51
|
Potts LB, Ren Y, Lu G, Kuo E, Ngo E, Kuo L, Hein TW. Constriction of retinal arterioles to endothelin-1: requisite role of rho kinase independent of protein kinase C and L-type calcium channels. Invest Ophthalmol Vis Sci 2012; 53:2904-12. [PMID: 22427601 DOI: 10.1167/iovs.12-9542] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Although endothelin-1 (ET-1) is a potent vasoconstrictor peptide implicated in several retinal pathologies, the underlying mechanism of vasoconstriction is understood incompletely. We addressed this issue by assessing the contributions of extracellular calcium (Ca²⁺), L-type voltage-operated calcium channels (L-VOCCs), Rho kinase (ROCK), and protein kinase C (PKC) to ET-1-induced constriction of porcine retinal arterioles, all of which have been implicated commonly in vascular smooth muscle contraction. METHODS Porcine retinal arterioles (~50-100 μm) were isolated for vasomotor study and molecular assessment of ROCK isoforms. RESULTS Isolated arterioles developed stable basal tone at 55 cmH₂O luminal pressure and constricted to ET-1 (0.1 nM) with a 40 ± 6% reduction in resting diameter in 20 minutes. In the absence of extraluminal Ca²⁺, arterioles lost basal tone and failed to constrict to ET-1. Although L-VOCC inhibitor nifedipine reduced basal tone and blocked vasoconstriction to PKC activator PDBu, vasoconstriction to ET-1 was unaffected. The broad-spectrum PKC inhibitor Gö-6983 abolished vasoconstriction to PDBu, but did not alter ET-1-induced vasoconstriction or basal tone. Incubation of arterioles with ROCK inhibitor H-1152 abolished basal tone and vasoconstrictions to ET-1 and PDBu. Both ROCK1 and ROCK2 isoforms were expressed in the retinal arteriolar wall. CONCLUSIONS Extracellular Ca²⁺ entry via L-VOCCs and basal ROCK activity play important roles in the maintenance of basal tones of porcine retinal arterioles. ET-1-induced constriction is mediated by extracellular Ca²⁺ entry independent of L-VOCCs and by ROCK activation without the involvement of PKC. However, direct PKC activation can cause vasoconstriction via L-VOCC and ROCK signaling.
Collapse
Affiliation(s)
- Luke B Potts
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, Temple, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO.
Collapse
|
53
|
Xiao Z, Yang M, Lv Q, Wang W, Deng M, Liu X, He Q, Chen X, Chen M, Fang L, Xie X, Hu J. P2Y11 impairs cell proliferation by induction of cell cycle arrest and sensitizes endothelial cells to cisplatin-induced cell death. J Cell Biochem 2011; 112:2257-65. [PMID: 21503959 DOI: 10.1002/jcb.23144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Extracellular ATP mediates a wide range of physiological effects, including cell proliferation, differentiation, maturation, and migration. However, the effect of ATP on cell proliferation has been contradictory, and the mechanism is not fully understood. In the current study, we found that extracellular ATP significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). Treatment with ATP did not induce cell apoptosis but instead induced cell cycle arrest in S phase. ATP induced the phosphorylation of ERK1/2, but the ERK inhibitors, U0126 and PD9809, did not regulate the inhibition of cell proliferation induced by ATP. However, ATP-induced inhibition of cell proliferation was blocked by suramin, a nonspecific antagonist of the P2Y receptors, and endothelial cells expressed P2Y11, a P2Y receptor that specifically binds ATP. Moreover, the down-regulation of P2Y11 by RNA interference not only reversed the inhibition of cell proliferation but also ameliorated cell cycle arrest in S phase. In addition, P2Y11 sensitized endothelial cells to cisplatin-induced cell death by down-regulation of the expression of Bcl-2. Taken together, these results suggest that extracellular ATP impairs cell proliferation by triggering signaling to induce cell cycle arrest and sensitizes cell to death via P2Y11 in endothelial cells.
Collapse
Affiliation(s)
- Zhilin Xiao
- Department of Geriatric Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Affiliation(s)
- Joseph A. Vita
- From the Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| |
Collapse
|
55
|
Bender SB, Berwick ZC, Laughlin MH, Tune JD. Functional contribution of P2Y1 receptors to the control of coronary blood flow. J Appl Physiol (1985) 2011; 111:1744-50. [PMID: 21940850 DOI: 10.1152/japplphysiol.00946.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of ADP-sensitive P2Y(1) receptors has been proposed as an integral step in the putative "nucleotide axis" regulating coronary blood flow. However, the specific mechanism(s) and overall contribution of P2Y(1) receptors to the control of coronary blood flow have not been clearly defined. Using vertically integrative studies in isolated coronary arterioles and open-chest anesthetized dogs, we examined the hypothesis that P2Y(1) receptors induce coronary vasodilation via an endothelium-dependent mechanism and contribute to coronary pressure-flow autoregulation and/or ischemic coronary vasodilation. Immunohistochemistry revealed P2Y(1) receptor expression in coronary arteriolar endothelial and vascular smooth muscle cells. The ADP analog 2-methylthio-ADP induced arteriolar dilation in vitro and in vivo that was abolished by the selective P2Y(1) antagonist MRS-2179 and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. MRS-2179 did not alter baseline coronary flow in vivo but significantly attenuated coronary vasodilation to ATP in vitro and in vivo and the nonhydrolyzable ATP analog ATPγS in vitro. Coronary blood flow responses to alterations in coronary perfusion pressure (40-100 mmHg) or to a brief 15-s coronary artery occlusion were unaffected by MRS-2179. Our data reveal that P2Y(1) receptors are functionally expressed in the coronary circulation and that activation produces coronary vasodilation via an endothelium/nitric oxide-dependent mechanism. Although these receptors represent a critical component of purinergic coronary vasodilation, our findings indicate that P2Y(1) receptor activation is not required for coronary pressure-flow autoregulation or reactive hyperemia.
Collapse
Affiliation(s)
- Shawn B Bender
- Dept. of Biomedical Sciences, Univ. of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
56
|
Nitric Oxide-Donating Derivatives of Chrysin Stimulate Angiogenesis and Upregulating VEGF Production. ACTA ACUST UNITED AC 2011. [DOI: 10.4028/www.scientific.net/amr.340.363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Angiogenesis, the development of new capillaries from pre-existing vessels, requires the coordinate activation of endothelial cells, which migrate and proliferate to form functional vessels. Endothelial dysfunction and decreased nitric oxide bioavailability may underscore the impairment of angiogenesis. As such, the delivery of exogenous NO is an attractive therapeutic option that has been used to therapeutic angiogenesis. In this paper, a novel group of hybrid nitric oxide-releasing chrysin derivatives was synthesized. The results indicated that all these chrysin derivatives exhibited promotion of endothelial migration and tubulogenesis in vitro as well as stimulation angiogenesis in vivo.Furthermore, all compounds released NO upon incubation with phosphate buffer at pH 7.4 and enhanced VEGF secretion and VEGF mRNA expression of endothelial cells. These hybrid ester NO donor prodrugs offer a potential drug design concept for the development of therapeutic or preventive agents for angiogenesis deficiency due to ischemic diseases.
Collapse
|
57
|
Uehara K, Uehara A. P2Y1, P2Y6, and P2Y12 receptors in rat splenic sinus endothelial cells: an immunohistochemical and ultrastructural study. Histochem Cell Biol 2011; 136:557-67. [PMID: 21879346 DOI: 10.1007/s00418-011-0859-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2011] [Indexed: 12/21/2022]
Abstract
Localization of three P2X and six P2Y receptors in sinus endothelial cells of the rat spleen was examined by immunofluorescent microscopy, and ultrastructural localization of the detected receptors was examined by immunogold electron microscopy. In immunofluorescent microscopy, labeling for anti-P2Y1, P2Y6, and P2Y12 receptors was detected in endothelial cells, but P2X1, P2X2, P2X4, P2Y2, P2Y4, and P2Y13 receptors was not detected. P2Y1 and P2Y12 receptors were prominently localized in the basal parts of endothelial cells. P2Y6 receptor was not only predominantly localized in the basal parts of endothelial cells, but also in the superficial layer. Triple immunofluorescent staining for a combination of two P2Y receptors and actin filaments showed that P2Y1, P2Y6, and P2Y12 receptors were individually localized in endothelial cells. Phospholipase C-β3, phospholipase C- γ2, and inositol-1,4,5-trisphosphate receptors, related to the release of the intracellular Ca(2+) from the endoplasmic reticulum, were also predominantly localized in the basal parts of endothelial cells. In immunogold electron microscopy, labeling for P2Y1, P2Y6, and P2Y12 receptors were predominantly localized in the basal part of endothelial cells and, in addition, in the junctional membrane, basal plasma membrane, and caveolae in the basal part of endothelial cells. Labeling for phospholipase C-β3 and phospholipase C-γ2 was dominantly localized in the basal parts and in close proximity to the plasma membranes of endothelial cells. The possible functional roles of these P2Y receptors in splenic sinus endothelial cells are discussed.
Collapse
Affiliation(s)
- Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Jonan-ku, Japan.
| | | |
Collapse
|
58
|
Zemskov E, Lucas R, Verin AD, Umapathy NS. P2Y receptors as regulators of lung endothelial barrier integrity. J Cardiovasc Dis Res 2011; 2:14-22. [PMID: 21716747 PMCID: PMC3120267 DOI: 10.4103/0975-3583.78582] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Endothelial cells (ECs), forming a semi-permeable barrier between the interior space of blood vessels and underlying tissues, control such diverse processes as vascular tone, homeostasis, adhesion of platelets, and leukocytes to the vascular wall and permeability of vascular wall for cells and fluids. Mechanisms which govern the highly clinically relevant process of increased EC permeability are under intense investigation. It is well known that loss of this barrier (permeability increase) results in tissue inflammation, the hall mark of inflammatory diseases such as acute lung injury and its severe form, acute respiratory distress syndrome. Little is known about processes which determine the endothelial barrier enhancement or protection against permeability increase. It is now well accepted that extracellular purines and pyrimidines are promising and physiologically relevant barrier-protective agents and their effects are mediated by interaction with cell surface P2Y receptors which belong to the superfamily of G-protein-coupled receptors. The therapeutic potential of P2Y receptors is rapidly expanding field in pharmacology and some selective agonists became recently available. Here, we present an overview of recently identified P2Y receptor agonists that enhance the pulmonary endothelial barrier and inhibit and/or reverse endothelial barrier disruption.
Collapse
Affiliation(s)
- Evgeny Zemskov
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
59
|
Wen J, Grenz A, Zhang Y, Dai Y, Kellems RE, Blackburn MR, Eltzschig HK, Xia Y. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation. FASEB J 2011; 25:2823-30. [PMID: 21566208 DOI: 10.1096/fj.11-181057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Normal penile erection is under the control of multiple factors and signaling pathways. Although adenosine signaling is implicated in normal and abnormal penile erection, the exact role and the underlying mechanism for adenosine signaling in penile physiology remain elusive. Here we report that shear stress leads to increased adenosine release from endothelial cells. Subsequently, we determined that ecto-5'-nucleotidase (CD73) is a key enzyme required for the production of elevated adenosine from ATP released by shear-stressed endothelial cells. Mechanistically, we demonstrate that shear stress-mediated elevated adenosine functions through the adenosine A(2B) receptor (A(2B)R) to activate the PI3K/AKT signaling cascade and subsequent increased endothelial nitric oxide synthase (eNOS) phosphorylation. These in vitro studies led us to discover further that adenosine was induced during sustained penile erection and contributes to PI3K/AKT activation and subsequent eNOS phosphorylation via A(2B)R signaling in intact animal. Finally, we demonstrate that lowering adenosine in wild-type mice or genetic deletion of A(2B)R in mutant mice significantly attenuated PI3K/AKT activation, eNOS phosphorylation, and subsequent impaired penile erection featured with the reduction of ratio of maximal intracavernosal pressure to systemic arterial pressure from 0.49 ± 0.03 to 0.41 ± 0.05 and 0.38 ± 0.04, respectively (both P<0.05). Overall, using biochemical, cellular, genetic, and physiological approaches, our findings reveal that adenosine is a novel molecule signaling via A(2B)R activation, contributing to penile erection via PI3K/AKT-dependent eNOS activation. These studies suggest that this signaling pathway may be a novel therapeutic target for erectile disorders.
Collapse
Affiliation(s)
- Jiaming Wen
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, 6431 Fannin St., MSB 6.200, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Xiao Z, Wang T, Qin H, Huang C, Feng Y, Xia Y. Endoplasmic reticulum Ca2+ release modulates endothelial nitric-oxide synthase via extracellular signal-regulated kinase (ERK) 1/2-mediated serine 635 phosphorylation. J Biol Chem 2011; 286:20100-8. [PMID: 21454579 DOI: 10.1074/jbc.m111.220236] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial nitric-oxide synthase (eNOS) plays a central role in cardiovascular regulation. eNOS function is critically modulated by Ca(2+) and protein phosphorylation, but the interrelationship between intracellular Ca(2+) mobilization and eNOS phosphorylation is poorly understood. Here we show that endoplasmic reticulum (ER) Ca(2+) release activates eNOS by selectively promoting its Ser-635/633 (bovine/human) phosphorylation. With bovine endothelial cells, thapsigargin-induced ER Ca(2+) release caused a dose-dependent increase in eNOS Ser-635 phosphorylation, leading to elevated NO production. ER Ca(2+) release also promoted eNOS Ser-633 phosphorylation in mouse vessels in vivo. This effect was independent of extracellular Ca(2+) and selective to Ser-635 because the phosphorylation status of other eNOS sites, including Ser-1179 or Thr-497, was unaffected in thapsigargin-treated cells. Blocking ERK1/2 abolished ER Ca(2+) release-induced eNOS Ser-635 phosphorylation, whereas inhibiting protein kinase A or Ca(2+)/calmodulin-dependent protein kinase II had no effect. Protein phosphorylation assay confirmed that ERK1/2 directly phosphorylated the eNOS Ser-635 residue in vitro. Further studies demonstrated that ER Ca(2+) release-induced ERK1/2 activation mediated the enhancing action of purine or bradykinin receptor stimulation on eNOS Ser-635/633 phosphorylation in bovine/human endothelial cells. Mutating the Ser-635 to nonphosphorylatable alanine prevented ATP from activating eNOS in cells. Taken together, these studies reveal that ER Ca(2+) release enhances eNOS Ser-635 phosphorylation and function via ERK1/2 activation. Because ER Ca(2+) is commonly mobilized by agonists or physicochemical stimuli, the identified ER Ca(2+)-ERK1/2-eNOS Ser-635 phosphorylation pathway may have a broad role in the regulation of endothelial function.
Collapse
Affiliation(s)
- Zhihong Xiao
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
61
|
Raqeeb A, Sheng J, Ao N, Braun AP. Purinergic P2Y2 receptors mediate rapid Ca(2+) mobilization, membrane hyperpolarization and nitric oxide production in human vascular endothelial cells. Cell Calcium 2011; 49:240-8. [PMID: 21414662 DOI: 10.1016/j.ceca.2011.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 11/29/2022]
Abstract
In blood vessels, stimulation of the vascular endothelium by the Ca(2+)-mobilizing agonist ATP initiates a number of cellular events that cause relaxation of the adjacent smooth muscle layer. Although vascular endothelial cells are reported to express several subtypes of purinergic P2Y and P2X receptors, the major isoform(s) responsible for the ATP-induced generation of vasorelaxant signals in human endothelium has not been well characterized. To address this issue, ATP-evoked changes in cytosolic Ca(2+), membrane potential and acute nitric oxide production were measured in isolated human umbilical vein endothelial cells (HUVECs) and profiled using established P2X and P2Y receptor probes. Whereas selective P2X agonist (i.e. α,β-methyl ATP) and antagonists (i.e. TNP-ATP and PPADS) could neither mimic nor block the observed ATP-evoked cellular responses, the specific P2Y receptor agonist UTP functionally reproduced all the ATP-stimulated effects. Furthermore, both ATP and UTP induced intracellular Ca(2+) mobilization with comparable EC(50) values (i.e. 1-3μM). Collectively, these functional and pharmacological profiles strongly suggest that ATP acts primarily via a P2Y2 receptor sub-type in human endothelial cells. In support, P2Y2 receptor mRNA and protein were readily detected in isolated HUVECs, and siRNA-mediated knockdown of endogenous P2Y2 receptor protein significantly blunted the cytosolic Ca(2+) elevations in response to ATP and UTP, but did not affect the histamine-evoked response. In summary, these results identify the P2Y2 isoform as the major purinergic receptor in human vascular endothelial cells that mediates the cellular actions of ATP linked to vasorelaxation.
Collapse
Affiliation(s)
- Abdul Raqeeb
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary and Smooth Muscle Research Group, Libin Cardiovascular Institute, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
62
|
Abstract
The internal thoracic artery (ITA) has become the gold standard graft material for modern coronary artery bypass grafting (CABG) because of its excellent long-term patency. The use of ITA grafts has also prolonged the postoperative survival of patients when applied to the left anterior descending artery or used bilaterally as 2 grafts for the left coronary system. Moreover, recent large-scale randomized clinical trials comparing the survival rates between CABG and percutaneous coronary intervention (PCI) with stents have shown that CABG is more effective for improving the survival of patients with severe coronary artery disease and/or in those with diabetes mellitus. The fundamental principle underlying these clinical benefits of CABG is the excellent endothelial function of the ITA, which provides physiological and metabolic effects that are beneficial not only for the graft itself, but also for the recipient coronary system. The production of nitric oxide and prostanoids by the ITA endothelium and their beneficial effects on the downstream coronary artery should therefore be taken into consideration when debating the merits of CABG vs. PCI.
Collapse
Affiliation(s)
- Soichiro Kitamura
- National Cerebral and Cardiovascular Center, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| |
Collapse
|
63
|
Zhang Y, Listhrop R, Ecelbarger CM, Kishore BK. Renal sodium transporter/channel expression and sodium excretion in P2Y2 receptor knockout mice fed a high-NaCl diet with/without aldosterone infusion. Am J Physiol Renal Physiol 2011; 300:F657-68. [PMID: 21190950 PMCID: PMC4068121 DOI: 10.1152/ajprenal.00549.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/23/2010] [Indexed: 12/11/2022] Open
Abstract
The P2Y(2) receptor (P2Y2-R) antagonizes sodium reabsorption in the kidney. Apart from its effect in distal nephron, hypothetically, P2Y(2)-R may modulate activity/abundances of sodium transporters/channel subunits along the nephron via antagonism of aldosterone or vasopressin or interaction with mediators such as nitric oxide (NO), and prostaglandin E(2) (PGE(2)) or oxidative stress (OS). To determine the extent of the regulatory role of P2Y(2)-R in renal sodium reabsorption, in study 1, we fed P2Y(2)-R knockout (KO; n = 5) and wild-type (WT; n = 5) mice a high (3.15%)-sodium diet (HSD) for 14 days. Western blotting revealed significantly higher protein abundances for cortical and medullary bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2), medullary α-1-subunit of Na-K-ATPase, and medullary α-subunit of the epithelial sodium channel (ENaC) in KO vs. WT mice. Molecular analysis of urine showed increased excretion of nitrates plus nitrites (NOx), PGE(2), and 8-isoprostane in the KO, relative to WT mice, supporting a putative role for these molecules in determining alterations of proteins involved in sodium transport along the nephron. To determine whether genotype differences in response to aldosterone might have played a role in these differences due to HSD, in study 2 aldosterone levels were clamped (by osmotic minipump infusion). Clamping aldosterone (with HSD) led to significantly impaired natriuresis with elevated Na/H exchanger isoform 3 in the cortex, and NKCC2 in the medulla, and modest but significantly lower levels of NKCC2, and α- and β-ENaC in the cortex of KO vs. WT mice. This was associated with significantly reduced urinary NOx in the KO, although PGE(2) and 8-isoprostane remained significantly elevated vs. WT mice. Taken together, our results suggest that P2Y(2)-R is an important regulator of sodium transporters along the nephron. Pre- or postreceptor differences in the response to aldosterone, perhaps mediated via prostaglandins or changes in NOS activity or OS, likely play a role.
Collapse
Affiliation(s)
- Yue Zhang
- Nephrology Research, Department of Veterans Administration Salt Lake City Health Care System, Departments of Medicine Georgetown University, Washington, District of Columbia, USA
| | | | | | | |
Collapse
|
64
|
Zou XQ, Peng SM, Hu CP, Tan LF, Deng HW, Li YJ. Furoxan nitric oxide donor coupled chrysin derivatives: Synthesis and vasculoprotection. Bioorg Med Chem Lett 2011; 21:1222-6. [DOI: 10.1016/j.bmcl.2010.12.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 12/13/2010] [Accepted: 12/16/2010] [Indexed: 12/01/2022]
|
65
|
Tölle M, Schuchardt M, Wiedon A, Huang T, Klöckel L, Jankowski J, Jankowski V, Zidek W, van der Giet M. Differential effects of uridine adenosine tetraphosphate on purinoceptors in the rat isolated perfused kidney. Br J Pharmacol 2011; 161:530-40. [PMID: 20880394 DOI: 10.1111/j.1476-5381.2010.00914.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Purinergic signalling plays an important role in vascular tone regulation in humans. We have identified uridine adenosine tetraphosphate (Up(4)A) as a novel and highly potent endothelial-derived contracting factor. Up(4)A induces strong vasoconstrictive effects in the renal vascular system mainly by P2X(1) receptor activation. However, other purinoceptors are also involved and were analysed here. EXPERIMENTAL APPROACH The rat isolated perfused kidney was used to characterize vasoactive actions of Up(4)A. KEY RESULTS After desensitization of the P2X(1) receptor by α,β-methylene ATP (α,β-meATP), Up(4)A showed dose-dependent P2Y(2)-mediated vasoconstriction. Continuous perfusion with Up(4)A evoked a biphasic vasoconstrictor effect: there was a strong and rapidly desensitizing vasoconstriction, inhibited by P2X(1) receptor desensitization. In addition, there is a long-lasting P2Y(2)-mediated vasoconstriction. This vasoconstriction could be blocked by suramin, but not by PPADS or reactive blue 2. In preparations of the rat isolated perfused kidney model with an elevated vascular tone, bolus application of Up(4)A showed a dose-dependent vasoconstriction that was followed by a dose-dependent vasodilation. The vasoconstriction was in part sensitive to P2X(1) receptor desensitization by α,β-meATP, and the remaining P2Y(2)-mediated vasoconstriction was only inhibited by suramin. The Up(4)A-induced vasodilation depended on activation of nitric oxide synthases, and was mediated by P2Y(1) and P2Y(2) receptor activation. CONCLUSIONS AND IMPLICATIONS Up(4)A activated P2X(1) and P2Y(2) receptors to act as a vasoconstrictor, whereas endothelium-dependent vasodilation was induced by P2Y(1/2) receptor activation. Up(4)A might be of relevance in the physiology and pathophysiology of vascular tone regulation.
Collapse
Affiliation(s)
- Markus Tölle
- Charité- Universitätsmedizin Berlin, Medical. Klinik mit Schwerpunkt Nephrologie, Hindenburgdamm 30, 12203 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Sudden cardiac death (SCD) remains one of the most prevalent modes of death in industrialized countries, and myocardial ischemia due to thrombotic coronary occlusion is its primary cause. The role of platelets in the occurrence of SCD extends beyond coronary flow impairment by clot formation. Here we review the substances released by platelets during clot formation and their arrhythmic properties. Platelet products are released from three types of platelet granules: dense core granules, alpha-granules, and platelet lysosomes. The physiologic properties of dense granule products are of special interest as a potential source of arrhythmic substances. They are released readily upon activation and contain high concentrations of serotonin, histamine, purines, pyrimidines, and ions such as calcium and magnesium. Potential arrhythmic mechanisms of these substances, e.g., serotonin and high energy phosphates, include induction of coronary constriction, calcium overloading, and induction of delayed after-depolarizations. Alpha-granules produce thromboxanes and other arachidonic-acid products with many potential arrhythmic effects mediated by interference with cardiac sodium, calcium, and potassium channels. Alpha-granules also contain hundreds of proteins that could potentially serve as ligands to receptors on cardiomyocytes. Lysosomal products probably do not have an important arrhythmic effect. Platelet products and ischemia can induce coronary permeability, thereby enhancing interaction with surrounding cardiomyocytes. Antiplatelet therapy is known to improve survival after myocardial infarction. Although an important part of this effect results from prevention of coronary clot formation, there is evidence to suggest that antiplatelet therapy also induces anti-arrhythmic effects during ischemia by preventing the release of platelet activation products.
Collapse
|
67
|
Yang D, Luo Z, Ma S, Wong WT, Ma L, Zhong J, He H, Zhao Z, Cao T, Yan Z, Liu D, Arendshorst WJ, Huang Y, Tepel M, Zhu Z. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension. Cell Metab 2010; 12:130-41. [PMID: 20674858 PMCID: PMC3906919 DOI: 10.1016/j.cmet.2010.05.015] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 11/10/2009] [Accepted: 05/17/2010] [Indexed: 02/07/2023]
Abstract
Some plant-based diets lower the cardiometabolic risks and prevalence of hypertension. New evidence implies a role for the transient receptor potential vanilloid 1 (TRPV1) cation channel in the pathogenesis of cardiometabolic diseases. Little is known about impact of chronic TRPV1 activation on the regulation of vascular function and blood pressure. Here we report that chronic TRPV1 activation by dietary capsaicin increases the phosphorylation of protein kinase A (PKA) and eNOS and thus production of nitric oxide (NO) in endothelial cells, which is calcium dependent. TRPV1 activation by capsaicin enhances endothelium-dependent relaxation in wild-type mice, an effect absent in TRPV1-deficient mice. Long-term stimulation of TRPV1 can activate PKA, which contributes to increased eNOS phosphorylation, improves vasorelaxation, and lowers blood pressure in genetically hypertensive rats. We conclude that TRPV1 activation by dietary capsaicin improves endothelial function. TRPV1-mediated increase in NO production may represent a promising target for therapeutic intervention of hypertension.
Collapse
Affiliation(s)
- Dachun Yang
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Zhidan Luo
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Shuangtao Ma
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Wing Tak Wong
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Liqun Ma
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Jian Zhong
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Hongbo He
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Zhigang Zhao
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Tingbing Cao
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Zhencheng Yan
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - Daoyan Liu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| | - William J. Arendshorst
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yu Huang
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Martin Tepel
- Medizinische Klinik Nephrologie, Charite Campus Benjamin Franklin, Berlin 12200, Germany
| | - Zhiming Zhu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042, China
| |
Collapse
|
68
|
Imai Y, Sato K, Ishikawa T, Comerford A, David T, Yamaguchi T. ATP transport in saccular cerebral aneurysms at arterial bends. Ann Biomed Eng 2009; 38:927-34. [PMID: 20012692 DOI: 10.1007/s10439-009-9864-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
ATP acts as an extracellular signaling molecule in purinergic signaling that regulates vascular tone. ATP binds purinergic P2 nucleotide receptors on endothelial cells. Understanding the mass transport of ATP to endothelial cells by blood flow is thus important to predict functional changes in aneurysmal walls. While some clinical observations indicate a difference of wall pathology between ruptured and unruptured aneurysms, no study has focused on the mass transport in aneurysms. We investigated the characteristics of ATP concentration at aneurysmal wall using a numerical model of ATP transport in aneurysms formed at arterial bends. The magnitude of ATP concentration at the aneurysmal wall was significantly smaller than that at the arterial wall. In particular, significantly low concentration was predicted at the proximal side of the aneurysmal sac. A strong correlation was revealed between the inflow flux at the aneurysmal neck and the resultant concentration at the aneurysmal wall.
Collapse
Affiliation(s)
- Yohsuke Imai
- Department of Bioengineering and Robotics, Tohoku University, 6-6-01 Aramaki Aza Aoba, Aoba-ku, Sendai-shi, Miyagi, 980-8579, Japan.
| | | | | | | | | | | |
Collapse
|
69
|
Hess CN, Kou R, Johnson RP, Li GK, Michel T. ADP signaling in vascular endothelial cells: ADP-dependent activation of the endothelial isoform of nitric-oxide synthase requires the expression but not the kinase activity of AMP-activated protein kinase. J Biol Chem 2009; 284:32209-24. [PMID: 19783664 DOI: 10.1074/jbc.m109.032656] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ADP responses underlie therapeutic approaches to many cardiovascular diseases, and ADP receptor antagonists are in widespread clinical use. The role of ADP in platelet biology has been extensively studied, yet ADP signaling pathways in endothelial cells remain incompletely understood. We found that ADP promoted phosphorylation of the endothelial isoform of nitric-oxide synthase (eNOS) at Ser(1179) and Ser(635) and dephosphorylation at Ser(116) in cultured endothelial cells. Although eNOS activity was stimulated by both ADP and ATP, only ADP signaling was significantly inhibited by the P2Y(1) receptor antagonist MRS 2179 or by knockdown of P2Y(1) using small interfering RNA (siRNA). ADP activated the small GTPase Rac1 and promoted endothelial cell migration. siRNA-mediated knockdown of Rac1 blocked ADP-dependent eNOS Ser(1179) and Ser(635) phosphorylation, as well as eNOS activation. We analyzed pathways known to regulate eNOS, including phosphoinositide 3-kinase/Akt, ERK1/2, Src, and calcium/calmodulin-dependent kinase kinase-beta (CaMKKbeta) using the inhibitors wortmannin, PD98059, PP2, and STO-609, respectively. None of these inhibitors altered ADP-modulated eNOS phosphorylation. In contrast, siRNA-mediated knockdown of AMP-activated protein kinase (AMPK) inhibited ADP-dependent eNOS Ser(635) phosphorylation and eNOS activity but did not affect eNOS Ser(1179) phosphorylation. Importantly, the AMPK enzyme inhibitor compound C had no effect on ADP-stimulated eNOS activity, despite completely blocking AMPK activity. CaMKKbeta knockdown suppressed ADP-stimulated eNOS activity, yet inhibition of CaMKKbeta kinase activity using STO-609 failed to affect eNOS activation by ADP. These data suggest that the expression, but not the kinase activity, of AMPK and CaMKKbeta is necessary for ADP signaling to eNOS.
Collapse
Affiliation(s)
- Connie Ng Hess
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|