51
|
Takagi G, Miyamoto M, Fukushima Y, Yasutake M, Tara S, Takagi I, Seki N, Kumita S, Shimizu W. Imaging Angiogenesis Using 99mTc-Macroaggregated Albumin Scintigraphy in Patients with Peripheral Artery Disease. J Nucl Med 2015; 57:192-7. [PMID: 26541773 DOI: 10.2967/jnumed.115.160937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/19/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED One problem of vascular angiogenesis therapy is the lack of reliable methods for evaluating blood flow in the microcirculation. We aimed to assess whether (99m)Tc-macroaggregated albumin perfusion scintigraphy ((99m)Tc-MAA) predicts quantitated blood flow after therapeutic angiogenesis in patients with peripheral artery disease. METHODS Forty-six patients with peripheral artery disease were treated with bone marrow mononuclear cell implantation (BMCI). Before and 4 wk after BMCI, blood flow was evaluated via transcutaneous oxygen tension (TcPO2), ankle-brachial index, intravenous (99m)Tc-tetrofosmin perfusion scintigraphy ((99m)Tc-TF), and intraaortic (99m)Tc-MAA. RESULTS Four weeks after BMCI, TcPO2 improved significantly (20.4 ± 14.4 to 36.0 ± 20.0 mm Hg, P < 0.01), but ankle-brachial index did not (0.65 ± 0.30 to 0.76 ± 0.24, P = 0.07). Improvement in (99m)Tc-TF count (0.60 ± 0.23 to 0.77 ± 0.29 count ratio/pixel, P < 0.01) and (99m)Tc-MAA count (5.21 ± 3.56 to 10.33 ± 7.18 count ratio/pixel, P = 0.02) was observed in the foot region but not the lower limb region, using both methods. When these data were normalized by subtracting the pixel count of the untreated side, the improvements in (99m)Tc-TF count (-0.04 ± 0.26 to 0.08 ± 0.32 count ratio/pixel, P = 0.04) and (99m)Tc-MAA count (1.49 ± 3.64 to 5.59 ± 4.84 count ratio/pixel, P = 0.03) in the foot remained significant. (99m)Tc-MAA indicated that the newly developed arteries were approximately 25 μm in diameter. CONCLUSION BMCI induced angiogenesis in the foot, which was detected using (99m)Tc-TF and (99m)Tc-MAA. (99m)Tc-MAA is a useful method to quantitate blood flow, estimate vascular size, and evaluate flow distribution after therapeutic angiogenesis.
Collapse
Affiliation(s)
- Gen Takagi
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Masaaki Miyamoto
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | | | - Masahiro Yasutake
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Shuhei Tara
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Ikuyo Takagi
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Naoki Seki
- FUJIFILM RI Pharma Co., Ltd., Tokyo, Japan
| | | | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
52
|
Feng N, Zhang Z, Wang Z, Zheng H, Qu F, He X, Wang C. Insulin-Like Growth Factor Binding Protein-2 Promotes Adhesion of Endothelial Progenitor Cells to Endothelial Cells via Integrin α5β1. J Mol Neurosci 2015; 57:426-34. [DOI: 10.1007/s12031-015-0589-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/25/2015] [Indexed: 01/10/2023]
|
53
|
Chen X, Wang J, An Q, Li D, Liu P, Zhu W, Mo X. Electrospun poly(L-lactic acid-co-ɛ-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation. Colloids Surf B Biointerfaces 2015; 128:106-114. [PMID: 25731100 DOI: 10.1016/j.colsurfb.2015.02.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/18/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022]
Abstract
Emulsion electrospinning is a convenient and promising method for incorporating proteins and drugs into nanofiber scaffolds. The aim of this study was to fabricate a nanofiber scaffold for anticoagulation and rapid endothelialization. For this purpose, we encapsulated heparin and vascular endothelial growth factor (VEGF) into the core of poly(L-lactic acid-co-ɛ-caprolactone) (P(LLA-CL)) core-shell nanofibers via emulsion electrospinning. The fiber morphology, core-shell structure and hydrophilicity of the nanofiber mats were analyzed by scanning electron microscopy, transmission electron microscopy and water contact angle. The blood compatibility was measured by hemolysis and anticoagulation testing. A CCK-8 assay was performed to study the promotion of endothelial progenitor cell (EPC) growth and was complemented by immunofluorescent staining and SEM. Our study demonstrates that heparin and VEGF can be incorporated into P(LLA-CL) nanofibers via emulsion. The released heparin performed well as an anticoagulant, and the released VEGF promoted EPC growth on the fiber scaffolds. These results imply that electrospun P(LLA-CL) nanofibers containing heparin and VEGF have great potential in the development of vascular grafts in cases where antithrombogenicity and accelerated endothelialization are desirable.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Jing Wang
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Dawei Li
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai 200040, China.
| | - Xiumei Mo
- Biomaterials and Tissue Engineering Laboratory, College of Chemistry & Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
54
|
Muñoz-Hernandez R, Vallejo-Vaz AJ, Sanchez Armengol A, Moreno-Luna R, Caballero-Eraso C, Macher HC, Villar J, Merino AM, Castell J, Capote F, Stiefel P. Obstructive sleep apnoea syndrome, endothelial function and markers of endothelialization. Changes after CPAP. PLoS One 2015; 10:e0122091. [PMID: 25815511 PMCID: PMC4376903 DOI: 10.1371/journal.pone.0122091] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/22/2015] [Indexed: 01/07/2023] Open
Abstract
Study objectives This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. Design Observational study, before and after CPAP therapy. Setting and Patients We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. Measurements and results After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005) cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. Conclusions CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage.
Collapse
Affiliation(s)
- Rocio Muñoz-Hernandez
- Laboratorio de Hipertensión Arterial e Hipercolesterolemia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Antonio J Vallejo-Vaz
- Laboratorio de Hipertensión Arterial e Hipercolesterolemia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Angeles Sanchez Armengol
- Unidad del Sueño, Unidad Medico Quirúrgica de Enfermedades Respiratorias, Hospital Virgen del Rocío, Sevilla, Spain
| | - Rafael Moreno-Luna
- Departamento de Fisiopatología Vascular, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Candela Caballero-Eraso
- Laboratorio de Hipertensión Arterial e Hipercolesterolemia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Unidad del Sueño, Unidad Medico Quirúrgica de Enfermedades Respiratorias, Hospital Virgen del Rocío, Sevilla, Spain
| | - Hada C Macher
- Servicio de Bioquímica Clínica, Hospital Virgen del Rocío, Sevilla, Spain
| | - Jose Villar
- Laboratorio de Hipertensión Arterial e Hipercolesterolemia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Unidad Clínico Experimental de Riesgo Vascular (UCAMI), Hospital Virgen del Rocío, Sevilla, Spain
| | - Ana M Merino
- Instituto de Investigación Biomédica Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Castell
- UGC de Radiología, Hospital Virgen del Rocío, Sevilla, Spain
| | - Francisco Capote
- Unidad del Sueño, Unidad Medico Quirúrgica de Enfermedades Respiratorias, Hospital Virgen del Rocío, Sevilla, Spain
| | - Pablo Stiefel
- Laboratorio de Hipertensión Arterial e Hipercolesterolemia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain; Unidad Clínico Experimental de Riesgo Vascular (UCAMI), Hospital Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
55
|
Kim S, Kwon J. Actin cytoskeletal rearrangement and dysfunction due to activation of the receptor for advanced glycation end products is inhibited by thymosin beta 4. J Physiol 2015; 593:1873-86. [PMID: 25640761 DOI: 10.1113/jphysiol.2014.287045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/27/2015] [Indexed: 01/31/2023] Open
Abstract
KEY POINTS Thymosin beta 4 (Tβ4 ) attenuates the vascular cellular toxicity induced by advanced glycation end products (AGEs) in human umbilical vein endothelial cells (HUVECs). Tβ4 reduces expression of both the receptor of AGEs (RAGE) and the filamentous actin (F-actin) to globular actin (G-actin) ratio. RAGE expression was regulated by actin cytoskeleton involved in Tβ4 . Tβ4 attenuates the vascular cellular toxicity induced by AGEs via remodelling of the actin cytoskeleton. AGEs attenuate vascular-like tube formation of HUVECs, which is reversed by Tβ4 via remodelling of the actin cytoskeleton. ABSTRACT The receptor of advanced glycation end products (RAGE) is a cell-surface receptor that is a key factor in the pathogenesis of diabetic complications, including vascular disorders. Dysfunction of the actin cytoskeleton contributes to disruption of cell membrane repair in response to various type of endothelial cell damage. However, mechanism underlying RAGE remodelling of the actin cytoskeleton, by which globular actin (G-actin) forms to filamentous actin (F-actin), remains unclear. In this study we examined the role of thymosin beta 4 (Tβ4 ) - which binds to actin, blocks actin polymerization, and maintains the dynamic equilibrium between G-actin and F-actin in human umbilical vein endothelial cells (HUVECs) - in the response to RAGE. Tβ4 increased cell viability and decreased levels of reactive oxygen species in HUVECs incubated with AGEs. Tβ4 reduced the expression of RAGE, consistent with a down-regulation of the F-actin to G-actin ratio. The effect of remodelling of the actin cytoskeleton on RAGE expression was clarified by adding Phalloidin, which stabilizes F-actin. Moreover, small interfering RNA was used to determine whether intrinsic Tβ4 regulates RAGE expression in the actin cytoskeleton. The absence of intrinsic Tβ4 in HUVECs evoked actin cytoskeleton disorder and increased RAGE expression. These findings suggest that regulation of the actin cytoskeleton by Tβ4 plays a pivotal role in the RAGE response to AGEs.
Collapse
Affiliation(s)
- Sokho Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, 561-156, Republic of Korea
| | | |
Collapse
|
56
|
Abu El-Asrar AM, De Hertogh G, Nawaz MI, Siddiquei MM, Van den Eynde K, Mohammad G, Opdenakker G, Geboes K. The Tumor Necrosis Factor Superfamily Members TWEAK, TNFSF15 and Fibroblast Growth Factor-Inducible Protein 14 Are Upregulated in Proliferative Diabetic Retinopathy. Ophthalmic Res 2015; 53:122-30. [DOI: 10.1159/000369300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 10/22/2014] [Indexed: 11/19/2022]
|
57
|
Abstract
The key impediment to the successful application of gene therapy in clinics is not the paucity of therapeutic genes. It is rather the lack of nontoxic and efficient strategies to transfer therapeutic genes into target cells. Over the past few decades, considerable progress has been made in gene transfer technologies, and thus far, three different delivery systems have been developed with merits and demerits characterizing each system. Viral and chemical methods of gene transfer utilize specialized carrier to overcome membrane barrier and facilitate gene transfer into cells. Physical methods, on the other hand, utilize various forms of mechanical forces to enforce gene entry into cells. Starting in 1980s, physical methods have been introduced as alternatives to viral and chemical methods to overcome various extra- and intracellular barriers that limit the amount of DNA reaching the intended cells. Accumulating evidence suggests that it is quite feasible to directly translocate genes into cytoplasm or even nuclei of target cells by means of mechanical force, bypassing endocytosis, a common pathway for viral and nonviral vectors. Indeed, several methods have been developed, and the majority of them share the same underlying mechanism of gene transfer, i.e., physically created transient pores in cell membrane through which genes get into cells. Here, we provide an overview of the current status and future research directions in the field of physical methods of gene transfer.
Collapse
|
58
|
Rose JA, Erzurum S, Asosingh K. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells. Cytometry A 2014; 87:5-19. [PMID: 25418030 DOI: 10.1002/cyto.a.22596] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/21/2014] [Accepted: 11/06/2014] [Indexed: 12/25/2022]
Abstract
During development, hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life, this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow (BM)-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative "endothelial progenitor cells" that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multidisciplinary expertise in flow cytometry, hematology, and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and BM.
Collapse
Affiliation(s)
- Jonathan A Rose
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | | | | |
Collapse
|
59
|
King A, Balaji S, Keswani SG, Crombleholme TM. The Role of Stem Cells in Wound Angiogenesis. Adv Wound Care (New Rochelle) 2014; 3:614-625. [PMID: 25300298 DOI: 10.1089/wound.2013.0497] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 03/19/2014] [Indexed: 12/18/2022] Open
Abstract
Significance: Revascularization plays a critical role in wound healing and is regulated by a complex milieu of growth factors and cytokines. Deficiencies in revascularization contribute to the development of chronic nonhealing wounds. Recent Advances: Stem-cell-based therapy provides a novel strategy to enhance angiogenesis and improve wound healing. With bioethical concerns associated with embryonic stem cells, focus has shifted to different populations of vascular precursors, isolated from adult somatic tissue. Three main populations have been identified: endothelial progenitor cells, mesenchymal stem cells, and induced-pluripotent stem cells. These populations demonstrate great promise to positively influence neovascularization and wound repair. Critical Issues: Further studies to more definitively define each population are necessary to efficiently translate stem-cell-based therapeutic angiogenesis to the bedside. Better understanding of the physiologic pathways of how stem cells contribute to angiogenesis in normal tissue repair will help identify targets for successful therapeutic angiogenesis. Future Directions: Active studies in both animal models and clinical trials are being conducted to develop effective delivery routes, including dosing, route, and timing. Stem-cell-based therapy holds significant potential as a strategy for therapeutic angiogenesis in the care of patients with chronic nonhealing wounds.
Collapse
Affiliation(s)
- Alice King
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Swathi Balaji
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Sundeep G. Keswani
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Timothy M. Crombleholme
- Center for Children's Surgery, Division of Pediatric General, Thoracic and Fetal Surgery, Children's Hospital Colorado, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
60
|
Kumar AHS, Martin K, Doyle B, Huang CL, Pillai GKM, Ali MT, Skelding KA, Wang S, Gleeson BM, Jahangeer S, Ritman EL, Russell SJ, Caplice NM. Intravascular cell delivery device for therapeutic VEGF-induced angiogenesis in chronic vascular occlusion. Biomaterials 2014; 35:9012-22. [PMID: 25096850 DOI: 10.1016/j.biomaterials.2014.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/10/2014] [Indexed: 10/24/2022]
Abstract
Site specific targeting remains elusive for gene and stem cell therapies in the cardiovascular field. One promising option involves use of devices that deliver larger and more sustained cell/gene payloads to specific disease sites using the versatility of percutaneous vascular access technology. Smooth muscle cells (SMCs) engineered to deliver high local concentrations of an angiogenic molecule (VEGF) were placed in an intravascular cell delivery device (ICDD) in a porcine model of chronic total occlusion (CTO) involving ameroid placement on the proximal left circumflex (LCx) artery. Implanted SMC were retained within the ICDD and were competent for VEGF production in vitro and in vivo. Following implantation, micro-CT analyses revealed that ICDD-VEGF significantly enhanced vasa vasora microvessel density with a concomitant increase in tissue VEGF protein levels and formation of endothelial cell colonies suggesting increased angiogenic potential. ICDD-VEGF markedly enhanced regional blood flow determined by microsphere and contrast CT analysis translating to a functional improvement in regional wall motion and global left ventricular (LV) systolic and diastolic function. Our data indicate robust, clinically relevant angiogenesis can be achieved in a human scale porcine chronic vascular occlusion model following ICDD-VEGF-based delivery of angiogenic cells. This may have implications for percutaneous delivery of numerous therapeutic factors promoting creation of microvascular bypass networks in chronic vaso-occlusive diseases.
Collapse
Affiliation(s)
- Arun H S Kumar
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kenneth Martin
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Brendan Doyle
- Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - Chien-Ling Huang
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Gopala-Krishnan M Pillai
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Mohammed T Ali
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Kimberly A Skelding
- Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - Shaohua Wang
- Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - Birgitta M Gleeson
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland
| | - Saleem Jahangeer
- Cork Cancer Research Centre, Biosciences Institute, University College Cork, Cork, Ireland
| | - Erik L Ritman
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Russell
- Division of Hematology, Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA
| | - Noel M Caplice
- Centre for Research in Vascular Biology (CRVB), Biosciences Institute, University College Cork, Cork, Ireland; Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
61
|
Activation of liver X receptor enhances the proliferation and migration of endothelial progenitor cells and promotes vascular repair through PI3K/Akt/eNOS signaling pathway activation. Vascul Pharmacol 2014; 62:150-61. [PMID: 24892989 DOI: 10.1016/j.vph.2014.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/21/2014] [Accepted: 05/26/2014] [Indexed: 11/23/2022]
Abstract
Vascular endothelial injury is a major cause of many cardiovascular diseases. The proliferation and migration of endothelial progenitor cells (EPCs) play a pivotal role in endothelial regeneration and repair after vascular injury. Recently, liver X receptor (LXR) activation has been suggested as a potential target for novel therapeutic interventions in the treatment of cardiovascular disease. However, the effects of LXR activation on endothelial regeneration and repair, as well as EPC function, have not been investigated. In the present study, we demonstrate that LXRs, including LXRα and LXRβ, are expressed and functional in rat bone marrow-derived EPCs. Treatment with an LXR agonist, TO901317 (TO) or GW3965 (GW), significantly increased the proliferation and migration of EPCs, as well as Akt and eNOS phosphorylation in EPCs. Moreover, LXR agonist treatment enhanced the expression and secretion of vascular endothelial growth factor in EPCs. LXR agonists accelerated re-endothelialization in injured mouse carotid arteries in vivo. These data confirm that LXR activation may improve EPC function and endothelial regeneration and repair after vascular injury by activating the PI3K/Akt/eNOS pathway. We conclude that LXRs may be attractive targets for drug development in the treatment of cardiovascular diseases associated with vascular injury.
Collapse
|
62
|
Yuan Q, Bai YP, Shi RZ, Liu SY, Chen XM, Chen L, Li YJ, Hu CP. Regulation of endothelial progenitor cell differentiation and function by dimethylarginine dimethylaminohydrolase 2 in an asymmetric dimethylarginine-independent manner. Cell Biol Int 2014; 38:1013-22. [DOI: 10.1002/cbin.10288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/20/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Qiong Yuan
- Department of Pharmacology; School of Pharmaceutical Sciences; Central South University; Changsha 410078 China
- Department of Pharmacology; Medical College; Wuhan University of Science and Technology; Wuhan 430081 China
| | - Yong-Ping Bai
- Department of Geriatric Medicine; Xiangya Hospital; Central South University; Changsha 410008 China
| | - Rui-Zheng Shi
- Department of Cardiovascular Medicine; Xiangya Hospital; Central South University; Changsha 410008 China
| | - Si-Yu Liu
- Department of Pharmacology; School of Pharmaceutical Sciences; Central South University; Changsha 410078 China
| | - Xu-Meng Chen
- Department of Pharmacology; School of Pharmaceutical Sciences; Central South University; Changsha 410078 China
| | - Lei Chen
- Department of Pharmacology; School of Pharmaceutical Sciences; Central South University; Changsha 410078 China
| | - Yuan-Jian Li
- Department of Pharmacology; School of Pharmaceutical Sciences; Central South University; Changsha 410078 China
| | - Chang-Ping Hu
- Department of Pharmacology; School of Pharmaceutical Sciences; Central South University; Changsha 410078 China
| |
Collapse
|
63
|
Kim BR, Jang IH, Shin SH, Kwon YW, Heo SC, Choi EJ, Lee JS, Kim JH. Therapeutic angiogenesis in a murine model of limb ischemia by recombinant periostin and its fasciclin I domain. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1324-32. [PMID: 24834847 DOI: 10.1016/j.bbadis.2014.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/21/2014] [Accepted: 05/05/2014] [Indexed: 01/03/2023]
Abstract
Periostin, an extracellular matrix protein, is expressed in injured tissues, such as the heart with myocardial infarction, and promotes angiogenesis and tissue repair. However, the molecular mechanism associated with periostin-stimulated angiogenesis and tissue repair is still unclear. In order to clarify the role of periostin in neovascularization, we examined the effect of periostin in angiogenic potentials of human endothelial colony forming cells (ECFCs) in vitro and in an ischemic limb animal model. Recombinant periostin protein stimulated the migration and tube formation of ECFCs. To identify the functional domains of periostin implicated in angiogenesis, five fragments of periostin, including four repeating FAS-1 domains and a carboxyl terminal domain, were expressed in Escherichia coli and purified to homogeneity. Of the five different domains, the first FAS-1 domain stimulated the migration and tube formation of human ECFCs as potent as the whole periostin. Chemotactic migration of ECFCs induced by the full length and the first FAS-1 domain of periostin was abrogated by blocking antibodies against β3 and β5 integrins. Intramuscular injection of the full length and the first FAS-1 domain of periostin into the ischemic hindlimb of mice attenuated severe limb loss and promoted blood perfusion and homing of intravenously administered ECFCs to the ischemic limb. These results suggest that the first FAS-1 domain is responsible for periostin-induced migration and angiogenesis and it can be used as a therapeutic tool for treatment of peripheral artery occlusive disease by stimulating homing of ECFCs.
Collapse
Affiliation(s)
- Ba Reun Kim
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Il Ho Jang
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Sang Hun Shin
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Yang Woo Kwon
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Soon Chul Heo
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Eun-Jung Choi
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Jae Ho Kim
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea; Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
64
|
A novel oxygen carrier "YQ23" suppresses the liver tumor metastasis by decreasing circulating endothelial progenitor cells and regulatory T cells. BMC Cancer 2014; 14:293. [PMID: 24766798 PMCID: PMC4006450 DOI: 10.1186/1471-2407-14-293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background Surgical therapies are the first-line treatments for hepatocellular carcinoma (HCC) patients. However, the high incidence of tumor metastasis after liver surgery remains a severe problem. We aim to investigate the roles and the underlying mechanism of YQ23, stabilized non-polymeric diaspirin cross-linked tetrameric hemoglobin, in liver tumor metastasis after major hepatectomy and partial hepatic ischemia reperfusion (I/R) injury. Methods An orthotopic liver tumor model in Buffalo rat was established using the hepatocellular carcinoma cell line McA-RH7777. Major hepatectomy for tumor-bearing lobe and partial hepatic I/R injury were performed at two weeks after orthotopic liver tumor implantation. YQ23 (0.2 g/kg) was administered at 1 hour before ischemia and immediately after reperfusion. Blood samples were collected at day 0, 1, 7, 14, 21 and 28 for detection of circulating endothelial progenitor cells (EPCs) and regulatory T cells (Tregs). Results Our results showed that YQ23 treatment effectively inhibited intrahepatic and lung metastases together with less tumor angiogenesis at 4 weeks after major hepatectomy and partial hepatic I/R injury. The levels of circulating EPCs and Tregs were significantly decreased in YQ23 treatment group. Furthermore, YQ23 treatment also increased liver tissue oxygenation during hepatic I/R injury. Up-regulation of HO1 and down-regulation of CXCR3, TNF-α and IL6 were detected after YQ23 treatment. Conclusions YQ23 treatment suppressed liver tumor metastasis after major hepatectomy and partial hepatic I/R injury in a rat liver tumor model through increasing liver oxygen and reducing the populations of circulating EPCs and Tregs.
Collapse
|
65
|
Mehran R, Nilsson M, Khajavi M, Du Z, Cascone T, Wu HK, Cortes A, Xu L, Zurita A, Schier R, Riedel B, El-Zein R, Heymach JV. Tumor endothelial markers define novel subsets of cancer-specific circulating endothelial cells associated with antitumor efficacy. Cancer Res 2014; 74:2731-41. [PMID: 24626092 DOI: 10.1158/0008-5472.can-13-2044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating endothelial cells (CEC) are derived from multiple sources, including bone marrow (circulating endothelial progenitors; CEP), and established vasculature (mature CEC). Although CECs have shown promise as a biomarker for patients with cancer, their utility has been limited, in part, by the lack of specificity for tumor vasculature and the different nonmalignant causes that can impact CEC. Tumor endothelial markers (TEM) are antigens enriched in tumor versus nonmalignant endothelia. We hypothesized that TEMs may be detectable on CEC and that these circulating TEM(+) endothelial cells (CTEC) may be a more specific marker for cancer and tumor response than standard CEC. We found that tumor-bearing mice had a relative increase in numbers of circulating CTEC, specifically with increased levels of TEM7 and TEM8 expression. Following treatment with various vascular-targeting agents, we observed a decrease in CTEC that correlated with the reductions in tumor growth. We extended these findings to human clinical samples and observed that CTECs were present in patients with esophageal cancer and non-small cell lung cancer (N = 40), and their levels decreased after surgical resection. These results demonstrate that CTECs are detectable in preclinical cancer models and patients with cancer. Furthermore, they suggest that CTECs offer a novel cancer-associated marker that may be useful as a blood-based surrogate for assessing the presence of tumor vasculature and antiangiogenic drug activity.
Collapse
Affiliation(s)
- Reza Mehran
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - Monique Nilsson
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - Mehrdad Khajavi
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - Zhiqiang Du
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - Tina Cascone
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - Hua Kang Wu
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea Cortes
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - Li Xu
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - Amado Zurita
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Schier
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - Bernhard Riedel
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - Randa El-Zein
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| | - John V Heymach
- Authors' Affiliations: Departments of Thoracic and Cardiovascular Surgery,Thoracic/Head and Neck Medical Oncology, Epidemiology, Genitourinary Medical Oncology, and The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; and Department of Anaesthesia and Pain Medicine, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
66
|
Osaadon P, Fagan XJ, Lifshitz T, Levy J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye (Lond) 2014; 28:510-20. [PMID: 24525867 DOI: 10.1038/eye.2014.13] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/18/2013] [Indexed: 12/18/2022] Open
Abstract
Previous research has implicated vascular endothelial growth factor (VEGF) in the pathogenesis of diabetic retinopathy (DR). Although many studies reviewed the use of anti-VEGF for diabetic macular oedema, little has been written about the use of anti-VEGF for proliferative diabetic retinopathy (PDR). This study is a review of relevant publications dealing with the use of anti-VEGF for the treatment of PDR. The articles were identified through systematic searches of PUBMED and the Cochrane Central Register of Controlled Trials. At the end of each section, we summarized the level of evidence of the scientific literature. Off-label use of anti-VEGF agents was found to be beneficial in PDR, especially in cases with neovascular glaucoma, persistent vitreous haemorrhage, and before vitrectomy. The disadvantages of the use of anti-VEGF are its short-effect duration, causing tractional retinal detachment in cases with pre-existing pre-retinal fibrosis and endophthalmitis in rare cases. There is no conclusive evidence from large randomized trials regarding the efficacy of anti-VEGF treatment in PDR. However, numerous case series, sound biochemical mechanism of action, and increasing experience with using anti-VEGF drugs can be used to support the ongoing use of this treatment modality in selected patients.
Collapse
Affiliation(s)
- P Osaadon
- Department of Ophthalmology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - X J Fagan
- Medical Retina Unit, Royal Victorian Eye and Ear Hospital; Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - T Lifshitz
- Department of Ophthalmology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - J Levy
- Department of Ophthalmology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
67
|
Soltau J, Drevs J. Mode of action and clinical impact of VEGF signaling inhibitors. Expert Rev Anticancer Ther 2014; 9:649-62. [DOI: 10.1586/era.09.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
68
|
Marsboom G, Janssens S. Endothelial progenitor cells: new perspectives and applications in cardiovascular therapies. Expert Rev Cardiovasc Ther 2014; 6:687-701. [DOI: 10.1586/14779072.6.5.687] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
69
|
Foresta C, De Toni L, Ferlin A, Di Mambro A. Clinical implication of endothelial progenitor cells. Expert Rev Mol Diagn 2014; 10:89-105. [DOI: 10.1586/erm.09.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
70
|
Park HS, Cho KH, Kim KL, Kim DK, Lee T. Reduced circulating endothelial progenitor cells in thromboangiitis obliterans (Buerger’s disease). Vasc Med 2013; 18:331-9. [DOI: 10.1177/1358863x13513935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To determine the role of endothelial progenitor cells (EPCs) in the pathogenesis of thromboangiitis obliterans (TAO), EPC numbers and colony-forming units, migratory function and tubular structure formation in vitro were compared between 13 young male TAO patients and two age-matched healthy control groups: 11 smokers and 12 non-smokers. TAO patients had significantly lower numbers of EPCs and EPC colonies compared to both non-smokers [190 (97.0–229) vs 528 (380–556), p < 0.001 for EPCs and 0.80 (0.53–1.00) vs 2.80 (2.08–4.00) per mm2, p = 0.001 for EPC colonies] and smokers [190 (97.0–229) vs 272 (229–326), p = 0.012 for EPCs and 0.80 (0.53–1.00) vs 2.80 (1.80–3.93) per mm2, p = 0.001 for EPC colonies]. However, there were no significant differences in migratory function or tube formation between the three groups. These results suggest that TAO patients have an intrinsic decrease in EPCs not entirely associated with smoking, which may be the cause of endothelial dysfunction seen in TAO patients leading to the development of this disease at early ages.
Collapse
Affiliation(s)
- Hyung Sub Park
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi, Korea
| | - Kyung Hee Cho
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi, Korea
| | - Koung Li Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk-Kyung Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Taeseung Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi, Korea
| |
Collapse
|
71
|
Abstract
BACKGROUND Obstructive sleep apnea (OSA) occurs in 4% of middle-aged men and 2% of middle-aged women in the general population, and the prevalence is even higher in specific patient groups. OSA is an independent risk factor for a variety of cardiovascular diseases. Endothelial injury could be the pivotal determinant in the development of cardiovascular pathology in OSA. Endothelial damage ultimately represents a dynamic balance between the magnitude of injury and the capacity for repair. Bone marrow-derived endothelial progenitor cells (EPCs) within adult peripheral blood present a possible means of vascular maintenance that could home to sites of injury and restore endothelial integrity and normal function. METHODS We summarized pathogenetic mechanisms of OSA and searched for available studies on numbers and functions of EPCs in patients with OSA to explore the potential links between the numbers and functions of EPCs and OSA. In particular, we tried to elucidate the molecular mechanisms of the effects of OSA on EPCs. CONCLUSION Intermittent hypoxia cycles and sleep fragmentation are major pathophysiologic characters of OSA. Intermittent hypoxia acts as a trigger of oxidative stress, systemic inflammation, and sympathetic activation. Sleep fragmentation is associated with a burst of sympathetic activation and systemic inflammation. In most studies, a reduction in circulating EPCs has emerged. The possible mechanisms underlying the decrease in the number or function of EPCs include prolonged inflammation response, oxidative stress, increased sympathetic activation, physiological adaptive responses of tissue to hypoxia, reduced EPC mobilization, EPC apoptosis, and functional impairment in untreated OSA. Continuous positive airway pressure (CPAP) therapy for OSA affects the mobilization, apoptosis, and function of EPCs through preventing intermittent hypoxia episodes, improving sleep quality, and reducing systemic inflammation, oxidative stress levels, and sympathetic overactivation. To improve CPAP adherence, the medical staff should pay attention to making the titration trial a comfortable first CPAP experience for the patients; for example, using the most appropriate ventilators or proper humidification. It is also important to give the patients education and support about CPAP use in the follow-up, especially in the early stage of the treatment.
Collapse
Affiliation(s)
- Qing Wang
- The Second Respiratory Department of the First People’s Hospital of Kunming, Yunnan, People’s Republic of China
| | - Qi Wu
- Tianjin Haihe Hospital, Tianjin, People’s Republic of China
| | - Jing Feng
- Respiratory Department of Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
- Correspondence: Jing Feng, Respiratory Department of Tianjin Medical University General Hospital, Tianjin 300052, People’s Republic of China, Email
| | - Xin Sun
- Respiratory Department of Tianjin Haihe Hospital, Tianjin, People’s Republic of China
- Xin Sun, Respiratory Department of Tianjin Haihe Hospital, Tianjin 300350, People’s Republic of China, Email
| |
Collapse
|
72
|
Stiefel P, Sánchez-Armengol MA, Villar J, Vallejo-Vaz A, Moreno-Luna R, Capote F. Obstructive sleep apnea syndrome, vascular pathology, endothelial function and endothelial cells and circulating microparticles. Arch Med Res 2013; 44:409-14. [PMID: 24051041 DOI: 10.1016/j.arcmed.2013.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/13/2013] [Indexed: 10/26/2022]
Abstract
Accelerated atherosclerosis and increased cardiovascular risk are frequently reported in patients with obstructive sleep apnea (OSA) syndrome. In this article the authors attempt a review of the current understanding of the relationship between vascular risk and OSA syndrome based on large cohort studies that related the disease to several cardiovascular risk factors and vascular pathologies. We also discuss the pathophysiological mechanisms that may be involved in this relationship, starting with endothelial dysfunction and its mediators. These include an increased oxidative stress and inflammation as well as several disorders of coagulation and lipid metabolism. Moreover, circulating microparticles from activated leukocytes (CD62L_MPs) are higher in patients with OSA and there is a positive correlation between circulating levels of CD62L_MPs and nocturnal hypoxemia severity. Finally, circulating level of endothelial microparticles and circulating endothelial cells seem to be increased in patients with OSA. Also, endothelial progenitor cells are reduced and plasma levels of the vascular endothelial growth factor are increased.
Collapse
Affiliation(s)
- Pablo Stiefel
- Unidad Clinico Experimental de Riesgo Vascular (UCAMI-UCERV), Instituto de Biomedicina de Sevilla (IBIS) SAS, CEIC, Universidad de Sevilla, Seville, Spain.
| | | | | | | | | | | |
Collapse
|
73
|
Krizanac-Bengez L, Mayberg MR, Janigro D. The cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in vascular homeostatis and pathophysiology. Neurol Res 2013; 26:846-53. [PMID: 15727268 DOI: 10.1179/016164104x3789] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
It is widely accepted that vascular mechanisms are involved in the genesis of many neurological disorders. In particular, blood-brain barrier (BBB) dysfunction has been related to the severity of Alzheimer's disease, encephalopathy due to meningitis, multiple sclerosis, HIV-associated encephalopathy, epilepsy, gliomas and metastatic brain tumors. The BBB may constitute an important therapeutic target to protect neurons after CNS diseases. Both in vivo and in vitro, the functional phenotype of vascular endothelium is dynamically responsive to circulating cytokines, growth factors and puslatile blood flow (shear stress). Shear stress can play a critical role in vascular homeostasis and pathophysiology; it is a major regulator of remodeling in developed blood vessels and in blood vessels affected by atherosclerotic lesions. The physiological fluid mechanic stimulus, shear stress, could be considered to be an important 'differentiative' stimulus capable of modulating endothelial phenotype in vivo. Endothelial cells undergo cell cycle arrest after exposure to physiological levels of shear stress. As for mature endothelial cells, in which flow mediated shear stress may play a role in the induction, progression and/or prevention of atherosclerosis by changing their function, stress may play a role in endothelial cell differentiation from hemopoietic stem cells and/or from embryonic stem cells. Stem cells may be used to repair vascular damage, including loss of EC, due to a variety of diseases (e.g. myocardial neovascularization by adult bone marrow derived angioblasts). In the brain, it was proposed that neuron-producing stem cells may be used to treat Alzheimer's disease, paralysis, etc. Surprisingly, very few investigators are exploring the use of endothelial precursors to revert or prevent cerebrovascular disease. This review summarizes the most recent data related to cerebral vasculature as a therapeutic target for neurological disorders and the role of shear stress in blood-brain barrier homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Ljiljana Krizanac-Bengez
- Cerebrovascular Research Center, Neurosurgery NB-20, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
74
|
Co-Transplantation of Endothelial Progenitor Cells and Mesenchymal Stem Cells Promote Neovascularization and Bone Regeneration. Clin Implant Dent Relat Res 2013; 17:353-9. [DOI: 10.1111/cid.12104] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
75
|
Roura S, Gálvez-Montón C, Bayes-Genis A. The challenges for cardiac vascular precursor cell therapy: lessons from a very elusive precursor. J Vasc Res 2013; 50:304-23. [PMID: 23860201 DOI: 10.1159/000353294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
There is compelling evidence that cardiovascular disorders arise and/or progress due mainly to endothelial dysfunction. Novel therapeutic strategies aim to generate new myocardial tissue using cells with regenerative potential, either alone or in combination with biomaterials, cytokines and advanced monitoring devices. Among the human adult progenitor cells used in such methods, those historically termed 'endothelial progenitor cells' show promise for vascular growth and repair. Asahara et al. [Science 1997;275:964-967] initially described putative endothelial cell precursors in 1997. Subsequently, distinct cell populations termed endothelial colony-forming units-Hill, circulating angiogenic cells and endothelial colony-forming cells were identified that varied in terms of phenotype, vascular homeostasis contribution and purity. Notably, most of these cells are not genuine vascular precursor cells belonging to the endothelial lineage. This review provides a broad overview of the main properties of the endothelium, focusing on the basis governing its growth and repair. We discuss efforts to identify true vascular precursors, a matter of debate for the past 15 years, as well as recent methodological advances in identifying new hierarchies of more homogeneous, clonogenic and proliferative vascular endothelial-lineage precursors. Consideration of these issues provides insights that may help develop more effective therapies against human diseases that involve vascular deficits.
Collapse
Affiliation(s)
- Santiago Roura
- ICREC Research Program, Health Research Institute Germans Trias i Pujol-IGTP, University Hospital Germans Trias i Pujol, Badalona, Spain.
| | | | | |
Collapse
|
76
|
Derivation of human peripheral blood derived endothelial progenitor cells and the role of osteopontin surface modification and eNOS transfection. Biomaterials 2013; 34:7292-301. [PMID: 23810253 DOI: 10.1016/j.biomaterials.2013.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/04/2013] [Indexed: 11/22/2022]
Abstract
Endothelial coverage of blood-contacting biomaterial surfaces has been difficult to achieve. A readily available autologous source of endothelium combined with an appropriate attachment substrate would improve the chances of developing functional surfaces. Here we describe methods to derive high quantities of human endothelial progenitor cells (EPCs) from peripheral blood monocytes (PBMCs) obtained by leukapheresis. These cells are morphologically and phenotypically similar to human umbilical vein endothelial cells (HUVECs); however, their expression of the key vascular factor - endothelial nitric oxide synthase (eNOS) - is markedly lower than that observed in HUVECs. We demonstrate that eNOS levels can be restored with plasmid-based transfection. To promote EPC adherence we examined substrate enhancement with a matricellular protein associated with vascular repair, osteopontin (OPN). We observed dose- and time-dependent responses of OPN in EPC adhesion, spreading, and haptotactic migration of EPCs in Boyden chamber assays. In addition, the combination of the OPN coating and enhanced eNOS expression in EPCs maximally enhanced cell adhesion (39.6 ± 1.7 and 49.4 ± 2.4 cells/field for 0 and 1 nM OPN) and spreading (84.7 ± 3.5% and 92.1 ± 3.9% for 0 nM and 1 nM OPN). These data highlight the direct effects of OPN on peripheral blood derived EPCs, suggesting that OPN works by mediating progenitor cell adhesion during vascular injury. The combination of autologous EPCs and OPN coatings could be a promising method of developing functional endothelialized surfaces.
Collapse
|
77
|
Isolation and characterization of mouse bone marrow-derived Lin⁻/VEGF-R2⁺ progenitor cells. Ann Hematol 2013; 92:1461-72. [PMID: 23771478 DOI: 10.1007/s00277-013-1815-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) in the peripheral blood (PB) have physiological roles in the maintenance of the existing vascular beds and rescue of vascular injury. In this study, we have evaluated the properties of Lin⁻/VEGF-R2⁺ progenitor cells isolated from the mouse bone marrow (BM) and further studied their distribution and integration in an animal model of laser-induced retinal vascular injury. Lin⁻/VEGF-R2⁺ cells were enriched from C57BL/6 mice BM using magnetic cell sorting with hematopoietic lineage (Lin) depletion followed by VEGF-R2 positive selection. Lin⁻/VEGF-R2⁺ BM cells were characterized using flow cytometry and immunocytochemistry and further tested for colony formation during culture and tube formation on Matrigel®. Lin⁻/VEGF-R2⁺ BM cells possessed typical EPC properties such as forming cobble-stone shaped colonies after 3 to 4 weeks of culture, CD34⁺ expression, take up of Dil-acLDL and binding to Ulex europaeus agglutinin. However, they did not form tube-like structures on Matrigel®. The progenitor cells retained their phenotype over extended period of culture. After intravitreal transplantation in eyes subjected to the laser-induced retinal vascular injury, some Lin⁻/VEGF-R2⁺ cells were able to integrate into the damaged retinal vasculature but the level of cell integration seemed less efficient when compared with previous reports in which EPCs from the human PB were employed. Our results indicate that Lin⁻/VEGF-R2⁺ cells isolated from the mouse BM share some similarities to EPCs from the human PB but most of them are at a very early stage of maturation and remain quiescent during culture and after intravitreal transplantation.
Collapse
|
78
|
Smadja D, Silvestre JS, Lévy BI. [Genic and cellular therapy for peripheral arterial diseases]. Transfus Clin Biol 2013; 20:211-20. [PMID: 23587618 DOI: 10.1016/j.tracli.2013.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Late evolution of peripheral arterial disease consists in the apparition of critical limb ischemia. Surgical treatments allow to treat these patients during long time; however, in most patients, especially the diabetic ones, there a very few options and the clinical evolution is rapidly dramatic. For these reasons, the critical limb ischemia is one of the first diseases treated by genic or cellular therapies aiming to improve blood flow perfusion in the lower-limbs. In this short review, we describe the main clinical trials of genic therapy; most of them have been abandoned because serious side effects, modest effects and major risks. Different types of stem cells are now used for cell therapy: endothelial progenitor cells, early or late, activated or not, mesenchymal stem cells, embryonic stem cells and human induced pluripotent stem cells. Problems of characterization are described and the results of the most important clinical trials are reported.
Collapse
Affiliation(s)
- D Smadja
- Inserm U 765, service d'hématologie biologique, hôpital européen Georges-Pompidou, faculté de pharmacie, université Paris-Descartes, 75006 Paris, France
| | | | | |
Collapse
|
79
|
Vascular endothelial growth factors (VEGFs) and stroke. Cell Mol Life Sci 2013; 70:1753-61. [PMID: 23475070 DOI: 10.1007/s00018-013-1282-8] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/17/2022]
Abstract
Vascular endothelial growth factors (VEGFs) have been shown to participate in atherosclerosis, arteriogenesis, cerebral edema, neuroprotection, neurogenesis, angiogenesis, postischemic brain and vessel repair, and the effects of transplanted stem cells in experimental stroke. Most of these actions involve VEGF-A and the VEGFR-2 receptor, but VEGF-B, placental growth factor, and VEGFR-1 have been implicated in some cases as well. VEGF signaling pathways represent important potential targets for the acute and chronic treatment of stroke.
Collapse
|
80
|
Liu SH, Sheu WHH, Lee MR, Lee WJ, Yi YC, Yang TJ, Jen JF, Pan HC, Shen CC, Chen WB, Tien HR, Sheu ML. Advanced glycation end product Nε-carboxymethyllysine induces endothelial cell injury: the involvement of SHP-1-regulated VEGFR-2 dephosphorylation. J Pathol 2013; 230:215-27. [PMID: 22553146 DOI: 10.1002/path.4045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/27/2012] [Accepted: 04/22/2012] [Indexed: 12/30/2022]
Abstract
N(ε)-carboxymethyllysine (CML), a major advanced glycation end product, plays a crucial role in diabetes-induced vascular injury. The roles of protein tyrosine phosphatases and vascular endothelial growth factor (VEGF) receptors in CML-related endothelial cell injury are still unclear. Human umbilical vein endothelial cells (HUVECs) are a commonly used human EC type. Here, we tested the hypothesis that NADPH oxidase/reactive oxygen species (ROS)-mediated SH2 domain-containing tyrosine phosphatase-1 (SHP-1) activation by CML inhibits the VEGF receptor-2 (VEGFR-2, KDR/Flk-1) activation, resulting in HUVEC injury. CML significantly inhibited cell proliferation and induced apoptosis and reduced VEGFR-2 activation in parallel with the increased SHP-1 protein expression and activity in HUVECs. Adding recombinant VEGF increased forward biological effects, which were attenuated by CML. The effects of CML on HUVECs were abolished by SHP-1 siRNA transfection. Exposure of HUVECs to CML also remarkably escalated the integration of SHP-1 with VEGFR-2. Consistently, SHP-1 siRNA transfection and pharmacological inhibitors could block this interaction and elevating [(3)H]thymidine incorporation. CML also markedly activated the NADPH oxidase and ROS production. The CML-increased SHP-1 activity in HUVECs was effectively attenuated by antioxidants. Moreover, the immunohistochemical staining of SHP-1 and CML was increased, but phospho-VEGFR-2 staining was decreased in the aortic endothelium of streptozotocin-induced and high-fat diet-induced diabetic mice. We conclude that a pathway of tyrosine phosphatase SHP-1-regulated VEGFR-2 dephosphorylation through NADPH oxidase-derived ROS is involved in the CML-triggered endothelial cell dysfunction/injury. These findings suggest new insights into the development of therapeutic approaches to reduce diabetic vascular complications.
Collapse
Affiliation(s)
- Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Williamson KA, Hamilton A, Reynolds JA, Sipos P, Crocker I, Stringer SE, Alexander YM. Age-related impairment of endothelial progenitor cell migration correlates with structural alterations of heparan sulfate proteoglycans. Aging Cell 2013. [PMID: 23190312 DOI: 10.1111/acel.12031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging poses one of the largest risk factors for the development of cardiovascular disease. The increased propensity toward vascular pathology with advancing age maybe explained, in part, by a reduction in the ability of circulating endothelial progenitor cells to contribute to vascular repair and regeneration. Although there is evidence to suggest that colony forming unit-Hill cells and circulating angiogenic cells are subject to age-associated changes that impair their function, the impact of aging on human outgrowth endothelial cell (OEC) function has been less studied. We demonstrate that OECs isolated from cord blood or peripheral blood samples from young and old individuals exhibit different characteristics in terms of their migratory capacity. In addition, age-related structural changes were discovered in OEC heparan sulfate (HS), a glycocalyx component that is essential in many signalling pathways. An age-associated decline in the migratory response of OECs toward a gradient of VEGF significantly correlated with a reduction in the relative percentage of the trisulfated disaccharide, 2-O-sulfated-uronic acid, N, 6-O-sulfated-glucosamine (UA[2S]-GlcNS[6S]), within OEC cell surface HS polysaccharide chains. Furthermore, disruption of cell surface HS reduced the migratory response of peripheral blood-derived OECs isolated from young subjects to levels similar to that observed for OECs from older individuals. Together these findings suggest that aging is associated with alterations in the fine structure of HS on the cell surface of OECs. Such changes may modulate the migration, homing, and engraftment capacity of these repair cells, thereby contributing to the progression of endothelial dysfunction and age-related vascular pathologies.
Collapse
Affiliation(s)
- Kate A. Williamson
- Cardiovascular Research Group; University of Manchester; 3rd Floor Core Technology Facility, 46 Grafton St.; Manchester; M13 9NT; UK
| | - Andrew Hamilton
- Cardiovascular Research Group; University of Manchester; 3rd Floor Core Technology Facility, 46 Grafton St.; Manchester; M13 9NT; UK
| | | | - Peter Sipos
- Maternal and Fetal Health Research Centre; University of Manchester; Manchester; UK
| | - Ian Crocker
- Maternal and Fetal Health Research Centre; University of Manchester; Manchester; UK
| | - Sally E. Stringer
- Cardiovascular Research Group; University of Manchester; 3rd Floor Core Technology Facility, 46 Grafton St.; Manchester; M13 9NT; UK
| | - Yvonne M. Alexander
- Cardiovascular Research Group; University of Manchester; 3rd Floor Core Technology Facility, 46 Grafton St.; Manchester; M13 9NT; UK
| |
Collapse
|
82
|
Brunner S, Binder S. Surgery for Proliferative Diabetic Retinopathy. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
83
|
Abu El-Asrar AM, Nawaz MI, Kangave D, Mairaj Siddiquei M, Geboes K. Angiogenic and vasculogenic factors in the vitreous from patients with proliferative diabetic retinopathy. J Diabetes Res 2013; 2013:539658. [PMID: 23671874 PMCID: PMC3647558 DOI: 10.1155/2013/539658] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/12/2013] [Indexed: 01/26/2023] Open
Abstract
This study was conducted to determine levels of angiogenic and endothelial progenitor cell mobilizing (vasculogenic) factors in vitreous fluid from proliferative diabetic retinopathy (PDR) patients and correlate their levels with clinical disease activity. Vascular endothelial growth factor (VEGF), soluble vascular endothelial growth factor receptor-2 (sVEGFR-2), stem cell factor (SCF), soluble c-kit (s-kit), endothelial nitric oxide synthase (eNOS), and prostaglandin E2 (PGE2) levels were measured by ELISA in vitreous samples from 34 PDR and 15 nondiabetic patients. eNOS was not detected. VEGF, sVEGFR-2, SCF, and s-kit levels were significantly higher in PDR with active neovascularization compared with quiescent PDR and nondiabetic patients (P < 0.001; 0.007; 0.001; <0.001, resp.). In contrast, PGE2 levels were significantly higher in nondiabetic patients compared with PDR patients (P < 0.001). There were significant correlations between levels of sVEGFR-2 versus SCF (r = 0.950, P < 0.001), sVEGFR-2 versus s-kit (r = 0.941, P < 0.001), and SCF versus s-kit (r = 0.970, P < 0.001). Our findings suggest that upregulation of VEGF, sVEGFR-2, SCF, and s-kit supports the contributions of angiogenesis and vasculogenesis in pathogenesis of PDR.
Collapse
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Ophthalmology, King Abdulaziz University Hospital, Old Airport Road, P.O. Box 245, Riyadh 11411, Saudi Arabia
- *Ahmed M. Abu El-Asrar:
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Dustan Kangave
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Karel Geboes
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, Belgium
| |
Collapse
|
84
|
Tomida M, Tsujigiwa H, Nakano K, Muraoka R, Nakamura T, Okafuji N, Nagatsuka H, Kawakami T. Promotion of transplanted bone marrow-derived cell migration into the periodontal tissues due to orthodontic mechanical stress. Int J Med Sci 2013; 10:1321-6. [PMID: 23983592 PMCID: PMC3753415 DOI: 10.7150/ijms.6631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/22/2013] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Bone marrow-derived cells (BMCs) have abilities of cell migration and differentiation into tissues/organs in the body and related with the differentiation of teeth or periodontal tissue including fibroblasts. Then, we examined the effect of orthodontic mechanical stress to the transplanted BMC migration into periodontal tissues using BMC transplantation model. MATERIAL AND METHOD BMC from green fluorescence protein (GFP) transgenic mice were transplanted into 8-week-old female C57BL/6 immunocompromised recipient mice, which had undergone 10 Gy of lethal whole-body-irradiation. Five mice as experimental group were received orthodontic mechanical stress using separator between first molar (M1) and second molar (M2) 1 time per week for 5 weeks and 5 mice as control group were not received mechanical stress. The maxilla with M1 and M2 was removed and was immunohistochemically analyzed using a Dako Envision + Kit-K4006 and a primary anti-GFP-polyclonal rabbit antibody. Immunohistochemically stained was defined as positive area and the pixel number of positive area in the periodontal tissue was compared with the previously calculated total pixel number of the periodontal tissue. RESULTS The immunohistochemistry revealed that GFP positive cells were detected in the periodontal tissues, both in the experimental and control specimens. The ratio of pixel number in the examination group showed 5.77 ± 3.24 % (mean ± SD); and that in the control group, 0.71 ± 0.45 % (mean ± SD). The examination group was significantly greater than that of control group (Mann-Whitney U test: p<0.001). CONCLUSION These results suggest that orthodontic mechanical stress accelerates transplanted BMC migration into periodontal tissues.
Collapse
Affiliation(s)
- Mihoko Tomida
- Department of Oral Physiology, Matsumoto Dental University School of Dentistry, Shiojiri, Japan
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Mateo J, Heymach JV, Zurita AJ. Circulating Biomarkers of Response to Sunitinib in Gastroenteropancreatic Neuroendocrine Tumors. Mol Diagn Ther 2012. [DOI: 10.1007/bf03262203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
86
|
Wang L, Wang X, Wang L, Chiu JD, van de Ven G, Gaarde WA, DeLeve LD. Hepatic vascular endothelial growth factor regulates recruitment of rat liver sinusoidal endothelial cell progenitor cells. Gastroenterology 2012; 143:1555-1563.e2. [PMID: 22902870 PMCID: PMC3505224 DOI: 10.1053/j.gastro.2012.08.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS After liver injury, bone marrow-derived liver sinusoidal endothelial cell progenitor cells (BM SPCs) repopulate the sinusoid as liver sinusoidal endothelial cells (LSECs). After partial hepatectomy, BM SPCs provide hepatocyte growth factor, promote hepatocyte proliferation, and are necessary for normal liver regeneration. We examined how hepatic vascular endothelial growth factor (VEGF) regulates recruitment of BM SPCs and their effects on liver injury. METHODS Rats were given injections of dimethylnitrosamine to induce liver injury, which was assessed by histology and transaminase assays. Recruitment of SPCs was analyzed by examining BM SPC proliferation, mobilization to the circulation, engraftment in liver, and development of fenestration (differentiation). RESULTS Dimethylnitrosamine caused extensive denudation of LSECs at 24 hours, followed by centrilobular hemorrhagic necrosis at 48 hours. Proliferation of BM SPCs, the number of SPCs in the bone marrow, and mobilization of BM SPCs to the circulation increased 2- to 4-fold by 24 hours after injection of dimethylnitrosamine; within 5 days, 40% of all LSECs came from engrafted BM SPCs. Allogeneic resident SPCs, infused 24 hours after injection of dimethylnitrosamine, repopulated the sinusoid as LSECs and reduced liver injury. Expression of hepatic VEGF messenger RNA and protein increased 5-fold by 24 hours after dimethylnitrosamine injection. Knockdown of hepatic VEGF with antisense oligonucleotides completely prevented dimethylnitrosamine-induced proliferation of BM SPCs and their mobilization to the circulation, reduced their engraftment by 46%, completely prevented formation of fenestration after engraftment as LSECs, and exacerbated dimethylnitrosamine injury. CONCLUSIONS BM SPC recruitment is a repair response to dimethylnitrosamine liver injury in rats. Hepatic VEGF regulates recruitment of BM SPCs to liver and reduces this form of liver injury.
Collapse
Affiliation(s)
- Lin Wang
- Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles
| | - Xiangdong Wang
- Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles
| | - Lei Wang
- Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles
| | - Jenny D. Chiu
- Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles
| | - Gijs van de Ven
- Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles
| | | | - Laurie D. DeLeve
- Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
87
|
Mateo J, Heymach JV, Zurita AJ. Circulating biomarkers of response to sunitinib in gastroenteropancreatic neuroendocrine tumors: current data and clinical outlook. Mol Diagn Ther 2012; 16:151-61. [PMID: 22515658 DOI: 10.2165/11632590-000000000-00000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
After years of limited progress in the treatment of patients with advanced-stage gastroenteropancreatic neuroendocrine tumors (GEP-NETs), strategies using targeted agents have been developed on the basis of increased knowledge of the biology of these tumors. Some of these agents, targeting vascular endothelial growth factor (VEGF) and the mammalian target of rapamycin (mTOR) pathway, have shown efficacy in randomized clinical trials. The tyrosine kinase inhibitor sunitinib and the mTOR inhibitor everolimus have received international approval for the treatment of advanced well differentiated pancreatic NETs after showing survival benefit in randomized phase III trials. There is now an imperative need to identify biomarkers of the biologic activity of such targeted therapies in specific disease contexts, as well as new markers of response and prognosis. This approach may allow rational development of drugs and early identification of patients who may obtain benefit from treatments. In this article, we review recent developments in circulating biomarkers of the clinical benefit of targeted therapies for GEP-NET, including soluble proteins and circulating cells, with an emphasis on sunitinib. No validated molecular biomarkers are yet integrated into clinical practice for sunitinib in NET, although some markers have shown correlation with clinical outcomes and may be implicated in resistance. The VEGF-pathway proteins and interleukin-8 (IL-8) are possibly prognostic in GEP-NET; other possible soluble markers of the activity of sunitinib and everolimus include stromal cell-derived factor 1α, chromogranin A, and neuron-specific enolase. We additionally discuss treatment-induced modulation of circulating endothelial cells and progenitors and subpopulations of cells of the myeloid lineage. These candidate markers should be considered in the development of future combination or sequential therapies.
Collapse
Affiliation(s)
- Joaquin Mateo
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
88
|
Said SS, Pickering JG, Mequanint K. Advances in growth factor delivery for therapeutic angiogenesis. J Vasc Res 2012; 50:35-51. [PMID: 23154615 DOI: 10.1159/000345108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/12/2012] [Indexed: 01/09/2023] Open
Abstract
Therapeutic angiogenesis is a new revascularization strategy involving the administration of growth factors to induce new vessel formation. The biology and delivery of angiogenic growth factors involved in vessel formation have been extensively studied but success in translating the angiogenic capacity of growth factors into benefits for vascular disease patients is still limited. This could be attributed to issues related to patient selection, growth factor delivery methods or lack of vessel maturation. Comprehensive understanding of the cellular and molecular cross-talk during the different stages of vascular development is needed for the design of efficient therapeutic strategies. The presentation of angiogenic factors either in series or in parallel using a strategy that mimics physiological events, such as concentration and spatio-temporal profiles, is an immediate requirement for functional blood vessel formation. This review provides an overview of the recent delivery strategies of angiogenic factors and discusses targeting neovascular maturation as a promising approach to induce stable and functional vessels for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Somiraa S Said
- Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ont., Canada
| | | | | |
Collapse
|
89
|
Fernandes T, Nakamuta JS, Magalhães FC, Roque FR, Lavini-Ramos C, Schettert IT, Coelho V, Krieger JE, Oliveira EM. Exercise training restores the endothelial progenitor cells number and function in hypertension. J Hypertens 2012; 30:2133-2143. [DOI: 10.1097/hjh.0b013e3283588d46] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
90
|
Li DW, Liu ZQ, Wei J, Liu Y, Hu LS. Contribution of endothelial progenitor cells to neovascularization (Review). Int J Mol Med 2012; 30:1000-6. [PMID: 22922670 DOI: 10.3892/ijmm.2012.1108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/30/2012] [Indexed: 11/05/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are a cell population mobilized from bone marrow into the peripheral circulation and recruited into sites of vessel injury to participate in blood vessel formation in both physiological and pathological conditions. Due to the lack of unique surface markers and different isolation methods, EPCs represent heterogeneous cell populations including cells of myeloid or endothelial origin. Evidence suggests that EPCs play a critical role in postnatal blood vessel formation and vascular homeostasis and provide a promising therapy for vascular disease. However, the mechanisms by which EPCs participate in new vessel formation are still incompletely understood. We review the process of EPCs in neovascularization including EPC mobilization, migration, adhesion and effect on new vessel formation, in an attempt to better understand the underlying mechanisms and to provide potential effective management for the treatment of patients with vascular disease.
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, PR China
| | | | | | | | | |
Collapse
|
91
|
Wagner IJ, Szpalski C, Allen RJ, Davidson EH, Canizares O, Saadeh PB, Warren SM. Obesity impairs wound closure through a vasculogenic mechanism. Wound Repair Regen 2012; 20:512-22. [PMID: 22672117 DOI: 10.1111/j.1524-475x.2012.00803.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 02/27/2012] [Indexed: 12/27/2022]
Abstract
Since obesity impairs wound healing and bone marrow (BM)-derived vasculogenic progenitor cells (PCs) are important for tissue repair, we hypothesize that obesity-impaired wound healing is due, in part, to impaired PC mobilization, trafficking, and function. Peripheral blood was obtained from nondiabetic, obese (BMI > 30, n = 25), and nonobese (BMI < 30, n = 17) subjects. Peripheral blood human (h)PCs were isolated, quantified, and functionally assessed. To corroborate the human experiments, 6-mm stented wounds were created on nondiabetic obese mice (TALLYHO/JngJ, n = 15) and nonobese mice (SWR/J, n = 15). Peripheral blood mouse (m)PCs were quantified and wounds were analyzed. There was no difference in the number of baseline circulating hPCs in nondiabetic, obese (hPC-ob), and nonobese (hPC-nl) subjects, but hPC-ob had impaired adhesion (p < 0.05), migration (p < 0.01), and proliferation (p < 0.001). Nondiabetic obese mice had a significant decrease in the number of circulating PCs (mPC-ob) at 7 (p = 0.008) and 14 days (p = 0.003) after wounding. The impaired circulating mPC-ob response correlated with significantly impaired wound closure at days 14 (p < 0.001) and 21 (p < 0.001) as well as significantly fewer new blood vessels in the wounds (p < 0.001). Our results suggest that obesity impairs the BM-derived vasculogenic PC response to peripheral injury and this, in turn, impairs wound closure.
Collapse
Affiliation(s)
- I Janelle Wagner
- Department of Surgery, Temple School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Moderate-to-high-intensity training and a hypocaloric Mediterranean diet enhance endothelial progenitor cells and fitness in subjects with the metabolic syndrome. Clin Sci (Lond) 2012; 123:361-73. [DOI: 10.1042/cs20110477] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A reduction in EPC (endothelial progenitor cell) number could explain the development and progression of atherosclerosis in the MetS (metabolic syndrome). Although much research in recent years has focused on the Mediterranean dietary pattern and the MetS, the effect of this diet with/without moderate-to-high-intensity endurance training on EPCs levels and CrF (cardiorespiratory fitness) remains unclear. In the present study, the objective was to assess the effect of a Mediterranean diet hypocaloric model with and without moderate-to-high-intensity endurance training on EPC number and CrF of MetS patients. Thus 45 MetS patients (50–66 years) were randomized to a 12-week intervention with the hypocaloric MeD (Mediterranean diet) or the MeDE (MeD plus moderate-to-high-intensity endurance training). Training included two weekly supervised sessions [80% MaxHR (maximum heart rate); leg and arm pedalling] and one at-home session (65–75% MaxHR; walking controlled by heart rate monitors). Changes in: (i) EPC number [CD34+KDR+ (kinase insert domain-containing receptor)], (ii) CrF variables and (iii) MetS components and IRH (ischaemic reactive hyperaemia) were determined at the end of the study. A total of 40 subjects completed all 12 weeks of the study, with 20 in each group. The MeDE led to a greater increase in EPC numbers and CrF than did the MeD intervention (P≤0.001). In addition, a positive correlation was observed between the increase in EPCs and fitness in the MeDE group (r=0.72; r2=0.52; P≤0.001). Body weight loss, insulin sensitivity, TAGs (triacylglycerols) and blood pressure showed a greater decrease in the MeDE than MeD groups. Furthermore, IRH was only improved after the MeDE intervention. In conclusion, compliance with moderate-to-high-intensity endurance training enhances the positive effects of a model of MeD on the regenerative capacity of endothelium and on the fitness of MetS patients.
Collapse
|
93
|
Yang DY, Wu GF. Vasculoprotective properties of enhanced external counterpulsation for coronary artery disease: beyond the hemodynamics. Int J Cardiol 2012; 166:38-43. [PMID: 22560950 DOI: 10.1016/j.ijcard.2012.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/22/2012] [Accepted: 04/01/2012] [Indexed: 11/16/2022]
Abstract
A growing pool of evidence has shown that enhanced external counterpulsation (EECP) is a non-invasive, safe, low-cost, and highly beneficial therapy for patients with coronary artery disease. However, the exact mechanisms of benefit exerted by EECP therapy remain only partially understood. The favorable hemodynamic effects of EECP were previously considered as the primary mechanism of action. Nevertheless, recent advances have shed light on the shear stress-increasing effects of EECP which are vasculoprotective and anti-atherosclerotic. EECP-induced endothelial shear stress increase may lead to improvement in endothelial function and morphology, attenuation of oxidative stress and inflammation, and promotion of angiogenesis and vasculogenesis. This review summarizes evidence of the potential mechanisms contributing to the immediate and long-term benefits of EECP, from the perspective of its shear stress-increasing effects.
Collapse
Affiliation(s)
- Da-ya Yang
- Division of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, China
| | | |
Collapse
|
94
|
Muthaian R, Minhas G, Anand A. Pathophysiology of stroke and stroke-induced retinal ischemia: emerging role of stem cells. J Cell Physiol 2012; 227:1269-79. [PMID: 21989824 DOI: 10.1002/jcp.23048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The current review focuses on pathophysiology, animal models and molecular analysis of stroke and retinal ischemia, and the role of stem cells in recovery of these disease conditions. Research findings associated with ischemic stroke and retinal ischemia have been discussed, and efforts towards prevention and limiting the recurrence of ischemic diseases, as well as emerging treatment possibilities with endothelial progenitor cells (EPCs) in ischemic diseases, are presented. Although most neurological diseases are still not completely understood and reliable treatment is lacking, animal models provide a major step in validating novel therapies. Stem cell approaches constitute an emerging form of cell-based therapy to treat ischemic diseases since it is an attractive source for regenerative therapy in the ischemic diseases. In this review, we highlight the advantages and limitations of this approach with a focus on key observations from preclinical animal studies and clinical trials. Further research, especially on treatment with EPCs is warranted.
Collapse
Affiliation(s)
- Rupadevi Muthaian
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | |
Collapse
|
95
|
Sobrino T, Pérez-Mato M, Brea D, Rodríguez-Yáñez M, Blanco M, Castillo J. Temporal profile of molecular signatures associated with circulating endothelial progenitor cells in human ischemic stroke. J Neurosci Res 2012; 90:1788-93. [PMID: 22513751 DOI: 10.1002/jnr.23068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/07/2012] [Accepted: 03/20/2012] [Indexed: 11/11/2022]
Abstract
Endothelial progenitor cells (EPC) have been associated with good functional outcome in ischemic stroke. From preclinical studies, it has been reported that EPC proliferation is mediated by several molecular markers, including vascular endothelial growth factor (VEGF), stromal cell-derived factor-1α (SDF-1α), and the activity of matrix metalloproteinase-9 (MMP-9). Therefore, our aim was to study the role of these molecular factors in EPC proliferation in human ischemic stroke. Forty-eight patients with first episode of nonlacunar ischemic stroke were prospectively included in the study within 12 hr of symptom onset. EPC colonies were classified as early-outgrowth colony forming unit-endothelial cell (CFU-EC) and quantified at admission, at 24 and 72 hr, at day 7, and at 3 months. At the same time, serum levels of VEGF, SDF-1α, and active MMP-9 were measured by ELISA. The primary endpoint was EPC increment during the first week, which was defined as the difference in the number of CFU-EC between day 7 and admission. We found that VEGF (r = 0.782), SDF-1α (r = 0.828), and active MMP-9 (r = 0.740) levels at 24 hr from stroke onset showed a strong correlation with EPC increment. Similar results were found for VEGF levels at 72 hr (r = 0.839) and at day 7 (r = 0.602) as well as for active MMP-9 levels at 72 hr (r = 0.442) and at day 7 (r = 0.474). In the multivariate analyses, serum levels of VEGF at 72 hr (B: 0.074, P < 0.0001) and SDF-1α at 24 hr (B: 0.049, P = 0.008) were independent factors for EPC increment during the first week of evolution. These findings suggest that VEGF and SDF-1α may mediate EPC proliferation in human ischemic stroke.
Collapse
Affiliation(s)
- Tomás Sobrino
- Department of Neurology, Clinical Neurosciences Research Laboratory, Hospital Clínico Universitario, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
96
|
Seebach C, Henrich D, Wilhelm K, Barker JH, Marzi I. Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Cell Transplant 2012; 21:1667-77. [PMID: 22507568 DOI: 10.3727/096368912x638937] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Early vascularization of a composite in a critical bone defect is a prerequisite for ingrowth of osteogenic reparative cells to regenerate bone, since lack of vessels does not ensure a sufficient nutritional support of the bone graft. The innovation of this study was to investigate the direct and indirect effects of endothelial progenitor cells (EPCs) and cotransplanted mesenchymal stem cells (MSCs) on the in vivo neovascularization activity in a critical size defect at the early phase of endochondral ossification. Cultivated human EPCs and MSCs were loaded onto β-TCP in vitro. A critical-sized bone defect (5 mm) was created surgically in the femoral diaphysis of adult athymic rat and stabilized with an external fixateur. The bone defects were filled with β-TCP, MSCs seeded on β-TCP, EPCs seeded on β-TCP, and coculture of MSCs and EPCs seeded on β-TCP or autologous bone of rat. After 1 week, the rats were sacrificed. Using quantitative CD34 immunohistochemistry as well as qualitative analysis of vascularization (staining of MHC and VEGF) in decalcified serial sections were performed by means of an image analysis system. Fluorescence microscopy analyzed the direct effects and indirect effects of human implanted EPCs for vessel formation at bone regeneration site. Formation of a primitive vascular plexus was also detectable in the β-TCP, MSC, or autologous bone group, but on a significantly higher level if EPCs alone or combined with MSCs were transplanted. Moreover, highest amount of vascularization were detected when EPCs and MSCs together were implanted. Early vascularization is improved by transplanted EPCs, which formed new vessels directly. Indeed the indirect effect of EPCs to vascularization is much higher. Transplanted EPC release chemotactic factors (VEGF) to recruit EPCs of the host and stimulate vascularization in the bone defect. Transplantation of human EPCs displays a promising approach to improve early vascularization of a scaffold in a critical bone defect. Moreover, coculture of EPCs and MSCs demonstrate also a synergistic effect on new vessel formation and seems to be a potential osteogenic construct for in vivo application.
Collapse
Affiliation(s)
- C Seebach
- Department of Trauma Surgery, Johann-Wolfgang-Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
97
|
Doyle ME, Perley JP, Skalak TC. Bone marrow-derived progenitor cells augment venous remodeling in a mouse dorsal skinfold chamber model. PLoS One 2012; 7:e32815. [PMID: 22389724 PMCID: PMC3289672 DOI: 10.1371/journal.pone.0032815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 02/06/2012] [Indexed: 12/01/2022] Open
Abstract
The delivery of bone marrow-derived cells (BMDCs) has been widely used to stimulate angiogenesis and arteriogenesis. We identified a progenitor-enriched subpopulation of BMDCs that is able to augment venular remodeling, a generally unexplored area in microvascular research. Two populations of BMDCs, whole bone marrow (WBM) and Lin−/Sca-1+ progenitor cells, were encapsulated in sodium alginate and delivered to a mouse dorsal skinfold chamber model. Upon observation that encapsulated Sca-1+ progenitor cells enhance venular remodeling, the cells and tissue were analyzed on structural and molecular levels. Venule walls were thickened and contained more nuclei after Sca-1+ progenitor cell delivery. In addition, progenitors expressed mRNA transcript levels of chemokine (C-X-C motif) ligand 2 (CXCL2) and interferon gamma (IFNγ) that are over 5-fold higher compared to WBM. Tissues that received progenitors expressed significantly higher protein levels of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), and platelet derived growth factor-BB (PDGF-BB) compared to tissues that received an alginate control construct. Nine days following cell delivery, tissue from progenitor recipients contained 39% more CD45+ leukocytes, suggesting that these cells may enhance venular remodeling through the modulation of the local immune environment. Results show that different BMDC populations elicit different microvascular responses. In this model, Sca-1+ progenitor cell-derived CXCL2 and IFNγ may mediate venule enlargement via modulation of the local inflammatory environment.
Collapse
Affiliation(s)
- Megan E Doyle
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America.
| | | | | |
Collapse
|
98
|
FTY720 suppresses liver tumor metastasis by reducing the population of circulating endothelial progenitor cells. PLoS One 2012; 7:e32380. [PMID: 22384233 PMCID: PMC3288101 DOI: 10.1371/journal.pone.0032380] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Surgical procedures such as liver resection and liver transplantation are the first-line treatments for hepatocellular carcinoma (HCC) patients. However, the high incidence of tumor recurrence and metastasis after liver surgery remains a major problem. Recent studies have shown that hepatic ischemia-reperfusion (I/R) injury and endothelial progenitor cells (EPCs) contribute to tumor growth and metastasis. We aim to investigate the mechanism of FTY720, which was originally applied as an immunomodulator, on suppression of liver tumor metastasis after liver resection and partial hepatic I/R injury. METHODOLOGY/PRINCIPAL FINDINGS An orthotopic liver tumor model in Buffalo rat was established using the hepatocellular carcinoma cell line McA-RH7777. Two weeks after orthotopic liver tumor implantation, the rats underwent liver resection for tumor-bearing lobe and partial hepatic I/R injury. FTY720 (2 mg/kg) was administered through the inferior caval vein before and after I/R injury. Blood samples were taken at days 0, 1, 3, 7, 14, 21 and 28 for detection of circulating EPCs (CD133+CD34+). Our results showed that intrahepatic and lung metastases were significantly inhibited together with less tumor angiogenesis by FTY720 treatment. The number of circulating EPCs was also significantly decreased by FTY720 treatment from day 7 to day 28. Hepatic gene expressions of CXCL10, VEGF, CXCR3, CXCR4 induced by hepatic I/R injury were down-regulated in the treatment group. CONCLUSIONS/SIGNIFICANCE FTY720 suppressed liver tumor metastasis after liver resection marred by hepatic I/R injury in a rat liver tumor model by attenuating hepatic I/R injury and reducing circulating EPCs.
Collapse
|
99
|
Irradiation induces homing of donor endothelial progenitor cells in allogeneic hematopoietic stem cell transplantation. Int J Hematol 2012; 95:189-97. [DOI: 10.1007/s12185-011-1000-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
|
100
|
Abstract
Despite significant therapeutic advances, heart failure remains the predominant cause of mortality in the Western world. Ischaemic cardiomyopathy and myocardial infarction are typified by the irreversible loss of cardiac muscle (cardiomyocytes) and vasculature composed of endothelial cells and smooth muscle cells, which are essential for maintaining cardiac integrity and function. The recent identification of adult and embryonic stem cells has triggered attempts to directly repopulate these tissues by stem cell transplantation as a novel therapeutic option. Reports describing provocative and hopeful examples of myocardial regeneration with adult bone-marrow-derived stem and progenitor cells have increased the enthusiasm for the use of these cells, yet many questions remain regarding their therapeutic potential and the mechanisms responsible for the observed therapeutic effects. In this review article we discuss the current preclinical and clinical advances in bone-marrow-derived stem or progenitor cell therapies for regeneration or repair of the ischaemic myocardium and their multiple related mechanisms involved in myocardial repair and regeneration.
Collapse
Affiliation(s)
- Young-Sup Yoon
- Division of Cardiovascular Research, Caritas St., Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA.
| | | | | |
Collapse
|