51
|
Murphy E, Steenbergen C. Estrogen regulation of protein expression and signaling pathways in the heart. Biol Sex Differ 2014; 5:6. [PMID: 24612699 PMCID: PMC3975301 DOI: 10.1186/2042-6410-5-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/21/2014] [Indexed: 01/20/2023] Open
Abstract
Sex differences in cardiovascular disease and cardiac physiology have been reported in humans as well as in animal models. Premenopausal women have reduced cardiovascular disease compared to men, but the incidence of cardiovascular disease in women increases following menopause. Sex differences in cardiomyocytes likely contribute to the differences in male-female physiology and response to disease. Sex differences in the heart have been noted in electrophysiology, contractility, signaling, metabolism, and cardioprotection. These differences appear to be due, at least in part, to differences in gene and protein expression as well as in posttranslational protein modifications. This review will focus primarily on estrogen-mediated male-female differences in protein expression and signaling pathways in the heart and cardiac cells. It should be emphasized that these basic differences are not intrinsically beneficial or detrimental per se; the difference can be good or bad depending on the context and circumstances.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Laboratory of Cardiac Physiology, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20824-0105, USA
| | | |
Collapse
|
52
|
Gemmell P, Burrage K, Rodriguez B, Quinn TA. Population of computational rabbit-specific ventricular action potential models for investigating sources of variability in cellular repolarisation. PLoS One 2014; 9:e90112. [PMID: 24587229 PMCID: PMC3938586 DOI: 10.1371/journal.pone.0090112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/29/2014] [Indexed: 11/18/2022] Open
Abstract
Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation.
Collapse
Affiliation(s)
- Philip Gemmell
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Kevin Burrage
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- * E-mail:
| |
Collapse
|
53
|
Sensitivity of rabbit ventricular action potential and Ca²⁺ dynamics to small variations in membrane currents and ion diffusion coefficients. BIOMED RESEARCH INTERNATIONAL 2013; 2013:565431. [PMID: 24222910 PMCID: PMC3814049 DOI: 10.1155/2013/565431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 08/19/2013] [Indexed: 12/19/2022]
Abstract
Little is known about how small variations in ionic currents and Ca²⁺ and Na⁺ diffusion coefficients impact action potential and Ca²⁺ dynamics in rabbit ventricular myocytes. We applied sensitivity analysis to quantify the sensitivity of Shannon et al. model (Biophys. J., 2004) to 5%-10% changes in currents conductance, channels distribution, and ion diffusion in rabbit ventricular cells. We found that action potential duration and Ca²⁺ peaks are highly sensitive to 10% increase in L-type Ca²⁺ current; moderately influenced by 10% increase in Na⁺-Ca²⁺ exchanger, Na⁺-K⁺ pump, rapid delayed and slow transient outward K⁺ currents, and Cl⁻ background current; insensitive to 10% increases in all other ionic currents and sarcoplasmic reticulum Ca²⁺ fluxes. Cell electrical activity is strongly affected by 5% shift of L-type Ca²⁺ channels and Na⁺-Ca²⁺ exchanger in between junctional and submembrane spaces while Ca²⁺-activated Cl⁻-channel redistribution has the modest effect. Small changes in submembrane and cytosolic diffusion coefficients for Ca²⁺, but not in Na⁺ transfer, may alter notably myocyte contraction. Our studies highlight the need for more precise measurements and further extending and testing of the Shannon et al. model. Our results demonstrate usefulness of sensitivity analysis to identify specific knowledge gaps and controversies related to ventricular cell electrophysiology and Ca²⁺ signaling.
Collapse
|
54
|
Zemzemi N, Bernabeu MO, Saiz J, Cooper J, Pathmanathan P, Mirams GR, Pitt-Francis J, Rodriguez B. Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials. Br J Pharmacol 2013; 168:718-33. [PMID: 22946617 PMCID: PMC3579290 DOI: 10.1111/j.1476-5381.2012.02200.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 08/06/2012] [Accepted: 08/14/2012] [Indexed: 12/20/2022] Open
Abstract
Background and Purpose Understanding drug effects on the heart is key to safety pharmacology assessment and anti-arrhythmic therapy development. Here our goal is to demonstrate the ability of computational models to simulate the effect of drug action on the electrical activity of the heart, at the level of the ion-channel, cell, heart and ECG body surface potential. Experimental Approach We use the state-of-the-art mathematical models governing the electrical activity of the heart. A drug model is introduced using an ion channel conductance block for the hERG and fast sodium channels, depending on the IC50 value and the drug dose. We simulate the ECG measurements at the body surface and compare biomarkers under different drug actions. Key Results Introducing a 50% hERG-channel current block results in 8% prolongation of the APD90 and 6% QT interval prolongation, hERG block does not affect the QRS interval. Introducing 50% fast sodium current block prolongs the QRS and the QT intervals by 12% and 5% respectively, and delays activation times, whereas APD90 is not affected. Conclusions and Implications Both potassium and sodium blocks prolong the QT interval, but the underlying mechanism is different: for potassium it is due to APD prolongation; while for sodium it is due to a reduction of electrical wave velocity. This study shows the applicability of in silico models for the investigation of drug effects on the heart, from the ion channel to the ECG-based biomarkers.
Collapse
Affiliation(s)
- Nejib Zemzemi
- Department of Computer Science, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
MacDougall DA, Calaghan S. A novel approach to the Langendorff technique: preparation of isolated cardiomyocytes and myocardial samples from the same rat heart. Exp Physiol 2013; 98:1295-300. [DOI: 10.1113/expphysiol.2013.072827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
56
|
Cieniawa J, Baszak J, Olchowik G, Widomska J. Modeling gender effects on electrical activity of single ventricular myocytes. Comput Biol Med 2013; 43:1063-72. [PMID: 23726761 DOI: 10.1016/j.compbiomed.2013.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 04/08/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
In this study we investigate the mechanisms underlying gender differences in the generation of arrhythmias in the long QT and Brugada syndromes. Simulations were conducted at the single myocyte level using a detailed mathematical model of human ventricular myocytes. Given the scarce human data on the gender-related differences in single cardiac cells, we assumed gender-related differences in five ionic-current systems: fast sodium current (INa), slowly inactivating late sodium current (INal), transient outward potassium current (Ito), slow delayed rectifier potassium current (IKs), and calcium current through the L-type channel (ICa(L)), based on experimental results obtained in canine myocytes. Our modeling results suggest that in left ventricular myocytes, enhanced INal under conditions of reduced repolarization reserve results in sex-dependent development of early afterdepolarizations (EADs) in the post-pause action potentials (APs). Moreover, this modeling study demonstrates increased propensity for the development of the loss of the AP dome in male epicardial myocytes of the right ventricle compared with other types of myocytes from the left and right ventricles. Finally, we also found a slight effect of INal on gender-dependent loss of AP dome in epicardial right ventricular myocytes. In conclusion, at the cellular level, gender differences in the development of EADs and the propensity to develop the loss of the AP dome can be attributed to male/female related differences in INa, INal, Ito, IKs, and ICa(L).
Collapse
Affiliation(s)
- Jerzy Cieniawa
- Department of Biophysics, Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland.
| | | | | | | |
Collapse
|
57
|
Canpolat U, Tokgözoğlu L, Yorgun H, Bariş Kaya E, Murat Gürses K, Şahiner L, Bozdağ G, Kabakçi G, Oto A, Aytemir K. The association of premature ovarian failure with ventricular repolarization dynamics evaluated by QT dynamicity. Europace 2013; 15:1657-63. [PMID: 23592757 DOI: 10.1093/europace/eut093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS The association between premature ovarian failure (POF) and cardiovascular diseases has been investigated in a few studies, but none have looked at ventricular repolarization abnormalities in these patients. In this study, we aimed to evaluate the ventricular repolarization by QT dynamicity in patients with POF. METHODS AND RESULTS We enrolled 26 female patients (mean age 37.5 ± 10.1 years) with primary POF and 31 healthy female subjects (mean age 37.5 ± 9.0 years). The linear regression slopes of the QT interval measured to the apex and to the end of the T-wave plotted against RR intervals (QTapex/RR and QTend/RR slopes, respectively) were calculated from 24 h Holter recordings using a standard algorithm. QTapex/RR and QTend/RR slopes were more steeper in the POF patients in contrary to healthy control subjects (QTapex/RR = 0.184 ± 0.022 vs. 0.131 ± 0.019, P < 0.001; QTend/RR = 0.164 ± 0.021 vs. 0.128 ± 0.018, P < 0.001). Pearson's correlation analyses revealed a stronger negative correlation between oestradiol (E2) and QTapex/RR (r = -0.715, P < 0.001). There was also a moderate negative correlation between E2 and QTend/RR (r = -0.537, P < 0.001). Serum follicle-stimulating hormone level was positively correlated with QTapex/RR (r = 0.681, P < 0.001) and QTend/RR (r = 0.531, P < 0.001). CONCLUSIONS Our study results suggest that QT dynamicity is impaired in patients with POF despite the absence of overt cardiovascular involvement. Further studies are needed to elucidate the prognostic significance and clinical implications of impaired ventricular repolarization in patients with POF.
Collapse
Affiliation(s)
- Uğur Canpolat
- Department of Cardiology, Faculty of Medicine, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Sex differences in mechanisms of cardiac excitation-contraction coupling. Pflugers Arch 2013; 465:747-63. [PMID: 23417603 PMCID: PMC3651827 DOI: 10.1007/s00424-013-1233-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 11/25/2022]
Abstract
The incidence and expression of cardiovascular diseases differs between the sexes. This is not surprising, as cardiac physiology differs between men and women. Clinical and basic science investigations have shown important sex differences in cardiac structure and function. The pervasiveness of sex differences suggests that such differences must be fundamental, likely operating at a cellular level. Indeed, studies have shown that isolated ventricular myocytes from female animals have smaller and slower contractions and underlying calcium transients compared to males. Recent evidence suggests that this arises from sex differences in components of the cardiac excitation–contraction coupling pathway, the sequence of events linking myocyte depolarization to calcium release from the sarcoplasmic reticulum and subsequent contraction. The concept that sex hormones may regulate intracellular calcium at the level of the cardiomyocyte is important, as levels of these hormones decline in both men and women as the incidence of cardiovascular disease rises. This review focuses on the impact of sex on cardiac contraction, in particular at the cellular level, and highlights specific components of the excitation–contraction coupling pathway that differ between the sexes. Understanding sex hormone regulation of calcium homeostasis in the heart may reveal new avenues for therapeutic strategies to treat cardiac dysfunction and cardiovascular diseases.
Collapse
|
59
|
Sex differences in cardiac autonomic regulation and in repolarisation electrocardiography. Pflugers Arch 2013; 465:699-717. [PMID: 23404618 DOI: 10.1007/s00424-013-1228-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 01/28/2013] [Indexed: 12/16/2022]
Abstract
The review summarises the present knowledge on the sex differences in cardiac autonomic regulations and in related aspects of electrocardiography with particular attention to myocardial repolarisation. Although some of the sex differences are far from fully established, multitude of observations show consistent differences between women and men. Despite more pronounced parasympathetic cardiac regulation, women have higher resting heart rate and lower baroreflex sensitivity. Of the electrocardiographic phenomena, women have longer QT interval duration, repolarisation sequence more synchronised with the inverse of the depolarisation sequence, and likely increased regional heterogeneity of myocardial repolarisation. Studies investigating the relationship of these sex disparities to hormonal differences led frequently to conflicting results. Although sex hormones seem to play a key role by influencing both autonomic tone and electrophysiological properties at the cellular level, neither the truly relevant hormones nor their detailed actions are known. Physiologic usefulness of the described sex differences is also unknown. The review suggests that new studies are needed to advance the understanding of the physiologic mechanisms responsible for these inequalities between women and men and provides key methodological suggestions that need to be followed in future research.
Collapse
|
60
|
Kim JJ, Němec J, Papp R, Strongin R, Abramson JJ, Salama G. Bradycardia alters Ca(2+) dynamics enhancing dispersion of repolarization and arrhythmia risk. Am J Physiol Heart Circ Physiol 2013; 304:H848-60. [PMID: 23316064 DOI: 10.1152/ajpheart.00787.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bradycardia prolongs action potential (AP) durations (APD adaptation), enhances dispersion of repolarization (DOR), and promotes tachyarrhythmias. Yet, the mechanisms responsible for enhanced DOR and tachyarrhythmias remain largely unexplored. Ca(2+) transients and APs were measured optically from Langendorff rabbit hearts at high (150 × 150 μm(2)) or low (1.5 × 1.5 cm(2)) magnification while pacing at a physiological (120 beats/min) or a slow heart rate (SHR = 50 beats/min). Western blots and pharmacological interventions were used to elucidate the regional effects of bradycardia. As a result, bradycardia (SHR 50 beats/min) increased APDs gradually (time constant τf→s = 48 ± 9.2 s) and caused a secondary Ca(2+) release (SCR) from the sarcoplasmic reticulum during AP plateaus, occurring at the base on average of 184.4 ± 9.7 ms after the Ca(2+) transient upstroke. In subcellular imaging, SCRs were temporally synchronous and spatially homogeneous within myocytes. In diastole, SHR elicited variable asynchronous sarcoplasmic reticulum Ca(2+) release events leading to subcellular Ca(2+) waves, detectable only at high magnification. SCR was regionally heterogeneous, correlated with APD prolongation (P < 0.01, n = 5), enhanced DOR (r = 0.9277 ± 0.03, n = 7), and was gradually reversed by pacing at 120 beats/min along with APD shortening (P < 0.05, n = 5). A stabilizer of leaky ryanodine receptors (RyR2), 3-(4-benzylcyclohexyl)-1-(7-methoxy-2,3-dihydrobenzo[f][1,4]thiazepin-4(5H)-yl)propan-1-one (K201; 1 μM), suppressed SCR and reduced APD at the base, thereby reducing DOR (P < 0.02, n = 5). Ventricular ectopy induced by bradycardia (n = 5/15) was suppressed by K201. Western blot analysis revealed spatial differences of voltage-gated L-type Ca(2+) channel protein (Cav1.2α), Na(+)-Ca(2+) exchange (NCX1), voltage-gated Na(+) channel (Nav1.5), and rabbit ether-a-go-go-related (rERG) protein [but not RyR2 or sarcoplasmic reticulum Ca(2+) ATPase 2a] that correlate with the SCR distribution and explain the molecular basis for SCR heterogeneities. In conclusion, acute bradycardia elicits synchronized subcellular SCRs of sufficient magnitude to overcome the source-sink mismatch and to promote afterdepolarizations.
Collapse
Affiliation(s)
- Jong J Kim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
61
|
Yang PC, Clancy CE. In silico Prediction of Sex-Based Differences in Human Susceptibility to Cardiac Ventricular Tachyarrhythmias. Front Physiol 2012; 3:360. [PMID: 23049511 PMCID: PMC3442371 DOI: 10.3389/fphys.2012.00360] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/22/2012] [Indexed: 11/13/2022] Open
Abstract
Sex-based differences in human susceptibility to cardiac ventricular tachyarrhythmias likely result from the emergent effects of multiple intersecting processes that fundamentally differ in male and female hearts. Included are measured differences in the genes encoding key cardiac ion channels and effects of sex steroid hormones to acutely modify electrical activity. At the genome-scale, human females have recently been shown to have lower expression of genes encoding key cardiac repolarizing potassium currents and connexin43, the primary ventricular gap-junction subunit. Human males and females also have distinct sex steroid hormones. Here, we developed mathematical models for male and female ventricular human heart cells by incorporating experimentally determined genomic differences and effects of sex steroid hormones into the O'Hara-Rudy model. These "male" and "female" model cells and tissues then were used to predict how various sex-based differences underlie arrhythmia risk. Genomic-based differences in ion channel expression were alone sufficient to determine longer female cardiac action potential durations (APD) in both epicardial and endocardial cells compared to males. Subsequent addition of sex steroid hormones exacerbated these differences, as testosterone further shortened APDs, while estrogen and progesterone application resulted in disparate effects on APDs. Our results indicate that incorporation of experimentally determined genomic differences from human hearts in conjunction with sex steroid hormones are consistent with clinically observed differences in QT interval, T-wave shape and morphology, and critically, in the higher vulnerability of adult human females to Torsades de Pointes type arrhythmias. The model suggests that female susceptibility to alternans stems from longer female action potentials, while reentrant arrhythmia derives largely from sex-based differences in conduction play an important role in arrhythmia vulnerability.
Collapse
Affiliation(s)
- Pei-Chi Yang
- Department of Pharmacology, University of California Davis, CA, USA
| | | |
Collapse
|
62
|
Lowe JS, Stroud DM, Yang T, Hall L, Atack TC, Roden DM. Increased late sodium current contributes to long QT-related arrhythmia susceptibility in female mice. Cardiovasc Res 2012; 95:300-7. [PMID: 22562703 DOI: 10.1093/cvr/cvs160] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Female gender is a risk factor for long QT-related arrhythmias, but the underlying mechanisms remain uncertain. Here, we tested the hypothesis that gender-dependent function of the post-depolarization 'late' sodium current (I(Na-L)) contributes. METHODS AND RESULTS Studies were conducted in mice in which the canonical cardiac sodium channel Scn5a locus was disrupted, and expression of human wild-type SCN5A cDNA substituted. Baseline QT intervals were similar in male and female mice, but exposure to the sodium channel opener anemone toxin ATX-II elicited polymorphic ventricular tachycardia in 0/9 males vs. 6/9 females. Ventricular I(Na-L) and action potential durations were increased in myocytes isolated from female mice compared with those from males before and especially after treatment with ATX-II. Further, ATX-II elicited potentially arrhythmogenic early afterdepolarizations in myocytes from 0/5 male mice and 3/5 female mice. CONCLUSION These data identify variable late I(Na) as a modulator of gender-dependent arrhythmia susceptibility.
Collapse
Affiliation(s)
- John S Lowe
- Department of Medicine, Vanderbilt University School of Medicine, 2215B Garland Avenue, Nashville, TN 37232-0575, USA
| | | | | | | | | | | |
Collapse
|
63
|
Himmel HM, Bussek A, Hoffmann M, Beckmann R, Lohmann H, Schmidt M, Wettwer E. Field and action potential recordings in heart slices: correlation with established in vitro and in vivo models. Br J Pharmacol 2012; 166:276-96. [PMID: 22074238 PMCID: PMC3415654 DOI: 10.1111/j.1476-5381.2011.01775.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Action potential (AP) recordings in ex vivo heart preparations constitute an important component of the preclinical cardiac safety assessment according to the ICH S7B guideline. Most AP measurement models are sensitive, predictive and informative but suffer from a low throughput. Here, effects of selected anti-arrhythmics (flecainide, quinidine, atenolol, sotalol, dofetilide, nifedipine, verapamil) on field/action potentials (FP/AP) of guinea pig and rabbit ventricular slices are presented and compared with data from established in vitro and in vivo models. EXPERIMENTAL APPROACH Data from measurements of membrane currents (hERG, I(Na) ), AP/FP (guinea pig and rabbit ventricular slices), AP (rabbit Purkinje fibre), haemodynamic/ECG parameters (conscious, telemetered dog) were collected, compared and correlated to complementary published data (focused literature search). KEY RESULTS The selected anti-arrhythmics, flecainide, quinidine, atenolol, sotalol, dofetilide, nifedipine and verapamil, influenced the shape of AP/FP of guinea pig and rabbit ventricular slices in a manner similar to that observed for rabbit PF. The findings obtained from slice preparations are in line with measurements of membrane currents in vitro, papillary muscle AP in vitro and haemodynamic/ECG parameters from conscious dogs in vivo, and were also corroborated by published data. CONCLUSION AND IMPLICATIONS FP and AP recordings from heart slices correlated well with established in vitro and in vivo models in terms of pharmacology and predictability. Heart slice preparations yield similar results as papillary muscle but offer enhanced throughput for mechanistic investigations and may substantially reduce the use of laboratory animals.
Collapse
|
64
|
Liu QN, Zhang L, Gong PL, Yang XY, Zeng FD. Daurisoline Suppressed Early Afterdepolarizations and Inhibited L-Type Calcium Current. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 38:37-49. [DOI: 10.1142/s0192415x1000766x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our previous studies have shown that daurisoline (DS) exerted antiarrhythmic effects on various experimental arrhythmias. In this study, the effects of DS on early afterdepolarizations (EADs) and its possible mechanisms have been investigated. Cardiac hypertrophy was induced in rabbits by coarctating the abdominal aorta. The effects of DS on action potential duration (APD) and the incidences of EADs were studied in hypertrophied papillary muscles of rabbits in the conditions of low external K + concentration ([ K +] o ) and dofetilide (dof) by using standard microelectrode technique. The whole-cell patch clamp was used to record the L-type calcium current ( ICa-L ) in isolated left ventricular cells of rabbits. The results showed that in hypertrophied papillary muscles of rabbits with low [ K +] o ([ K +]o = 2.7 mM ), 1 µM dof prolonged APD50 and APD90 markedly and the incidence of EADs was 66.7% (4/6, p < 0.01); when 15 µM DS was applied, the incidence of EADs was 0% (0/4, p < 0.01) and the prolonged APD was shortened (p < 0.01). In a single myocyte, DS could also inhibit EADs induced by dof, low [ K +] o and low external Mg 2+ concentration ([ Mg 2+] o ) ([ Mg 2+] o = 0.5 mM ). DS could decrease the triangulation. In a single myocyte, DS could make the I-V curve upward, shift the steady-state activation curves to the right and the steady-state inactivation curves to the left and prolong the τ value of recovery curve obviously. These results suggested that DS could inhibit EADs which may be associated with its blockade effects on ICa-L .
Collapse
Affiliation(s)
- Qiang-Ni Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Zhang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei-Li Gong
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Yan Yang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan-Dian Zeng
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
65
|
Parikh A, Mantravadi R, Kozhevnikov D, Roche MA, Ye Y, Owen LJ, Puglisi JL, Abramson JJ, Salama G. Ranolazine stabilizes cardiac ryanodine receptors: a novel mechanism for the suppression of early afterdepolarization and torsades de pointes in long QT type 2. Heart Rhythm 2012; 9:953-60. [PMID: 22245792 DOI: 10.1016/j.hrthm.2012.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ranolazine (Ran) is known to inhibit multiple targets, including the late Na(+)current, the rapid delayed rectifying K(+)current, the L-type Ca(2+)current, and fatty acid metabolism. Functionally, Ran suppresses early afterdepolarization (EADs) and torsades de pointes (TdP) in drug-induced long QT type 2 (LQT2) presumably by decreasing intracellular [Na(+)](i) and Ca(2+)overload. However, simulations of EADs in LQT2 failed to predict their suppression by Ran. OBJECTIVE To elucidate the mechanism(s) whereby Ran alters cardiac action potentials (APs) and cytosolic Ca(2+)transients and suppresses EADs and TdP in LQT2. METHODS The known effects of Ran were included in simulations (Shannon and Mahajan models) of rabbit ventricular APs and Ca(2+)transients in control and LQT2 models and compared with experimental optical mapping data from Langendorff rabbit hearts treated with E4031 (0.5 μM) to block the rapid delayed rectifying K(+)current. Direct effects of Ran on cardiac ryanodine receptors (RyR2) were investigated in single channels and changes in Ca(2+)-dependent high-affinity ryanodine binding. RESULTS Ran (10 μM) alone prolonged action potential durations (206 ± 4.6 to 240 ± 7.8 ms; P <0.05); E4031 prolonged action potential durations (204 ± 6 to 546 ± 35 ms; P <0.05) and elicited EADs and TdP that were suppressed by Ran (10 μM; n = 7 of 7 hearts). Simulations (Shannon but not Mahajan model) closely reproduced experimental data except for EAD suppression by Ran. Ran reduced open probability (P(o)) of RyR2 (half maximal inhibitory concentration = 10 ± 3 μM; n = 7) in bilayers and shifted half maximal effective concentration for Ca(2+)-dependent ryanodine binding from 0.42 ± 0.02 to 0.64 ± 0.02 μM with 30 μM Ran. CONCLUSIONS Ran reduces P(o) of RyR2, desensitizes Ca(2+)-dependent RyR2 activation, and inhibits Ca(i) oscillations, which represents a novel mechanism for its suppression of EADs and TdP.
Collapse
Affiliation(s)
- Ashish Parikh
- Department of Bioengineering, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Models of HERG gating. Biophys J 2011; 101:631-42. [PMID: 21806931 DOI: 10.1016/j.bpj.2011.06.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 11/21/2022] Open
Abstract
HERG (Kv11.1, KCNH2) is a voltage-gated potassium channel with unique gating characteristics. HERG has fast voltage-dependent inactivation, relatively slow deactivation, and fast recovery from inactivation. This combination of gating kinetics makes study of HERG difficult without using mathematical models. Several HERG models have been developed, with fundamentally different organization. HERG is the molecular basis of I(Kr), which plays a critical role in repolarization. We programmed and compared five distinct HERG models. HERG gating cannot be adequately replicated using Hodgkin-Huxley type formulation. Using Markov models, a five-state model is required with three closed, one open, and one inactivated state, and a voltage-independent step between some of the closed states. A fundamental difference between models is the presence/absence of a transition directly from the proximal closed state to the inactivated state. The only models that effectively reproduce HERG data have no direct closed-inactivated transition, or have a closed-inactivated transition that is effectively zero compared to the closed-open transition, rendering the closed-inactivation transition superfluous. Our single-channel model demonstrates that channels can inactivate without conducting with a flickering or bursting open-state. The various models have qualitative and quantitative differences that are critical to accurate predictions of HERG behavior during repolarization, tachycardia, and premature depolarizations.
Collapse
|
67
|
Yang X, Chen G, Papp R, Defranco DB, Zeng F, Salama G. Oestrogen upregulates L-type Ca²⁺ channels via oestrogen-receptor- by a regional genomic mechanism in female rabbit hearts. J Physiol 2011; 590:493-508. [PMID: 22124151 DOI: 10.1113/jphysiol.2011.219501] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In type-2 long QT (LQT2), adult women and adolescent boys have a higher risk of lethal arrhythmias, called Torsades de pointes (TdP), compared to the opposite sex. In rabbit hearts, similar sex- and age-dependent TdP risks were attributed to higher expression levels of L-type Ca(2+) channels and Na(+)-Ca(2+) exchanger, at the base of the female epicardium. Here, the effects of oestrogen and progesterone are investigated to elucidate the mechanisms whereby I(Ca,L) density is upregulated in adult female rabbit hearts. I(Ca,L) density was measured by the whole-cell patch-clamp technique on days 0-3 in cardiomyocytes isolated from the base and apex of adult female epicardium. Peak I(Ca,L) was 28% higher at the base than apex (P < 0.01) and decreased gradually (days 0-3), becoming similar to apex myocytes, which had stable currents for 3 days. Incubation with oestrogen (E2, 0.1-1.0 nm) increased I(Ca,L) (∼2-fold) in female base but not endo-, apex or male myocytes. Progesterone (0.1-10 μm) had no effect at base myocytes. An agonist of the α- (PPT, 5 nm) but not the β- (DPN, 5 nm) subtype oestrogen receptor (ERα/ERβ) upregulated I(Ca,L) like E2. Western blots detected similar levels of ERα and ERβ in male and female hearts at the base and apex. E2 increased Cav1.2α (immunocytochemistry) and mRNA (RT-PCR) levels but did not change I(Ca,L) kinetics. I(Ca,L) upregulation by E2 was suppressed by the ER antagonist ICI 182,780 (10 μm) or by inhibition of transcription (actinomycin D, 4 μm) or protein biosynthesis (cycloheximide, 70 μm). Therefore, E2 upregulates I(Ca,L) by a regional genomic mechanism involving ERα which is a known determinant of sex differences in TdP risk in LQT2.
Collapse
Affiliation(s)
- Xiaoyan Yang
- University of Pittsburgh, Department of Medicine, Cardiovascular Institute, 3550 Terrace Street, Suite S 628 Scaife Hall, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
68
|
Romero L, Carbonell B, Trenor B, Rodríguez B, Saiz J, Ferrero JM. Systematic characterization of the ionic basis of rabbit cellular electrophysiology using two ventricular models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:60-73. [PMID: 21749896 DOI: 10.1016/j.pbiomolbio.2011.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 01/08/2023]
Abstract
Several mathematical models of rabbit ventricular action potential (AP) have been proposed to investigate mechanisms of arrhythmias and excitation-contraction coupling. Our study aims at systematically characterizing how ionic current properties modulate the main cellular biomarkers of arrhythmic risk using two widely-used rabbit ventricular models, and comparing simulation results using the two models with experimental data available for rabbit. A sensitivity analysis of AP properties, Ca²⁺ and Na⁺ dynamics, and their rate dependence to variations (±15% and ±30%) in the main transmembrane current conductances and kinetics was performed using the Shannon et al. (2004) and the Mahajan et al. (2008a,b) AP rabbit models. The effects of severe transmembrane current blocks (up to 100%) on steady-state AP and calcium transients, and AP duration (APD) restitution curves were also simulated using both models. Our simulations show that, in both virtual rabbit cardiomyocytes, APD is significantly modified by most repolarization currents, AP triangulation is regulated mostly by the inward rectifier K⁺ current (I(K1)) whereas APD rate adaptation as well as [Na⁺](i) rate dependence is influenced by the Na⁺/K⁺ pump current (I(NaK)). In addition, steady-state [Ca²⁺](i) levels, APD restitution properties and [Ca²⁺](i) rate dependence are strongly dependent on I(NaK), the L-Type Ca²⁺ current (I(CaL)) and the Na⁺/Ca²⁺ exchanger current (I(NaCa)), although the relative role of these currents is markedly model dependent. Furthermore, our results show that simulations using both models agree with many experimentally-reported electrophysiological characteristics. However, our study shows that the Shannon et al. model mimics rabbit electrophysiology more accurately at normal pacing rates, whereas Mahajan et al. model behaves more appropriately at faster rates. Our results reinforce the usefulness of sensitivity analysis for further understanding of cellular electrophysiology and validation of cardiac AP models.
Collapse
Affiliation(s)
- Lucía Romero
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada al Ser Humano (I3BH), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
69
|
Napolitano C, Antzelevitch C. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel. Circ Res 2011; 108:607-18. [PMID: 21372292 DOI: 10.1161/circresaha.110.224279] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The L-type cardiac calcium channel (LTCC) plays a prominent role in the electric and mechanical function of the heart. Mutations in the LTCC have been associated with a number of inherited cardiac arrhythmia syndromes, including Timothy, Brugada, and early repolarization syndromes. Elucidation of the genetic defects associated with these syndromes has led to a better understanding of molecular and cellular mechanisms and the development of novel therapeutic approaches to dealing with the arrhythmic manifestations. This review provides an overview of the molecular structure and function of the LTCC, the genetic defects in these channels known to contribute to inherited disorders, and the underlying molecular and cellular mechanisms contributing to the development of life-threatening arrhythmias.
Collapse
Affiliation(s)
- Carlo Napolitano
- Executive Director and Director of Research, Gordon K. Moe Scholar, Masonic Medical Research Laboratory, 2150 Bleecker St, Utica, NY 13501, USA.
| | | |
Collapse
|
70
|
Radwański PB, Poelzing S. NCX is an important determinant for premature ventricular activity in a drug-induced model of Andersen-Tawil syndrome. Cardiovasc Res 2011; 92:57-66. [PMID: 21697145 DOI: 10.1093/cvr/cvr180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Andersen-Tawil syndrome (ATS1)-associated ventricular arrhythmias are initiated by premature ventricular activity (PVA) resulting from diastolic Ca(2+) (Ca(D)) accumulation. We hypothesized that relatively high Na(+)-Ca(2+) exchanger (NCX) expression coupled with slower Ca(2+) uptake may constitute an arrhythmogenic substrate during drug-induced ATS1 (DI-ATS1). METHODS AND RESULTS DI-ATS1 was induced with 10 µmol/L BaCl(2) and 2 mmol/L [K(+)](o). Ca(2+) transients and action potentials were optically mapped from Langendorff-perfused guinea pig ventricles. Intracellular Ca(2+) handling was modulated by either direct NCX inhibition with 5 µmol/L KB-R7943 or by sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) inhibition with cyclopiazonic acid (CPA). During DI-ATS1, PVA was more frequent in left ventricular (LV)-base (LVB) vs. LV-apex (LVA) (2.2 ± 0.8 vs. 0.6 ± 0.3 PVA/10 min), consistent with greater Ca(D) (1.65 ± 0.13 vs. 1.42 ± 0.09 normalized-Ca(D) units) and western blot-assessed NCX protein expression (81.2 ± 30.9%) in LVB relative to LVA. Further, regions of high NCX (LVB) evidenced a shorter PVA coupling interval relative to regions of low NCX expression (LVA, 67.7 ± 3.5 vs. 78.5 ± 3.6%). Inhibiting NCX during DI-ATS1 lowered the incidence of ventricular tachycardias (VTs, 0 vs. 25%) and PVA (1.5 ± 0.4 vs. 4.3 ± 1.4 PVA/10 min), but it did not affect PVA coupling intervals in LVB nor LVA (70.8 ± 4.3 vs. 73.8 ± 2.5%). Conversely, inhibition of SERCA2a with CPA, thereby increasing the role of NCX in Ca(2+) handling, significantly increased the incidence of VTs and PVA relative to DI-ATS1 alone, while decreasing the PVA coupling interval in all regions. CONCLUSION PVA preferentially occurs in regions of enhanced NCX expression with relatively slower Ca(2+) uptake and during perfusion of CPA which further reduces sarcoplasmic reticular Ca(2+) uptake.
Collapse
Affiliation(s)
- Przemysław B Radwański
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112-5000, USA
| | | |
Collapse
|
71
|
Sarkar AX, Sobie EA. Quantification of repolarization reserve to understand interpatient variability in the response to proarrhythmic drugs: a computational analysis. Heart Rhythm 2011; 8:1749-55. [PMID: 21699863 DOI: 10.1016/j.hrthm.2011.05.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/27/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND "Repolarization reserve" is frequently invoked to explain why potentially proarrhythmic drugs cause, across a population, a range of changes to cardiac action potentials (APs). However, the mechanisms underlying this interindividual variability are not understood quantitatively. OBJECTIVE The purpose of this study was to perform a novel analysis of mathematical models of ventricular myocytes to quantify repolarization reserve and gain insight into the factors responsible for variability in the response to proarrhythmic drugs. METHODS/RESULTS In several models of human or canine ventricular myocytes, variability was simulated by randomizing model parameters and running repeated simulations. With each randomly generated set of parameters, APs before and after simulated 75% block of the rapid delayed rectifier current (I(Kr)) were calculated. Multivariable regression was performed to determine how much each model parameter attenuated or exacerbated the AP prolongation caused by the I(Kr)-blocking drug. Simulations with a human ventricular myocyte model suggest that drug response is influenced most strongly by (1) the density of I(Kr), (2) the density of slow delayed rectifier current I(Ks), (3) the voltage dependence of I(Kr) inactivation, (4) the density of L-type Ca2+ current, and (5) the kinetics of I(Ks) activation. The analysis also identified mechanisms underlying nonintuitive behavior, such as ionic currents that prolong baseline APs but decrease drug-induced AP prolongation. Finally, the simulations provided quantitative insight into conditions that aggravate the drug response, such as silent ion channel mutations and heart failure. CONCLUSION These modeling results provide the first thorough quantification of repolarization reserve and improve our understanding of interindividual variability in adverse drug reactions.
Collapse
Affiliation(s)
- Amrita X Sarkar
- Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
72
|
Gonzalez R, Gomis-Tena J, Corrias A, Ferrero JM, Rodriguez B, Saiz J. Sex and age related differences in drug induced QT prolongation by dofetilide under reduced repolarization reserve in simulated ventricular cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2010:3245-8. [PMID: 21096817 DOI: 10.1109/iembs.2010.5627415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to investigate sex and age related differences in drug induced QT prolongation by dofetilide under reduced repolarization reserve in simulated ventricular cells. Left ventricular endocardial action potentials were simulated using a modified Luo Rudy model. Sex, age and regional differences in currents I(CaL), IK(r), IK(s), and I(to) were incorporated into the model by modifying the equations representing them. A model of dofetilide, a class III antiarrhythmic drug, was developed and included into a ventricular cell models. The reduced repolarization reserve was reproduced decreasing the IKs current. Our results shown that the adult female cells had longer action potentials, a steeper APD-BCL relationship and a higher susceptibility to EADs than adult male cells, under control, drug induced and reduced repolarization reserve conditions. On the other hand, young female and young male cells had similar action potentials under control conditions. However, young male cells had longer action potentials and higher susceptibility to EADs than young female cells under drug induced and reduced repolarization reserve conditions. Sex and age dependent differences in I(CaL), IKr, IKs, and Ito may explain the age and sex disparities in prolongation of APD by the action of dofetilide.
Collapse
Affiliation(s)
- Rodolfo Gonzalez
- Departamento de Ingeniería Electrónica, Instituto Tecnológico de Morelia, Mexico.
| | | | | | | | | | | |
Collapse
|
73
|
Verkerk AO, Tan HL. Sex-deparities in cardiac electrophysiology: L-type Ca2+ current and the Na+-Ca2+ exchanger go hand in hand. J Physiol 2011; 589:1247-8. [PMID: 21486852 DOI: 10.1113/jphysiol.2011.206425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Arie O Verkerk
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
74
|
The mechanisms underlying ICa heterogeneity across murine left ventricle. Mol Cell Biochem 2011; 352:239-46. [PMID: 21373807 DOI: 10.1007/s11010-011-0759-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
L-type calcium current (I(Ca)) plays a critical role in excitation-contraction coupling (ECC). Unlike transient outward K(+) current (I(to)), it is controversial whether I(Ca) transmural gradient exists in left ventricle. Although previous studies have shown some evidences for I(Ca) heterogeneity, the mechanism is still unknown. In this study, the authors recorded I(Ca) from epicardial (EPI) and endocardial (ENDO) myocytes isolated from murine left ventricle using patch-clamp technique. It was found that I(Ca) density was obviously larger in EPI than in ENDO (7.3 ± 0.3 pA/pF vs. 6.2 ± 0.2 pA/pF, at test potential of +10 mV, P < 0.05). The characteristics of I(Ca) showed no difference between these two regions except for the fast inactivation time constants (9.9 ± 0.9 ms in EPI vs. 13.5 ± 0.9 ms in ENDO, at test potential of +10 mV, P < 0.05). In addition, it was explored the molecular mechanism underlying I(Ca) transmural gradient by Western blot. The authors demonstrated that a higher activity of CaMKII in ENDO cells induced more nuclear translocation of p65, a component of nuclear factor-kappa B (NF-kB). Consequently, p65 in ENDO inhibited more transcription of Cav1.2, the main encoding gene for L-type calcium channels (LTCCs). These results reveal a difference in CaMKII/p65 signal pathway between EPI and ENDO that underlies this mechanism of I(Ca) heterogeneity in murine left ventricle.
Collapse
|
75
|
Salama G, Akar FG. Deciphering Arrhythmia Mechanisms - Tools of the Trade. Card Electrophysiol Clin 2011; 3:11-21. [PMID: 21572551 PMCID: PMC3093299 DOI: 10.1016/j.ccep.2010.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pathophysiological remodeling of cardiac function occurs at multiple levels, spanning the spectrum from molecular and sub-cellular changes to those occurring at the organ-system levels. Of key importance to arrhythmias are changes in electrophysiological and calcium handling properties at the tissue level. In this review, we discuss how high-resolution optical action potential and calcium transient imaging has advanced our understanding of basic arrhythmia mechanisms associated with multiple cardiovascular disorders, including the long QT syndrome, heart failure, and ischemia-reperfusion injury. We focus on the role of repolarization gradients (section 1) and calcium mediated triggers (section 2) in the initiation and maintenance of complex arrhythmias in these settings.
Collapse
Affiliation(s)
- Guy Salama
- University of Pittsburgh, The Cardiovascular Institute, Pittsburgh, PA, 15261
| | - Fadi G. Akar
- Mount Sinai School of Medicine, New York, NY 10029, Tel: 212-241-9251; FAX: 212-241-4080
| |
Collapse
|
76
|
Chen G, Yang X, Alber S, Shusterman V, Salama G. Regional genomic regulation of cardiac sodium-calcium exchanger by oestrogen. J Physiol 2011; 589:1061-80. [PMID: 21224239 DOI: 10.1113/jphysiol.2010.203398] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Female rabbit hearts are more susceptible to torsade de pointes (TdP) in acquired long QT type 2 than males, in-part due to higher L-type Ca2+ current (ICa,L) at the base of the heart. In principle, higher Ca2+ influx via ICa,L should be balanced by higher efflux, perhaps mediated by parallel sex differences of sodium-calcium exchange (NCX) current (INCX). We now show that NCX1, like Cav1.2α, is greater at the base of female than male left ventricular epicardium and greater at the base than at the apex in both sexes. In voltage-clamp studies, inward (0, +20 mV, P < 0.04) and outward (-80, -60, -40, -20 mV, P < 0.01) INCX densities were significantly higher (1.5-2 fold) in female base compared to apex and male (base and apex) myocytes. Myocytes were incubated ±17β-oestradiol (E2 = 1 nm) and INCX was measured on days 0, 1, 2 and 3. Inward and outward INCX decreased over 2 days in female base myocytes becoming similar to INCX at the apex. E2 incubation (24 h) increased NCX1 (50%) and INCX (∼3-fold at 60 mV) in female base but not endocardium, apex or in male base myocytes. INCX upregulation by E2 was blunted by an oestrogen receptor (ER) antagonist (fulvestrant, 1 μm), and inhibition of transcription (actinomycin D, 5 μg ml-1) or translation (cycloheximide, 20 μg ml-1). Dofetilide (an IKr blocker) induced early afterdepolarizations (EADs) in female base myocytes cultured for 1 day if incubated with E2, but not without E2 or with E2+KB-R4973 (an INCX inhibitor), E2+fulvestrant or E2 with apex myocytes. Thus, E2 upregulates NCX1 by a genomic mechanism mediated by ERs, and de novo mRNA and protein biosynthesis, in a sex- and region-dependent manner which contributes to the enhanced propensity to EADs and TdP in female hearts.
Collapse
Affiliation(s)
- Guojun Chen
- University of Pittsburgh, School of Medicine, Cardiovascular Institute, 3550 Terrace Street, Suite S 628 Scaife Hall, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
77
|
Oros A, Houtman MJ, Neco P, Gomez AM, Rajamani S, Oosterhoff P, Attevelt NJ, Beekman JD, van der Heyden MAG, Ver Donck L, Belardinelli L, Richard S, Antoons G, Vos MA. Robust anti-arrhythmic efficacy of verapamil and flunarizine against dofetilide-induced TdP arrhythmias is based upon a shared and a different mode of action. Br J Pharmacol 2010; 161:162-75. [PMID: 20718748 DOI: 10.1111/j.1476-5381.2010.00883.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The high predisposition to Torsade de Pointes (TdP) in dogs with chronic AV-block (CAVB) is well documented. The anti-arrhythmic efficacy and mode of action of Ca(2+) channel antagonists, flunarizine and verapamil against TdP were investigated. EXPERIMENTAL APPROACH Mongrel dogs with CAVB were selected based on the inducibility of TdP with dofetilide. The effects of flunarizine and verapamil were assessed after TdP and in different experiments to prevent dofetilide-induced TdP. Electrocardiogram and ventricular monophasic action potentials were recorded. Electrophysiological parameters and short-term variability of repolarization (STV) were determined. In vitro, flunarizine and verapamil were added to determine their effect on (i) dofetilide-induced early after depolarizations (EADs) in canine ventricular myocytes (VM); (ii) diastolic Ca(2+) sparks in RyR2(R4496+/+) mouse myocytes; and (iii) peak and late I(Na) in SCN5A-HEK 293 cells. KEY RESULTS Dofetilide increased STV prior to TdP and in VM prior to EADs. Both flunarizine and verapamil completely suppressed TdP and reversed STV to baseline values. Complete prevention of TdP was achieved with both drugs, accompanied by the prevention of an increase in STV. Suppression of EADs was confirmed after flunarizine. Only flunarizine blocked late I(Na). Ca(2+) sparks were reduced with verapamil. CONCLUSIONS AND IMPLICATIONS Robust anti-arrhythmic efficacy was seen with both Ca(2+) channel antagonists. Their divergent electrophysiological actions may be related to different additional effects of the two drugs.
Collapse
Affiliation(s)
- A Oros
- Department of Medical Physiology, Division Heart & Lungs, UMC Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Chen G, Yang X, Kerchner LJ, Salama NR, Alber S, Shusterman V, London B, Salama G. WITHDRAWN: Sex-differences in sodium/calcium exchange expression is a determinant of the arrhythmia phenotype in pre-pubertal rabbit hearts with Long QT type 2. Heart Rhythm 2010:S1547-5271(10)01438-4. [PMID: 21193060 PMCID: PMC3163039 DOI: 10.1016/j.hrthm.2010.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/23/2010] [Indexed: 11/26/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Guojun Chen
- Cardiovascular Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261
| | - Xiaoyan Yang
- Cardiovascular Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261
| | - Laurie J. Kerchner
- Cardiovascular Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261
| | - Naomi R. Salama
- Cardiovascular Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261
| | - Sean Alber
- Center for Biological Imaging, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261
| | - Vladimir Shusterman
- Cardiovascular Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261
| | - Barry London
- Cardiovascular Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261
| | - Guy Salama
- Cardiovascular Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
79
|
Affiliation(s)
- E Kevin Heist
- Cardiac Arrhythmia Service and Heart Center, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA.
| | | |
Collapse
|
80
|
|
81
|
The systems biology approach to drug development: application to toxicity assessment of cardiac drugs. Clin Pharmacol Ther 2010; 88:130-4. [PMID: 20520607 DOI: 10.1038/clpt.2010.95] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Side effects account for most of the instances of failure of candidate drugs at late stages of development. These development failures contribute to the exorbitant cost of bringing new compounds to market: a single withdrawal can represent a loss of more than $1 billion. Many unwanted actions of drugs affect the heart, resulting in potentially proarrhythmic alteration of ion channel function. Because these can be fatal, potential electrophysiological cardiotoxicity is among the most stringent exclusion criteria in the licensing process.
Collapse
|
82
|
Roche M, Renauleaud C, Ballet V, Doubovetzky M, Guillon JM. The isolated rabbit heart and Purkinje fibers as models for identifying proarrhythmic liability. J Pharmacol Toxicol Methods 2010; 61:238-50. [PMID: 20117224 DOI: 10.1016/j.vascn.2010.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 01/20/2010] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Delayed ventricular repolarization is associated with rare, but often fatal, polymorphic tachyarrhythmias named Torsades de Pointes. ICH S7B guideline recommends an integrated approach for cardiovascular preclinical evaluation of new drug candidates, including action potential assays (as a Purkinje fiber test) but also proarrhythmia models. The aim of this preliminary study was to compare the respective value of two preclinical in vitro rabbit cardiac preparations-the Purkinje fiber and the isolated perfused heart (Langendorff method)-based on effects of dofetilide, a selective IKr inhibitor. METHODS Transmembrane action potentials from rabbit Purkinje fibers were recorded using a conventional intracellular glass microelectrode. Electrocardiograms from rabbit isolated hearts were evaluated for QRS, QT and T wave durations (Tpeak-Tend). The pacing protocol was the same for both preparations (basal rate of 80 bpm and pacing of 40, 60 and 140 bpm). Dofetilide was tested in both systems at concentrations of 1, 3 and 10 nmol/L. RESULTS In Purkinje fibers dofetilide induced a concentration- and reverse use-dependent increase in action potential durations measured at 50 and 90% of repolarization. At 10 nmol/L, only 3/10 fibers showed early after depolarizations. In the isolated heart model, dofetilide also induced a similar concentration- and reverse use-dependent increase in QT-interval. From 3 nmol/L, major changes in T wave morphology, R-on-T extrasystoles and TdP were observed, mainly at low rate. Prior to arrhythmias, T wave shape and duration were markedly altered suggesting an increase in the heterogeneity of cardiac ventricular repolarization. CONCLUSIONS The effects of dofetilide were comparable in the two models for delayed repolarization but the isolated heart appears to be a better predictor for arrhythmias and a unique in vitro model to assess arrhythmogenic potential of QT prolonging compounds at least when associated with IKr/hERG inhibition.
Collapse
Affiliation(s)
- Michel Roche
- Department of Drug Safety Evaluation, Safety Pharmacology Group, Sanofi-Aventis Recherche & Développement, 3 Digue d'Alfortville, 94140 Alfortville, France
| | | | | | | | | |
Collapse
|
83
|
Yang PC, Kurokawa J, Furukawa T, Clancy CE. Acute effects of sex steroid hormones on susceptibility to cardiac arrhythmias: a simulation study. PLoS Comput Biol 2010; 6:e1000658. [PMID: 20126530 PMCID: PMC2813260 DOI: 10.1371/journal.pcbi.1000658] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 12/22/2009] [Indexed: 01/08/2023] Open
Abstract
Acute effects of sex steroid hormones likely contribute to the observation that post-pubescent males have shorter QT intervals than females. However, the specific role for hormones in modulating cardiac electrophysiological parameters and arrhythmia vulnerability is unclear. Here we use a computational modeling approach to incorporate experimentally measured effects of physiological concentrations of testosterone, estrogen and progesterone on cardiac ion channel targets. We then study the hormone effects on ventricular cell and tissue dynamics comprised of Faber-Rudy computational models. The “female” model predicts changes in action potential duration (APD) at different stages of the menstrual cycle that are consistent with clinically observed QT interval fluctuations. The “male” model predicts shortening of APD and QT interval at physiological testosterone concentrations. The model suggests increased susceptibility to drug-induced arrhythmia when estradiol levels are high, while testosterone and progesterone are apparently protective. Simulations predict the effects of sex steroid hormones on clinically observed QT intervals and reveal mechanisms of estrogen-mediated susceptibility to prolongation of QT interval. The simulations also indicate that acute effects of estrogen are not alone sufficient to cause arrhythmia triggers and explain the increased risk of females to Torsades de Pointes. Our results suggest that acute effects of sex steroid hormones on cardiac ion channels are sufficient to account for some aspects of gender specific susceptibility to long-QT linked arrhythmias. It is well known that female gender is an independent risk factor for some types of cardiac arrhythmias. However, it has been difficult to determine how much of a role physiological concentrations of circulating sex steroid hormones play in gender linked arrhythmia susceptibility because the cardiac system is so extraordinarily complex. Here we employ a computational strategy, based on experimental measurements, to tease out the individual contributions of estrogen, progesterone and testosterone on cardiac electrical behavior and then make predictions about their effects in combination and in the presence of drugs. The computational models convincingly reproduce observed fluctuations of QT intervals (as recorded on the ECG (electrocardiogram), the QT interval reflects the time period between ventricular excitation and relaxation) through the menstrual cycle in females and effects of testosterone on ECG parameters. Our simulations also predict that testosterone and progesterone are protective against drug-induced arrhythmias, while estrogen likely exacerbates the breakdown of normal cardiac electrical activity in the presence of QT-prolonging drugs.
Collapse
Affiliation(s)
- Pei-Chi Yang
- Department of Pharmacology, University of California, Davis, Davis, California, United States of America
| | - Junko Kurokawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Colleen E. Clancy
- Department of Pharmacology, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
84
|
Gaur N, Rudy Y, Hool L. Contributions of ion channel currents to ventricular action potential changes and induction of early afterdepolarizations during acute hypoxia. Circ Res 2009; 105:1196-203. [PMID: 19875728 DOI: 10.1161/circresaha.109.202267] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Variability in delivery of oxygen can lead to electric instability in the myocardium and the generation of arrhythmias. In addition ischemic heart disease and angina are associated with an increase in circulating catecholamines that further increases the risk of developing ventricular tachyarrhythmias. OBJECTIVE We investigated the net effects of acute hypoxia and catecholamines on the cardiac action potential. METHODS AND RESULTS We incorporated all published data on the effects of hypoxia on the late Na(+) current (I(Na-L)), the fast Na(+) current (I(Na)), the basal L-type Ca(2+) channel current (I(Ca-L)), and the slow (I(Ks)) and rapid components of the delayed rectifier K(+)-current (I(Kr)) in the absence and presence of beta-adrenergic receptor (beta-AR) stimulation into the Luo-Rudy model of the action potential. Hypoxia alone had little effect on the action potential configuration or action potential duration. However in the presence of beta-AR stimulation, hypoxia caused a prolongation of the action potential and early afterdepolarizations (EADs) and spontaneous tachycardia were induced. Experiments performed in guinea pig ventricular myocytes confirmed the modeling results. CONCLUSIONS EADs occur predominantly because of the increased sensitivity of I(Ca-L) to beta-AR stimulation during hypoxia. beta-AR stimulation is necessary to induce EADs as EADs are never observed during hypoxia in the absence of beta-AR stimulation.
Collapse
Affiliation(s)
- Namit Gaur
- Physiology M311, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | | | | |
Collapse
|
85
|
Mason SA, MacLeod KT. Cardiac action potential duration and calcium regulation in males and females. Biochem Biophys Res Commun 2009; 388:565-70. [PMID: 19682977 DOI: 10.1016/j.bbrc.2009.08.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/07/2009] [Indexed: 11/19/2022]
Abstract
Adult women have longer QT intervals compared with men of a similar age, indicating differences in the speed of repolarisation of the ventricles. We investigate the influences of gender on ventricular electrophysiology and intracellular Ca(2+) regulation of the guinea pig heart. Comparing sexually mature animals, females exhibited a significantly longer APD. Peak L-type Ca(2+) current (I(CaL)) was larger in females and when this current was inhibited with nifedipine the gender differences in APD were removed. APD differences also disappeared when the SR was depleted of Ca(2+). Inactivation of I(CaL) during a clamp step is faster in females but slower during an action potential and SR Ca(2+) content is larger. We suggest that gender differences in APD result from variation in the kinetics of I(CaL) stemming from alterations to Ca(2+) release.
Collapse
Affiliation(s)
- Sammy A Mason
- Department of Cardiology, School of Medicine, Cardiff University, Wales Heart Research Institute, Heath Park, Cardiff CF14 4XN, UK
| | | |
Collapse
|
86
|
Benitah JP, Alvarez JL, Gómez AM. L-type Ca(2+) current in ventricular cardiomyocytes. J Mol Cell Cardiol 2009; 48:26-36. [PMID: 19660468 DOI: 10.1016/j.yjmcc.2009.07.026] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/09/2009] [Accepted: 07/27/2009] [Indexed: 12/24/2022]
Abstract
L-type Ca(2+) channels are mediators of Ca(2+) influx and the regulatory events accompanying it and are pivotal in the function and dysfunction of ventricular cardiac myocytes. L-type Ca(2+) channels are located in sarcolemma, including the T-tubules facing the sarcoplasmic reticulum junction, and are activated by membrane depolarization, but intracellular Ca(2+)-dependent inactivation limits Ca(2+) influx during action potential. I(CaL) is important in heart function because it triggers excitation-contraction coupling, modulates action potential shape and is involved in cardiac arrhythmia. L-type Ca(2+) channels are multi-subunit complexes that interact with several molecules involved in their regulations, notably by beta-adrenergic signaling. The present review highlights some of the recent findings on L-type Ca(2+) channel function, regulation, and alteration in acquired pathologies such as cardiac hypertrophy, heart failure and diabetic cardiomyopathy, as well as in inherited arrhythmic cardiac diseases such as Timothy and Brugada syndromes.
Collapse
|
87
|
Romero L, Pueyo E, Fink M, Rodríguez B. Impact of ionic current variability on human ventricular cellular electrophysiology. Am J Physiol Heart Circ Physiol 2009; 297:H1436-45. [PMID: 19648254 DOI: 10.1152/ajpheart.00263.2009] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abnormalities in repolarization and its rate dependence are known to be related to increased proarrhythmic risk. A number of repolarization-related electrophysiological properties are commonly used as preclinical biomarkers of arrhythmic risk. However, the variability and complexity of repolarization mechanisms make the use of cellular biomarkers to predict arrhythmic risk preclinically challenging. Our goal is to investigate the role of ionic current properties and their variability in modulating cellular biomarkers of arrhythmic risk to improve risk stratification and identification in humans. A systematic investigation into the sensitivity of the main preclinical biomarkers of arrhythmic risk to changes in ionic current conductances and kinetics was performed using computer simulations. Four stimulation protocols were applied to the ten Tusscher and Panfilov human ventricular model to quantify the impact of +/-15 and +/-30% variations in key model parameters on action potential (AP) properties, Ca(2+) and Na(+) dynamics, and their rate dependence. Simulations show that, in humans, AP duration is moderately sensitive to changes in all repolarization current conductances and in L-type Ca(2+) current (I(CaL)) and slow component of the delayed rectifier current (I(Ks)) inactivation kinetics. AP triangulation, however, is strongly dependent only on inward rectifier K(+) current (I(K1)) and delayed rectifier current (I(Kr)) conductances. Furthermore, AP rate dependence (i.e., AP duration rate adaptation and restitution properties) and intracellular Ca(2+) and Na(+) levels are highly sensitive to both I(CaL) and Na(+)/K(+) pump current (I(NaK)) properties. This study provides quantitative insights into the sensitivity of preclinical biomarkers of arrhythmic risk to variations in ionic current properties in humans. The results show the importance of sensitivity analysis as a powerful method for the in-depth validation of mathematical models in cardiac electrophysiology.
Collapse
Affiliation(s)
- Lucía Romero
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada al Ser Humano, Universidad Politécnica de Valencia, Valencia, Spain.
| | | | | | | |
Collapse
|
88
|
Cheng HC, Incardona J. Models of torsades de pointes: effects of FPL64176, DPI201106, dofetilide, and chromanol 293B in isolated rabbit and guinea pig hearts. J Pharmacol Toxicol Methods 2009; 60:174-84. [PMID: 19524054 DOI: 10.1016/j.vascn.2009.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/25/2009] [Indexed: 11/28/2022]
Abstract
INTRODUCTION For studying the torsades de pointes (TdP) liability of a compound, most high and medium throughput methods use surrogate markers such as HERG inhibition and QT prolongation. In this study, we have tested whether isolated hearts may be modified to allow TdP to be the direct readout. METHOD Isolated spontaneously beating rabbit and guinea pig hearts were perfused according to the Langendorff method in hypokalemic (2.1 mM) solution. The in vitro lead II ECG equivalent and the incidence of TdP were monitored for 1 h. In addition, heart rate, QTc, Tp-Te, short-term variability (STV), time to arrhythmia, and time to TdP were also analyzed. RESULTS FPL64176, a calcium channel activator; and DPI201106, a sodium channel inactivation inhibitor, produced TdP in isolated rabbit and guinea pig hearts in a concentration dependent manner; guinea pig hearts were 3- to 5-fold more sensitive than rabbit hearts. Both compounds also increased QTc and STV. In contrast, dofetilide, an IKr inhibitor, produced no (or a low incidence of) TdP in both species, in spite of prolongation of QTc intervals. Chromanol 293B, an IKs inhibitor, did not produce TdP in rabbit hearts but elicited TdP concentration dependently in guinea pig hearts even though the compound had no effect on QTc intervals. CONCLUSION IKs inhibition appears to be more likely to produce TdP in isolated guinea pig hearts than IKr inhibition. Chromanol 293B did not produce TdP in rabbit hearts presumably due to a low level of IKs channels in the heart. TdP produced in this study was consistent with the notion that its production was a consequence of reduced repolarization reserve, thereby causing rhythmic abnormalities. This isolated, perfused, and spontaneously beating rabbit and guinea pig heart preparation in hypokalemic medium may be useful as a preclinical test model for studying proarrhythmic liability of compounds in new drug development.
Collapse
Affiliation(s)
- Hsien C Cheng
- Safety Pharmacology, Drug Safety Evaluation, sanofi-aventis U.S. Inc., Bridgewater, NJ 08807, United States.
| | | |
Collapse
|
89
|
|
90
|
Frangiskakis JM, Hravnak M, Crago EA, Tanabe M, Kip KE, Gorcsan J, Horowitz MB, Kassam AB, London B. Ventricular arrhythmia risk after subarachnoid hemorrhage. Neurocrit Care 2009; 10:287-94. [PMID: 19184553 PMCID: PMC3673292 DOI: 10.1007/s12028-009-9188-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Cardiac morbidity and mortality after aneurysmal subarachnoid hemorrhage (SAH) are attributable to myocardial injury, decreased ventricular function, and ventricular arrhythmia (VA). Our objective was to test the relationships between QTc prolongation, VA, and survival after SAH. METHODS In 200 subjects with acute aneurysmal SAH, electrocardiograms, echocardiograms, and telemetry were evaluated. Serum electrolytes and troponin were also evaluated. RESULTS Initial QTc (mean 460 +/- 45 ms) was prolonged (> or = 470 ms) in 38% of subjects and decreased on follow-up (469 +/- 49 initial vs. 435 +/- 31 ms follow-up; N = 89; P < 0.0001). VA was present in 14% of subjects, 52% of subjects with VA had QTc > or = 470 ms, and initial QTc trended toward longer duration in subjects with VA (474 +/- 61 vs. 457 +/- 42 ms; P = 0.084). Multivariate analysis demonstrated significant predictors of VA after SAH were increasing age (OR 1.3/5 years; P = 0.025), increasing stroke severity (OR 1.8; P = 0.009), decreasing heart rate (OR 0.5/10 beats/min; P = 0.006), and the absence of angiotensin converting enzyme inhibitor or angiotensin II receptor antagonist use at SAH onset (OR 0.10; P = 0.027). All-cause mortality was 19% (25/135) at 3 months and subjects with VA had significantly higher mortality than those without VA (37% vs. 16%; P = 0.027). CONCLUSIONS These data demonstrate that QTc prolongation and arrhythmias are frequently noted after SAH, but arrhythmias are often not associated with QTc prolongation. In addition, the presence of VA identified subjects at greater risk of mortality following their SAH.
Collapse
Affiliation(s)
- J. Michael Frangiskakis
- Cardiovascular Institute, University of Pittsburgh Medical Center, S572 Scaife Hall, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Marilyn Hravnak
- Department of Neurosurgery, University of Pittsburgh Medical Center, A402, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Elizabeth A. Crago
- Department of Neurosurgery, University of Pittsburgh Medical Center, A402, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Masaki Tanabe
- Cardiovascular Institute, University of Pittsburgh Medical Center, S572 Scaife Hall, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Kevin E. Kip
- College of Nursing, University of South Florida, MDC 22 Rm 2010, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - John Gorcsan
- Cardiovascular Institute, University of Pittsburgh Medical Center, S572 Scaife Hall, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Michael B. Horowitz
- Department of Neurosurgery, University of Pittsburgh Medical Center, A402, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Amin B. Kassam
- Department of Neurosurgery, University of Pittsburgh Medical Center, A402, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Barry London
- Cardiovascular Institute, University of Pittsburgh Medical Center, S572 Scaife Hall, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
91
|
Hool LC. The L-type Ca(2+) channel as a potential mediator of pathology during alterations in cellular redox state. Heart Lung Circ 2008; 18:3-10. [PMID: 19119068 DOI: 10.1016/j.hlc.2008.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The L-type Ca(2+) channel is the main route for calcium influx into cardiac myocytes and an important determinant of calcium homeostasis. There is now considerable evidence that the function of the L-type Ca(2+) channel is influenced by the cell's redox state. Reactive oxygen species such as hydrogen peroxide and superoxide can regulate biological function by directly altering the thiol redox state of proteins. Under conditions where cellular redox state varies, L-type Ca(2+) channel function and diastolic calcium levels can be significantly altered. This article will present the evidence for alterations in L-type Ca(2+) channel function by reactive oxygen species and the potential role for the channel in development of acute electrophysiological instability or chronic pathological remodelling under conditions of persistent oxidative stress.
Collapse
Affiliation(s)
- Livia C Hool
- School of Biomedical, Biomolecular and Chemical Sciences and The Western Australian Institute for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|