51
|
Zhang BF, Jiang H, Chen J, Guo X, Li Y, Hu Q, Yang S. Nobiletin ameliorates myocardial ischemia and reperfusion injury by attenuating endoplasmic reticulum stress-associated apoptosis through regulation of the PI3K/AKT signal pathway. Int Immunopharmacol 2019; 73:98-107. [PMID: 31082728 DOI: 10.1016/j.intimp.2019.04.060] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/29/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Nobiletin is a natural polymethoxylated flavone that confers antioxidative, anti-inflammatory and anti-apoptotic efficacies. However, the potential benefits of nobiletin preconditioning on myocardial ischemia and reperfusion injury (MIRI) remains largely unknown. METHODS MIRI was induced by ligation of the left anterior descending coronary artery and reperfusion. Pre-treatment with nobiletin, with or without PI3K/AKT inhibitor LY294002, was performed at the onset of reperfusion. Histological analyses, apoptotic evaluation, plasma biomarkers of myocardial injury, echocardiographic evaluation of cardiac function and myocardial levels of endoplasmic reticulum stress (ERS)-related molecules were observed. RESULTS Nobiletin pre-treatment significantly deceased the infract size and number of apoptotic cells in the myocardium of MIRI rats, as determined by Terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Moreover, the plasma levels of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) also markedly decreased. In addition, pre-treatment with nobiletin restored the impaired cardiac systolic function, as evidenced by echocardiographic evaluation results. Importantly, pre-treatment with nobiletin significantly downregulated the myocardial mRNA and protein levels of ERS-related signal molecules, including GRP78, CHOP and caspase-12, but upregulated the levels of p-PI3K and p-AKT. Interestingly, co-treatment with LY294002 significantly abolished the benefits of nobiletin pre-treatment on cardiac function, myocardial apoptosis, cardiomyocyte injuries, and changes in myocardial levels of ERS-related signaling molecules. CONCLUSION Nobiletin pre-treatment may alleviate MIRI probably via the attenuation of PI3K/AKT-mediated ERS-related myocardial apoptosis.
Collapse
Affiliation(s)
- Bo-Fang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Xin Guo
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 43000, Hubei Province, China
| | - Yue Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
52
|
Blockade of L-type Ca 2+ channel attenuates doxorubicin-induced cardiomyopathy via suppression of CaMKII-NF-κB pathway. Sci Rep 2019; 9:9850. [PMID: 31285514 PMCID: PMC6614470 DOI: 10.1038/s41598-019-46367-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and nuclear factor-kappa B (NF-κB) play crucial roles in pathogenesis of doxorubicin (DOX)-induced cardiomyopathy. Their activities are regulated by intracellular Ca2+. We hypothesized that blockade of L-type Ca2+ channel (LTCC) could attenuate DOX-induced cardiomyopathy by regulating CaMKII and NF-κB. DOX activated CaMKII and NF-κB through their phosphorylation and increased cleaved caspase 3 in cardiomyocytes. Pharmacological blockade or gene knockdown of LTCC by nifedipine or small interfering RNA, respectively, suppressed DOX-induced phosphorylation of CaMKII and NF-κB and apoptosis in cardiomyocytes, accompanied by decreasing intracellular Ca2+ concentration. Autocamtide 2-related inhibitory peptide (AIP), a selective CaMKII inhibitor, inhibited DOX-induced phosphorylation of NF-κB and cardiomyocyte apoptosis. Inhibition of NF-κB activity by ammonium pyrrolidinedithiocarbamate (PDTC) suppressed DOX-induced cardiomyocyte apoptosis. DOX-treatment (18 mg/kg via intravenous 3 injections over 1 week) increased phosphorylation of CaMKII and NF-κB in mouse hearts. Nifedipine (10 mg/kg/day) significantly suppressed DOX-induced phosphorylation of CaMKII and NF-κB and cardiomyocyte injury and apoptosis in mouse hearts. Moreover, it attenuated DOX-induced left ventricular dysfunction and dilatation. Our findings suggest that blockade of LTCC attenuates DOX-induced cardiomyocyte apoptosis via suppressing intracellular Ca2+ elevation and activation of CaMKII-NF-κB pathway. LTCC blockers might be potential therapeutic agents against DOX-induced cardiomyopathy.
Collapse
|
53
|
|
54
|
Belmadani S, Matrougui K. Broken heart: A matter of the endoplasmic reticulum stress bad management? World J Cardiol 2019; 11:159-170. [PMID: 31367278 PMCID: PMC6658386 DOI: 10.4330/wjc.v11.i6.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/29/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the number one cause of morbidity and mortality in the United States and worldwide. The induction of the endoplasmic reticulum (ER) stress, a result of a disruption in the ER homeostasis, was found to be highly associated with cardiovascular diseases such as hypertension, diabetes, ischemic heart diseases and heart failure. This review will discuss the latest literature on the different aspects of the involvement of the ER stress in cardiovascular complications and the potential of targeting the ER stress pathways as a new therapeutic approach for cardiovascular complications.
Collapse
Affiliation(s)
- Souad Belmadani
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| | - Khalid Matrougui
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA 23501, United States
| |
Collapse
|
55
|
Liu C, Li H, Zheng H, Zhai M, Lu F, Dong S, Fang T, Zhang W. CaSR activates PKCδ to induce cardiomyocyte apoptosis via ER stress‑associated apoptotic pathways during ischemia/reperfusion. Int J Mol Med 2019; 44:1117-1126. [PMID: 31257458 DOI: 10.3892/ijmm.2019.4255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/17/2019] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress can be activated by ischemia/reperfusion (I/R) injury in cardiomyocytes. Persistent ER stress, with an increase in intracellular Ca2+ ([Ca2+]i) concentration, leads to apoptosis. Protein kinase C (PKC) has a key role in myocardial damage by elevation of [Ca2+]i. The calcium‑sensing receptor (CaSR), a G protein‑coupled receptor, can increase the release of [Ca2+]i from the ER through the inositol triphosphate receptor (IP3R). Intracellular calcium overload has been demonstrated to cause cardiac myocyte apoptosis during I/R. However, the associations between PKC, CaSR and ER stress are not clear. The present study examined the hypothesis that activation of PKCδ by CaSR participates in ER stress‑associated apoptotic pathways within myocardial I/R. Rat hearts were subjected to 30 min of ischemia in vivo, followed by reperfusion for 120 min. GdCl3 (a CaSR activator) was used to elevate the intracellular Ca2+ concentration, but the Ca2+ concentration in the ER was significantly decreased during I/R. Following exposure to GdCl3, expression levels of CaSR, glucose‑regulated protein 78 (GRP78), Caspase‑12, phosphorylated JNK and Caspase‑3 were increased, and the ratios of apoptotic myocardial cells were significantly increased. By contrast, following exposure to rottlerin, a PKCδ inhibitor, the expression levels of these proteins and the ratio of apoptotic myocardial cells were significantly reduced. The present study also demonstrated that PKCδ translocated into the ER to induce an ER stress response and participate in the ER stress‑related apoptosis pathway. These results confirmed that CaSR activated PKCδ to induce cardiomyocyte apoptosis through ER stress‑associated apoptotic pathways during I/R in vivo.
Collapse
Affiliation(s)
- Chong Liu
- Department of Anesthesiology, Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, P.R. China
| | - Huanming Li
- Department of Cardiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300140, P.R. China
| | - Huishuang Zheng
- Department of Pathology, Haiyang Renmin Hospital, Haiyang, Shandong 265100, P.R. China
| | - Meili Zhai
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Central Gynecology Obstetrics Hospital of Nankai University, Tianjin 300052, P.R. China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Tao Fang
- Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300140, P.R. China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
56
|
Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett 2019; 307:41-48. [DOI: 10.1016/j.toxlet.2019.02.013] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/10/2019] [Accepted: 02/23/2019] [Indexed: 12/30/2022]
|
57
|
Tscheschner H, Meinhardt E, Schlegel P, Jungmann A, Lehmann LH, Müller OJ, Most P, Katus HA, Raake PW. CaMKII activation participates in doxorubicin cardiotoxicity and is attenuated by moderate GRP78 overexpression. PLoS One 2019; 14:e0215992. [PMID: 31034488 PMCID: PMC6488194 DOI: 10.1371/journal.pone.0215992] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The clinical use of the chemotherapeutic doxorubicin (Dox) is limited by cardiotoxic side-effects. One of the early Dox effects is induction of a sarcoplasmic reticulum (SR) Ca2+ leak. The chaperone Glucose regulated protein 78 (GRP78) is important for Ca2+ homeostasis in the endoplasmic reticulum (ER)—the organelle corresponding to the SR in non-cardiomyocytes—and has been shown to convey resistance to Dox in certain tumors. Our aim was to investigate the effect of cardiac GRP78 gene transfer on Ca2+ dependent signaling, cell death, cardiac function and survival in clinically relevant in vitro and in vivo models for Dox cardiotoxicity.By using neonatal cardiomyocytes we could demonstrate that Dox induced Ca2+ dependent Ca2+ /calmodulin-dependent protein kinase II (CaMKII) activation is one of the factors involved in Dox cardiotoxicity by promoting apoptosis. Furthermore, we found that adeno-associated virus (AAV) mediated GRP78 overexpression partly protects neonatal cardiomyocytes from Dox induced cell death by modulating Ca2+ dependent pathways like the activation of CaMKII, phospholamban (PLN) and p53 accumulation. Most importantly, cardiac GRP78 gene therapy in mice treated with Dox revealed improved diastolic function (dP/dtmin) and survival after Dox treatment. In conclusion, our results demonstrate for the first time that Ca2+ dependent CaMKII activation fosters Dox cardiomyopathy and provide additional insight into possible mechanisms by which GRP78 overexpression protects cardiomyocytes from Doxorubicin toxicity.
Collapse
Affiliation(s)
- Henrike Tscheschner
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Eric Meinhardt
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Philipp Schlegel
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Jungmann
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Lorenz H. Lehmann
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Oliver J. Müller
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Kiel, Kiel, Germany
| | - Patrick Most
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Hugo A. Katus
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Philip W. Raake
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
58
|
Russo M, Guida F, Paparo L, Trinchese G, Aitoro R, Avagliano C, Fiordelisi A, Napolitano F, Mercurio V, Sala V, Li M, Sorriento D, Ciccarelli M, Ghigo A, Hirsch E, Bianco R, Iaccarino G, Abete P, Bonaduce D, Calignano A, Berni Canani R, Tocchetti CG. The novel butyrate derivative phenylalanine-butyramide protects from doxorubicin-induced cardiotoxicity. Eur J Heart Fail 2019; 21:519-528. [PMID: 30843309 DOI: 10.1002/ejhf.1439] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/24/2018] [Accepted: 01/11/2019] [Indexed: 11/10/2022] Open
Abstract
AIMS Butyric acid (BUT), a short chain fatty acid produced daily by the gut microbiota, has proven beneficial in models of cardiovascular diseases. With advancements in cancer survival, an increasing number of patients are at risk of anticancer drug cardiotoxicity. Here we assess whether the novel BUT derivative phenylalanine-butyramide (FBA) protects from doxorubicin (DOXO) cardiotoxicity, by decreasing oxidative stress and improving mitochondrial function. METHODS AND RESULTS In C57BL6 mice, DOXO produced left ventricular dilatation assessed by echocardiography. FBA prevented left ventricular dilatation, fibrosis and cardiomyocyte apoptosis when co-administered with DOXO. DOXO increased atrial natriuretic peptide, brain natriuretic peptide, connective tissue growth factor, and matrix metalloproteinase-2 mRNAs, which were not elevated on co-treatment with FBA. DOXO, but not FBA + DOXO mice, also showed higher nitrotyrosine levels, and increased inducible nitric oxide synthase expression. Accordingly, DOXO hearts showed lower levels of intracellular catalase vs. sham, while pre-treatment with FBA prevented this decrease. We then assessed for reactive oxygen species (ROS) emission: DOXO induced increased activity of mitochondrial superoxide dismutase and higher production of H2 O2 , which were blunted by FBA pre-treatment. FBA also ameliorated mitochondrial state 3 and state 4 respiration rates that were compromised by DOXO. Furthermore, in DOXO animals, the mitochondrial degree of coupling was significantly increased vs. sham, while FBA was able to prevent such increase, contributing to limit ROS production, Finally, FBA reduced DOXO damage in human cellular models, and increased the tumour-killing action of DOXO. CONCLUSIONS Phenylalanine-butyramide protects against experimental doxorubicin cardiotoxicity. Such protection is accompanied by reduction in oxidative stress and amelioration of mitochondrial function.
Collapse
Affiliation(s)
- Michele Russo
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy.,Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Fiorentina Guida
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy
| | | | - Rosita Aitoro
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy
| | | | - Antonella Fiordelisi
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, 'Federico II' University, Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy
| | - Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Mingchuan Li
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, 'Federico II' University, Naples, Italy.,Interdipartimental Center for Clinical and Translational Research (CIRCET), 'Federico II' University, Naples, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Pasquale Abete
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy.,Task Force for the Microbiome Studies, 'Federico II' University, Naples, Italy
| | | | - Roberto Berni Canani
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy.,Task Force for the Microbiome Studies, 'Federico II' University, Naples, Italy.,CEINGE Advanced Biotechnologies, 'Federico II' University, Naples, Italy.,European Laboratory for the Investigation of Food Induced Diseases (ELFID), 'Federico II' University, Naples, Italy
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, 'Federico II' University, Naples, Italy.,Interdipartimental Center for Clinical and Translational Research (CIRCET), 'Federico II' University, Naples, Italy.,Task Force for the Microbiome Studies, 'Federico II' University, Naples, Italy
| |
Collapse
|
59
|
Rodrigues PG, Miranda-Silva D, Costa SM, Barros C, Hamdani N, Moura C, Mendes MJ, Sousa-Mendes C, Trindade F, Fontoura D, Vitorino R, Linke WA, Leite-Moreira AF, Falcão-Pires I. Early myocardial changes induced by doxorubicin in the nonfailing dilated ventricle. Am J Physiol Heart Circ Physiol 2019; 316:H459-H475. [DOI: 10.1152/ajpheart.00401.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several studies have demonstrated that administration of doxorubicin (DOXO) results in cardiotoxicity, which eventually progresses to dilated cardiomyopathy. The present work aimed to evaluate the early myocardial changes of DOXO-induced cardiotoxicity. Male New Zealand White rabbits were injected intravenously with DOXO twice weekly for 8 wk [DOXO-induced heart failure (DOXO-HF)] or with an equivolumetric dose of saline (control). Echocardiographic evaluation was performed, and myocardial samples were collected to evaluate myocardial cellular and molecular modifications. The DOXO-HF group presented cardiac hypertrophy and higher left ventricular cavity diameters, showing a dilated phenotype but preserved ejection fraction. Concerning cardiomyocyte function, the DOXO-HF group presented a trend toward increased active tension without significant differences in passive tension. The myocardial GSSG-to-GSH ratio and interstitial fibrosis were increased and Bax-to- Bcl-2 ratio presented a trend toward an increase, suggesting the activation of apoptosis signaling pathways. The macromolecule titin shifted toward the more compliant isoform (N2BA), whereas the stiffer one (N2B) was shown to be hypophosphorylated. Differential protein analysis from the aggregate-enriched fraction through gel liquid chromatography-tandem mass spectrometry revealed an increase in the histidine-rich glycoprotein fragment in DOXO-HF animals. This work describes novel and early myocardial effects of DOXO-induced cardiotoxicity. Thus, tracking these changes appears to be of extreme relevance for the early detection of cardiac damage (as soon as ventricular dilation becomes evident) before irreversible cardiac function deterioration occurs (reduced ejection fraction). Moreover, it allows for the adjustment of the therapeutic approach and thus the prevention of cardiomyopathy progression. NEW & NOTEWORTHY Identification of early myocardial effects of doxorubicin in the heart is essential to hinder the development of cardiac complications and adjust the therapeutic approach. This study describes doxorubicin-induced cellular and molecular modifications before the onset of dilated cardiomyopathy. Myocardial samples from doxorubicin-treated rabbits showed a tendency for higher cardiomyocyte active tension, titin isoform shift from N2B to N2BA, hypophosphorylation of N2B, increased apoptotic genes, left ventricular interstitial fibrosis, and increased aggregation of histidine-rich glycoprotein.
Collapse
Affiliation(s)
- Patricia G. Rodrigues
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Daniela Miranda-Silva
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Sofia M. Costa
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Carla Barros
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University, Bochum, Germany
| | - Cláudia Moura
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Maria J. Mendes
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Cláudia Sousa-Mendes
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Fábio Trindade
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Dulce Fontoura
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| | - Rui Vitorino
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Adelino F. Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, São João Hospital Centre, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, Unidade de Investigação Cardiovascular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
60
|
Zuo S, Kong D, Wang C, Liu J, Wang Y, Wan Q, Yan S, Zhang J, Tang J, Zhang Q, Lyu L, Li X, Shan Z, Qian L, Shen Y, Yu Y. CRTH2 promotes endoplasmic reticulum stress-induced cardiomyocyte apoptosis through m-calpain. EMBO Mol Med 2019; 10:emmm.201708237. [PMID: 29335338 PMCID: PMC5840549 DOI: 10.15252/emmm.201708237] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Apoptotic death of cardiac myocytes is associated with ischemic heart disease and chemotherapy‐induced cardiomyopathy. Chemoattractant receptor‐homologous molecule expressed on T helper type 2 cells (CRTH2) is highly expressed in the heart. However, its specific role in ischemic cardiomyopathy is not fully understood. Here, we demonstrated that CRTH2 disruption markedly improved cardiac recovery in mice postmyocardial infarction and doxorubicin challenge by suppressing cardiomyocyte apoptosis. Mechanistically, CRTH2 activation specifically facilitated endoplasmic reticulum (ER) stress‐induced cardiomyocyte apoptosis via caspase‐12‐dependent pathway. Blockage of m‐calpain prevented CRTH2‐mediated cardiomyocyte apoptosis under ER stress by suppressing caspase‐12 activity. CRTH2 was coupled with Gαq to elicit intracellular Ca2+ flux and activated m‐calpain/caspase‐12 cascade in cardiomyocytes. Knockdown of caspase‐4, an alternative to caspase‐12 in humans, markedly alleviated CRHT2 activation‐induced apoptosis in human cardiomyocyte response to anoxia. Our findings revealed an unexpected role of CRTH2 in promoting ER stress‐induced cardiomyocyte apoptosis, suggesting that CRTH2 inhibition has therapeutic potential for ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Shengkai Zuo
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Deping Kong
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chenyao Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiao Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiangyou Wan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Yan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Juan Tang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luheng Lyu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Biology, University of Miami College of Arts and Science, Miami, FL, USA
| | - Xin Li
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhixin Shan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou Guangdong, China
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yujun Shen
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China .,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
61
|
Wang J, Song Y, Zhang M, Wu Z, Xu YJ, Lin J, Ling D, Sheng Y, Lu Y, Wu Q. A liposomal curcumol nanocomposite for magnetic resonance imaging and endoplasmic reticulum stress-mediated chemotherapy of human primary ovarian cancer. J Mater Chem B 2019. [DOI: 10.1039/c8tb03123a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A liposomal curcumol nanocomposite has been successfully synthesized for the theranostics of human primary ovarian cancer cells from solid tumor tissue in patients.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- P. R. China
- Department of Obstetrics and Gynecology
| | - Yonghong Song
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Mingxun Zhang
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Zhensheng Wu
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Yun-Jun Xu
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jun Lin
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Daishun Ling
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- P. R. China
| | - Youjing Sheng
- Department of Pathology
- Anhui Medical University
- Hefei
- P. R. China
| | - Yang Lu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology
- Hefei
- P. R. China
| | - Qiang Wu
- School of Basic Medical Sciences
- Anhui Medical University
- Hefei
- P. R. China
- Department of Pathology
| |
Collapse
|
62
|
Bozi LH, Takano AP, Campos JC, Rolim N, Dourado PM, Voltarelli VA, Wisløff U, Ferreira JC, Barreto-Chaves ML, Brum PC. Endoplasmic reticulum stress impairs cardiomyocyte contractility through JNK-dependent upregulation of BNIP3. Int J Cardiol 2018; 272:194-201. [DOI: 10.1016/j.ijcard.2018.08.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022]
|
63
|
Xu ZM, Li CB, Liu QL, Li P, Yang H. Ginsenoside Rg1 Prevents Doxorubicin-Induced Cardiotoxicity through the Inhibition of Autophagy and Endoplasmic Reticulum Stress in Mice. Int J Mol Sci 2018; 19:ijms19113658. [PMID: 30463294 PMCID: PMC6274738 DOI: 10.3390/ijms19113658] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 01/01/2023] Open
Abstract
Ginsenoside Rg1, a saponin that is a primary component of ginseng, has been demonstrated to protect hearts from diverse cardiovascular diseases with regulating multiple cellular signal pathways. In the present study, we investigated the protective role of ginsenoside Rg1 on doxorubicin-induced cardiotoxicity and its effects on endoplasmic reticulum stress and autophagy. After pre-treatment with ginsenoside Rg1 (50 mg/kg i.g.) for 7 days, male C57BL/6J mice were intraperitoneally injected with a single dose of doxorubicin (6 mg/kg) every 3 days for four injections. Echocardiographic and pathological findings showed that ginsenoside Rg1 could significantly reduce the cardiotoxicity induced by doxorubicin. Ginsenoside Rg1 significantly inhibited doxorubicin-induced formation of autophagosome. At the same time, ginsenoside Rg1 decreased the doxorubicin-induced cardiac microtubule-associated protein-light chain 3 and autophagy related 5 expression. Ginsenoside Rg1 can reduce endoplasmic reticulum dilation caused by doxorubicin. Compared with the doxorubicin group, the expression of cleaved activating transcription factor 6 and inositol-requiring enzyme 1 decreased in group ginsenoside Rg1. Treatment with ginsenoside Rg1 reduces the expression of TIF1 and increases the expression of glucose-regulated protein 78. In the ginsenoside Rg1 group, the expression of p-P70S6K, c-Jun N-terminal kinases 1 and Beclin1 declined. These results indicate that ginsenoside Rg1 may improve doxorubicin-induced cardiac dysfunction by inhibiting endoplasmic reticulum stress and autophagy.
Collapse
Affiliation(s)
- Zhi-Meng Xu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Cheng-Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Qing-Ling Liu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
64
|
Zhang Y, Deng H, Zhou H, Lu Y, Shan L, Lee SM, Cui G. A novel agent attenuates cardiotoxicity and improves antitumor activity of doxorubicin in breast cancer cells. J Cell Biochem 2018; 120:5913-5922. [DOI: 10.1002/jcb.27880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Ying Zhang
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Hongkuan Deng
- Department of Pharmaceutical Engineering, School of Life Sciences, Shandong University of Technology Zibo China
| | - Hefeng Zhou
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Yucong Lu
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Luchen Shan
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular Diseases, Jinan University College of Pharmacy Guangzhou China
| | - Simon Ming‐Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao China
| | - Guozhen Cui
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| |
Collapse
|
65
|
Iguchi T, Fujimoto K, Nakamura S, Kishino H, Niino N, Mori K. Establishment of an in vitro cytotoxicity assay platform using primary monkey cardiomyocytes. Toxicol In Vitro 2018; 54:130-136. [PMID: 30261314 DOI: 10.1016/j.tiv.2018.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 11/18/2022]
Abstract
To establish an in vitro cytotoxicity assay platform using monkey cardiomyocytes, we isolated primary cardiomyocytes from fetal cynomolgus monkeys at different gestation days (from day 39 to 90) using the trypsin and collagenase digestion method, which was identical to the standard procedure for rat cardiomyocytes. Under these conditions, the primary cells obtained from monkeys at gestation day 63 or earlier showed spontaneous beating, with >80% cells being viable from all fetuses. Transcriptome analysis of the monkey cardiomyocytes indicated that the cells have essential components of cardiac functions, such as myosins, α-actin, cardiac troponins, and calcium-related molecules. The susceptibility to doxorubicin-induced cytotoxicity in monkey cardiomyocytes was comparable to that in rat cardiomyocytes, as evaluated based on intracellular ATP levels. Microarray analysis with Ingenuity Pathway Analysis revealed that doxorubicin predominantly increased the expression of several key genes involved in the endoplasmic reticulum stress pathway in monkey cardiomyocytes than in rat cardiomyocytes. In conclusion, we isolated primary monkey cardiomyocytes that showed similar sensitivity to doxorubicin as compared with rat cardiomyocytes. This in vitro monkey cardiomyocyte assay platform would serve as a powerful tool for the investigation of the interspecies differences in drug-induced cardiotoxicity and its underlying mechanism.
Collapse
Affiliation(s)
- Takuma Iguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Kazunori Fujimoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Shinichiro Nakamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | - Hiroyuki Kishino
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Noriyo Niino
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| |
Collapse
|
66
|
Dorsch LM, Schuldt M, Knežević D, Wiersma M, Kuster DWD, van der Velden J, Brundel BJJM. Untying the knot: protein quality control in inherited cardiomyopathies. Pflugers Arch 2018; 471:795-806. [PMID: 30109411 PMCID: PMC6475634 DOI: 10.1007/s00424-018-2194-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
Mutations in genes encoding sarcomeric proteins are the most important causes of inherited cardiomyopathies, which are a major cause of mortality and morbidity worldwide. Although genetic screening procedures for early disease detection have been improved significantly, treatment to prevent or delay mutation-induced cardiac disease onset is lacking. Recent findings indicate that loss of protein quality control (PQC) is a central factor in the disease pathology leading to derailment of cellular protein homeostasis. Loss of PQC includes impairment of heat shock proteins, the ubiquitin-proteasome system, and autophagy. This may result in accumulation of misfolded and aggregation-prone mutant proteins, loss of sarcomeric and cytoskeletal proteins, and, ultimately, loss of cardiac function. PQC derailment can be a direct effect of the mutation-induced activation, a compensatory mechanism due to mutation-induced cellular dysfunction or a consequence of the simultaneous occurrence of the mutation and a secondary hit. In this review, we discuss recent mechanistic findings on the role of proteostasis derailment in inherited cardiomyopathies, with special focus on sarcomeric gene mutations and possible therapeutic applications.
Collapse
Affiliation(s)
- Larissa M Dorsch
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Maike Schuldt
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Dora Knežević
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Marit Wiersma
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 building 11W53, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| |
Collapse
|
67
|
Yang D, Li S, Gao L, Lv Z, Bing Q, Lv Q, Zheng X, Li R, Zhang Z. Dietary grape seed procyanidin extract protects against lead-induced heart injury in rats involving endoplasmic reticulum stress inhibition and AKT activation. J Nutr Biochem 2018; 62:43-49. [PMID: 30245182 DOI: 10.1016/j.jnutbio.2018.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022]
Abstract
To investigate the protective role of grape seed procyanidin extract (GSPE) against lead-induced heart injury and the possible molecular mechanism associated with this event, Wistar rats were orally given GSPE (200 mg/kg) daily with or without lead acetate (PbA) (0.5 g/L) in drinking water for 56 d. GSPE attenuated oxidative stress, heart dysfunction, and lead accumulation in lead-exposed rat hearts. Meanwhile, GSPE inhibited the protein kinase RNA-like endoplasmic reticulum (ER) kinase/eukaryotic initiation factor 2α signaling pathway, and promoted protein kinase B (AKT) and glycogen synthase kinase 3β phosphorylation altered by lead, and regulated lead-activated apoptosis and its related signaling pathway. This study suggests that dietary GSPE ameliorates lead-induced heart injury associated with ER stress inhibition and AKT activation. Dietary GSPE may be a protector against lead-induced heart injury and a novel therapy for lead exposure.
Collapse
Affiliation(s)
- Daqian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Qizheng Bing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Qingjie Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ruobing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
68
|
Bing OHL. Hypothesis: role for ammonia neutralization in the prevention and reversal of heart failure. Am J Physiol Heart Circ Physiol 2018; 314:H1049-H1052. [PMID: 29547022 DOI: 10.1152/ajpheart.00003.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ammonia plays a central role in the life and death of all living organisms and has been studied for over 100 yr. Ammonia is necessary for growth and development, but it is toxic in excess, and, as a result, differing methods of ammonia neutralization have evolved. After physiological and pathological stress to the heart, tissue ammonia levels rise. Local ammonia neutralization may be inadequate, and excess ammonia may exert its toxic effects. Phenylbutyrate (PBA), which is Federal Drug Administration approved for the treatment of elevated blood ammonia in urea cycle disorders, provides an accessory pathway for ammonia excretion. Recently, PBA has also been found to prevent specific cardiomyopathies. The central theme presents the hypothesis that stress to the myocardium from a variety of environmental sources causes injury, cell death, necrosis, and ammonia production. Ammonia, if not neutralized, exerts downstream toxic effects. Here, data are presented showing that neutralization with PBA alone and PBA combined with angiotensin-converting enzyme inhibition prevent and reverse pathophysiology associated with specific cardiomyopathies. NEW & NOTEWORTHY Ammonia produced after myocardial injury is hypothesized to be an upstream stress contributing to the pathophysiology of heart failure, effects that may be attenuated by a documented ammonia-reducing treatment. Reversal of heart failure can be achieved using an angiotensin-converting enzyme inhibitor combined with an ammonia-reducing treatment.
Collapse
Affiliation(s)
- Oscar H L Bing
- Boston Veterans Affairs Medical Center , Boston, Massachusetts
| |
Collapse
|
69
|
Wang Z, Wang M, Liu J, Ye J, Jiang H, Xu Y, Ye D, Wan J. Inhibition of TRPA1 Attenuates Doxorubicin-Induced Acute Cardiotoxicity by Suppressing Oxidative Stress, the Inflammatory Response, and Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5179468. [PMID: 29682158 PMCID: PMC5850896 DOI: 10.1155/2018/5179468] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 11/18/2022]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is expressed in cardiomyocytes and involved in many cardiovascular diseases. However, the expression and function of TRPA1 in doxorubicin- (Dox-) induced acute cardiotoxicity have not been elucidated. This study aimed at investigating whether blocking the TRPA1 channel with the specific inhibitor HC-030031 (HC) attenuates Dox-induced cardiac injury. The animals were randomly divided into four groups: control, HC, Dox, and Dox + HC. Echocardiography was used to evaluate cardiac function, and the heart was removed for molecular experiments. The results showed that the expression of TRPA1 was increased in the heart after Dox treatment. Cardiac dysfunction and increased serum CK-MB and LDH levels were induced by Dox, but these effects were attenuated by HC treatment. In addition, HC mitigated Dox-induced oxidative stress, as evidenced by the decreased MDA level and increased GSH level and SOD activity in the Dox + HC group. Meanwhile, HC treatment lowered the levels of the proinflammatory cytokines IL-1β, IL-6, IL-17, and TNF-α induced by Dox. Furthermore, HC treatment mitigated endoplasmic reticulum (ER) stress and cardiomyocyte apoptosis induced by Dox. These results indicated that inhibition of TRPA1 could prevent Dox-induced cardiomyocyte apoptosis in mice by inhibiting oxidative stress, inflammation, and ER stress.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huimin Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
70
|
Yu J, Wang C, Kong Q, Wu X, Lu JJ, Chen X. Recent progress in doxorubicin-induced cardiotoxicity and protective potential of natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:125-139. [PMID: 29496165 DOI: 10.1016/j.phymed.2018.01.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 12/26/2017] [Accepted: 01/14/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND As an anthracycline antibiotic, doxorubicin (DOX) is one of the most potent and widely used chemotherapeutic agents for various types of solid tumors. Unfortunately, clinical application of this drug results in severe side effects of cardiotoxicity. PURPOSE We aim to review the research focused on elimination or reduction of DOX cardiotoxicity without affecting its anticancer efficacy by natural products. METHODS This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect. The literature mainly focusing on natural products and herb extracts with therapeutic efficacies against experimental models both in vitro and in vivo was identified. RESULTS Current evidence revealed that multiple molecules and signaling pathways, such as oxidative stress, iron metabolism, and inflammation, are associated with DOX-induced cardiotoxicity. Based on these knowledge, various strategies were proposed, and thousands of compounds were screened. A number of natural products and herb extracts demonstrated potency in limiting DOX cardiotoxicity toward cultured cells and experimental animal models. CONCLUSIONS Though a panel of natural products and herb extracts demonstrate protective effects on DOX-induced cardiotoxicity in cells and animal models, their therapeutic potentials for clinical needs further investigation.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Changxi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Qi Kong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing 100021, PR China
| | - Xiaxia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, PR China.
| |
Collapse
|
71
|
Ahn HS, Lee DH, Kim TJ, Shin HC, Jeon HK. Cardioprotective Effects of a Phlorotannin Extract Against Doxorubicin-Induced Cardiotoxicity in a Rat Model. J Med Food 2017; 20:944-950. [PMID: 28816580 DOI: 10.1089/jmf.2017.3919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Long-term therapy with doxorubicin (DOX) is associated with high incidence of cumulative and irreversible dilated cardiomyopathy. The goal of this study was to evaluate the cardioprotective effects and safety of a phlorotannin extract from a brown algae Ecklonia cava (Seapolynol™, SPN) against DOX-induced cardiotoxicity in a rat model. A total of 42 rats were divided into six groups: control, low-dose SPN (LDS), high-dose SPN (HDS), DOX, DOX with low-dose SPN (DOX+LDS), and DOX with high-dose SPN (DOX+HDS). Echocardiography was performed at baseline and after 6 weeks. In left ventricular (LV) ejection fraction, DOX and DOX+LDS groups showed significant decreases (P < .001), while LDS, HDS, and DOX+HDS groups showed no significant change compared with control group. In LV mass index, DOX and DOX+LDS groups showed significant increases (P < .001 and P = .013), while LDS, HDS, and DOX+HDS groups showed no significant change compared with control group. In electron microscopy of the LV wall tissue, DOX+HDS group showed markedly less impaired myofibrils and mitochondria compared with both DOX and DOX+LDS groups. On the findings in echocardiography and electron microscopy, 6-week oral administration of SPN was safe and cardioprotective in a DOX-induced rat cardiotoxicity model in a dose-dependent manner.
Collapse
Affiliation(s)
- Hyo-Suk Ahn
- 1 Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital , Uijeongbu, Korea
| | - Dong-Hyeon Lee
- 2 Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital , Seoul, Korea
| | - Tae-Jung Kim
- 3 Department of Hospital Pathology, College of Medicine, The Catholic University of Korea , Seoul, Korea
| | - Hyeon-Cheol Shin
- 4 CEWIT Center for Systems Biology, The State University of New York , Incheon, Korea
| | - Hui-Kyung Jeon
- 1 Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital , Uijeongbu, Korea
| |
Collapse
|
72
|
Chemotherapy-Induced Tissue Injury: An Insight into the Role of Extracellular Vesicles-Mediated Oxidative Stress Responses. Antioxidants (Basel) 2017; 6:antiox6040075. [PMID: 28956814 PMCID: PMC5745485 DOI: 10.3390/antiox6040075] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022] Open
Abstract
The short- and long-term side effects of chemotherapy limit the maximum therapeutic dose and impair quality of life of survivors. Injury to normal tissues, especially chemotherapy-induced cardiomyopathy, is an unintended outcome that presents devastating health impacts. Approximately half of the drugs approved by the Food and Drug Administration for cancer treatment are associated with the generation of reactive oxygen species, and Doxorubicin (Dox) is one of them. Dox undergoes redox cycling by involving its quinone structure in the production of superoxide free radicals, which are thought to be instrumental to the role it plays in cardiomyopathy. Dox-induced protein oxidation changes protein function, translocation, and aggregation that are toxic to cells. To maintain cellular homeostasis, oxidized proteins can be degraded intracellularly by ubiquitin-proteasome pathway or by autophagy, depending on the redox status of the cell. Alternatively, the cell can remove oxidized proteins by releasing extracellular vesicles (EVs), which can be transferred to neighboring or distant cells, thereby instigating an intercellular oxidative stress response. In this article, we discuss the role of EVs in oxidative stress response, the potential of EVs as sensitive biomarkers of oxidative stress, and the role of superoxide dismutase in attenuating EV-associated oxidative stress response resulting from chemotherapy.
Collapse
|
73
|
Tang H, Tao A, Song J, Liu Q, Wang H, Rui T. Doxorubicin-induced cardiomyocyte apoptosis: Role of mitofusin 2. Int J Biochem Cell Biol 2017; 88:55-59. [PMID: 28483668 DOI: 10.1016/j.biocel.2017.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/28/2017] [Accepted: 05/04/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is an anti-tumor agent that is widely used in clinical setting for cancer treatment. The application of the DOX, however, is limited by its cardiac toxicity which can induce heart failure through an undefined mechanism. Mitofusin 2 (Mfn2) is a mitochondrial GTPase fusion protein that is located on the outer membrane of mitochondria (OMM). The Mfn2 plays an important role in mitochondrial fusion and fission. The aim of this study is to identify the role of the Mfn2 in DOX-induced cardiomyocyte apoptosis. METHODS Cultured neonatal rat cardiomyocytes were used in this study. Mfn2 expression in cardiomyocytes was determined after the cardiomyocytes were challenged with DOX. Cardiomyocyte mitochondrial fission, mitochondrial reactive oxygen species (ROS) production was assessed with mitochondrial fragmentation and MitoSOX fluorescence probe, respectively. Cardiomyocyte apoptosis was determined with caspase3 activity and TUNEL staining. RESULTS Challenging of the cardiomyocytes with DOX resulted in increasing in cardiomyocyte oxidative stress and apoptosis. In addition, levels of Mfn2 in cardiomyocytes were decreased after the cells were challenged with DOX which was associated with increased mitochondrial fission (fragmentation) and mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 attenuated the DOX-induced increase in mitochondrial fission and prevented cardiomyocyte mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 or pretreatment of cardiomyocytes with an anti-oxidant, Mito-tempo, also prevented the DOX-induced cardiomyocyte apoptosis. CONCLUSION Our results indicate that DOX results in a decreased cardiomyocyte Mfn2 expression which promotes mitochondrial fission and ROS production further leads to cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Han Tang
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Aibin Tao
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Jia Song
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qian Liu
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Wang
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Rui
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Critical Care Western, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Departments of Medicine, Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
74
|
Li Y, Lu G, Sun D, Zuo H, Wang DW, Yan J. Inhibition of endoplasmic reticulum stress signaling pathway: A new mechanism of statins to suppress the development of abdominal aortic aneurysm. PLoS One 2017; 12:e0174821. [PMID: 28369137 PMCID: PMC5378361 DOI: 10.1371/journal.pone.0174821] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/15/2017] [Indexed: 12/02/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a potentially lethal disease with extremely poor survival rates once the aneurysm ruptures. Statins may exert beneficial effects on the progression of AAA. However, the underlying mechanism is still not known. The purpose of the present study is to investigate whether statin could inhibit AAA formation by inhibiting the endoplasmic reticulum (ER) stress signal pathway. Methods A clinically relevant AAA model was induced in Apolipoprotein E-deficient (ApoE−/−) mice, which were infused with angiotensin II (Ang II) for 28 days. These mice were randomly divided into following 4 groups: saline infusion alone; Ang II infusion alone; Ang II infusion plus Atorvastatin (20mg/kg/d); and Ang II infusion plus Atorvastatin (30mg/kg/d). Besides, another AAA model was induced in C57 mice with extraluminal CaCl2, which were divided into 3 groups: sham group, CaCl2-induced AAA group, and CaCl2-induced AAA plus atorvastatin (20mg/kg/d) group. Then, aortic tissue was excised for further examinations, respectively. In vitro studies, Ang II with or without simvastatin treatment were applied to the vascular smooth muscle cells (VSMCS) and Raw 264.7 cells. The ER stress signal pathway, apoptosis and inflammatory response were evaluated by in vivo and in vitro assays. Results We found that higher dose of atorvastatin can effectively suppress the development and progression of AAA induced by Ang II or CaCl2. Mechanistically, the activation of ER stress and inflammatory response were found involved in Ang II-induced AAA formation. The atorvastatin infusion significantly reduced ER stress signaling proteins, the number of apoptotic cells, and the activation of Caspase12 and Bax in the Ang II-induced ApoE−/− mice, compared with mice treated by Ang II alone. Furthermore, proinflammatory cytokines such as IL-6, IL-8, IL-1β were all remarkably inhibited after atorvastatin treatment. In vitro, the inhibitory effect of simvastatin on the ER stress signal pathway could be observed in both vascular smooth muscle cells and macrophages, and these inhibitory effects of statin were in a dose-dependent manner. In addition, apoptosis was induced with Ang II treatment. The maximal inhibitory effect of simvastatin on apoptosis was observed at 10 μmol/l. Conclusions We conclude that higher dose of statin can effectively suppress the development of AAA, and reduce ER stress, ER stress-associated apoptosis signaling pathways, and inflammatory response. These findings reveal a new mechanism underlying the inhibitory effect of statin on AAA formation/progression.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apoptosis/drug effects
- Apoptosis/physiology
- Atorvastatin/pharmacology
- Calcium Chloride
- Cell Line
- Cytokines/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum Stress/drug effects
- Endoplasmic Reticulum Stress/physiology
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Random Allocation
Collapse
Affiliation(s)
- Yuanyuan Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangsheng Lu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dating Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Houjuan Zuo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DWW); (JY)
| | - Jiangtao Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (DWW); (JY)
| |
Collapse
|
75
|
Fu HY, Mukai M, Awata N, Sakata Y, Hori M, Minamino T. Protein Quality Control Dysfunction in Cardiovascular Complications Induced by Anti-Cancer Drugs. Cardiovasc Drugs Ther 2017; 31:109-117. [PMID: 28120277 DOI: 10.1007/s10557-016-6709-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular complications, including heart failure, hypertension, ischemic syndromes and venous thromboembolism, have been identified in patients treated with anti-cancer drugs. Oxidative stress, mitochondrial dysfunction and DNA synthesis inhibition are considered to be responsible for the cardiotoxicity induced by these agents. Protein quality control (PQC) has 3 major components, including the endoplasmic reticulum (ER), the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, and participates in protein folding and degradation to maintain protein homeostasis. We have demonstrated that PQC dysfunction is a new causal mechanism for the development of cardiac hypertrophy and failure. Increasing evidence shows that anti-cancer drugs, such as tyrosine kinase inhibitors, proteasome inhibitors, anthracyclines and autophagy inhibitors, cause PQC dysfunction. Here, we provide an overview of the potential role of PQC dysfunction in the development of cardiovascular complications induced by anti-cancer drugs.
Collapse
Affiliation(s)
- Hai Ying Fu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Mikio Mukai
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Nobuhisa Awata
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masatsugu Hori
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Mikicho, Kita-gun, Kagawa Prefecture, 761-0793, Japan.
| |
Collapse
|
76
|
Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis. Mar Drugs 2016; 14:md14120231. [PMID: 27999379 PMCID: PMC5192468 DOI: 10.3390/md14120231] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023] Open
Abstract
Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis.
Collapse
|
77
|
Histone Deacetylase Inhibitor Phenylbutyrate Exaggerates Heart Failure in Pressure Overloaded Mice independently of HDAC inhibition. Sci Rep 2016; 6:34036. [PMID: 27667442 PMCID: PMC5036044 DOI: 10.1038/srep34036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022] Open
Abstract
4-Sodium phenylbutyrate (PBA) has been reported to inhibit endoplasmic reticulum stress and histone deacetylation (HDAC), both of which are novel therapeutic targets for cardiac hypertrophy and heart failure. However, it is unclear whether PBA can improve heart function. Here, we tested the effects of PBA and some other HDAC inhibitors on cardiac dysfunction induced by pressure overload. Transverse aortic constriction (TAC) was performed on male C57BL/6 mice. PBA treatment (100 mg/kg, 6 weeks) unexpectedly led to a higher mortality, exacerbated cardiac remodelling and dysfunction. Similar results were noted in TAC mice treated with butyrate sodium (BS), a PBA analogue. In contrast, other HDAC inhibitors, valproic acid (VAL) and trichostatin A (TSA), improved the survival. All four HDAC inhibitors induced histone H3 acetylation and inhibited HDAC total activity. An individual HDAC activity assay showed that rather than class IIa members (HDAC4 and 7), PBA and BS predominantly inhibited class I members (HDAC2 and 8), whereas VAL and TSA inhibited all of them. These findings indicate that PBA and BS accelerate cardiac hypertrophy and dysfunction, whereas VAL and TSA have opposing effects.
Collapse
|
78
|
Ding Y, Long PA, Bos JM, Shih YH, Ma X, Sundsbak RS, Chen J, Jiang Y, Zhao L, Hu X, Wang J, Shi Y, Ackerman MJ, Lin X, Ekker SC, Redfield MM, Olson TM, Xu X. A modifier screen identifies DNAJB6 as a cardiomyopathy susceptibility gene. JCI Insight 2016; 1. [PMID: 27642634 DOI: 10.1172/jci.insight.88797] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mutagenesis screening is a powerful forward genetic approach that has been successfully applied in lower-model organisms to discover genetic factors for biological processes. This phenotype-based approach has yet to be established in vertebrates for probing major human diseases, largely because of the complexity of colony management. Herein, we report a rapid strategy for identifying genetic modifiers of cardiomyopathy (CM). Based on the application of doxorubicin stress to zebrafish insertional cardiac (ZIC) mutants, we identified 4 candidate CM-modifying genes, of which 3 have been linked previously to CM. The long isoform of DnaJ (Hsp40) homolog, subfamily B, member 6b (dnajb6b(L)) was identified as a CM susceptibility gene, supported by identification of rare variants in its human ortholog DNAJB6 from CM patients. Mechanistic studies indicated that the deleterious, loss-of-function modifying effects of dnajb6b(L) can be ameliorated by inhibition of ER stress. In contrast, overexpression of dnajb6(L) exerts cardioprotective effects on both fish and mouse CM models. Together, our findings establish a mutagenesis screening strategy that is scalable for systematic identification of genetic modifiers of CM, feasible to suggest therapeutic targets, and expandable to other major human diseases.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Pamela A Long
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - J Martijn Bos
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yu-Huan Shih
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Rhianna S Sundsbak
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwen Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Liqun Zhao
- Department of Cardiology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Jianan Wang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Yongyong Shi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Michael J Ackerman
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Timothy M Olson
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA; Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
79
|
Abstract
INTRODUCTION/BACKGROUND Heart failure is a major cause of cardiovascular morbidity and mortality. This review covers current heart failure treatment guidelines, emerging therapies that are undergoing clinical trial, and potential new therapeutic targets arising from basic science advances. SOURCES OF DATA A non-systematic search of MEDLINE was carried out. International guidelines and relevant reviews were searched for additional articles. AREAS OF AGREEMENT Angiotensin-converting enzyme inhibitors and beta-blockers are first line treatments for chronic heart failure with reduced left ventricular function. AREAS OF CONTROVERSY Treatment strategies to improve mortality in heart failure with preserved left ventricular function are unclear. GROWING POINTS Many novel therapies are being tested for clinical efficacy in heart failure, including those that target natriuretic peptides and myosin activators. A large number of completely novel targets are also emerging from laboratory-based research. Better understanding of pathophysiological mechanisms driving heart failure in different settings (e.g. hypertension, post-myocardial infarction, metabolic dysfunction) may allow for targeted therapies. AREAS TIMELY FOR DEVELOPING RESEARCH Therapeutic targets directed towards modifying the extracellular environment, angiogenesis, cell viability, contractile function and microRNA-based therapies.
Collapse
Affiliation(s)
- Adam Nabeebaccus
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Sean Zheng
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Ajay M Shah
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| |
Collapse
|
80
|
Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochem J 2016; 473:3769-3789. [PMID: 27487838 DOI: 10.1042/bcj20160385] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX) is an effective anti-cancer agent. However, DOX treatment increases patient susceptibility to dilated cardiomyopathy. DOX predisposes cardiomyocytes to insult by suppressing mitochondrial energy metabolism, altering calcium flux, and disrupting proteolysis and proteostasis. Prior studies have assessed the role of macroautophagy in DOX cardiotoxicity; however, limited studies have examined whether DOX mediates cardiac injury through dysfunctions in inter- and/or intra-lysosomal signaling events. Lysosomal signaling and function is governed by transcription factor EB (TFEB). In the present study, we hypothesized that DOX caused myocyte injury by impairing lysosomal function and signaling through negative regulation of TFEB. Indeed, we found that DOX repressed cellular TFEB expression, which was associated with impaired cathepsin proteolytic activity across in vivo, ex vivo, and in vitro models of DOX cardiotoxicity. Furthermore, we observed that loss of TFEB was associated with reduction in macroautophagy protein expression, inhibition of autophagic flux, impairments in lysosomal cathepsin B activity, and activation of cell death. Restoration and/or activation of TFEB in DOX-treated cardiomyocytes prevented DOX-induced suppression of cathepsin B activity, reduced DOX-mediated reactive oxygen species (ROS) overproduction, attenuated activation of caspase-3, and improved cellular viability. Collectively, loss of TFEB inhibits lysosomal autophagy, rendering cardiomyocytes susceptible to DOX-induced proteotoxicity and injury. Our data reveal a novel mechanism wherein DOX primes cardiomyocytes for cell death by depleting cellular TFEB.
Collapse
|