51
|
Joshi SR, Dhagia V, Gairhe S, Edwards JG, McMurtry IF, Gupte SA. MicroRNA-140 is elevated and mitofusin-1 is downregulated in the right ventricle of the Sugen5416/hypoxia/normoxia model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2016; 311:H689-98. [PMID: 27422986 DOI: 10.1152/ajpheart.00264.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/13/2016] [Indexed: 01/18/2023]
Abstract
Heart failure, a major cause of morbidity and mortality in patients with pulmonary arterial hypertension (PAH), is an outcome of complex biochemical processes. In this study, we determined changes in microRNAs (miRs) in the right and left ventricles of normal and PAH rats. Using an unbiased quantitative miR microarray analysis, we found 1) miR-21-5p, miR-31-5 and 3p, miR-140-5 and 3p, miR-208b-3p, miR-221-3p, miR-222-3p, miR-702-3p, and miR-1298 were upregulated (>2-fold; P < 0.05) in the right ventricle (RV) of PAH compared with normal rats; 2) miR-31-5 and 3p, and miR-208b-3p were upregulated (>2-fold; P < 0.05) in the left ventricle plus septum (LV+S) of PAH compared with normal rats; 3) miR-187-5p, miR-208a-3p, and miR-877 were downregulated (>2-fold; P < 0.05) in the RV of PAH compared with normal rats; and 4) no miRs were up- or downregulated with >2-fold in LV+S compared with RV of PAH and normal. Upregulation of miR-140 and miR-31 in the hypertrophic RV was further confirmed by quantitative PCR. Interestingly, compared with control rats, expression of mitofusin-1 (MFN1), a mitochondrial fusion protein that regulates apoptosis, and which is a direct target of miR-140, was reduced in the RV relative to LV+S of PAH rats. We found a correlation between increased miR-140 and decreased MFN1 expression in the hypertrophic RV. Our results also demonstrated that upregulation of miR-140 and downregulation of MFN1 correlated with increased RV systolic pressure and hypertrophy. These results suggest that miR-140 and MFN1 play a role in the pathogenesis of PAH-associated RV dysfunction.
Collapse
Affiliation(s)
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Salina Gairhe
- Department of Pharmacology and Center for Lung Biology, University of South Alabama, College of Medicine, Mobile, Alabama; and
| | - John G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Ivan F McMurtry
- Department of Pharmacology and Center for Lung Biology, University of South Alabama, College of Medicine, Mobile, Alabama; and
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
52
|
Wang P, Yang X, Zhang Z, Song J, Guan YF, Zou DJ, Miao CY. Depletion of NAD pool contributes to impairment of endothelial progenitor cell mobilization in diabetes. Metabolism 2016; 65:852-62. [PMID: 27173464 DOI: 10.1016/j.metabol.2016.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/07/2016] [Accepted: 03/09/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The impaired mobilization of endothelial progenitor cells (EPCs) from bone marrow (BM) critically contributes to the diabetes-associated vascular complications. Here, we investigated the relationship between the nicotinamide phosphoribosyltransferase (NAMPT)-controlled nicotinamide adenine dinucleotide (NAD) metabolism and the impaired mobilization of BM-derived EPCs in diabetic condition. METHODS The NAMPT-NAD pool in BM and BM-derived EPCs in wild-type (WT) and diabetic db/db mice was determined. Nicotinamide, a natural substrate for NAD biosynthesis, was administrated for 2weeks in db/db mice to examine the influence of enhancing NAD pool on BM and blood EPCs number. The modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein in BM were measured using immunoblotting. The EPCs intracellular NAMPT level and NAD concentration, as well as the blood EPCs number, were compared between 9 healthy people and 16 patients with type 2 diabetes mellitus (T2DM). The T2DM patients were treated with nicotinamide for two weeks and then the blood EPCs number was determined. Moreover, the association between blood EPCs numbers and EPCs intracellular NAD(+)/NAMPT protein levels in 21 healthy individuals was determined. RESULTS We found that NAD concentration and NAMPT expression in BM and BM-derived EPCs of db/db mice were significantly lower than those in WT mice BM. Enhancing NAD pool not only increased the EPCs intracellular NAD concentration and blood EPCs number, but also improved post-ischemic wound healing and blood reperfusion in db/db mice with hind-limb ischemia model. Enhancing NAD pool rescued the impaired modulations of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase (eNOS) protein levels in db/db mice BM upon hind-limb ischemia. In addition, enhancing NAD pool significantly inhibited PARP and caspase-3 activates in db/db mice BM. The intracellular NAMPT-NAD pool was positively associated with blood EPCs number in healthy individuals. At last, we found that the EPC intracellular NAMPT and NAD(+) levels were reduced in T2DM patients and enhancing NAD pool elevated the circulating blood EPCs number in T2DM patients. CONCLUSION Our results indicate that the depletion of NAD pool may contribute to the impairment of EPCs mobilization in diabetic condition, and imply the potential therapeutic value of nicotinamide in the prevention and treatment for cardiovascular complications of diabetes.
Collapse
Affiliation(s)
- Pei Wang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China; Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xi Yang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zheng Zhang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jie Song
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Yun-Feng Guan
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Da-Jin Zou
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China.
| |
Collapse
|
53
|
Nollet E, Hoymans VY, Van Craenenbroeck AH, Vrints CJ, Van Craenenbroeck EM. Improving stem cell therapy in cardiovascular diseases: the potential role of microRNA. Am J Physiol Heart Circ Physiol 2016; 311:H207-18. [PMID: 27208159 DOI: 10.1152/ajpheart.00239.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 11/22/2022]
Abstract
The initial promising prospect of autologous bone marrow-derived stem cell therapy in the setting of cardiovascular diseases has been overshadowed by functional shortcomings of the stem cell product. As powerful epigenetic regulators of (stem) cell function, microRNAs are valuable targets for novel therapeutic strategies. Indeed, modulation of specific miRNA expression could contribute to improved therapeutic efficacy of stem cell therapy. First, this review elaborates on the functional relevance of miRNA dysregulation in bone marrow-derived progenitor cells in different cardiovascular diseases. Next, we provide a comprehensive overview of the current evidence on the effect of specific miRNA modulation in several types of progenitor cells on cardiac and/or vascular regeneration. By elaborating on the cardioprotective regulation of progenitor cells on cardiac miRNAs, more insight in the underlying mechanisms of stem cell therapy is provided. Finally, some considerations are made regarding the potential of circulating miRNAs as regulators of the miRNA signature of progenitor cells in cardiovascular diseases.
Collapse
Affiliation(s)
- Evelien Nollet
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium
| | - Vicky Y Hoymans
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium
| | - Amaryllis H Van Craenenbroeck
- Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium; Department of Nephrology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium; and
| | - Christiaan J Vrints
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Emeline M Van Craenenbroeck
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
54
|
Kang T, Jones TM, Naddell C, Bacanamwo M, Calvert JW, Thompson WE, Bond VC, Chen YE, Liu D. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31. Stem Cells Transl Med 2016; 5:440-50. [PMID: 26933040 PMCID: PMC4798737 DOI: 10.5966/sctm.2015-0177] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/19/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Cell secretion is an important mechanism for stem cell-based therapeutic angiogenesis, along with cell differentiation to vascular endothelial cells or smooth muscle cells. Cell-released microvesicles (MVs) have been recently implicated to play an essential role in intercellular communication. The purpose of this study was to explore the potential effects of stem cell-released MVs in proangiogenic therapy. We observed for the first time that MVs were released from adipose-derived stem cells (ASCs) and were able to increase the migration and tube formation of human umbilical vein endothelial cells (HUVECs). Endothelial differentiation medium (EDM) preconditioning of ASCs upregulated the release of MVs and enhanced the angiogenic effect of the released MVs in vitro. RNA analysis revealed that microRNA was enriched in ASC-released MVs and that the level of microRNA-31 (miR-31) in MVs was notably elevated upon EDM-preconditioning of MV-donor ASCs. Further studies exhibited that miR-31 in MVs contributed to the migration and tube formation of HUVECs, microvessel outgrowth of mouse aortic rings, and vascular formation of mouse Matrigel plugs. Moreover, factor-inhibiting HIF-1, an antiangiogenic gene, was identified as the target of miR-31 in HUVECs. Our findings provide the first evidence that MVs from ASCs, particularly from EDM-preconditioned ASCs, promote angiogenesis and the delivery of miR-31 may contribute the proangiogenic effect. SIGNIFICANCE This study provides the evidence that microvesicles (MVs) from adipose-derived stem cells (ASCs), particularly from endothelial differentiation medium (EDM)-preconditioned ASCs, promote angiogenesis. An underlying mechanism of the proangiogenesis may be the delivery of microRNA-31 via MVs from ASCs to vascular endothelial cells in which factor-inhibiting HIF-1 is targeted and suppressed. The study findings reveal the role of MVs in mediating ASC-induced angiogenesis and suggest a potential MV-based angiogenic therapy for ischemic diseases.
Collapse
Affiliation(s)
- Ting Kang
- Division of Cardiology, The First Affiliated Hospital, Nanchang University, Nanchang, People's Republic of China Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Tia M Jones
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Clayton Naddell
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Methode Bacanamwo
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John W Calvert
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Vincent C Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
55
|
Napoli C, Grimaldi V, De Pascale MR, Sommese L, Infante T, Soricelli A. Novel epigenetic-based therapies useful in cardiovascular medicine. World J Cardiol 2016; 8:211-219. [PMID: 26981216 PMCID: PMC4766271 DOI: 10.4330/wjc.v8.i2.211] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/28/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modifications include DNA methylation, histone modifications, and microRNA. Gene alterations have been found to be associated with cardiovascular diseases, and epigenetic mechanisms are continuously being studied to find new useful strategies for the clinical management of afflicted patients. Numerous cardiovascular disorders are characterized by the abnormal methylation of CpG islands and so specific drugs that could inhibit DNA methyltransferase directly or by reducing its gene expression (e.g., hydralazine and procainamide) are currently under investigation. The anti-proliferative and anti-inflammatory properties of histone deacetylase inhibitors and their cardio-protective effects have been confirmed in preclinical studies. Furthermore, the regulation of the expression of microRNA targets through pharmacological tools is still under development. Indeed, large controlled trials are required to establish whether current possible candidate antisense microRNAs could offer better therapeutic benefits in clinical practice. Here, we updated therapeutic properties, side effects, and feasibility of emerging epigenetic-based strategies in cardiovascular diseases by highlighting specific problematic issues that still affect the development of large scale novel therapeutic protocols.
Collapse
|
56
|
Wang HW, Su SH, Wang YL, Chang ST, Liao KH, Lo HH, Chiu YL, Hsieh TH, Huang TS, Lin CS, Cheng SM, Cheng CC. MicroRNA-134 Contributes to Glucose-Induced Endothelial Cell Dysfunction and This Effect Can Be Reversed by Far-Infrared Irradiation. PLoS One 2016; 11:e0147067. [PMID: 26799933 PMCID: PMC4723308 DOI: 10.1371/journal.pone.0147067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/27/2015] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that is increasing worldwide. Furthermore, it is associated with the deregulation of vascular-related functions, which can develop into major complications among DM patients. Endothelial colony forming cells (ECFCs) have the potential to bring about medical repairs because of their post-natal angiogenic activities; however, such activities are impaired by high glucose- (HG) and the DM-associated conditions. Far-infrared radiation (FIR) transfers energy as heat that is perceived by the thermoreceptors in human skin. Several studies have revealed that FIR improves vascular endothelial functioning and boost angiogenesis. FIR has been used as anti-inflammatory therapy and as a clinical treatment for peripheral circulation improvement. In addition to vascular repair, there is increasing evidence to show that FIR can be applied to a variety of diseases, including cardiovascular disorders, hypertension and arthritis. Yet mechanism of action of FIR and the biomarkers that indicate FIR effects remain unclear. MicroRNA-134 (miR-134-5p) was identified by small RNA sequencing as being increased in high glucose (HG) treated dfECFCs (HG-dfECFCs). Highly expressed miR-134 was also validated in dmECFCs by RT-qPCR and it is associated with impaired angiogenic activities of ECFCs. The functioning of ECFCs is improved by FIR treatment and this occurs via a reduction in the level of miR-134 and an increase in the NRIP1 transcript, a direct target of miR-134. Using a mouse ischemic hindlimb model, the recovery of impaired blood flow in the presence of HG-dfECFCs was improved by FIR pretreatment and this enhanced functionality was decreased when there was miR-134 overexpression in the FIR pretreated HG-dfECFCs. In conclusion, our results reveal that the deregulation of miR-134 is involved in angiogenic defects found in DM patients. FIR treatment improves the angiogenic activity of HG-dfECFCs and dmECFCs and FIR has potential as a treatment for DM. Detection of miR-134 expression in FIR-treated ECFCs should help us to explore further the effectiveness of FIR therapy.
Collapse
Affiliation(s)
- Hsei-Wei Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- VGH-YM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Shu-Han Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yen-Li Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Ting Chang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ko-Hsun Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Hao Lo
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Lin Chiu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Tse-Shun Huang
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
57
|
Liu X, Kwong A, Sihoe A, Chu KM. Plasma miR-940 may serve as a novel biomarker for gastric cancer. Tumour Biol 2015; 37:3589-97. [PMID: 26456959 DOI: 10.1007/s13277-015-4019-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/19/2015] [Indexed: 02/07/2023] Open
Abstract
It was reported that circulating microRNAs could be applied as non-invasive biomarkers for cancer monitoring. The purpose of this study was to identify plasma miRNA that may serve as a novel biomarker for gastric cancer and to evaluate its clinical application. MicroRNA profiles were generated from plasma samples of 5 patients with gastric cancer (GC) versus 5 healthy controls (HC). MicroRNA-940 (miR-940) was one of the most downregulated miRNAs with fold change of 0.164. It was revealed that the expression of miR-940 was downregulated in both the initial set (N = 30, P < 0.0001) and the validation set (N = 80, P < 0.0001) of plasma samples of patients with gastric cancer. The sensitivity was obviously higher than the current biomarkers CEA and CA19-9 (81.25 % vs. 22.54 % and 15.71 %). MiR-940 was also significantly downregulated in gastric cancer tissue samples (N = 34, P = 0.0015), as well as in cancer cell lines (N = 7). Importantly, miR-940 was significantly highly expressed in stomach tissue samples than in other types of tissue samples including the liver, breast, thyroid, and lung. Moreover, there was a trend of lower expression of miR-940 from early to advanced stage of gastric cancer. Target prediction suggested that miR-940 regulated cell signaling including NF-κB and Wnt/β-catenin, as well as pathways of cell communication and adhesion. These pathways play critical roles in gastric cancer initiation and progression. It is the first report that miR-940 may mainly express in the stomach. Downregulation of plasma miR-940 may serve as a novel biomarker for detection of gastric cancer.
Collapse
Affiliation(s)
- Xin Liu
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Ava Kwong
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Alan Sihoe
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Kent-Man Chu
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong.
| |
Collapse
|
58
|
Chen R, Chen S, Liao J, Chen X, Xu X. MiR-145 facilitates proliferation and migration of endothelial progenitor cells and recanalization of arterial thrombosis in cerebral infarction mice via JNK signal pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13770-6. [PMID: 26722607 PMCID: PMC4680552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/28/2015] [Indexed: 02/05/2023]
Abstract
Arterial thrombosis in cerebral infarction severely affects patients' lives. Classical treatment including surgery and medication both had significantly adverse effects, making it necessary to find novel strategy. Endothelial progenitor cells (EPCs) have been shown to enhance the recanalization of thrombosis, while leaving its molecular mechanism unclear. EPCs were separated from peripheral blood, and were transfected by microRNA (miR)-145. The growth, proliferation and migration abilities were quantified by MTT, clone formation and Transwell assays, respectively. Cell apoptosis was evaluated by flow cytometry. The activation of JNK signaling pathway was measured by Western blotting, followed by JNK inhibitor SP600125. In a mouse cerebral infarction model, miR-145 transfected EPCs were injected to observe the condition of arterial thrombosis. MiR-145 transfection enhanced growth, migration and proliferation of EPCs without induction of apoptosis. MiR-145 exerts its effects via JNK signaling pathway, as the blocking inhibited cell migration/proliferation. In vivo injection of miR-145 transfected EPCs also potentiated cell proliferation and migration, in addition to the recanalization of arterial thrombosis. MiR-145 facilitates proliferation and migration of EPCs and recanalization of arterial thrombosis in cerebral infarction mice via JNK signal pathway. This study provided new insights regarding infarction treatment.
Collapse
Affiliation(s)
- Rongbo Chen
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Siqia Chen
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Juan Liao
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Xiaopu Chen
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Xiaoling Xu
- Department of Nursing, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| |
Collapse
|
59
|
MicroRNAs: Key regulators of endothelial progenitor cell functions. Clin Chim Acta 2015; 448:65-73. [DOI: 10.1016/j.cca.2015.06.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 01/05/2023]
|
60
|
Pelosi L, Coggi A, Forcina L, Musarò A. MicroRNAs modulated by local mIGF-1 expression in mdx dystrophic mice. Front Aging Neurosci 2015; 7:69. [PMID: 25999854 PMCID: PMC4419723 DOI: 10.3389/fnagi.2015.00069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/20/2015] [Indexed: 01/22/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a X-linked genetic disease in which the absence of dystrophin leads to progressive lethal skeletal muscle degeneration. It has been demonstrated that among genes which are important for proper muscle development and function, micro-RNAs (miRNAs) play a crucial role. Moreover, altered levels of miRNAs were found in several muscular disorders, including DMD. A specific group of miRNAs, whose expression depends on dystrophin levels and whose deregulation explains several DMD pathogenetic traits, has been identified. Here, we addressed whether the anabolic activity of mIGF-1 on dystrophic muscle is associated with modulation of microRNAs expression. We demonstrated that some microRNAs are strictly linked to the dystrophin expression and are not modulated by mIGF-1 expression. In contrast, local expression of mIGF-1 promotes the modulation of other microRNAs, such as miR-206 and miR-24, along with the modulation of muscle specific genes, which are associated with maturation of regenerating fibers and with the stabilization of the differentiated muscle phenotype. These data suggest that mIGF-1, modifying the expression of some of the active players of muscle homeostasis, is able, even in absence of dystrophin expression, to activate circuitries that confer robustness to dystrophic muscle.
Collapse
Affiliation(s)
- Laura Pelosi
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome Rome, Italy
| | - Angela Coggi
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome Rome, Italy
| | - Laura Forcina
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome Rome, Italy
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome Rome, Italy ; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia Rome, Italy
| |
Collapse
|
61
|
Barbery CE, Celigoj FA, Turner SD, Smith RP, Kavoussi PK, Annex BH, Lysiak JJ. Alterations in microRNA Expression in a Murine Model of Diet‐Induced Vasculogenic Erectile Dysfunction. J Sex Med 2015; 12:621-30. [DOI: 10.1111/jsm.12793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
62
|
Sionis A, Ruiz-Nodar JM, Fernández-Ortiz A, Marín F, Abu-Assi E, Díaz-Castro O, Nuñez-Gil IJ, Lidón RM. Actualización en cardiopatía isquémica y cuidados críticos cardiológicos. Rev Esp Cardiol 2015. [DOI: 10.1016/j.recesp.2014.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
63
|
Shui S, Wang X, Chiang JY, Zheng L. Far-infrared therapy for cardiovascular, autoimmune, and other chronic health problems: A systematic review. Exp Biol Med (Maywood) 2015; 240:1257-65. [PMID: 25716016 DOI: 10.1177/1535370215573391] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 12/31/2014] [Indexed: 01/08/2023] Open
Abstract
Physical therapy (physiotherapy), a complementary and alternative medicine therapy, has been widely applied in diagnosing and treating various diseases and defects. Increasing evidence suggests that convenient and non-invasive far-infrared (FIR) rays, a vital type of physiotherapy, improve the health of patients with cardiovascular disease, diabetes mellitus, and chronic kidney disease. Nevertheless, the molecular mechanisms by which FIR functions remain elusive. Hence, the purpose of this study was to review and summarize the results of previous investigations and to elaborate on the molecular mechanisms of FIR therapy in various types of disease. In conclusion, FIR therapy may be closely related to the increased expression of endothelial nitric oxide synthase as well as nitric oxide production and may modulate the profiles of some circulating miRNAs; thus, it may be a beneficial complement to treatments for some chronic diseases that yields no adverse effects.
Collapse
Affiliation(s)
- Shanshan Shui
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, China School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xia Wang
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, China
| | - John Y Chiang
- Department of Computer Science & Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Lei Zheng
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, China School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
64
|
Update on ischemic heart disease and intensive cardiac care. ACTA ACUST UNITED AC 2015; 68:234-41. [PMID: 25670216 DOI: 10.1016/j.rec.2014.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023]
Abstract
This article summarizes the main developments reported in 2014 on ischemic heart disease, together with the most important innovations in intensive cardiac care.
Collapse
|
65
|
MiR-214 regulates the pathogenesis of patients with coronary artery disease by targeting VEGF. Mol Cell Biochem 2015; 402:111-22. [PMID: 25575606 DOI: 10.1007/s11010-014-2319-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Circulating microRNAs (miRNAs) in patient body fluids have recently been considered to hold the potential of being novel disease biomarkers and drug targets. We aimed to investigate the correlation between the levels of circulating miR-214 and the expression of vascular endothelial growth factor (VEGF) in the pathogenesis of coronary heart disease patients to further explore the mechanism involved in the vasculogenesis. Three different cohorts, including 13 acute myocardial infarction patients, 176 angina pectoris patients, and 127 control subjects, were enrolled to investigate the expression levels of circulating miR-214 in patients with myocardial ischemia and also the relationship between plasma miR-214 and severity of coronary stenosis. Plasma miR-214 levels of participants were examined by real-time quantitative PCR. Simultaneously, plasma cardiac troponin I concentrations were measured by ELISA assays. We further detected the correlation of miR-214 and VEGF by molecular and animal assays. MiR-214 was enriched in not only diseased endothelial progenitor cells (EPCs) but also the plasma of coronary artery disease (CAD) patients. Besides, we found out miR-214 was able to suppress VEGF expression and EPC activities. Reporter assays confirmed the direct binding and repression of miR-214 to the 39-UTR of VEGF mRNA. Knockdown of miR-214 not only restored VEGF levels and angiogenic activities of diseased EPCs in vitro, but also further promoted blood flow recovery in ischemic limbs of mice. Circulating miR-214 may be a new biomarker for CAD and as a potential diagnostic tool. And increased miR-214 level may be used to predict the presence and severity of coronary lesions in CAD patients.
Collapse
|
66
|
Chang TY, Huang TS, Wang HW, Chang SJ, Lo HH, Chiu YL, Wang YL, Hsiao CD, Tsai CH, Chan CH, You RI, Wu CH, Tsai TN, Cheng SM, Cheng CC. miRNome traits analysis on endothelial lineage cells discloses biomarker potential circulating microRNAs which affect progenitor activities. BMC Genomics 2014; 15:802. [PMID: 25236949 PMCID: PMC4176563 DOI: 10.1186/1471-2164-15-802] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/26/2014] [Indexed: 01/12/2023] Open
Abstract
Background Endothelial progenitor cells (EPCs) play a fundamental role in not only blood vessel development but also post-natal vascular repair. Currently EPCs are defined as early and late EPCs based on their biological properties and their time of appearance during in vitro culture. Both EPC types assist angiogenesis and have been linked to ischemia-related disorders, including coronary artery disease (CAD). Results We found late EPCs are more mobile than early EPCs and matured endothelial cells (ECs). To pinpoint the mechanism, microRNA profiles of early EPCs late EPCs, and ECs were deciphered by small RNA sequencing. Obtained signatures made up of both novel and known microRNAs, in which anti-angiogenic microRNAs such as miR-221 and miR-222 are more abundant in matured ECs than in late EPCs. Overexpression of miR-221 and miR-222 resulted in the reduction of genes involved in hypoxia response, metabolism, TGF-beta signalling, and cell motion. Not only hamper late EPC activities in vitro, both microRNAs (especially miR-222) also hindered in vivo vasculogenesis in a zebrafish model. Reporter assays showed that miR-222, but not miR-221, targets the angiogenic factor ETS1. In contrast, PIK3R1 is the target of miR-221, but not miR-222 in late EPCs. Clinically, both miR-221-PIK3R1 and miR-222-ETS1 pairs are deregulated in late EPCs of CAD patients. Conclusions Our results illustrate EPCs and ECs exploit unique miRNA modalities to regulate angiogenic features, and explain why late EPC levels and activities are reduced in CAD patients. These data will further help to develop new plasma biomarkers and therapeutic approaches for ischemia-related diseases or tumor angiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-802) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
67
|
Weldon S, McNally P, McAuley DF, Oglesby IK, Wohlford-Lenane CL, Bartlett JA, Scott CJ, McElvaney NG, Greene CM, McCray PB, Taggart CC. miR-31 dysregulation in cystic fibrosis airways contributes to increased pulmonary cathepsin S production. Am J Respir Crit Care Med 2014; 190:165-74. [PMID: 24940638 DOI: 10.1164/rccm.201311-1986oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Cathepsin S (CTSS) activity is increased in bronchoalveolar lavage (BAL) fluid from patients with cystic fibrosis (CF). This activity contributes to lung inflammation via degradation of antimicrobial proteins, such as lactoferrin and members of the β-defensin family. OBJECTIVES In this study, we investigated the hypothesis that airway epithelial cells are a source of CTSS, and mechanisms underlying CTSS expression in the CF lung. METHODS Protease activity was determined using fluorogenic activity assays. Protein and mRNA expression were analyzed by ELISA, Western blotting, and reverse-transcriptase polymerase chain reaction. MEASUREMENTS AND MAIN RESULTS In contrast to neutrophil elastase, CTSS activity was detectable in 100% of CF BAL fluid samples from patients without Pseudomonas aeruginosa infection. In this study, we identified epithelial cells as a source of pulmonary CTSS activity with the demonstration that CF airway epithelial cells express and secrete significantly more CTSS than non-CF control cells in the absence of proinflammatory stimulation. Furthermore, levels of the transcription factor IRF-1 correlated with increased levels of its target gene CTSS. We discovered that miR-31, which is decreased in the CF airways, regulates IRF-1 in CF epithelial cells. Treating CF bronchial epithelial cells with a miR-31 mimic decreased IRF-1 protein levels with concomitant knockdown of CTSS expression and secretion. CONCLUSIONS The miR-31/IRF-1/CTSS pathway may play a functional role in the pathogenesis of CF lung disease and may open up new avenues for exploration in the search for an effective therapeutic target.
Collapse
Affiliation(s)
- Sinéad Weldon
- 1 Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Sanon VP, Sanon S, Pham SV, Chilton R. Play of Chance Versus Concerns Regarding Dipeptidyl Peptidase-4 Inhibitors: Heart Failure and Diabetes. Clin Diabetes 2014; 32:121-6. [PMID: 26246683 PMCID: PMC4521433 DOI: 10.2337/diaclin.32.3.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|