51
|
Voisin MB, Leoni G, Woodfin A, Loumagne L, Patel NS, Di Paola R, Cuzzocrea S, Thiemermann C, Perretti M, Nourshargh S. Neutrophil elastase plays a non-redundant role in remodeling the venular basement membrane and neutrophil diapedesis post-ischemia/reperfusion injury. J Pathol 2019; 248:88-102. [PMID: 30632166 PMCID: PMC6850085 DOI: 10.1002/path.5234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/09/2018] [Accepted: 12/23/2018] [Indexed: 12/20/2022]
Abstract
Ischemia/reperfusion (I/R) injury is a severe inflammatory insult associated with numerous pathologies, such as myocardial infarction, stroke and acute kidney injury. I/R injury is characterized by a rapid influx of activated neutrophils secreting toxic free radical species and degrading enzymes that can irreversibly damage the tissue, thus impairing organ functions. Significant efforts have been invested in identifying therapeutic targets to suppress neutrophil recruitment and activation post‐I/R injury. In this context, pharmacological targeting of neutrophil elastase (NE) has shown promising anti‐inflammatory efficacy in a number of experimental and clinical settings of I/R injury and is considered a plausible clinical strategy for organ care. However, the mechanisms of action of NE, and hence its inhibitors, in this process are not fully understood. Here we conducted a comprehensive analysis of the impact of NE genetic deletion on neutrophil infiltration in four murine models of I/R injury as induced in the heart, kidneys, intestine and cremaster muscle. In all models, neutrophil migration into ischemic regions was significantly suppressed in NE−/− mice as compared with wild‐type controls. Analysis of inflamed cremaster muscle and mesenteric microvessels by intravital and confocal microscopy revealed a selective entrapment of neutrophils within venular walls, most notably at the level of the venular basement membrane (BM) following NE deletion/pharmacological blockade. This effect was associated with the suppression of NE‐mediated remodeling of the low matrix protein expressing regions within the venular BM used by transmigrating neutrophils as exit portals. Furthermore, whilst NE deficiency led to reduced neutrophil activation and vascular leakage, levels of monocytes and prohealing M2 macrophages were reduced in tissues of NE−/− mice subjected to I/R. Collectively our results identify a vital and non‐redundant role for NE in supporting neutrophil breaching of the venular BM post‐I/R injury but also suggest a protective role for NE in promoting tissue repair. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giovanna Leoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University (LMU), Munich, Germany
| | - Abigail Woodfin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laure Loumagne
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nimesh Sa Patel
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
52
|
Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019; 6:3. [PMID: 30729111 PMCID: PMC6351468 DOI: 10.3389/fmed.2019.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
When the human genome was sequenced, it came as a surprise that it contains “only” 21,306 protein-coding genes. However, complexity and diversity are multiplied by alternative splicing, non-protein-coding transcripts, or post-translational modifications (PTMs) on proteome level. Here, we discuss how the multi-tasking potential of proteins can substantially enhance the complexity of the proteome further, while at the same time offering mechanisms for the fine-regulation of cell responses. Discoveries over the past two decades have led to the identification of “surprising” and previously unrecognized functionalities of long known cytokines, inflammatory mediators, and intracellular proteins that have established novel molecular networks in physiology, inflammation, and cardiovascular disease. In this mini-review, we focus on alarmins and atypical chemokines such as high-mobility group box protein-1 (HMGB-1) and macrophage migration-inhibitory factor (MIF)-type proteins that are prototypical examples of these classes, featuring a remarkable multitasking potential that allows for an elaborate fine-tuning of molecular networks in the extra- and intracellular space that may eventually give rise to novel “task”-based precision medicine intervention strategies.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Ozgun Gokce
- System Neuroscience Laboratory, Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
53
|
Yan X, Xie B, Wu G, Hu J, Wang D, Cai X, Li J. Interleukin-37: The Effect of Anti-Inflammatory Response in Human Coronary Artery Endothelial Cells. Mediators Inflamm 2019; 2019:2650590. [PMID: 30728750 PMCID: PMC6341264 DOI: 10.1155/2019/2650590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/07/2018] [Accepted: 11/06/2018] [Indexed: 02/05/2023] Open
Abstract
Interleukin-37 (IL-37) is unique in the IL-1 family since it broadly suppresses innate immunity and elevates in humans with inflammatory and autoimmune diseases. IL-37 shows definite groups and transcripts for human IL37 gene, but it is still not completely understood the effect and mechanisms of inflammatory response in endothelial cells. It is well accepted that endothelial dysfunction caused by inflammation is a key initiating event in atherosclerotic plaque formation, which leads to the occurrence and development of the cardiovascular adverse events in clinical since the inflammatory responses of endothelial cells could induce and enhance the deposition of extensive lipid and the formation of atherosclerotic plaque in the intima. Thus, it is essential to investigate the role and potential mechanisms in endothelial inflammatory response to prevent the formation and development of many cardiovascular diseases including atherosclerosis. So far, the recent studies have revealed that IL-37 is able to inhibit inflammatory response by suppressing the TLR2-NF-κB-ICAM-1 pathway intracellularly in human coronary artery endothelial cells (HCAECs). Further, the role of IL-37 may be related to the IL-18 pathway extracellularly and involved in the adhesion and transmigration of neutrophils in HCAECs.
Collapse
Affiliation(s)
- Xianfeng Yan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bin Xie
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Guihai Wu
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jing Hu
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China
| | - Di Wang
- Department of Dermatovenereology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiangna Cai
- Department of Plastic Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jilin Li
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
54
|
Beyond the Foam Cell: The Role of LXRs in Preventing Atherogenesis. Int J Mol Sci 2018; 19:ijms19082307. [PMID: 30087224 PMCID: PMC6121590 DOI: 10.3390/ijms19082307] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic condition associated with cardiovascular disease. While largely identified by the accumulation of lipid-laden foam cells within the aorta later on in life, atherosclerosis develops over several stages and decades. During atherogenesis, various cell types of the aorta acquire a pro-inflammatory phenotype that initiates the cascade of signaling events facilitating the formation of these foam cells. The liver X receptors (LXRs) are nuclear receptors that upon activation induce the expression of transporters responsible for promoting cholesterol efflux. In addition to promoting cholesterol removal from the arterial wall, LXRs have potent anti-inflammatory actions via the transcriptional repression of key pro-inflammatory cytokines. These beneficial functions sparked an interest in the potential to target LXRs and the development of agonists as anti-atherogenic agents. These early studies focused on mediating the contributions of macrophages to the underlying pathogenesis. However, further evidence has since demonstrated that LXRs reduce atherosclerosis through their actions in multiple cell types apart from those monocytes/macrophages that infiltrate the lesion. LXRs and their target genes have profound effects on multiple other cells types of the hematopoietic system. Furthermore, LXRs can also mediate dysfunction within vascular cell types of the aorta including endothelial and smooth muscle cells. Taken together, these studies demonstrate the whole-body benefits of LXR activation with respect to anti-atherogenesis, and that LXRs remain a viable target for the treatment of atherosclerosis, with a reach which extends beyond plaque macrophages.
Collapse
|
55
|
He L, Fu Y, Deng J, Shen Y, Wang Y, Yu F, Xie N, Chen Z, Hong T, Peng X, Li Q, Zhou J, Han J, Wang Y, Xi J, Kong W. Deficiency of FAM3D (Family With Sequence Similarity 3, Member D), A Novel Chemokine, Attenuates Neutrophil Recruitment and Ameliorates Abdominal Aortic Aneurysm Development. Arterioscler Thromb Vasc Biol 2018; 38:1616-1631. [PMID: 29853563 PMCID: PMC6039426 DOI: 10.1161/atvbaha.118.311289] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/16/2018] [Indexed: 01/13/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Chemokine-mediated neutrophil recruitment contributes to the pathogenesis of abdominal aortic aneurysm (AAA) and may serve as a promising therapeutic target. FAM3D (family with sequence similarity 3, member D) is a recently identified novel chemokine. Here, we aimed to explore the role of FAM3D in neutrophil recruitment and AAA development. Approach and Results— FAM3D was markedly upregulated in human AAA tissues, as well as both elastase- and CaPO4-induced mouse aneurysmal aortas. FAM3D deficiency significantly attenuated the development of AAA in both mouse models. Flow cytometry analysis indicated that FAM3D−/− mice exhibited decreased neutrophil infiltration in the aorta during the early stage of AAA formation compared with their wild-type littermates. Moreover, application of FAM3D-neutralizing antibody 6D7 through intraperitoneal injection markedly ameliorated elastase-induced AAA formation and neutrophil infiltration. Further, in vitro coculture experiments with FAM3D-neutralizing antibody 6D7 and in vivo intravital microscopic analysis indicated that endothelial cell–derived FAM3D induced neutrophil recruitment. Mechanistically, FAM3D upregulated and activated Mac-1 (macrophage-1 antigen) in neutrophils, whereas inhibition of FPR1 (formyl peptide receptor 1) or FPR2 significantly blocked FAM3D-induced Mac-1 activation, indicating that the effect of FAM3D was dependent on both FPRs. Moreover, specific inhibitors of FPR signaling related to Gi protein or β-arrestin inhibited FAM3D-activated Mac-1 in vitro, whereas FAM3D deficiency decreased the activation of both FPR-Gi protein and β-arrestin signaling in neutrophils in vivo. Conclusions— FAM3D, as a dual agonist of FPR1 and FPR2, induced Mac-1-mediated neutrophil recruitment and aggravated AAA development through FPR-related Gi protein and β-arrestin signaling.
Collapse
Affiliation(s)
- Li He
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Yi Fu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Jingna Deng
- Tasly Microcirculation Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China (J.D., J.H.)
| | - Yicong Shen
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Yingbao Wang
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Fang Yu
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Nan Xie
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Zhongjiang Chen
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, People's Republic of China (T.H.)
| | - Xinjian Peng
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing, People's Republic of China (X.P., Q.L., Ying Wang)
| | - Qingqing Li
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing, People's Republic of China (X.P., Q.L., Ying Wang)
| | - Jing Zhou
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| | - Jingyan Han
- Tasly Microcirculation Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China (J.D., J.H.)
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing, People's Republic of China (X.P., Q.L., Ying Wang)
| | - Jianzhong Xi
- Department of Biomedicine, College of Engineering, Peking University, Beijing, People's Republic of China (J.X.).
| | - Wei Kong
- From the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China (L.H., Y.F., Y.S., Yingbao Wang., F.Y., N.X., Z.C., J.Z., W.K.)
| |
Collapse
|
56
|
Schumski A, Winter C, Döring Y, Soehnlein O. The Ins and Outs of Myeloid Cells in Atherosclerosis. J Innate Immun 2018; 10:479-486. [PMID: 29669334 DOI: 10.1159/000488091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/02/2018] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis is a chronic inflammation of the arterial vessel wall that arises from an imbalanced lipid metabolism. A growing body of literature describes leukocyte recruitment as a critical step in the initiation and progression of lesion development. By contrast, the role of leukocytes during plaque regression has been described in less detail. Leukocyte egress might be an important step to resolving chronic inflammation and therefore it may be a promising target for limiting advanced lesion development. This review aims to summarize our current knowledge of leukocyte recruitment to the arterial vessel wall. We will discuss mechanisms of leukocyte egress from the lesion site, as well as potential therapeutic strategies to promote atherosclerotic regression.
Collapse
Affiliation(s)
- Ariane Schumski
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Carla Winter
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, .,Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, .,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich,
| |
Collapse
|
57
|
Ziegler T, Horstkotte M, Lange P, Ng J, Bongiovanni D, Hinkel R, Laugwitz KL, Sperandio M, Horstkotte J, Kupatt C. Endothelial RAGE exacerbates acute postischaemic cardiac inflammation. Thromb Haemost 2018; 116:300-8. [DOI: 10.1160/th15-11-0898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/24/2016] [Indexed: 01/01/2023]
Abstract
SummaryAdvanced glycation end-products (AGEs) interact with their receptor RAGE, leading to an inflammatory state. We investigated the role of RAGE in postischaemic leukocyte adhesion after myocardial infarction and its effect on postischaemic myocardial function. Wildtype (WT), ICAM-1-/-, RAGE-/- or ICAM-1/RAGE-/- mice underwent 20 minutes (min) of LAD-occlusion followed by 15 min of reperfusion. We applied in vivo fluorescence microscopy visualising Rhodamine-6G labelled leukocytes. To differentiate between endothelial and leukocyte RAGE, we generated bone marrow chimeric mice. Invasive hemodynamic measurements were performed in mice undergoing 45 min of myocardial ischaemia (via LAD-occlusion) followed by 24 hours of reperfusion. Left-ventricular developed pressure (LVDP) was assessed by insertion of a millar-tip catheter into the left ventricle. In the acute model of myocardial ischaemia, leukocyte retention (WT 68 ± 4 cells/ hpf) was significantly reduced in ICAM-1-/- (40 ± 3 cells/hpf) and RAGE-/- mice (38 ± 4 cells/hpf). ICAM-1/RAGE-/- mice displayed an additive reduction of leukocyte retention (ICAM-1/RAGE-/- 15 ± 3 cells/ hpf). Ly-6G+ neutrophil were predominantly reduced in ICAM-1/RAGE-/- hearts (28%), whereas Ly-6C+ proinflammatory monocytes decreased to a lesser extent (55%). Interestingly, PMN recruitment was not affected in chimeric mice with RAGE deficiency in BM cells (WT mice reconstituted with ICAM-1/RAGE-/- BM: 55 ± 4 cells/hpf) while in mice with global RAGE deficiency (ICAM-1/RAGE-/- mice reconstituted with ICAM-1/RAGE-/- BM) leucocyte retention was significantly reduced (13 ± 1 cells/hpf), similar to non-transplanted ICAM/ RAGE-/- mice. Furthermore, postischaemic LVDP increased in ICAM-1/RAGE-/- animals (98 ± 4 mmHg vs 86 ± 4 mmHg in WT mice). In conclusion, combined deficiency of ICAM-1 and RAGE reduces leukocyte influx into infarcted myocardium and improves LV function during the acute phase after myocardial ischaemia and reperfusion. RAGE represents an additional pro-inflammatory endothelial mediator of ischaemia-reperfusion injury.
Collapse
|
58
|
Chistiakov DA, Grechko AV, Myasoedova VA, Melnichenko AA, Orekhov AN. The role of monocytosis and neutrophilia in atherosclerosis. J Cell Mol Med 2018; 22:1366-1382. [PMID: 29364567 PMCID: PMC5824421 DOI: 10.1111/jcmm.13462] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Monocytosis and neutrophilia are frequent events in atherosclerosis. These phenomena arise from the increased proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) and HSPC mobilization from the bone marrow to other immune organs and circulation. High cholesterol and inflammatory signals promote HSPC proliferation and preferential differentiation to the myeloid precursors (i.e., myelopoiesis) that than give rise to pro-inflammatory immune cells. These cells accumulate in the plaques thereby enhancing vascular inflammation and contributing to further lesion progression. Studies in animal models of atherosclerosis showed that manipulation with HSPC proliferation and differentiation through the activation of LXR-dependent mechanisms and restoration of cholesterol efflux may have a significant therapeutic potential.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/pathology
- Bone Marrow/immunology
- Bone Marrow/pathology
- Cell Differentiation
- Cell Proliferation
- Cholesterol/immunology
- Disease Models, Animal
- Gene Expression Regulation
- Hematopoietic Stem Cells/immunology
- Hematopoietic Stem Cells/pathology
- Humans
- Hypercholesterolemia/genetics
- Hypercholesterolemia/immunology
- Hypercholesterolemia/pathology
- Liver X Receptors/genetics
- Liver X Receptors/immunology
- Mice
- Monocytes/immunology
- Monocytes/pathology
- Multipotent Stem Cells/immunology
- Multipotent Stem Cells/pathology
- Neutrophils/immunology
- Neutrophils/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/pathology
Collapse
Affiliation(s)
- Dimitry A. Chistiakov
- Department of NeurochemistryDivision of Basic and Applied NeurobiologySerbsky Federal Medical Research Center of Psychiatry and NarcologyMoscowRussia
| | - Andrey V. Grechko
- Federal Scientific Clinical Center for Resuscitation and RehabilitationMoscowRussia
| | - Veronika A. Myasoedova
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| | - Alexandra A. Melnichenko
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| | - Alexander N. Orekhov
- Skolkovo Innovative CenterInstitute for Atherosclerosis ResearchMoscowRussia
- Laboratory of AngiopathologyInstitute of General Pathology and PathophysiologyRussian Academy of SciencesMoscowRussia
| |
Collapse
|
59
|
Cathelicidin LL-37 Affects Surface and Intracellular Toll-Like Receptor Expression in Tissue Mast Cells. J Immunol Res 2018; 2018:7357162. [PMID: 29670923 PMCID: PMC5836302 DOI: 10.1155/2018/7357162] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/26/2017] [Indexed: 12/30/2022] Open
Abstract
Undoubtedly, mast cells take part in host defense against microorganisms as they are numerous at the portal of infection, they release many proinflammatory and antimicrobial mediators, and they express pattern recognition receptors, such as TLRs. These receptors play a key role in recognition and binding molecules associated with microorganisms and molecules associated with damage. Cathelicidins exhibit direct antimicrobial activities against a broad spectrum of microbes by perturbing their cell membranes. Accumulating evidence suggests a role for these molecules in supporting cell activation. We examined the impact of human cathelicidin LL-37 on tissue mast cell TLR expression and distribution. Depending on context, we show that LL-37 stimulation resulted in minor to major effects on TLR2, TLR3, TLR4, TLR5, TLR7, and TLR9 expression. Confocal microscopy analysis showed that, upon stimulation, TLRs may translocate from the cell interior to the surface and conversely. FPR2 and EGFR inhibitors reduced the increase in expression of selected receptors. We also established that LL-37 acts as a powerful inducer of CCL3 and ROS generation. These results showed that in response to LL-37, mast cells enhance the capability to detect invading pathogens by modulation of TLR expression in what may be involved FPR2 or EGFR molecules.
Collapse
|
60
|
Soehnlein O. Decision shaping neutrophil-platelet interplay in inflammation: From physiology to intervention. Eur J Clin Invest 2018; 48. [PMID: 29226390 DOI: 10.1111/eci.12871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022]
Abstract
Inflammation is a well-coordinated process in response to tissue injury or infection aimed at restoration of tissue homoeostasis. Platelets and neutrophils are typically viewed important in the context of haemostasis and bacterial killing, respectively. However, as these cells are equipped with readily available armoury, both have received much attention for their importance in shaping the early inflammatory reaction in recent years. While some of these activities are executed individually, both cells join forces during much of their pro-inflammatory activities. This brief review summarizes recently identified mechanisms of neutrophil-platelet interaction and describes functional consequences on neutrophil trafficking and the release of neutrophil extracellular traps. Moreover, the synergy of neutrophils and platelets during the recruitment of monocytes is reviewed. Finally, this review discusses how knowledge on the intimate neutrophil-platelet partnership can be employed to design interventional strategies.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
61
|
Roig C, Daemen M, Lutgens E, Soehnlein O, Hartwig H. Neutrophils in atherosclerosis. Hamostaseologie 2017; 35:121-7. [DOI: 10.5482/hamo-14-09-0040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022] Open
Abstract
SummaryAtherosclerosis is a chronic inflammation of the arterial wall and the continuous infiltration of leukocytes into the plaque enhances the progression of the lesion. Because of the scarce detection of neutrophils in atherosclerotic plaques compared to other immune cells, their contribution was largely neglected. However, in the last years studies have accumulated pointing towards the contribution of neutrophils to atherogenesis. In addition, studies are emerging implying a role for neutrophils in advanced atherosclerosis and/or plaque destabilization. Thus, this brief review delivers an overview of the role of neutrophils during early and late stage atherosclerosis.
Collapse
|
62
|
Wolf D, Stachon P, Bode C, Zirlik A. Inflammatory mechanisms in atherosclerosis. Hamostaseologie 2017; 34:63-71. [DOI: 10.5482/hamo-13-09-0050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
SummaryThroughout the last two decades inflammation has been recognized as the central mechanism underlying atherogenesis. A multitude of basic science work demonstrates the pivotal role of inflammatory processes during every step of atherosclerotic plaque formation: From initiation via propagation to complication.This review describes some of the key mechanisms involved with a particular focus on the diverse group of inflammatory cells and their subsets that distinctly contribute to atherogenic and anti-atherogenic phenomena. Furthermore, we summarize the controlling action of a tight network of co-stimulatory molecules and cytokines orchestrating the inflammatory and anti-inflammatory effector functions. Finally, the current status of clinical trials evaluating anti-inflammatory/ immune-modulatory treatment strategies is summarized and an outlook for future therapeutic implications is provided.
Collapse
|
63
|
Hussen J, Schuberth HJ. Heterogeneity of Bovine Peripheral Blood Monocytes. Front Immunol 2017; 8:1875. [PMID: 29312348 PMCID: PMC5742132 DOI: 10.3389/fimmu.2017.01875] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/08/2017] [Indexed: 12/23/2022] Open
Abstract
Peripheral blood monocytes of several species can be divided into different subpopulations with distinct phenotypic and functional properties. Herein, we aim at reviewing published work regarding the heterogeneity of the recently characterized bovine monocyte subsets. As the heterogeneity of human blood monocytes was widely studied and reviewed, this work focuses on comparing bovine monocyte subsets with their human counterparts regarding their phenotype, adhesion and migration properties, inflammatory and antimicrobial functions, and their ability to interact with neutrophilic granulocytes. In addition, the differentiation of monocyte subsets into functionally polarized macrophages is discussed. Regarding phenotype and distribution in blood, bovine monocyte subsets share similarities with their human counterparts. However, many functional differences exist between monocyte subsets from the two species. In contrast to their pro-inflammatory functions in human, bovine non-classical monocytes show the lowest phagocytosis and reactive oxygen species generation capacity, an absent ability to produce the pro-inflammatory cytokine IL-1β after inflammasome activation, and do not have a role in the early recruitment of neutrophils into inflamed tissues. Classical and intermediate monocytes of both species also differ in their response toward major monocyte-attracting chemokines (CCL2 and CCL5) and neutrophil degranulation products (DGP) in vitro. Such differences between homologous monocyte subsets also extend to the development of monocyte-derived macrophages under the influence of chemokines like CCL5 and neutrophil DGP. Whereas the latter induce the differentiation of M1-polarized macrophages in human, bovine monocyte-derived macrophages develop a mixed M1/M2 macrophage phenotype. Although only a few bovine clinical trials analyzed the correlation between changes in monocyte composition and disease, they suggest that functional differences between human and bovine monocyte subsets are also reflected in their different clinical relevance for distinct diseases. In opposite to the human system, where higher blood cell number of non-classical monocytes was widely correlated with several human infectious and non-infectious diseases, higher counts of bovine intermediate monocytes are suggested as a potential biomarker for inflammatory responses postpartum.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Al Ahsa, Hofuf, Saudi Arabia.,Immunology Unit, University of Veterinary Medicine, Hannover, Germany
| | | |
Collapse
|
64
|
Nicolás-Ávila JÁ, Adrover JM, Hidalgo A. Neutrophils in Homeostasis, Immunity, and Cancer. Immunity 2017; 46:15-28. [PMID: 28099862 DOI: 10.1016/j.immuni.2016.12.012] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/12/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022]
Abstract
Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease.
Collapse
Affiliation(s)
- José Ángel Nicolás-Ávila
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 20829, Spain
| | - José M Adrover
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 20829, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 20829, Spain; Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich 80539, Germany.
| |
Collapse
|
65
|
Qi H, Yang S, Zhang L. Neutrophil Extracellular Traps and Endothelial Dysfunction in Atherosclerosis and Thrombosis. Front Immunol 2017; 8:928. [PMID: 28824648 PMCID: PMC5545592 DOI: 10.3389/fimmu.2017.00928] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/20/2017] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular diseases are a leading cause of mortality and morbidity worldwide. Neutrophils are a component of the innate immune system which protect against pathogen invasion; however, the contribution of neutrophils to cardiovascular disease has been underestimated, despite infiltration of leukocyte subsets being a known driving force of atherosclerosis and thrombosis. In addition to their function as phagocytes, neutrophils can release their extracellular chromatin, nuclear protein, and serine proteases to form net-like fiber structures, termed neutrophil extracellular traps (NETs). NETs can entrap pathogens, induce endothelial activation, and trigger coagulation, and have been detected in atherosclerotic and thrombotic lesions in both humans and mice. Moreover, NETs can induce endothelial dysfunction and trigger proinflammatory immune responses. Overall, current data indicate that NETs are not only present in plaques and thrombi but also have causative roles in triggering formation of atherosclerotic plaques and venous thrombi. This review is focused on published findings regarding NET-associated endothelial dysfunction during atherosclerosis, atherothrombosis, and venous thrombosis pathogenesis. The NET structure is a novel discovery that will find its appropriate place in our new understanding of cardiovascular disease. In addition, NETs have high potential to be further explored toward much better treatment of atherosclerosis and venous thromboembolism in clinic.
Collapse
Affiliation(s)
- Haozhe Qi
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Zhang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
66
|
Biswas A, French T, Düsedau HP, Mueller N, Riek-Burchardt M, Dudeck A, Bank U, Schüler T, Dunay IR. Behavior of Neutrophil Granulocytes during Toxoplasma gondii Infection in the Central Nervous System. Front Cell Infect Microbiol 2017; 7:259. [PMID: 28680853 PMCID: PMC5478696 DOI: 10.3389/fcimb.2017.00259] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/02/2017] [Indexed: 01/12/2023] Open
Abstract
Cerebral toxoplasmosis is characterized by activation of brain resident cells and recruitment of specific immune cell subsets from the periphery to the central nervous system (CNS). Our studies revealed that the rapidly invaded Ly6G+ neutrophil granulocytes are an early non-lymphoid source of interferon-gamma (IFN-γ), the cytokine known to be the major mediator of host resistance to Toxoplasma gondii (T. gondii). Upon selective depletion of Ly6G+ neutrophils, we detected reduced IFN-γ production and increased parasite burden in the CNS. Ablation of Ly6G+ cells resulted in diminished recruitment of Ly6Chi monocytes into the CNS, indicating a pronounced interplay. Additionally, we identified infiltrated Ly6G+ neutrophils to be a heterogeneous population. The Ly6G+CD62-LhiCXCR4+ subset released cathelicidin-related antimicrobial peptide (CRAMP), which can promote monocyte dynamics. On the other hand, the Ly6G+CD62-LloCXCR4+ subset produced IFN-γ to establish early inflammatory response. Collectively, our findings revealed that the recruited Ly6G+CXCR4+ neutrophil granulocytes display a heterogeneity in the CNS with a repertoire of effector functions crucial in parasite control and immune regulation upon experimental cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Aindrila Biswas
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University MagdeburgMagdeburg, Germany
| | - Timothy French
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University MagdeburgMagdeburg, Germany
| | - Henning P Düsedau
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University MagdeburgMagdeburg, Germany
| | - Nancy Mueller
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University MagdeburgMagdeburg, Germany
| | - Monika Riek-Burchardt
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University MagdeburgMagdeburg, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University MagdeburgMagdeburg, Germany
| | - Ute Bank
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University MagdeburgMagdeburg, Germany
| | - Thomas Schüler
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke University MagdeburgMagdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke University MagdeburgMagdeburg, Germany
| |
Collapse
|
67
|
Döring Y, Soehnlein O, Weber C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ Res 2017; 120:736-743. [PMID: 28209798 DOI: 10.1161/circresaha.116.309692] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 12/17/2022]
Abstract
Neutrophil extracellular traps expelled from suicidal neutrophils comprise a complex structure of nuclear chromatin and proteins of nuclear, granular, and cytosolic origin. These net-like structures have also been detected in atherosclerotic lesions and arterial thrombi in humans and mice. Functionally, neutrophil extracellular traps have been shown to induce activation of endothelial cells, antigen-presenting cells, and platelets, resulting in a proinflammatory immune response. Overall, this suggests that they are not only present in plaques and thrombi but also they may play a causative role in triggering atherosclerotic plaque formation and arterial thrombosis. This review will focus on current findings of the involvement of neutrophil extracellular traps in atherogenesis and atherothrombosis.
Collapse
Affiliation(s)
- Yvonne Döring
- From the Institute for Cardiovascular Prevention (IPEK), Department of Medicine, LMU Munich, Germany (Y.D., O.S., C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands (O.S.); and Department of Biochemistry, Cardiovascular Research Institute (CARIM), Maastricht University, The Netherlands (C.W.).
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), Department of Medicine, LMU Munich, Germany (Y.D., O.S., C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands (O.S.); and Department of Biochemistry, Cardiovascular Research Institute (CARIM), Maastricht University, The Netherlands (C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Department of Medicine, LMU Munich, Germany (Y.D., O.S., C.W.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands (O.S.); and Department of Biochemistry, Cardiovascular Research Institute (CARIM), Maastricht University, The Netherlands (C.W.).
| |
Collapse
|
68
|
Affiliation(s)
- Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India 560012
| |
Collapse
|
69
|
Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 2017; 17:248-261. [PMID: 28287106 DOI: 10.1038/nri.2017.10] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, neutrophils have been acknowledged to be the first immune cells that are recruited to an inflamed tissue and have mainly been considered in the context of acute inflammation. By contrast, their importance during chronic inflammation has been studied in less depth. This Review aims to summarize our current understanding of the roles of neutrophils in chronic inflammation, with a focus on how they communicate with other immune and non-immune cells within tissues. We also scrutinize the roles of neutrophils in wound healing and the resolution of inflammation, and finally, we outline emerging therapeutic strategies that target neutrophils.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Department of Physiology and Pharmacology, Karolinksa Institutet, von Eulers Väg 8, 17177 Stockholm, Sweden
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Andrés Hidalgo
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,Fundación Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
70
|
Lo SC, Lee WJ, Chen CY, Lee BC. Intermediate CD14 ++CD16 + monocyte predicts severe coronary stenosis and extensive plaque involvement in asymptomatic individuals. Int J Cardiovasc Imaging 2017; 33:1223-1236. [PMID: 28239800 DOI: 10.1007/s10554-017-1097-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/15/2017] [Indexed: 01/13/2023]
Abstract
Circulating leukocyte subtypes and monocyte subsets are independent predictors of cardiovascular events. We hypothesized that an increased leukocyte subtype would predict severe coronary stenosis and extensive plaque involvement. We retrospectively analyzed clinical, laboratory, and coronary CT data in a total of 588 asymptomatic adults (69% men; mean age, 57 ± 9 years) undergoing a general health check-up. Intermediate CD14++CD16+ monocyte count had the strongest association with mixed and calcified plaque scores, whereas the numbers of neutrophils and classical CD14++CD16- monocytes were significantly associated with non-calcified plaque score. Only high CD14++CD16+ monocyte count (>12 cells/μL) significantly predicted extensive plaque involvement [odds ratio 3.16 (95% confidence interval 1.84-5.43), P < 0.001; quartile 4 vs. 1-3] and severe coronary stenosis [3.67 (1.84-7.33), P < 0.001; quartile 4 vs. 1-3] after adjustments for Framingham Risk Score (FRS), metabolic syndrome, and C-reactive protein. The CD14++CD16+ monocyte count, when added to FRS, significantly reclassified 30.4 and 26.7% of the overall and 50.2 and 36.2% of the intermediate-risk population (FRS 6-20%) for predicting extensive plaque involvement and severe coronary stenosis, respectively. Thus, in asymptomatic individuals, intermediate CD14++CD16+ monocyte could independently predict severe CAD and improve risk stratification.
Collapse
Affiliation(s)
- Shyh-Chyi Lo
- Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Jeng Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.,Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Bai-Chin Lee
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, 7 Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|
71
|
Strecker JK, Schmidt A, Schäbitz WR, Minnerup J. Neutrophil granulocytes in cerebral ischemia - Evolution from killers to key players. Neurochem Int 2016; 107:117-126. [PMID: 27884770 DOI: 10.1016/j.neuint.2016.11.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
Abstract
Neutrophil granulocytes (or polymorphonuclear cells, PMNs) have long been considered as crude killing machines, particularly trained to attack bacterial or fungal pathogens in wounds or infected tissues. That perspective has fundamentally changed over the last decades, as PMNs have been shown to exert a livery exchange between other cells of the innate and adaptive immune system. PMNs do provide major immunomodulatory contribution during acute inflammation and subsequent clearance. Following sterile inflammation like cerebral ischemia, PMNs are among the first hematogenous cells attracted to the ischemic tissue. As inflammation is a crucial component within stroke pathophysiology, several studies regarding the role of PMNs following cerebral ischemia have been carried out. And indeed, recent research suggests a direct connection between PMNs' influx and brain damage severity. This review highlights the latest research regarding the close interconnection between PMNs and co-working cells following cerebral ischemia. We describe how PMNs are attracted to the site of injury and their tasks within the inflamed brain tissue and the periphery. We further report of new findings regarding the interaction of PMNs with resident microglia, immigrating macrophages and T cells after stroke. Finally, we discuss recent research results from experimental studies in the context with current clinical trials and point out potential new therapeutic applications that could emerge from this new knowledge on the action and interaction of PMNs following cerebral ischemia.
Collapse
Affiliation(s)
- Jan-Kolja Strecker
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany.
| | - Antje Schmidt
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | | | - Jens Minnerup
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| |
Collapse
|
72
|
Abdel Malik R, Zippel N, Frömel T, Heidler J, Zukunft S, Walzog B, Ansari N, Pampaloni F, Wingert S, Rieger MA, Wittig I, Fisslthaler B, Fleming I. AMP-Activated Protein Kinase α2 in Neutrophils Regulates Vascular Repair via Hypoxia-Inducible Factor-1α and a Network of Proteins Affecting Metabolism and Apoptosis. Circ Res 2016; 120:99-109. [PMID: 27777247 PMCID: PMC5213742 DOI: 10.1161/circresaha.116.309937] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE The AMP-activated protein kinase (AMPK) is stimulated by hypoxia, and although the AMPKα1 catalytic subunit has been implicated in angiogenesis, little is known about the role played by the AMPKα2 subunit in vascular repair. OBJECTIVE To determine the role of the AMPKα2 subunit in vascular repair. METHODS AND RESULTS Recovery of blood flow after femoral artery ligation was impaired (>80%) in AMPKα2-/- versus wild-type mice, a phenotype reproduced in mice lacking AMPKα2 in myeloid cells (AMPKα2ΔMC). Three days after ligation, neutrophil infiltration into ischemic limbs of AMPKα2ΔMC mice was lower than that in wild-type mice despite being higher after 24 hours. Neutrophil survival in ischemic tissue is required to attract monocytes that contribute to the angiogenic response. Indeed, apoptosis was increased in hypoxic neutrophils from AMPKα2ΔMC mice, fewer monocytes were recruited, and gene array analysis revealed attenuated expression of proangiogenic proteins in ischemic AMPKα2ΔMC hindlimbs. Many angiogenic growth factors are regulated by hypoxia-inducible factor, and hypoxia-inducible factor-1α induction was attenuated in AMPKα2-deficient cells and accompanied by its enhanced hydroxylation. Also, fewer proteins were regulated by hypoxia in neutrophils from AMPKα2ΔMC mice. Mechanistically, isocitrate dehydrogenase expression and the production of α-ketoglutarate, which negatively regulate hypoxia-inducible factor-1α stability, were attenuated in neutrophils from wild-type mice but remained elevated in cells from AMPKα2ΔMC mice. CONCLUSIONS AMPKα2 regulates α-ketoglutarate generation, hypoxia-inducible factor-1α stability, and neutrophil survival, which in turn determine further myeloid cell recruitment and repair potential. The activation of AMPKα2 in neutrophils is a decisive event in the initiation of vascular repair after ischemia.
Collapse
Affiliation(s)
- Randa Abdel Malik
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Nina Zippel
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Timo Frömel
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Juliana Heidler
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Sven Zukunft
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Barbara Walzog
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Nariman Ansari
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Francesco Pampaloni
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Susanne Wingert
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Michael A Rieger
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Ilka Wittig
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Beate Fisslthaler
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.)
| | - Ingrid Fleming
- From the Institute for Vascular Signaling, Centre for Molecular Medicine (R.A.M., N.Z., T.F., S.Z., B.F., I.F.), Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine (J.H., I.W.), ECCPS Metabolomics Facility, Institute for Vascular Signaling, Centre for Molecular Medicine (S.Z.), Department of Hematology/Oncology (S.W., M.A.R.), and Buchmann Institute for Molecular Life Sciences (N.A., F.P.), Goethe University, Frankfurt am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany (R.A.M., T.F., J.H., S.Z., B.F., I.F.); and Walter-Brendel-Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany (B.W.).
| |
Collapse
|
73
|
Ortega-Gomez A, Salvermoser M, Rossaint J, Pick R, Brauner J, Lemnitzer P, Tilgner J, de Jong RJ, Megens RTA, Jamasbi J, Döring Y, Pham CT, Scheiermann C, Siess W, Drechsler M, Weber C, Grommes J, Zarbock A, Walzog B, Soehnlein O. Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment. Circulation 2016; 134:1176-1188. [PMID: 27660294 DOI: 10.1161/circulationaha.116.024790] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Therapeutic targeting of arterial leukocyte recruitment in the context of atherosclerosis has been disappointing in clinical studies. Reasons for such failures include the lack of knowledge of arterial-specific recruitment patterns. Here we establish the importance of the cathepsin G (CatG) in the context of arterial myeloid cell recruitment. METHODS Intravital microscopy of the carotid artery, the jugular vein, and cremasteric arterioles and venules in Apoe-/-and CatG-deficient mice (Apoe-/-Ctsg-/-) was used to study site-specific myeloid cell behavior after high-fat diet feeding or tumor necrosis factor stimulation. Atherosclerosis development was assessed in aortic root sections after 4 weeks of high-fat diet, whereas lung inflammation was assessed after inhalation of lipopolysaccharide. Endothelial deposition of CatG and CCL5 was quantified in whole-mount preparations using 2-photon and confocal microscopy. RESULTS Our observations elucidated a crucial role for CatG during arterial leukocyte adhesion, an effect not found during venular adhesion. Consequently, CatG deficiency attenuates atherosclerosis but not acute lung inflammation. Mechanistically, CatG is immobilized on arterial endothelium where it activates leukocytes to firmly adhere engaging integrin clustering, a process of crucial importance to achieve effective adherence under high-shear flow. Therapeutic neutralization of CatG specifically abrogated arterial leukocyte adhesion without affecting myeloid cell adhesion in the microcirculation. Repetitive application of CatG-neutralizing antibodies permitted inhibition of atherogenesis in mice. CONCLUSIONS Taken together, these findings present evidence of an arterial-specific recruitment pattern centered on CatG-instructed adhesion strengthening. The inhibition of this process could provide a novel strategy for treatment of arterial inflammation with limited side effects.
Collapse
Affiliation(s)
- Almudena Ortega-Gomez
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Melanie Salvermoser
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Jan Rossaint
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Robert Pick
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Janine Brauner
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Patricia Lemnitzer
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Jessica Tilgner
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Renske J de Jong
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Remco T A Megens
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Janina Jamasbi
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Yvonne Döring
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Christine T Pham
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Christoph Scheiermann
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Wolfgang Siess
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Maik Drechsler
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Christian Weber
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Jochen Grommes
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Alexander Zarbock
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Barbara Walzog
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.)
| | - Oliver Soehnlein
- From IPEK, LMU Munich, Germany (A.O.-G., J.B., P.L., R.d.J., R.T.A.M., J.J., Y.D., W.S., M.D., C.W., J.G., O.S.); WBex, LMU Munich, Germany (M.S., R.P., C.S., B.W.); Department of Anaesthesiology, University Münster, Germany (J.R., A.Z.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Germany (J.T., J.G.); CARIM, Maastricht University, the Netherlands (R.T.A.M., C.W.); DZHK, partner site Munich Heart Alliance, Germany (Y.D., M.D., C.W., O.S.); Department of Medicine, Washington University, St Louis, MO (C.T.P.); and AMC, Department of Pathology, Amsterdam University, the Netherlands (M.D., O.S.).
| |
Collapse
|
74
|
Alard JE, Ortega-Gomez A, Wichapong K, Bongiovanni D, Horckmans M, Megens RTA, Leoni G, Ferraro B, Rossaint J, Paulin N, Ng J, Ippel H, Suylen D, Hinkel R, Blanchet X, Gaillard F, D'Amico M, von Hundelshausen P, Zarbock A, Scheiermann C, Hackeng TM, Steffens S, Kupatt C, Nicolaes GAF, Weber C, Soehnlein O. Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5. Sci Transl Med 2016; 7:317ra196. [PMID: 26659570 DOI: 10.1126/scitranslmed.aad5330] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In acute and chronic inflammation, neutrophils and platelets, both of which promote monocyte recruitment, are often activated simultaneously. We investigated how secretory products of neutrophils and platelets synergize to enhance the recruitment of monocytes. We found that neutrophil-borne human neutrophil peptide 1 (HNP1, α-defensin) and platelet-derived CCL5 form heteromers. These heteromers stimulate monocyte adhesion through CCR5 ligation. We further determined structural features of HNP1-CCL5 heteromers and designed a stable peptide that could disturb proinflammatory HNP1-CCL5 interactions. This peptide attenuated monocyte and macrophage recruitment in a mouse model of myocardial infarction. These results establish the in vivo relevance of heteromers formed between proteins released from neutrophils and platelets and show the potential of targeting heteromer formation to resolve acute or chronic inflammation.
Collapse
Affiliation(s)
- Jean-Eric Alard
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Almudena Ortega-Gomez
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, 6200 Maastricht, Netherlands
| | - Dario Bongiovanni
- Medizinische Klinik I, Technische Universität München, 81675 Munich, Germany
| | - Michael Horckmans
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany. Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, 6200 Maastricht, Netherlands
| | - Giovanna Leoni
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Bartolo Ferraro
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany. Department of Experimental Medicine, University of Naples, 80138 Naples, Italy
| | - Jan Rossaint
- Department of Anesthesiology, University of Münster, 48149 Münster, Germany
| | - Nicole Paulin
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Judy Ng
- Medizinische Klinik I, Technische Universität München, 81675 Munich, Germany
| | - Hans Ippel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, 6200 Maastricht, Netherlands
| | - Dennis Suylen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, 6200 Maastricht, Netherlands
| | - Rabea Hinkel
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany. Medizinische Klinik I, Technische Universität München, 81675 Munich, Germany. German Centre for Cardiovascular Research, partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Fanny Gaillard
- Roscoff Biological Station, Pierre et Marie Curie University, 29682 Paris, France
| | - Michele D'Amico
- Department of Experimental Medicine, University of Naples, 80138 Naples, Italy
| | | | - Alexander Zarbock
- Department of Anesthesiology, University of Münster, 48149 Münster, Germany
| | - Christoph Scheiermann
- Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilians University Munich, 81377 Munich, Germany
| | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, 6200 Maastricht, Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany. German Centre for Cardiovascular Research, partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Christian Kupatt
- Medizinische Klinik I, Technische Universität München, 81675 Munich, Germany. German Centre for Cardiovascular Research, partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, 6200 Maastricht, Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany. Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, 6200 Maastricht, Netherlands. German Centre for Cardiovascular Research, partner site Munich Heart Alliance, 80336 Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, 80336 Munich, Germany. German Centre for Cardiovascular Research, partner site Munich Heart Alliance, 80336 Munich, Germany. Department of Pathology, Academic Medical Center, 1105 Amsterdam, Netherlands.
| |
Collapse
|
75
|
Regulation of monocyte cell fate by blood vessels mediated by Notch signalling. Nat Commun 2016; 7:12597. [PMID: 27576369 PMCID: PMC5013671 DOI: 10.1038/ncomms12597] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022] Open
Abstract
A population of monocytes, known as Ly6Clo monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6Chi monocytes into Ly6Clo monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation. Circulating Ly6Clo monocytes are thought to be derived from Ly6Chi subset. Here the authors show that Notch signalling is activated in Ly6Clo cells and is required for their differentiation, and that Notch ligands that initiate this signalling are provided by a subset of endothelial cells.
Collapse
|
76
|
CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A 2016; 113:E4847-56. [PMID: 27482114 DOI: 10.1073/pnas.1607710113] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation is characterized by the recruitment of leukocytes from the bloodstream. The rapid arrival of neutrophils is followed by a wave of inflammatory lymphocyte antigen 6 complex (Ly6C)-positive monocytes. In contrast Ly6C(low) monocytes survey the endothelium in the steady state, but their role in inflammation is still unclear. Here, using confocal intravital microscopy, we show that upon Toll-like receptor 7/8 (TLR7/8)-mediated inflammation of mesenteric veins, platelet activation drives the rapid mobilization of Ly6C(low) monocytes to the luminal side of the endothelium. After repeatedly interacting with platelets, Ly6C(low) monocytes commit to a meticulous patrolling of the endothelial wall and orchestrate the subsequent arrival and extravasation of neutrophils through the production of proinflammatory cytokines and chemokines. At a molecular level, we show that cysteine-rich protein 61 (CYR61)/CYR61 connective tissue growth factor nephroblastoma overexpressed 1 (CCN1) protein is released by activated platelets and enables the recruitment of Ly6C(low) monocytes upon vascular inflammation. In addition endothelium-bound CCN1 sustains the adequate patrolling of Ly6C(low) monocytes both in the steady state and under inflammatory conditions. Blocking CCN1 or platelets with specific antibodies impaired the early arrival of Ly6C(low) monocytes and abolished the recruitment of neutrophils. These results refine the leukocyte recruitment cascade model by introducing endothelium-bound CCN1 as an inflammation mediator and by demonstrating a role for platelets and patrolling Ly6C(low) monocytes in acute vascular inflammation.
Collapse
|
77
|
Castañeda-Delgado JE, Cervantes-Villagrana A, Serrano-Escobedo CJ, Frausto-Lujan I, Rivas-Santiago C, Enciso-Moreno JA, Rivas-Santiago B. Tuberculin skin test and interferon-gamma release assay values are associated with antimicrobial peptides expression in polymorphonuclear cells during latent tuberculous infection. Mem Inst Oswaldo Cruz 2016; 109:330-4. [PMID: 24937049 PMCID: PMC4131785 DOI: 10.1590/0074-0276140348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/18/2013] [Indexed: 12/23/2022] Open
Abstract
It has been reported that patients with progressive tuberculosis (TB) express
abundant amounts of the antimicrobial peptides (AMPs) cathelicidin (LL-37) and human
neutrophil peptide-1 (HNP-1) in circulating cells, whereas latent TB infected donors
showed no differences when compared with purified protein derivative (PPD) and
QuantiFERON®-TB Gold (QFT)-healthy individuals. The aim of this study
was to determine whether LL-37 and HNP-1 production correlates with higher tuberculin
skin test (TST) and QFT values in TB household contacts. Twenty-six TB household
contact individuals between 26-58 years old TST and QFT positive with at last two
years of latent TB infection were recruited. AMPs production by polymorphonuclear
cells was determined by flow cytometry and correlation between TST and QFT values was
analysed. Our results showed that there is a positive correlation between levels of
HNP-1 and LL-37 production with reactivity to TST and/or QFT levels. This preliminary
study suggests the potential use of the expression levels of these peptides as
biomarkers for progression in latent infected individuals.
Collapse
Affiliation(s)
| | | | | | - Isabel Frausto-Lujan
- Medical Research Unit of Zacatecas, Mexican Institute of Social Security, Zacatecas, Mexico
| | - Cesar Rivas-Santiago
- Department of Environmental and Occupational Health, Center for Global Public Health, School of Public Health, University of Medicine and Dentistry New Jersey, Piscataway, NJ, USA
| | - Jose A Enciso-Moreno
- Medical Research Unit of Zacatecas, Mexican Institute of Social Security, Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit of Zacatecas, Mexican Institute of Social Security, Zacatecas, Mexico
| |
Collapse
|
78
|
Abstract
PURPOSE Alarmins are constitutively present endogenous molecules that essentially act as early warning signals for the immune system. We provide a brief overview of major alarmins and highlight their roles in tumor immunity. METHODS We searched PubMed up to January 10, 2016, using alarmins and/or damage-associated molecular patterns (DAMPs), as key words. We selected and reviewed articles that focused on the discovery and functions of alarmin and their roles in tumor immunity. FINDINGS Alarmins are essentially endogenous immunostimulatory DAMP molecules that are exposed in response to danger (eg, infection or tissue injury) as a result of degranulation, cell death, or induction. They are sensed by chemotactic receptors and pattern recognition receptors to induce immune responses by promoting the recruitment and activation of leukocytes, particularly antigen-presenting cells. IMPLICATIONS Accumulating data suggest that certain alarmins, High-mobility group nucleosome-binding protein 1 (HMGN1) in particular, contribute to the generation of antitumor immunity. Some alarmins can also be used as cancer biomarkers. Therefore, alarmins can potentially be applied for our fight against cancers.
Collapse
Affiliation(s)
- Yingjie Nie
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Guizhou Provincial Peoples' Hospital, Guiyang, Guizhou Province, China
| | - De Yang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Basic Research Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Joost J Oppenheim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
79
|
Rinchai D, Boughorbel S, Presnell S, Quinn C, Chaussabel D. A curated compendium of monocyte transcriptome datasets of relevance to human monocyte immunobiology research. F1000Res 2016; 5:291. [PMID: 27158452 PMCID: PMC4856112 DOI: 10.12688/f1000research.8182.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
Systems-scale profiling approaches have become widely used in translational research settings. The resulting accumulation of large-scale datasets in public repositories represents a critical opportunity to promote insight and foster knowledge discovery. However, resources that can serve as an interface between biomedical researchers and such vast and heterogeneous dataset collections are needed in order to fulfill this potential. Recently, we have developed an interactive data browsing and visualization web application, the Gene Expression Browser (GXB). This tool can be used to overlay deep molecular phenotyping data with rich contextual information about analytes, samples and studies along with ancillary clinical or immunological profiling data. In this note, we describe a curated compendium of 93 public datasets generated in the context of human monocyte immunological studies, representing a total of 4,516 transcriptome profiles. Datasets were uploaded to an instance of GXB along with study description and sample annotations. Study samples were arranged in different groups. Ranked gene lists were generated based on relevant group comparisons. This resource is publicly available online at
http://monocyte.gxbsidra.org/dm3/landing.gsp.
Collapse
Affiliation(s)
- Darawan Rinchai
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| | - Sabri Boughorbel
- Biomedical Informatics Division, Sidra Medical and Research Center, Doha, Qatar
| | - Scott Presnell
- Benaroya Research Institute at Virginia Mason, Seattle, USA
| | - Charlie Quinn
- Benaroya Research Institute at Virginia Mason, Seattle, USA
| | - Damien Chaussabel
- Systems Biology Department, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
80
|
Hussen J, Koy M, Petzl W, Schuberth HJ. Neutrophil degranulation differentially modulates phenotype and function of bovine monocyte subsets. Innate Immun 2015; 22:124-37. [DOI: 10.1177/1753425915620911] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/13/2015] [Indexed: 01/13/2023] Open
Abstract
Monocytes and neutrophils are important players in the innate immune response and cooperate during infection and inflammation. In our study we analyzed the effects of neutrophil degranulation products (polymorphonuclear granulocytes degranulation products, PMN-DGP) on the activation, the adhesion and the migration of three bovine monocyte subsets, as well as their effects on monocyte-macrophage differentiation. Cross-linking of surface CD18 molecules on bovine PMN resulted in the release of primary, secondary and tertiary granules as well as of secretory vesicles. PMN-DGP induced a significant Ca2+-influx in classical (classical monocytes, cM) and intermediate monocytes (intermediate monocytes, intM) but not in non-classical monocytes (non-classical monocytes, ncM). A selective and up-regulated expression induced by PMN-DGP was only seen for CD11a and CD31 on intM. PMN-DGP induced a selective migration of intM in vitro. The presence of PMN-DGP during the differentiation of cM or intM into macrophages resulted in increased expression of membrane CD163 and reduced expression of MHC-II molecules. PMN-DGP-derived macrophages produced more IL-12 and IL-10 and showed enhanced phagocytosis and ROS production capacities. In conclusion, PMN-DGP selectively attract bovine intM and skew the functional maturation of cM and intM.
Collapse
Affiliation(s)
- Jamal Hussen
- Immunology Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mirja Koy
- Immunology Unit, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfram Petzl
- Clinic for Ruminants, Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
81
|
Emre Y, Jemelin S, Imhof BA. Imaging Neutrophils and Monocytes in Mesenteric Veins by Intravital Microscopy on Anaesthetized Mice in Real Time. J Vis Exp 2015. [PMID: 26649781 DOI: 10.3791/53314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Efficient immune response is dependent on rapid mobilization of blood leukocytes to the site of infection or injury. Investigating leukocyte migration in vivo is crucial for understanding the molecular basis of leukocyte transendothelial migration and interaction with vascular endothelium. One powerful approach involves intravital microscopy on transgenic mice expressing fluorescent proteins in cells of interest. Here we present a protocol for imaging monocytes and neutrophils in the CX3CR1gfp/wt mouse i.v. injected with orange dye-labeled neutrophils with an inverted confocal microscope. Time-lapse movies gathered from 30 min to several hours of imaging allow the analysis of leukocyte behavior in mesenteric veins under both steady state and inflammatory conditions. We also describe the steps to locally induce blood vessel inflammation with TLR2/TLR1 agonist Pam3SK4 and monitor the subsequent recruitment of neutrophils and monocytes. The presented technique can also be used to monitor other populations of leukocytes and investigate molecules implicated in leukocyte recruitment or trafficking using other stimuli or transgenic mice.
Collapse
Affiliation(s)
- Yalin Emre
- Department of Pathology and Immunology, University of Geneva;
| | | | - Beat A Imhof
- Department of Pathology and Immunology, University of Geneva
| |
Collapse
|
82
|
Chistiakov DA, Bobryshev YV, Orekhov AN. Neutrophil's weapons in atherosclerosis. Exp Mol Pathol 2015; 99:663-71. [PMID: 26551083 DOI: 10.1016/j.yexmp.2015.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/04/2015] [Indexed: 01/13/2023]
Abstract
Neutrophils are important components of immunity associated with inflammatory responses against a broad spectrum of pathogens. These cells could be rapidly activated by proinflammatory stimuli and migrate to the inflamed and infected sites where they release a variety of cytotoxic molecules with antimicrobial activity. Neutrophil antibacterial factors include extracellular proteases, redox enzymes, antimicrobial peptides, and small bioactive molecules. In resting neutrophils, these factors are stored in granules and released upon activation during degranulation. These factors could be also secreted in a neutrophil-derived microparticle-dependent fashion. Neutrophils exhibit a unique property to produce neutrophil extracellular traps (NETs) composed of decondensed chromatin and granular proteins to catch and kill bacteria. Neutrophil-released factors are efficient in inactivation and elimination of pathogens through oxidation-dependent or independent damage of bacterial cells, inactivation and neutralization of virulence factors and other mechanisms. However, in chronic atherosclerosis-associated inflammation, protective function of neutrophils could be impaired and misdirected against own cells. This could lead to deleterious effects and progressive vascular injury. In atherogenesis, a pathogenic role of neutrophils could be especially seen in early stages associated with endothelial dysfunction and induction of vascular inflammation and in late atherosclerosis associated with plaque rupture and atherothrombosis. Assuming a prominent impact of neutrophils in cardiovascular pathology, developing therapeutic strategies targeting neutrophil-specific antigens could have a promising clinical potential.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Yuri V Bobryshev
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia.
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia
| |
Collapse
|
83
|
Foster GA, Xu L, Chidambaram AA, Soderberg SR, Armstrong EJ, Wu H, Simon SI. CD11c/CD18 Signals Very Late Antigen-4 Activation To Initiate Foamy Monocyte Recruitment during the Onset of Hypercholesterolemia. THE JOURNAL OF IMMUNOLOGY 2015; 195:5380-92. [PMID: 26519532 DOI: 10.4049/jimmunol.1501077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
Abstract
Recruitment of foamy monocytes to inflamed endothelium expressing VCAM-1 contributes to the development of plaque during atherogenesis. Foamy CD11c(+) monocytes arise in the circulation during the onset of hypercholesterolemia and recruit to nascent plaque, but the mechanism of CD11c/CD18 and very late Ag-4 (VLA-4) activation and cooperation in shear-resistant cell arrest on VCAM-1 are ill defined. Within 1 wk of the onset of a Western high-fat diet (WD) in apolipoprotein E-deficient mice, an inflammatory subset of foamy monocytes emerged that made up one fourth of the circulating population. These cells expressed ∼3-fold more CD11c/CD18 and 50% higher chemokine receptors than nonfoamy monocytes. Recruitment from blood to a VCAM-1 substrate under shear stress was assessed ex vivo using a unique artery-on-a-chip microfluidic assay. It revealed that foamy monocytes from mice on a WD increased their adhesiveness over 5 wk, rising to twice that of mice on a normal diet or CD11c(-/-) mice fed a WD. Shear-resistant capture of foamy human or mouse monocytes was initiated by high-affinity CD11c, which directly activated VLA-4 adhesion via phosphorylated spleen tyrosine kinase and paxillin within focal adhesion complexes. Lipid uptake and activation of CD11c are early and critical events in signaling VLA-4 adhesive function on foamy monocytes competent to recruit to VCAM-1 on inflamed arterial endothelium.
Collapse
Affiliation(s)
- Greg A Foster
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Lu Xu
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Alagu A Chidambaram
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Stephanie R Soderberg
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Ehrin J Armstrong
- Division of Cardiology, VA Eastern Colorado Healthcare System, University of Colorado School of Medicine, Denver, CO 80220; and
| | - Huaizhu Wu
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030; Section of Leukocyte Biology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616;
| |
Collapse
|
84
|
Hinkel R, Lange P, Petersen B, Gottlieb E, Ng JKM, Finger S, Horstkotte J, Lee S, Thormann M, Knorr M, El-Aouni C, Boekstegers P, Reichart B, Wenzel P, Niemann H, Kupatt C. Heme Oxygenase-1 Gene Therapy Provides Cardioprotection Via Control of Post-Ischemic Inflammation: An Experimental Study in a Pre-Clinical Pig Model. J Am Coll Cardiol 2015; 66:154-65. [PMID: 26160631 DOI: 10.1016/j.jacc.2015.04.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/01/2015] [Accepted: 04/13/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1) is an inducible stress-responsive enzyme converting heme to bilirubin, carbon monoxide, and free iron, which exerts anti-inflammatory and antiapoptotic effects. Although efficient cardioprotection after HO-1 overexpression has been reported in rodents, its role in attenuating post-ischemic inflammation is unclear. OBJECTIVES This study assessed the efficacy of recombinant adenoassociated virus (rAAV)-encoding human heme oxygenase-1 (hHO-1) in attenuating post-ischemic inflammation in a murine and a porcine ischemia/reperfusion model. METHODS Murine ischemia was induced by 45 min of left anterior descending occlusion, followed by 24 h of reperfusion and functional as well as fluorescent-activated cell sorting analysis. Porcine hearts were subjected to 60 min of ischemia and 24h of reperfusion before hemodynamic and histologic analyses were performed. RESULTS Human microvascular endothelial cells transfected with hHO-1 displayed an attenuated interleukin-6 and intercellular adhesion molecule 1 expression, resulting in reduced monocytic THP-1 cell recruitment in vitro. In murine left anterior descending occlusion and reperfusion, the post-ischemic influx of CD45(+) leukocytes, Ly-6G(+) neutrophils, and Ly-6C(high) monocytes was further exacerbated in HO-1-deficient hearts and reversed by rAAV.hHO-1 treatment. Conversely, in our porcine model of ischemia, the post-ischemic influx of myeloperoxidase-positive neutrophils and CD14(+) monocytes was reduced by 49% and 87% after rAAV.hHO-1 transduction, similar to hHO-1 transgenic pigs. Functionally, rAAV.hHO-1 and hHO-1 transgenic left ventricles displayed a smaller loss of ejection fraction than control animals. CONCLUSIONS Whereas HO-1 deficiency exacerbates post-ischemic cardiac inflammation in mice, hHO-1 gene therapy attenuates inflammation after ischemia and reperfusion in murine and porcine hearts. Regional hHO-1 gene therapy provides cardioprotection in a pre-clinical porcine ischemia/reperfusion model.
Collapse
Affiliation(s)
- Rabea Hinkel
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany; Institute for Cardiovascular Prevention, Ludwig Maximillian University, Munich, Germany; Medizinische Klinik I, Klinikum Rechts der Isar, Technical University of Munich, and German Center for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Philipp Lange
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Elena Gottlieb
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Judy King Man Ng
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany; Medizinische Klinik I, Klinikum Rechts der Isar, Technical University of Munich, and German Center for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Stefanie Finger
- Department of Medicine 2, Center for Thrombosis and Hemostasis Mainz and German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany
| | - Jan Horstkotte
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Seungmin Lee
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Michael Thormann
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Maike Knorr
- Department of Medicine 2, Center for Thrombosis and Hemostasis Mainz and German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany
| | - Chiraz El-Aouni
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Peter Boekstegers
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany
| | - Bruno Reichart
- Walter-Brendel-Centre for Experimental Medicine, Munich, Germany
| | - Philip Wenzel
- Department of Medicine 2, Center for Thrombosis and Hemostasis Mainz and German Center for Cardiovascular Research, partner site Rhine Main, Mainz, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Christian Kupatt
- Medizinische Klinik I, Klinikum Grosshadern, Ludwig Maximilian University, Munich, Germany; Medizinische Klinik I, Klinikum Rechts der Isar, Technical University of Munich, and German Center for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany; Walter-Brendel-Centre for Experimental Medicine, Munich, Germany.
| |
Collapse
|
85
|
Cathelicidin impact on inflammatory cells. Cent Eur J Immunol 2015; 40:225-35. [PMID: 26557038 PMCID: PMC4637384 DOI: 10.5114/ceji.2015.51359] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022] Open
Abstract
Cathelicidins, like other antimicrobial peptides, exhibit direct antimicrobial activities against a broad spectrum of microbes, including both Gram-positive and Gram-negative bacteria, enveloped viruses, and fungi. These host-derived peptides kill the invaded pathogens by perturbing their cell membranes and can neutralize biological activities of endotoxin. Nowadays, more and more data indicate that these peptides, in addition to their antimicrobial properties, possess various immunomodulatory activities. Cathelicidins have the potential to influence and modulate, both directly and indirectly, the activity of various cell populations involved in inflammatory processes and in host defense against invading pathogens. They induce migration of neutrophils, monocytes/macrophages, eosinophils, and mast cells and prolong the lifespan of neutrophils. These peptides directly activate inflammatory cells to production and release of different pro-inflammatory and immunoregulatory mediators, cytokines, and chemokines, however cathelicidins might mediate the generation of anti-inflammatory cytokines as well. Cathelicidins also modulate epithelial cell/keratinocyte responses to infecting pathogens. What is more, they affect activity of monocytes, dendritic cells, keratinocytes, or epithelial cells acting in synergy with cytokines or β-defensins. In addition, these peptides indirectly balance TLR-mediated responses of monocytes, macrophages, dendritic cells, epithelial cells, and keratinocytes. This review discusses the role and significance of cathelicidins in inflammation and innate immunity against pathogens.
Collapse
|
86
|
Lieberthal TJ, Cohen HC, Kao WJ. Poly(ethylene glycol)-containing hydrogels modulate α-defensin release from polymorphonuclear leukocytes and monocyte recruitment. J Biomed Mater Res A 2015; 103:3772-80. [DOI: 10.1002/jbm.a.35519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Tyler Jacob Lieberthal
- Department of Biomedical Engineering; University of Wisconsin-Madison; 1550 Engineering Drive Madison Wisconsin 53706
| | - Hannah Caitlin Cohen
- Pharmaceutical Sciences Division, School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison Wisconsin 53705
| | - W. John Kao
- Department of Biomedical Engineering; University of Wisconsin-Madison; 1550 Engineering Drive Madison Wisconsin 53706
- Pharmaceutical Sciences Division, School of Pharmacy; University of Wisconsin-Madison; 777 Highland Avenue Madison Wisconsin 53705
- Department of Surgery, School of Medicine and Public Health; University of Wisconsin-Madison; 600 Highland Avenue Madison Wisconsin 53792
| |
Collapse
|
87
|
Tang X, Basavarajappa D, Haeggström JZ, Wan M. P2X7 Receptor Regulates Internalization of Antimicrobial Peptide LL-37 by Human Macrophages That Promotes Intracellular Pathogen Clearance. THE JOURNAL OF IMMUNOLOGY 2015; 195:1191-201. [PMID: 26116509 DOI: 10.4049/jimmunol.1402845] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/24/2015] [Indexed: 01/13/2023]
Abstract
Bioactive peptide LL-37/hCAP18, the only human member of the cathelicidin family, plays important roles in killing various pathogens, as well as in immune modulation. We demonstrate that LL-37 is internalized by human macrophages in a time-, dose-, temperature-, and peptide sequence-dependent endocytotic process. Both clathrin- and caveolae/lipid raft-mediated endocytosis pathways are involved in LL-37 internalization. We find that the P2X7 receptor (P2X7R) plays an important role in LL-37 internalization by human macrophages because significantly less internalized LL-37 was detected in macrophages pretreated with P2X7R antagonists or, more specifically, in differentiated THP-1 cells in which the P2X7R gene had been silenced. Furthermore, this P2X7R-mediated LL-37 internalization is primarily connected to the clathrin-mediated endocytosis pathway. In addition, our results demonstrate that internalized LL-37 traffics to endosomes and lysosomes and contributes to intracellular clearance of bacteria by human macrophages, coinciding with increased reactive oxygen species and lysosome formation. Finally, we show that human macrophages have the potential to import LL-37 released from activated human neutrophils. In conclusion, our study unveils a novel mechanism by which human macrophages internalize antimicrobial peptides to improve their intracellular pathogen clearance.
Collapse
Affiliation(s)
- Xiao Tang
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Devaraj Basavarajappa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Min Wan
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
88
|
McArthur S, Gobbetti T, Kusters DHM, Reutelingsperger CP, Flower RJ, Perretti M. Definition of a Novel Pathway Centered on Lysophosphatidic Acid To Recruit Monocytes during the Resolution Phase of Tissue Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 195:1139-51. [PMID: 26101324 PMCID: PMC4505961 DOI: 10.4049/jimmunol.1500733] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/21/2015] [Indexed: 01/13/2023]
Abstract
Blood-derived monocytes remove apoptotic cells and terminate inflammation in settings as diverse as atherosclerosis and Alzheimer’s disease. They express high levels of the proresolving receptor ALX/FPR2, which is activated by the protein annexin A1 (ANXA1), found in high abundance in inflammatory exudates. Using primary human blood monocytes from healthy donors, we identified ANXA1 as a potent CD14+CD16− monocyte chemoattractant, acting via ALX/FPR2. Downstream signaling pathway analysis revealed the p38 MAPK-mediated activation of a calcium independent phospholipase A2 with resultant synthesis of lysophosphatidic acid (LPA) driving chemotaxis through LPA receptor 2 and actin cytoskeletal mobilization. In vivo experiments confirmed ANXA1 as an independent phospholipase A2–dependent monocyte recruiter; congruently, monocyte recruitment was significantly impaired during ongoing zymosan-induced inflammation in AnxA1−/− or alx/fpr2/3−/− mice. Using a dorsal air-pouch model, passive transfer of apoptotic neutrophils between AnxA1−/− and wild-type mice identified effete neutrophils as the primary source of soluble ANXA1 in inflammatory resolution. Together, these data elucidate a novel proresolving network centered on ANXA1 and LPA generation and identify previously unappreciated determinants of ANXA1 and ALX/FPR2 signaling in monocytes.
Collapse
Affiliation(s)
- Simon McArthur
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, United Kingdom;
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Dennis H M Kusters
- CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, the Netherlands; and Department of Biochemistry, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Christopher P Reutelingsperger
- CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, the Netherlands; and Department of Biochemistry, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Roderick J Flower
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, United Kingdom;
| |
Collapse
|
89
|
Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 2015; 35:888-901. [PMID: 25806703 PMCID: PMC4640255 DOI: 10.1038/jcbfm.2015.45] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/08/2023]
Abstract
Neutrophils have key roles in ischemic brain injury, thrombosis, and atherosclerosis. As such, neutrophils are of great interest as targets to treat and prevent ischemic stroke. After stroke, neutrophils respond rapidly promoting blood-brain barrier disruption, cerebral edema, and brain injury. A surge of neutrophil-derived reactive oxygen species, proteases, and cytokines are released as neutrophils interact with cerebral endothelium. Neutrophils also are linked to the major processes that cause ischemic stroke, thrombosis, and atherosclerosis. Thrombosis is promoted through interactions with platelets, clotting factors, and release of prothrombotic molecules. In atherosclerosis, neutrophils promote plaque formation and rupture by generating oxidized-low density lipoprotein, enhancing monocyte infiltration, and degrading the fibrous cap. In experimental studies targeting neutrophils can improve stroke. However, early human studies have been met with challenges, and suggest that selective targeting of neutrophils may be required. Several properties of neutrophil are beneficial and thus may important to preserve in patients with stroke including antimicrobial, antiinflammatory, and neuroprotective functions.
Collapse
Affiliation(s)
- Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - DaZhi Liu
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Xinhua Zhan
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| |
Collapse
|
90
|
Boe DM, Curtis BJ, Chen MM, Ippolito JA, Kovacs EJ. Extracellular traps and macrophages: new roles for the versatile phagocyte. J Leukoc Biol 2015; 97:1023-35. [PMID: 25877927 DOI: 10.1189/jlb.4ri1014-521r] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/20/2015] [Indexed: 12/13/2022] Open
Abstract
MΦ are multipurpose phagocytes with a large repertoire of well-characterized abilities and functions, including regulation of inflammation, wound healing, maintenance of tissue homeostasis, as well as serving as an integral component of the innate-immune defense against microbial pathogens. Working along with neutrophils and dendritic cells, the other myeloid-derived professional phagocytes, MΦ are one of the key effector cells initiating and directing the host reaction to pathogenic organisms and resolving subsequent responses once the threat has been cleared. ETs are a relatively novel strategy of host defense involving expulsion of nuclear material and embedded proteins from immune cells to immobilize and kill bacteria, fungi, and viruses. As research on ETs expands, it has begun to encompass many immune cell types in unexpected ways, including various types of MΦ, which are not only capable of generating METs in response to various stimuli, but recent preclinical data suggest that they are an important agent in clearing ETs and limiting ET-mediated inflammation and tissue damage. This review aims to summarize historical and recent findings of biologic research regarding ET formation and function and discuss the role of MΦ in ET physiology and associated pathologies.
Collapse
Affiliation(s)
- Devin M Boe
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Brenda J Curtis
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Michael M Chen
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Jill A Ippolito
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| | - Elizabeth J Kovacs
- *Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, Illinois, USA
| |
Collapse
|
91
|
Zuchtriegel G, Uhl B, Hessenauer ME, Kurz AR, Rehberg M, Lauber K, Krombach F, Reichel CA. Spatiotemporal Expression Dynamics of Selectins Govern the Sequential Extravasation of Neutrophils and Monocytes in the Acute Inflammatory Response. Arterioscler Thromb Vasc Biol 2015; 35:899-910. [DOI: 10.1161/atvbaha.114.305143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective—
Leukocyte recruitment to the site of inflammation is a key event in a variety of cardiovascular pathologies. Infiltrating neutrophils constitute the first line of defense that precedes a second wave of emigrating monocytes reinforcing the inflammatory reaction. The mechanisms initiating this sequential process remained largely obscure.
Approach and Results—
Using advanced in vivo microscopy and in vitro/ex vivo techniques, we identified individual spatiotemporal expression patterns of selectins and their principal interaction partners on neutrophils, resident/inflammatory monocytes, and endothelial cells. Coordinating the intraluminal trafficking of neutrophils and inflammatory monocytes to common sites of extravasation, selectins assign different sites to these immune cells for their initial interactions with the microvascular endothelium. Whereas constitutively expressed leukocyte L-selectin/CD62L and endothelial P-selectin/CD62P together with CD44 and P-selectin glycoprotein ligand-1/CD162 initiate the emigration of neutrophils, de novo synthesis of endothelial E-selectin/CD62E launches the delayed secondary recruitment of inflammatory monocytes. In this context, P-selectin/CD62P and L-selectin/CD62L together with P-selectin glycoprotein ligand-1/CD162 and CD44 were found to regulate the flux of rolling neutrophils and inflammatory monocytes, whereas E-selectin/CD62E selectively adjusts the rolling velocity of inflammatory monocytes. Moreover, selectins and their interaction partners P-selectin glycoprotein ligand-1/CD162 and CD44 differentially control the intraluminal crawling behavior of neutrophils and inflammatory monocytes collectively enabling the sequential extravasation of these immune cells to inflamed tissue.
Conclusions—
Our findings provide novel insights into the mechanisms initiating the sequential infiltration of the perivascular tissue by neutrophils and monocytes in the acute inflammatory response and might thereby contribute to the development of targeted therapeutic strategies for prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gabriele Zuchtriegel
- From the Department of Otorhinolaryngology, Head and Neck Surgery (G.Z., C.A.R.), Department of Radiation Oncology (K.L.), Walter Brendel Centre of Experimental Medicine (G.Z., B.U., M.E.T.H., A.R.M.K., M.R., F.K., C.A.R.), Klinikum der Universität München, Munich, Germany
| | - Bernd Uhl
- From the Department of Otorhinolaryngology, Head and Neck Surgery (G.Z., C.A.R.), Department of Radiation Oncology (K.L.), Walter Brendel Centre of Experimental Medicine (G.Z., B.U., M.E.T.H., A.R.M.K., M.R., F.K., C.A.R.), Klinikum der Universität München, Munich, Germany
| | - Maximilian E.T. Hessenauer
- From the Department of Otorhinolaryngology, Head and Neck Surgery (G.Z., C.A.R.), Department of Radiation Oncology (K.L.), Walter Brendel Centre of Experimental Medicine (G.Z., B.U., M.E.T.H., A.R.M.K., M.R., F.K., C.A.R.), Klinikum der Universität München, Munich, Germany
| | - Angela R.M. Kurz
- From the Department of Otorhinolaryngology, Head and Neck Surgery (G.Z., C.A.R.), Department of Radiation Oncology (K.L.), Walter Brendel Centre of Experimental Medicine (G.Z., B.U., M.E.T.H., A.R.M.K., M.R., F.K., C.A.R.), Klinikum der Universität München, Munich, Germany
| | - Markus Rehberg
- From the Department of Otorhinolaryngology, Head and Neck Surgery (G.Z., C.A.R.), Department of Radiation Oncology (K.L.), Walter Brendel Centre of Experimental Medicine (G.Z., B.U., M.E.T.H., A.R.M.K., M.R., F.K., C.A.R.), Klinikum der Universität München, Munich, Germany
| | - Kirsten Lauber
- From the Department of Otorhinolaryngology, Head and Neck Surgery (G.Z., C.A.R.), Department of Radiation Oncology (K.L.), Walter Brendel Centre of Experimental Medicine (G.Z., B.U., M.E.T.H., A.R.M.K., M.R., F.K., C.A.R.), Klinikum der Universität München, Munich, Germany
| | - Fritz Krombach
- From the Department of Otorhinolaryngology, Head and Neck Surgery (G.Z., C.A.R.), Department of Radiation Oncology (K.L.), Walter Brendel Centre of Experimental Medicine (G.Z., B.U., M.E.T.H., A.R.M.K., M.R., F.K., C.A.R.), Klinikum der Universität München, Munich, Germany
| | - Christoph A. Reichel
- From the Department of Otorhinolaryngology, Head and Neck Surgery (G.Z., C.A.R.), Department of Radiation Oncology (K.L.), Walter Brendel Centre of Experimental Medicine (G.Z., B.U., M.E.T.H., A.R.M.K., M.R., F.K., C.A.R.), Klinikum der Universität München, Munich, Germany
| |
Collapse
|
92
|
Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:806358. [PMID: 25861414 PMCID: PMC4377508 DOI: 10.1155/2015/806358] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/03/2015] [Indexed: 01/11/2023]
Abstract
Chronic kidney disease (CKD) is characterized by increased levels of oxidative stress and inflammation. Oxidative stress and inflammation promote renal injury via damage to molecular components of the kidney. Unfortunately, relationships between inflammation and oxidative stress are cyclical in that the inflammatory processes that exist to repair radical-mediated damage may be a source of additional free radicals, resulting in further damage to renal tissue. Oxidative stress and inflammation also have the ability to become systemic, serving to injure tissues distal to the site of original insult. This review describes select mediators in the exacerbatory relationship between oxidative stress, inflammation, and CKD. This review also discusses oxidative stress, inflammation, and CKD as they pertain to the development and progression of common CKD-associated comorbidities. Lastly, the utility of several widely accessible and cost-effective lifestyle interventions and their ability to reduce oxidative stress and inflammation are discussed and recommendations for future research are provided.
Collapse
|
93
|
Abstract
Recruitment of leukocytes into arteries is a hallmark event throughout all stages of atherosclerosis and hence stands out as a primary therapeutic target. To understand the molecular mechanisms of arterial leukocyte subset infiltration, real-time visualization of recruitment processes of leukocyte subsets at high resolution is a prerequisite. In this review we provide a balanced overview of optical imaging modalities in the more commonly used experimental models for atherosclerosis (e.g., mouse models) allowing for in vivo display of recruitment processes in large arteries and further detail strategies to overcome hurdles inherent to arterial imaging. We further provide a synopsis of techniques allowing for non-toxic, photostable labeling of target structures. Finally, we deliver a short summary of ongoing developments including the emergence of novel labeling approaches, the use of superresolution microscopy, and the potentials of opto-acoustic microscopy and intravascular 2-dimensional near-infrared fluorescence microscopy.
Collapse
Affiliation(s)
- Remco T A Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr. 9, 80336, Munich, Germany.
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstr. 9, 80336, Munich, Germany.
- Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
94
|
Abstract
Monocytes and their descendant macrophages are essential to the development and exacerbation of atherosclerosis, a lipid-driven inflammatory disease. Lipid-laden macrophages, known as foam cells, reside in early lesions and advanced atheromata. Our understanding of how monocytes accumulate in the growing lesion, differentiate, ingest lipids, and contribute to disease has advanced substantially over the last several years. These cells' remarkable phenotypic and functional complexity is a therapeutic opportunity: in the future, treatment and prevention of cardiovascular disease and its complications may involve specific targeting of atherogenic monocytes/macrophages and their products.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- From the Department of Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany (I.H.); Center for Systems Biology, Massachusetts General Hospital, Boston, MA (F.K.S.); and Departments of Laboratory Medicine and Pathobiology and Immunology, Peter Munk Cardiac Centre, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada (C.S.R.).
| | - Filip K Swirski
- From the Department of Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany (I.H.); Center for Systems Biology, Massachusetts General Hospital, Boston, MA (F.K.S.); and Departments of Laboratory Medicine and Pathobiology and Immunology, Peter Munk Cardiac Centre, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada (C.S.R.)
| | - Clinton S Robbins
- From the Department of Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany (I.H.); Center for Systems Biology, Massachusetts General Hospital, Boston, MA (F.K.S.); and Departments of Laboratory Medicine and Pathobiology and Immunology, Peter Munk Cardiac Centre, Toronto General Research Institute, University of Toronto, Toronto, ON, Canada (C.S.R.).
| |
Collapse
|
95
|
Drechsler M, de Jong R, Rossaint J, Viola JR, Leoni G, Wang JM, Grommes J, Hinkel R, Kupatt C, Weber C, Döring Y, Zarbock A, Soehnlein O. Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment. Circ Res 2014; 116:827-35. [PMID: 25520364 DOI: 10.1161/circresaha.116.305825] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE Chemokine-controlled arterial leukocyte recruitment is a crucial process in atherosclerosis. Formyl peptide receptor 2 (FPR2) is a chemoattractant receptor that recognizes proinflammatory and proresolving ligands. The contribution of FPR2 and its proresolving ligand annexin A1 to atherosclerotic lesion formation is largely undefined. OBJECTIVE Because of the ambivalence of FPR2 ligands, we here investigate the role of FPR2 and its resolving ligand annexin A1 in atherogenesis. METHODS AND RESULTS Deletion of FPR2 or its ligand annexin A1 enhances atherosclerotic lesion formation, arterial myeloid cell adhesion, and recruitment. Mechanistically, we identify annexin A1 as an endogenous inhibitor of integrin activation evoked by the chemokines CCL5, CCL2, and CXCL1. Specifically, the annexin A1 fragment Ac2-26 counteracts conformational activation and clustering of integrins on myeloid cells evoked by CCL5, CCL2, and CXCL1 through inhibiting activation of the small GTPase Rap1. In vivo administration of Ac2-26 largely diminishes arterial recruitment of myeloid cells in a FPR2-dependent fashion. This effect is also observed in the presence of selective antagonists to CCR5, CCR2, or CXCR2, whereas Ac2-26 was without effect when all 3 chemokine receptors were antagonized simultaneously. Finally, repeated treatment with Ac2-26 reduces atherosclerotic lesion sizes and lesional macrophage accumulation. CONCLUSIONS Instructing the annexin A1-FPR2 axis harbors a novel approach to target arterial leukocyte recruitment. With the ability of Ac2-26 to counteract integrin activation exerted by various chemokines, delivery of Ac2-26 may be superior in inhibition of arterial leukocyte recruitment when compared with blocking individual chemokine receptors.
Collapse
Affiliation(s)
- Maik Drechsler
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Renske de Jong
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Jan Rossaint
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Joana R Viola
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Giovanna Leoni
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Ji Ming Wang
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Jochen Grommes
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Rabea Hinkel
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Christian Kupatt
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Yvonne Döring
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Alexander Zarbock
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany (M.D., R.d.J., J.R.V., G.L., J.G., C.W., Y.D., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); Department of Anaesthesiology, University Münster, Münster, Germany (J.R., A.Z.); Max Planck Institute, Münster, Germany (J.R., A.Z.); Laboratory of Molecular Immunoregulation, NCI, Frederick, MD (J.M.W.); European Vascular Center Aachen-Maastricht, University Hospital RWTH Aachen, Aachen, Germany (J.G.); Medizinische Klinik und Poliklinik I, Klinikum Großhadern, LMU Munich, Munich, Germany (R.H., C.K.); and DZHK, Partner Site Munich Heart Alliance, Munich, Germany (R.H., C.K., C.W., O.S.).
| |
Collapse
|
96
|
Nonredundant protective properties of FPR2/ALX in polymicrobial murine sepsis. Proc Natl Acad Sci U S A 2014; 111:18685-90. [PMID: 25512512 DOI: 10.1073/pnas.1410938111] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sepsis is characterized by overlapping phases of excessive inflammation temporally aligned with an immunosuppressed state, defining a complex clinical scenario that explains the lack of successful therapeutic options. Here we tested whether the formyl-peptide receptor 2/3 (Fpr2/3)--ortholog to human FPR2/ALX (receptor for lipoxin A4)--exerted regulatory and organ-protective functions in experimental sepsis. Coecal ligature and puncture was performed to obtain nonlethal polymicrobial sepsis, with animals receiving antibiotics and analgesics. Clinical symptoms, temperature, and heart function were monitored up to 24 h. Peritoneal lavage and plasma samples were analyzed for proinflammatory and proresolving markers of inflammation and organ dysfunction. Compared with wild-type mice, Fpr2/3(-/-) animals exhibited exacerbation of disease severity, including hypothermia and cardiac dysfunction. This scenario was paralleled by higher levels of cytokines [CXCL1 (CXC receptor ligand 1), CCL2 (CC receptor ligand 2), and TNFα] as quantified in cell-free biological fluids. Reduced monocyte recruitment in peritoneal lavages of Fpr2/3(-/-) animals was reflected by a higher granulocyte/monocyte ratio. Monitoring Fpr2/3(-/-) gene promoter activity with a GFP proxy marker revealed an over threefold increase in granulocyte and monocyte signals at 24 h post-coecal ligature and puncture, a response mediated by TNFα. Treatment with a receptor peptido-agonist conferred protection against myocardial dysfunction in wild-type, but not Fpr2/3(-/-), animals. Therefore, coordinated physio-pharmacological analyses indicate nonredundant modulatory functions for Fpr2/3 in experimental sepsis, opening new opportunities to manipulate the host response for therapeutic development.
Collapse
|
97
|
Williams R. Circulation Research
“In This Issue” Anthology. Circ Res 2014. [DOI: 10.1161/res.0000000000000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
98
|
Petri MH, Laguna-Fernández A, Gonzalez-Diez M, Paulsson-Berne G, Hansson GK, Bäck M. The role of the FPR2/ALX receptor in atherosclerosis development and plaque stability. Cardiovasc Res 2014; 105:65-74. [PMID: 25341894 PMCID: PMC4277257 DOI: 10.1093/cvr/cvu224] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIMS The formyl peptide receptor (FPR) subtype FPR2/ALX transduces pro-inflammatory responses and participates in the resolution of inflammation depending on activation. The aim of the present study was to unravel the role of FPR2/ALX signalling in atherosclerosis. METHODS AND RESULTS Expression of FPR2/ALX was analysed in 127 human carotid atherosclerotic lesions and revealed that this receptor was expressed on macrophages, smooth muscle cells (SMCs), and endothelial cells. Furthermore, FPR2/ALX mRNA levels were significantly up-regulated in atherosclerotic lesions compared with healthy vessels. In multiple regression, age, creatinine, and clinical signs of increased cerebral ischaemia were independent predictors of FPR2/ALX expression. To provide mechanistic insights into these observations, we generated Ldlr(-/-)xFpr2(-/-) mice, which exhibited delayed atherosclerosis development and less macrophage infiltration compared with Ldlr(-/-)xFpr2(+/+) mice. These findings were reproduced by transplantation of Fpr2(-/-) bone marrow into Ldlr(-/-) mice and further extended by in vitro experiments, demonstrating a lower inflammatory state in Fpr2(-/-) macrophages. FPR2/ALX expression correlated with chemo- and cytokines in human atherosclerotic lesions and leucocytes. Finally, atherosclerotic lesions in Ldlr(-/-)xFpr2(-/-) mice exhibited decreased collagen content, and Fpr2(-/-) SMCs exhibited a profile of increased collagenase and decreased collagen production pathways. CONCLUSION FPR2/ALX is proatherogenic due to effects on bone marrow-derived cells, but promoted a more stable plaque phenotype through effects on SMCs. Taken together, these results suggest a dual role of FPR2/ALX signalling in atherosclerosis by way of promoting disease progression and but increasing plaque stability.
Collapse
Affiliation(s)
- Marcelo H Petri
- Experimental Cardiovascular Research Unit, Karolinska Institutet, Center for Molecular Medicine, L8: 03, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Andrés Laguna-Fernández
- Experimental Cardiovascular Research Unit, Karolinska Institutet, Center for Molecular Medicine, L8: 03, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Maria Gonzalez-Diez
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gabrielle Paulsson-Berne
- Experimental Cardiovascular Research Unit, Karolinska Institutet, Center for Molecular Medicine, L8: 03, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Göran K Hansson
- Experimental Cardiovascular Research Unit, Karolinska Institutet, Center for Molecular Medicine, L8: 03, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Magnus Bäck
- Experimental Cardiovascular Research Unit, Karolinska Institutet, Center for Molecular Medicine, L8: 03, Karolinska University Hospital, Stockholm 171 76, Sweden Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
99
|
Karbach S, Croxford AL, Oelze M, Schüler R, Minwegen D, Wegner J, Koukes L, Yogev N, Nikolaev A, Reißig S, Ullmann A, Knorr M, Waldner M, Neurath MF, Li H, Wu Z, Brochhausen C, Scheller J, Rose-John S, Piotrowski C, Bechmann I, Radsak M, Wild P, Daiber A, von Stebut E, Wenzel P, Waisman A, Münzel T. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease. Arterioscler Thromb Vasc Biol 2014; 34:2658-68. [PMID: 25341795 DOI: 10.1161/atvbaha.114.304108] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Interleukin (IL)-17A is regarded as an important cytokine to drive psoriasis, an inflammatory skin disease marked by increased cardiovascular mortality. We aimed to test the hypothesis that overproduction of IL-17A in the skin leading to dermal inflammation may systemically cause vascular dysfunction in psoriasis-like skin disease. APPROACH AND RESULTS Conditional overexpression of IL-17A in keratinocytes caused severe psoriasis-like skin inflammation in mice (K14-IL-17A(ind/+) mice), associated with increased reactive oxygen species formation and circulating CD11b(+) inflammatory leukocytes in blood, with endothelial dysfunction, increased systolic blood pressure, left ventricular hypertrophy, and reduced survival compared with controls. In K14-IL-17A(ind/+) mice, immunohistochemistry and flow cytometry revealed increased vascular production of the nitric oxide/superoxide reaction product peroxynitrite and infiltration of the vasculature with myeloperoxidase(+)CD11b(+)GR1(+)F4/80(-) cells accompanied by increased expression of the inducible nitric oxide synthase and the nicotinamide dinucleotide phosphate (NADPH) oxidase, nox2. Neutrophil depletion by anti-GR-1 antibody injections reduced oxidative stress in blood and vessels. Neutralization of tumor necrosis factor-α and IL-6 (both downstream of IL-17A) reduced skin lesions, attenuated oxidative stress in heart and blood, and partially improved endothelial dysfunction in K14-IL-17A(ind/+) mice. CONCLUSIONS Dermal overexpression of IL-17A induces systemic endothelial dysfunction, vascular oxidative stress, arterial hypertension, and increases mortality mainly driven by myeloperoxidase(+)CD11b(+)GR1(+)F4/80(-) inflammatory cells. Depletion of the GR-1(+) immune cells or neutralization of IL-17A downstream cytokines by biologicals attenuates the vascular phenotype in K14-IL-17A(ind/+) mice.
Collapse
Affiliation(s)
- Susanne Karbach
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.).
| | - Andrew L Croxford
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Matthias Oelze
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Rebecca Schüler
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Daniel Minwegen
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Joanna Wegner
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Lija Koukes
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Nir Yogev
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Alexei Nikolaev
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Sonja Reißig
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Alexander Ullmann
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Maike Knorr
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Maximilian Waldner
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Markus F Neurath
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Huige Li
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Zhixiong Wu
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Christoph Brochhausen
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Jürgen Scheller
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Stefan Rose-John
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Carolin Piotrowski
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Ingo Bechmann
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Markus Radsak
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Philipp Wild
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Andreas Daiber
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Esther von Stebut
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Philip Wenzel
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| | - Ari Waisman
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.).
| | - Thomas Münzel
- From the Institute for Molecular Medicine (S.K., A.L.C., R.S., N.Y., A.N., S.R., A.W.), Department of Medicine 2 (S.K., M.O., D.M., M.K., P. Wild, A.D., P. Wenzel, T.M.), Department of Dermatology (J.W., L.K., E.v.S.), Department of Pharmacology (H.L., Z.W.), Institute for Pathology (C.B.), Center for Thrombosis and Hemostasis (P. Wild, P. Wenzel, T.M.), German Center for Cardiovascular Research (DZHK), partner site RhineMain (A.U., P.W.), and Department of Medicine 3 (M.R.), University Medical Center of the Johannes-Gutenberg University of Mainz, Germany; Department of Internal Medicine I, University Hospital Erlangen, Germany (M.W., M.F.N.); Institute of Anatomy, University of Leipzig, Germany (C.P., I.B.); Institute for Biochemistry, Christian-Albrechts-University of Kiel, Germany (S.R.-J.); Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany (J.S.)
| |
Collapse
|
100
|
Döring Y, Drechsler M, Soehnlein O, Weber C. Neutrophils in atherosclerosis: from mice to man. Arterioscler Thromb Vasc Biol 2014; 35:288-95. [PMID: 25147339 DOI: 10.1161/atvbaha.114.303564] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infiltration of leukocyte subsets is a driving force of atherosclerotic lesion growth, and during the past decade, neutrophils have received growing attention in chronic inflammatory processes, such as atherosclerosis. Equipped with various ready to be released mediators, evolved to fight invading pathogens, neutrophils may also hold key functions in affecting sterile inflammation, such as in atherosclerosis. Many of their secretion products might instruct or activate other immune cells (particularly monocytes) to, for example, enter atherosclerotic lesions or release proinflammatory mediators. Despite the emerging evidence for the mechanistic contribution of neutrophils to early atherosclerosis in mice, their role in human atherogenesis, atheroprogression, and atherosclerotic plaque destabilization is still poorly understood. This brief review will summarize latest findings on the role of neutrophils in atherosclerosis and will pay special attention to studies describing a translation approach by combining measurements in mouse and human.
Collapse
Affiliation(s)
- Yvonne Döring
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., M.D., O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., C.W.)
| | - Maik Drechsler
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., M.D., O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., C.W.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., M.D., O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., M.D., O.S., C.W.); Department of Pathology, Academic Medical Center, Amsterdam University, Amsterdam, The Netherlands (M.D., O.S.); and German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (O.S., C.W.).
| |
Collapse
|