51
|
Sano M, Sasaki T, Hirakawa S, Sakabe J, Ogawa M, Baba S, Zaima N, Tanaka H, Inuzuka K, Yamamoto N, Setou M, Sato K, Konno H, Unno N. Lymphangiogenesis and angiogenesis in abdominal aortic aneurysm. PLoS One 2014; 9:e89830. [PMID: 24651519 PMCID: PMC3961250 DOI: 10.1371/journal.pone.0089830] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/23/2014] [Indexed: 01/13/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) is characterized to be inflammation-associated degeneration of vascular wall. Neovascularization is regularly found in human AAA and considered to play critical roles in the development and rupture of AAA. However, little is known about lymphangiogenesis in AAA. The purpose of this study was to demonstrate both angiogenesis and lymphangiogenesis in AAA. Abdominal aortic tissue was harvested either from autopsy (control group) and during open-repair surgery for AAA (AAA group). Adventitial lymphatic vasa vasorum was observed in both groups, but seemed to be no significant morphological changes in AAA. Immunohistochemical studies identified infiltration of lymphatic vessel endothelial hyaluronan receptor (LYVE) -1, vascular endothelial growth factor (VEGF)-C, and matrix metalloproteinase (MMP)-9-positive macrophages and podoplanin and Prox-1-positive microvessels in the intima/media in AAA wall, where hypoxia-inducible factors (HIF)-1α was expressed. VEGF-C and MMP-9 were not expressed in macrophages infiltrating in the adventitia. Intraoperative indocyanine green fluorescence lymphography revealed lymph stasis in intima/medial in AAA. Fluorescence microscopy of the collected samples also confirmed the accumulation of lymph in the intima/media but not in adventitia. These results demonstrate that infiltration of macrophages in intima/media is associated with lymphangiogenesis and angiogenesis in AAA. Lymph-drainage appeared to be insufficient in the AAA wall.
Collapse
Affiliation(s)
- Masaki Sano
- Division of Vascular Surgery, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
| | - Satoshi Hirakawa
- Department of Dermatology, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
| | - Junichi Sakabe
- Department of Dermatology, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
| | - Mikako Ogawa
- Department of Molecular Imaging, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Nobuhiro Zaima
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- Department of Applied Biological Chemistry, Kinki University, Osaka, Japan
| | - Hiroki Tanaka
- Division of Vascular Surgery, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazunori Inuzuka
- Division of Vascular Surgery, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Naoto Yamamoto
- Division of Vascular Surgery, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kohji Sato
- Department of Anatomy and Neuroscience, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
| | - Hiroyuki Konno
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Naoki Unno
- Division of Vascular Surgery, Applied Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu City, Shizuoka, Japan
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
52
|
Huang B, Huang S, Chen Y, Zheng H, Shen J, Lun ZR, Wang Y, Kasper LH, Lu F. Mast cells modulate acute toxoplasmosis in murine models. PLoS One 2013; 8:e77327. [PMID: 24146978 PMCID: PMC3797692 DOI: 10.1371/journal.pone.0077327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/30/2013] [Indexed: 01/16/2023] Open
Abstract
The role of mast cells (MCs) in Toxoplasma gondii infection is poorly known. Kunming outbred mice were infected intraperitoneally with RH strain T. gondii, either treated with compound 48/80 (C48/80, MC activator) or disodium cromoglycate (DSCG, MC inhibitor). Compared with infected controls, infected mice treated with C48/80 exhibited significantly increased inflammation in the liver (P < 0.01), spleen (P < 0.05), and mesentery (P < 0.05) tissues, higher parasite burden in the peritoneal lavage fluids (P < 0.01), and increased levels of mRNA transcripts of T. gondii tachyzoite surface antigen 1 (SAG1) gene in the spleen and liver tissues (P < 0.01), accompanied with significantly increased Th1 cytokine (IFN-γ, IL-12p40, and TNF-α) (P < 0.01) and decreased IL-10 (P < 0.01) mRNA expressions in the liver, and increased IFN-γ (P < 0.01) and IL-12p40 (P < 0.01) but decreased TNF-α (P < 0.01) and IL-4 (P < 0.01) in the spleens of infected mice treated with C48/80 at day 9-10 p.i. Whereas mice treated with DSCG had significantly decreased tissue lesions (P < 0.01), lower parasite burden in the peritoneal lavage fluids (P < 0.01) and decreased SAG1 expressions in the spleen and liver tissues (P < 0.01), accompanied with significantly increased IFN-γ (P < 0.01) and IL-12p40 (P < 0.05) in the liver, and decreased IFN-γ (P < 0.05) and TNF-α (P < 0.01) in the spleens; IL-4 and IL-10 expressions in both the spleen and liver were significantly increased (P < 0.01) in the infected mice treated with DSCG. These findings suggest that mediators associated with the MC activation may play an important role in modulating acute inflammatory pathogenesis and parasite clearance during T. gondii infection in this strain of mice. Thus, MC activation/inhibition mechanisms are potential novel targets for the prevention and control of T. gondii infection.
Collapse
Affiliation(s)
- Bo Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Shiguang Huang
- Department of Periodontology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Ying Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Huanqin Zheng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Jilong Shen
- The Anhui Provincial Laboratory of Pathogen Biology, Anhui Medical University, Hefei, Anhui, China
| | - Zhao-Rong Lun
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lloyd H. Kasper
- Department of Microbiology, Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
53
|
He A, Shi GP. Mast cell chymase and tryptase as targets for cardiovascular and metabolic diseases. Curr Pharm Des 2013; 19:1114-25. [PMID: 23016684 DOI: 10.2174/1381612811319060012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/16/2012] [Indexed: 01/01/2023]
Abstract
Mast cells are critical effectors in inflammatory diseases, including cardiovascular and metabolic diseases and their associated complications. These cells exert their physiological and pathological activities by releasing granules containing histamine, cytokines, chemokines, and proteases, including mast cell-specific chymases and tryptases. Several recent human and animal studies have shown direct or indirect participation of mast cell-specific proteases in atherosclerosis, abdominal aortic aneurysms, obesity, diabetes, and their complications. Animal studies have demonstrated the beneficial effects of highly selective and potent chymase and tryptase inhibitors in several experimental cardiovascular and metabolic diseases. In this review, we summarize recent discoveries from in vitro cell-based studies to experimental animal disease models, from protease knockout mice to treatments with recently developed selective and potent protease inhibitors, and from patients with preclinical disorders to those affected by complications. We hypothesize that inhibition of chymases and tryptases would benefit patients suffering from cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Aina He
- Department of Oncology, The Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | | |
Collapse
|
54
|
Vijaynagar B, Bown MJ, Sayers RD, Choke E. Potential role for anti-angiogenic therapy in abdominal aortic aneurysms. Eur J Clin Invest 2013; 43:758-65. [PMID: 23672465 DOI: 10.1111/eci.12103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 04/01/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a condition that mainly affects elderly men. At present, there is no effective medical therapy that can retard aneurysm growth or prevent aneurysm rupture. There is evidence that angiogenesis within the wall of an aortic aneurysm may play key roles in aneurysm progression as well as rupture. The use of anti-angiogenic therapy as potential medical therapy in AAA is a promising strategy but has never been studied in detail. DESIGN This paper discusses the basic mechanisms of angiogenesis, the role played by angiogenesis in aortic aneurysms and the potential therapeutic role of anti-angiogenic drugs against aneurysm expansion or rupture. RESULTS Angiogenesis is a multi-step process which is fundamental for growth and differentiation of various tissues within a multi-cellular organism. Hypoxia and inflammation are key stimuli for activation of neoangiogenesis. Investigations in both human tissues and animal models of AAA have shown that angiogenesis is a pathological hallmark of AAA and appears to play a role in the development and progression of the condition. Pre-clinical studies have shown that anti-angiogenic drugs can potentially be effective in reducing the intensity of aneurysm formation, suggesting that such drugs may potentially be useful as novel drug therapy for AAA in humans. CONCLUSION Current evidence suggests that angiogenesis contributes to the destructive processes within aneurysmal aortic wall. As novel drug therapy for aortic aneurysms (for use in humans) is still eluding researchers, anti-angiogenic pathway appears to be an attractive approach.
Collapse
Affiliation(s)
- Badri Vijaynagar
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
55
|
Tapping CR, Bratby MJ. The changing face of vascular interventional radiology: the future role of pharmacotherapies and molecular imaging. Cardiovasc Intervent Radiol 2013; 36:904-12. [PMID: 23636247 DOI: 10.1007/s00270-013-0621-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/25/2013] [Indexed: 01/22/2023]
Abstract
Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies.
Collapse
Affiliation(s)
- Charles R Tapping
- Department of Radiology, Oxford University Hospitals, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
56
|
Lu H, Rateri DL, Bruemmer D, Cassis LA, Daugherty A. Novel mechanisms of abdominal aortic aneurysms. Curr Atheroscler Rep 2013; 14:402-12. [PMID: 22833280 DOI: 10.1007/s11883-012-0271-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are a common but asymptomatic disease that has high susceptibility to rupture. Current therapeutic options are limited to surgical procedures because no pharmacological approaches have been proven to decrease either expansion or rupture of human AAAs. The current dearth of effective medical treatment is attributed to insufficient understanding of the mechanisms underlying the initiation, propagation and rupture of AAAs. This review will emphasize recent advances in mechanistic studies that may provide insights into potential pharmacological treatments for this disease. While we primarily focus on recent salient findings, we also discuss mechanisms that continue to be controversial depending on models under study. Despite the progress on exploring mechanisms of experimental AAAs, ultimate validation of mechanisms will require completion of prospective double-blinded clinical trials. In addition, we advocate increased emphasis of collaborative studies using animal models and human tissues for determination of mechanisms that explore expansion and rupture of existing AAAs.
Collapse
Affiliation(s)
- Hong Lu
- Saha Cardiovascular Research Center, Biomedical Biological Sciences Research Building, B243, University of Kentucky, Lexington, KY 40536-0509, USA.
| | | | | | | | | |
Collapse
|
57
|
Li LJ, Hao HJ, Shi ZY, Feng BS. Role of mast cells in the pathogenesis of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2013; 21:579-584. [DOI: 10.11569/wcjd.v21.i7.579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of recurrent chronic intestinal inflammatory diseases with incompletely understood pathogenesis. Increasing evidence has shown that mast cells are markedly increased in inflamed mucosa of IBD patients and involved in the pathogenesis of IBD. Upon activation mast cells release multiple proinflammatory cytokines, chemokines and mediators that play an important role in the occurrence and development of IBD. Understanding the role of mast cell-derived mediators and cytokines in IBD can provide new avenues for the development of new approaches to the treatment of this disease.
Collapse
|
58
|
Abstract
Mast cells are increasingly being recognized as effector cells in many cardiovascular conditions. Many mast-cell-derived products such as tryptase and chymase can, through their enzymic action, have detrimental effects on blood vessel structure while mast cell-derived mediators such as cytokines and chemokines can perpetuate vascular inflammation. Mice lacking mast cells have been developed and these are providing an insight into how mast cells are involved in cardiovascular diseases and, as knowledge increase, mast cells may become a viable therapeutic target to slow progression of cardiovascular disease.
Collapse
|
59
|
KITAGISHI YASUKO, KOBAYASHI MAYUMI, YAMASHINA YURIE, MATSUDA SATORU. Elucidating the regulation of T cell subsets. Int J Mol Med 2012; 30:1255-60. [DOI: 10.3892/ijmm.2012.1152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/19/2012] [Indexed: 11/05/2022] Open
|
60
|
Yao Y, Wang Y, Zhang Y, Li Y, Sheng Z, Wen S, Ma G, Liu N, Fang F, Teng GJ. In vivo imaging of macrophages during the early-stages of abdominal aortic aneurysm using high resolution MRI in ApoE mice. PLoS One 2012; 7:e33523. [PMID: 22448249 PMCID: PMC3308989 DOI: 10.1371/journal.pone.0033523] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/15/2012] [Indexed: 01/15/2023] Open
Abstract
Background Angiotensin II (ANG II) promotes vascular inflammation and induces abdominal aortic aneurysm (AAA) in hyperlipidemic apolipoprotein E knock-out (apoE−/−) mice. The aim of the present study was to detect macrophage activities in an ANG II-induced early-stage AAA model using superparamagnetic iron oxide (SPIO) as a marker. Methodology/Principal Findings Twenty-six male apoE−/− mice received saline or ANG II (1000 or 500 ng/kg/min) infusion for 14 days. All animals underwent MRI scanning following administration of SPIO with the exception of three mice in the 1000 ng ANG II group, which were scanned without SPIO administration. MR imaging was performed using black-blood T2 to proton density -weighted multi-spin multi-echo sequence. In vivo MRI measurement of SPIO uptake and abdominal aortic diameter were obtained. Prussian blue, CD68,α-SMC and MAC3 immunohistological stains were used for the detection of SPIO, macrophages and smooth muscle cells. ANG II infusion with 1000 ng/kg/min induced AAA in all of the apoE−/− mice. ANG II infusion exhibited significantly higher degrees of SPIO uptake, which was detected using MRI as a distinct loss of signal intensity. The contrast-to-noise ratio value decreased in proportion to an increase in the number of iron-laden macrophages in the aneurysm. The aneurysmal vessel wall in both groups of ANG II treated mice contained more iron-positive macrophages than saline-treated mice. However, the presence of cells capable of phagocytosing haemosiderin in mural thrombi also induced low-signal-intensities via MRI imaging. Conclusions/Significance SPIO is taken up by macrophages in the shoulder and the outer layer of AAA. This alters the MRI signaling properties and can be used in imaging inflammation associated with AAA. It is important to compare images of the aorta before and after SPIO injection.
Collapse
Affiliation(s)
- Yuyu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yuanyuan Wang
- Jiangsu Key Lab of Molecular and Function Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yi Zhang
- Jiangsu Key Lab of Molecular and Function Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yefei Li
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Zulong Sheng
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Song Wen
- Jiangsu Key Lab of Molecular and Function Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Naifeng Liu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Fang Fang
- Jiangsu Key Lab of Molecular and Function Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Gao-Jun Teng
- Jiangsu Key Lab of Molecular and Function Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
- * E-mail:
| |
Collapse
|
61
|
Pathogenesis of abdominal aortic aneurysms: role of nicotine and nicotinic acetylcholine receptors. Mediators Inflamm 2012; 2012:103120. [PMID: 22529515 PMCID: PMC3317239 DOI: 10.1155/2012/103120] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 11/18/2022] Open
Abstract
Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal aortic aneurysms (AAAs), although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases (MMPs) such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke, can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs, nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs). In this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and angiogenesis, and the roles of nicotine and nAChRs.
Collapse
|
62
|
Xu JM, Shi GP. Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr Rev 2012; 33:71-108. [PMID: 22240242 PMCID: PMC3365842 DOI: 10.1210/er.2011-0013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022]
Abstract
Mast cells are essential in allergic immune responses. Recent discoveries have revealed their direct participation in cardiovascular diseases and metabolic disorders. Although more sophisticated mechanisms are still unknown, data from animal studies suggest that mast cells act similarly to macrophages and other inflammatory cells and contribute to human diseases through cell-cell interactions and the release of proinflammatory cytokines, chemokines, and proteases to induce inflammatory cell recruitment, cell apoptosis, angiogenesis, and matrix protein remodeling. Reduced cardiovascular complications and improved metabolic symptoms in animals receiving over-the-counter antiallergy medications that stabilize mast cells open another era of mast cell biology and bring new hope to human patients suffering from these conditions.
Collapse
Affiliation(s)
- Jia-Ming Xu
- Department of Medicine, Nanfang Hospital and Southern Medical University, Guangzhou 510515, China
| | | |
Collapse
|
63
|
Affiliation(s)
- Christoph J. Binder
- From the Center for Molecular Medicine of the Austrian Academy of Sciences (C.J.B.), Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria (C.J.B.); Department of Medicine, University of California, San Diego, La Jolla, CA (C.J.B., J.L.W.)
| | - Joseph L. Witztum
- From the Center for Molecular Medicine of the Austrian Academy of Sciences (C.J.B.), Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria (C.J.B.); Department of Medicine, University of California, San Diego, La Jolla, CA (C.J.B., J.L.W.)
| |
Collapse
|
64
|
Majesky MW, Dong XR, Hoglund V, Daum G, Mahoney WM. The adventitia: a progenitor cell niche for the vessel wall. Cells Tissues Organs 2011; 195:73-81. [PMID: 22005572 DOI: 10.1159/000331413] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent observations suggest that the adventitial layer of blood vessels exhibits properties resembling a stem/progenitor cell niche. Progenitor cells have been isolated from the adventitia of both murine and human blood vessels with the potential to form endothelial cells, mural cells, osteogenic cells, and adipocytes. These progenitors appear to cluster at or near the border zone between the outer media and inner adventitia. In the mouse, this border zone region corresponds to a localized site of sonic hedgehog signaling in the artery wall. This brief review will discuss the emerging evidence that the tunica adventitia may provide a niche-like signaling environment for resident progenitor cells and will address the role of the adventitia in growth, remodeling, and repair of the artery wall.
Collapse
Affiliation(s)
- Mark W Majesky
- Seattle Children's Research Institute, University of Washington, Seattle, Wash., USA.
| | | | | | | | | |
Collapse
|
65
|
Abstract
The title of the proposed series of reviews is Translational Success Stories. The definition of "translation" according to Webster is, "an act, process, or instance of translating as a rendering of one language into another." In the context of this inaugural review, it is the translation of Tigerstedt's and Bergman's(1) discovery in 1898 of the vasoconstrictive effects of an extract of rabbit kidney to the treatment of heart failure. As recounted by Marks and Maxwell,(2) their discovery was heavily influenced by the original experiments of the French physiologist Brown-Séquard, who was the author of the doctrine that "many organs dispense substances into the blood which are not ordinary waste products, but have specific functions." They were also influenced by Bright's(3) original observation that linked kidney disease with hypertension with the observation that patients dying with contracted kidneys often exhibited a hard, full pulse and cardiac hypertrophy. However, from Tigerstedt's initial discovery, there was a long and arduous transformation of ideas and paradigms that eventually translated to clinical applications. Although the role of the renin-angiotensin system in the pathophysiology of hypertension and heart failure was suspected through the years, beneficial effects from its blockade were not realized until the early 1970s. Thus, this story starts with a short historical perspective that provides the reader some insight and appreciation into the long delay in translation.
Collapse
Affiliation(s)
- Louis J Dell'Italia
- Birmingham Veteran Affairs Medical Center, Department of Medicine, Division of Cardiovascular Disease, University Station, University of Alabama, Birmingham, USA.
| |
Collapse
|
66
|
Majesky MW, Dong XR, Hoglund V, Mahoney WM, Daum G. The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol 2011; 31:1530-9. [PMID: 21677296 DOI: 10.1161/atvbaha.110.221549] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Conventional views of the tunica adventitia as a poorly organized layer of vessel wall composed of fibroblasts, connective tissue, and perivascular nerves are undergoing revision. Recent studies suggest that the adventitia has properties of a stem/progenitor cell niche in the artery wall that may be poised to respond to arterial injury. It is also a major site of immune surveillance and inflammatory cell trafficking and harbors a dynamic microvasculature, the vasa vasorum, that maintains the medial layer and provides an important gateway for macrophage and leukocyte migration into the intima. In addition, the adventitia is in contact with tissue that surrounds the vessel and may actively participate in exchange of signals and cells between the vessel wall and the tissue in which it resides. This brief review highlights recent advances in our understanding of the adventitia and its resident progenitor cells and discusses progress toward an integrated view of adventitial function in vascular development, repair, and disease.
Collapse
Affiliation(s)
- Mark W Majesky
- Seattle Children’s Research Institute, Departments of Pediatric, Center for Cardiovascular Biology, and the Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98101, USA.
| | | | | | | | | |
Collapse
|
67
|
Emeto TI, Moxon JV, Rush C, Woodward L, Golledge J. Relevance of urocortins to cardiovascular disease. J Mol Cell Cardiol 2011; 51:299-307. [PMID: 21689660 DOI: 10.1016/j.yjmcc.2011.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/26/2011] [Accepted: 06/02/2011] [Indexed: 11/19/2022]
Abstract
Acquired cardiovascular diseases such as coronary heart disease, peripheral artery disease and related vascular problems contribute to more than one-third of worldwide morbidity and mortality. In many instances, particularly in the under developed world, cardiovascular diseases are diagnosed at a late stage limiting the scope for improving outcomes. A range of therapies already exist for established cardiovascular disease, although there is significant interest in further understanding disease pathogenesis in order to improve diagnosis and achieve primary and secondary therapeutic goals. The urocortins are a group of recently defined peptide members of the corticotrophin-releasing factor family. Previous pre-clinical work and human association studies suggest that urocortins have potential to exert some beneficial and other detrimental effects on the heart and major blood vessels. More current evidence however favours beneficial effects of urocortins, for example these peptides have been shown to inhibit production of reactive oxygen species and vascular cell apoptosis, and thus may have potential to antagonise the progression of cardiovascular disease. This review summarises published data on the potential role of urocortins in cardiovascular disease.
Collapse
Affiliation(s)
- Theophilus I Emeto
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | | | | | | | | |
Collapse
|