vessel types. However, the origin of cardiac lymphatics has not been studied yet. We have grafted PE of HH-stage 17 (day 3) quail embryos hetero- and homotopically into chick embryos, which were re-incubated until day 15. Double staining with the quail endothelial cell (EC) marker QH1 and the lymphendothelial marker Prox1 shows that the PE of avian embryos delivers hemangioblasts but not lymphangioblasts. We have never observed quail ECs in lymphatics of the chick host. However, one exception was a large lymphatic trunk at the base of the chick heart, indicating a lympho-venous anastomosis and a 'homing' mechanism of venous ECs into the lymphatic trunk. Cardiac lymphatics grow from the base toward the apex of the heart. In murine embryos, we observed a basal to apical gradient of scattered Lyve-1+/CD31+/CD45+ cells in the subepicardium at embryonic day 12.5, indicating a contribution of immigrating lymphangioblasts to the cardiac lymphatic system. Our studies show that coronary blood and lymph vessels are derived from different sources, but grow in close association with each other.
Collapse
Affiliation(s)
- Jörg Wilting
- Children's Hospital, Pediatrics I, University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
99
|
Eralp I, Lie-Venema H, Bax NAM, Wijffels MCEF, Van Der Laarse A, Deruiter MC, Bogers AJJC, Van Den Akker NMS, Gourdie RG, Schalij MJ, Poelmann RE, Gittenberger-De Groot AC. Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart. ACTA ACUST UNITED AC 2007; 288:1272-80. [PMID: 17075847 PMCID: PMC2610390 DOI: 10.1002/ar.a.20398] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During embryonic development, the proepicardial organ (PEO) grows out over the heart surface to form the epicardium. Following epithelial-mesenchymal transformation, epicardium-derived cells (EPDCs) migrate into the heart and contribute to the developing coronary arteries, to the valves, and to the myocardium. The peripheral Purkinje fiber network develops from differentiating cardiomyocytes in the ventricular myocardium. Intrigued by the close spatial relationship between the final destinations of migrating EPDCs and Purkinje fiber differentiation in the avian heart, that is, surrounding the coronary arteries and at subendocardial sites, we investigated whether inhibition of epicardial outgrowth would disturb cardiomyocyte differentiation into Purkinje fibers. To this end, epicardial development was inhibited mechanically with a membrane, or genetically, by suppressing epicardial epithelial-to-mesenchymal transformation with antisense retroviral vectors affecting Ets transcription factor levels (n=4, HH39-41). In both epicardial inhibition models, we evaluated Purkinje fiber development by EAP-300 immunohistochemistry and found that restraints on EPDC development resulted in morphologically aberrant differentiation of Purkinje fibers. Purkinje fiber hypoplasia was observed both periarterially and at subendocardial positions. Furthermore, the cells were morphologically abnormal and not aligned in orderly Purkinje fibers. We conclude that EPDCs are instrumental in Purkinje fiber differentiation, and we hypothesize that they cooperate directly with endothelial and endocardial cells in the development of the peripheral conduction system.
Collapse
Affiliation(s)
- Ismail Eralp
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Mercado-Pimentel ME, Hubbard AD, Runyan RB. Endoglin and Alk5 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol 2006; 304:420-32. [PMID: 17250821 PMCID: PMC2001167 DOI: 10.1016/j.ydbio.2006.12.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 12/16/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Endoglin is an accessory receptor for TGFbeta and can associate with Alk5 or Alk2. Although prior studies indicated that endoglin and Alk5 were not directly involved in epithelial-mesenchymal transformation (EMT) in the heart, the expression pattern of endoglin prompted a re-examination. We here show that loss of endoglin expression mediated by either antisense DNA or siRNA results in a direct perturbation of EMT and reduced expression of EMT markers including slug, runx2, RhoA, and latrophilin-2. An examination of BrdU incorporation shows that, while endoglin regulates proliferation at an early stage, reduced endothelial cell proliferation does not account for the loss of mesenchyme. As Alk5 interacts with endoglin, we utilized siRNA and a specific inhibitor, HTS466284 (HTS), to perturb this receptor as well. Alk5 inhibition produced similar effects to the inhibition of endoglin. There was a reduction in mesenchymal cell formation and loss of EMT marker expression similar to that seen with endoglin. Alk5 kinase inhibition produced a similar loss of EMT marker expression but showed a contrasting upregulation of the proliferation and remodeling markers, Cyclin B2 and beta-catenin. Alk5 and endoglin both mediate endothelial cell proliferation in younger explants but, by stage 16, loss of endoglin no longer alters proliferation rates. These data show that both Alk5 and endoglin are directly involved in the process of EMT, that they interact with both TGFbeta-regulated activation and invasion pathways and that the roles of these receptors change during cardiac development.
Collapse
Affiliation(s)
- Melania E Mercado-Pimentel
- Department of Cell Biology and Anatomy, University of Arizona, 1501 N. Campbell Ave., P.O. Box 245044, Tucson, AZ 85724-5044, USA
| | | | | |
Collapse
|