51
|
Stewart JM, Medow MS, Cherniack NS, Natelson BH. Postural hypocapnic hyperventilation is associated with enhanced peripheral vasoconstriction in postural tachycardia syndrome with normal supine blood flow. Am J Physiol Heart Circ Physiol 2006; 291:H904-13. [PMID: 16565300 PMCID: PMC4511478 DOI: 10.1152/ajpheart.01359.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous investigations have demonstrated a subset of postural tachycardia syndrome (POTS) patients characterized by normal peripheral resistance and blood volume while supine but thoracic hypovolemia and splanchnic blood pooling while upright secondary to splanchnic hyperemia. Such "normal-flow" POTS patients often demonstrate hypocapnia during orthostatic stress. We studied 20 POTS patients (14-23 yr of age) and compared them with 10 comparably aged healthy volunteers. We measured changes in heart rate, blood pressure, heart rate and blood pressure variability, arm and leg strain-gauge occlusion plethysmography, respiratory impedance plethysmography calibrated against pneumotachography, end-tidal partial pressure of carbon dioxide (Pet(CO2)), and impedance plethysmographic indexes of blood volume and blood flow within the thoracic, splanchnic, pelvic (upper leg), and lower leg regional circulations while supine and during upright tilt to 70 degrees. Ten POTS patients demonstrated significant hyperventilation and hypocapnia (POTS(HC)) while 10 were normocapnic with minimal increase in postural ventilation, comparable to control. While relative splanchnic hypervolemia and hyperemia occurred in both POTS groups compared with controls, marked enhancement in peripheral vasoconstriction occurred only in POTS(HC) and was related to thoracic blood flow. Variability indexes suggested enhanced sympathetic activation in POTS(HC) compared with other subjects. The data suggest enhanced cardiac and peripheral sympathetic excitation in POTS(HC).
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, Research Division and Hypotension Laboratory, New York Medical College, Suite 3050, 19 Bradhurst Ave., Hawthorne, NY 10532, USA.
| | | | | | | |
Collapse
|
52
|
Serrador JM, Hughson RL, Kowalchuk JM, Bondar RL, Gelb AW. Cerebral blood flow during orthostasis: role of arterial CO2. Am J Physiol Regul Integr Comp Physiol 2005; 290:R1087-93. [PMID: 16306163 DOI: 10.1152/ajpregu.00446.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reductions in end-tidal Pco(2) (Pet(CO(2))) during upright posture have been suggested to be the result of hyperventilation and the cause of decreases in cerebral blood flow (CBF). The goal of this study was to determine whether decreases in Pet(CO(2)) reflected decreases in arterial Pco(2) (Pa(CO(2))) and their relation to increases in alveolar ventilation (Va) and decreases in CBF. Fifteen healthy subjects (10 women and 5 men) were subjected to a 10-min head-up tilt (HUT) protocol. Pa(CO(2)), Va, and cerebral flow velocity (CFV) in the middle and anterior cerebral arteries were examined. In 12 subjects who completed the protocol, reductions in Pet(CO(2)) and Pa(CO(2)) (-1.7 +/- 0.5 and -1.1 +/- 0.4 mmHg, P < 0.05) during minute 1 of HUT were associated with a significant increase in Va (+0.7 +/- 0.3 l/min, P < 0.05). However, further decreases in Pa(CO(2)) (-0.5 +/- 0.5 mmHg, P < 0.05), from minute 1 to the last minute of HUT, occurred even though Va did not change significantly (-0.2 +/- 0.3 l/min, P = not significant). Similarly, CFV in the middle and anterior cerebral arteries decreased (-7 +/- 2 and -8 +/- 2%, P < 0.05) from minute 1 to the last minute of HUT, despite minimal changes in Pa(CO(2)). These data suggest that decreases in Pet(CO(2)) and Pa(CO(2)) during upright posture are not solely due to increased Va but could be due to ventilation-perfusion mismatch or a redistribution of CO(2) stores. Furthermore, the reduction in Pa(CO(2)) did not fully explain the decrease in CFV throughout HUT. These data suggest that factors in addition to a reduction in Pa(CO(2)) play a role in the CBF response to orthostatic stress.
Collapse
Affiliation(s)
- J M Serrador
- Division on Aging, Harvard Medical School, Beth Israel Deaconess Medical Center, One Deaconess Rd., Palmer 117, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
53
|
Panerai RB, Moody M, Eames PJ, Potter JF. Dynamic cerebral autoregulation during brain activation paradigms. Am J Physiol Heart Circ Physiol 2005; 289:H1202-8. [PMID: 15863461 DOI: 10.1152/ajpheart.00115.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamic cerebral autoregulation (CA) describes the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (ABP). We tested the hypothesis that the efficiency of dynamic CA is increased by brain activation paradigms designed to induce hemispheric lateralization. CBF velocity [CBFV; bilateral, middle cerebral artery (MCA)], ABP, ECG, and end-tidal Pco2 were continuously recorded in 14 right-handed healthy subjects (21–43 yr of age), in the seated position, at rest and during 10 repeated presentations (30 s on-off) of a word generation test and a constructional puzzle. Nonstationarities were not found during rest or activation. Transfer function analysis of the ABP-CBFV (i.e., input-output) relation was performed for the 10 separate 51.2-s segments of data during activation and compared with baseline data. During activation, the coherence function below 0.05 Hz was significantly increased for the right MCA recordings for the puzzle tasks compared with baseline values (0.36 ± 0.16 vs. 0.26 ± 0.13, P < 0.05) and for the left MCA recordings for the word paradigm (0.48 ± 0.23 vs. 0.29 ± 0.16, P < 0.05). In the same frequency range, significant increases in gain were observed during the puzzle paradigm for the right (0.69 ± 0.37 vs. 0.46 ± 0.32 cm·s−1·mmHg−1, P < 0.05) and left (0.61 ± 0.29 vs. 0.45 ± 0.24 cm·s−1·mmHg−1, P < 0.05) hemispheres and during the word tasks for the left hemisphere (0.66 ± 0.31 vs. 0.39 ± 0.15 cm·s−1·mmHg−1, P < 0.01). Significant reductions in phase were observed during activation with the puzzle task for the right (−0.04 ± 1.01 vs. 0.80 ± 0.86 rad, P < 0.01) and left (0.11 ± 0.81 vs. 0.57 ± 0.51 rad, P < 0.05) hemispheres and with the word paradigm for the right hemisphere (0.05 ± 0.87 vs. 0.64 ± 0.59 rad, P < 0.05). Brain activation also led to changes in the temporal pattern of the CBFV step response. We conclude that transfer function analysis suggests important changes in dynamic CA during mental activation tasks.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, Faculty of Medicine, University of Leicester,Leicester LE1 5WW, UK.
| | | | | | | |
Collapse
|
54
|
Vavilala MS, Souter MJ, Lam AM. Hyperemia and impaired cerebral autoregulation in a surgical patient with diabetic ketoacidosis. Can J Anaesth 2005; 52:323-6. [PMID: 15753506 DOI: 10.1007/bf03016070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PURPOSE We describe cerebral hyperemia and impaired cerebral autoregulation documented with transcranial Doppler (TCD) ultrasonography in an adult patient with diabetic ketoacidosis (DKA) and sepsis presenting for surgery. CLINICAL FEATURES Middle cerebral artery flow velocity was increased relative to PaCO(2) (Vmca 52 cm.sec(-1); PaCO(2) 22 mmHg) and the autoregulatory index (ARI) was 0 prior to surgery. Twenty hours after admission and treatment, cerebral hyperemia resolved (Vmca 52 cm.sec(-1) ; PaCO(2) 35 mmHg) and cerebral autoregulation returned to normal (ARI 0.91). CONCLUSION To our knowledge, this is the first description of impaired cerebral autoregulation in adult DKA. Our observations suggest a relationship between cerebral hyperemia and impaired cerebral autoregulation in DKA.
Collapse
Affiliation(s)
- Monica S Vavilala
- Department of Anesthesiology, Harborview Medical Center, 325 Ninth Avenue, Box 359724, Seattle, Washington 98104, USA.
| | | | | |
Collapse
|
55
|
Moody M, Panerai RB, Eames PJ, Potter JF. Cerebral and systemic hemodynamic changes during cognitive and motor activation paradigms. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1581-8. [PMID: 15677522 DOI: 10.1152/ajpregu.00837.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cognitive and/or sensorimotor stimulations of the brain induce increases in cerebral blood flow that are usually associated with increased metabolic demand. We tested the hypothesis that changes in arterial blood pressure (ABP) and arterial Pco(2) also take place during brain activation protocols designed to induce hemispheric lateralization, leading to a pressure-autoregulatory response in addition to the metabolic-driven changes usually assumed by brain stimulation paradigms. Continuous recordings of cerebral blood flow velocity [CBFV; bilateral, middle cerebral artery (MCA)], ABP, ECG, and end-tidal Pco(2) (Pet(CO(2))) were performed in 15 right-handed healthy subjects (aged 21-43 yr), in the seated position, at rest and during 10 repeated presentations of a word generation and a constructional puzzle paradigm that are known to induce differential cortical activation. Derived variables included heart rate, cerebrovascular resistance, critical closing pressure, resistance area product, and the difference between the right and left MCA recordings (CBFV(R-L)). No adaptation of the CBFV(R-L) difference was detected for the repeated presentation of 10 activation tasks, for either paradigm. During activation with the word generation tasks, CBFV changed by (mean +/- SD) 9.0 +/- 3.7% (right MCA, P = 0.0007) and by 12.3 +/- 7.6% (left MCA, P = 0.0007), ABP by 7.7 +/- 6.0 mmHg (P = 0.0007), heart rate by 7.1 +/- 5.3 beats/min (P = 0.0008), and Pet(CO(2)) by -2.32 +/- 2.23 Torr (P = 0.002). For the puzzle paradigm, CBFV changed by 13.9 +/- 6.6% (right MCA, P = 0.0007) and by 11.5 +/- 6.2% (left MCA, P = 0.0007), ABP by 7.1 +/- 8.4 mmHg (P = 0.0054), heart rate by 7.9 +/- 4.6 beats/min (P = 0.0008), and Pet(CO(2)) by -2.42 +/- 2.59 Torr (P = 0.001). The word paradigm led to greater left hemispheric dominance than the right hemispheric dominance observed with the puzzle paradigm (P = 0.004). We concluded that significant changes in ABP and Pet(CO(2)) levels occur during brain activation protocols, and these contribute to the evoked change in CBFV. A pressure-autoregulatory response can be observed in addition to the hemodynamic changes induced by increases in metabolic demand. Simultaneous changes in Pco(2) and heart rate add to the complexity of the response, indicating the need for more detailed modeling and better understanding of brain activation paradigms.
Collapse
Affiliation(s)
- Michelle Moody
- Department of Medical Physics, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK
| | | | | | | |
Collapse
|
56
|
O'Leary DD, Shoemaker JK, Edwards MR, Hughson RL. Spontaneous beat-by-beat fluctuations of total peripheral and cerebrovascular resistance in response to tilt. Am J Physiol Regul Integr Comp Physiol 2004; 287:R670-9. [PMID: 15117726 DOI: 10.1152/ajpregu.00408.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beat-by-beat estimates of total peripheral resistance (TPR) can be obtained from continuous measurements of cardiac output by using Doppler ultrasound and noninvasive mean arterial blood pressure (MAP). We employed transfer function analysis to study the heart rate (HR) and vascular response to spontaneous changes in blood pressure from the relationships of systolic blood pressure (SBP) to HR (SBP→HR), MAP to total peripheral resistance (TPR) and cerebrovascular resistance index (CVRi) (MAP→TPR and MAP→CVRi), as well as stroke volume (SV) to TPR in nine healthy subjects in supine and 45° head-up tilt positions. The gain of the SBP→HR transfer function was reduced with tilt in both the low- (0.03–0.15 Hz) and high-frequency (0.15–0.35 Hz) regions. In contrast, MAP→TPR transfer function gain was not affected by head-up tilt, but it did increase from low- to high-frequency regions. The phase relationships between MAP→TPR were unaffected by head-up tilt, but, consistent with an autoregulatory system, changes in MAP were followed by directionally similar changes in TPR, just as observed for the MAP→CVRi. The SV→TPR had high coherence with a constant phase of 150–160°. Together, these data that showed changes in MAP preceded changes in TPR, as well as a possible link between SV and TPR, are consistent with complex interactions between the vascular component of the arterial and cardiopulmonary baroreflexes and intrinsic properties such as the myogenic response of the resistance arteries.
Collapse
Affiliation(s)
- Deborah D O'Leary
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
57
|
Edwards MR, Devitt DL, Hughson RL. Two-breath CO2 test detects altered dynamic cerebrovascular autoregulation and CO2 responsiveness with changes in arterial Pco2. Am J Physiol Regul Integr Comp Physiol 2004; 287:R627-32. [PMID: 15044183 DOI: 10.1152/ajpregu.00384.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The new two-breath CO2 method was employed to test the hypotheses that small alterations in arterial Pco2 had an impact on the magnitude and dynamic response time of the CO2 effect on cerebrovascular resistance (CVRi) and the dynamic autoregulatory response to fluctuations in arterial pressure. During a 10-min protocol, eight subjects inspired two breaths from a bag with elevated Pco2, four different times, while end-tidal Pco2 was maintained at three levels: hypocapnia (LoCO2, 8 mmHg below resting values), normocapnia, and hypercapnia (HiCO2, 8 mmHg above resting values). Continuous measurements were made of mean blood pressure corrected to the level of the middle cerebral artery (BPMCA), Pco2 (estimated from expired CO2), and mean flow velocity (MFV, of the middle cerebral artery by Doppler ultrasound), with CVRi = BPMCA/MFV. Data were processed by a system identification technique (autoregressive moving average analysis) with gain and dynamic response time of adaptation estimated from the theoretical step responses. Consistent with our hypotheses, the magnitude of the Pco2-CVRi response was reduced from LoCO2 to HiCO2 [from −0.04 (SD 0.02) to −0.01 (SD 0.01) (mmHg·cm−1·s)·mmHg Pco2−1] and the time to reach 95% of the step plateau increased from 12.0 ± 4.9 to 20.5 ± 10.6 s. Dynamic autoregulation was impaired with elevated Pco2, as indicated by a reduction in gain from LoCO2 to HiCO2 [from 0.021 ± 0.012 to 0.007 ± 0.004 (mmHg·cm−1·s)·mmHg BPMCA−1], and time to reach 95% increased from 3.7 ± 2.8 to 20.0 ± 9.6 s. The two-breath technique detected dependence of the cerebrovascular CO2 response on Pco2 and changes in dynamic autoregulation with only small deviations in estimated arterial Pco2.
Collapse
Affiliation(s)
- Michael R Edwards
- Cardiorespiratory and Vascular Dynamics Laboratory, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | | | | |
Collapse
|
58
|
Zhang R, Wilson TE, Witkowski S, Cui J, Crandall GG, Levine BD. Inhibition of nitric oxide synthase does not alter dynamic cerebral autoregulation in humans. Am J Physiol Heart Circ Physiol 2004; 286:H863-9. [PMID: 15008160 DOI: 10.1152/ajpheart.00373.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study was to determine whether inhibition of nitric oxide synthase (NOS) alters dynamic cerebral autoregulation in humans. Beat-to-beat blood pressure (BP) and cerebral blood flow (CBF) velocity (transcranial Doppler) were measured in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). NOS was inhibited by intravenous NG-monomethyl-L-arginine (L-NMMA) infusion. Dynamic cerebral autoregulation was quantified by transfer function analysis of beat-to-beat changes in BP and CBF velocity. Pressor effects of L-NMMA on cerebral hemodynamics were compared with those of phenylephrine infusion. In the supine position, L-NMMA increased mean BP from 83+/-3 to 94+/-3 mmHg (P < 0.01). However, CBF velocity remained unchanged. Consequently, cerebrovascular resistance index (CVRI) increased by 15% (P < 0.05). BP and CBF velocity variability and transfer function gain at the low frequencies of 0.07-0.20 Hz did not change with L-NMMA infusion. Similar changes in mean BP, CBF velocity, and CVRI were observed after phenylephrine infusion, suggesting that increase in CVRI after L-NMMA was mediated myogenically by increase in arterial pressure rather than a direct effect of cerebrovascular NOS inhibition. During baseline tilt without L-NMMA, steady-state BP increased and CBF velocity decreased. BP and CBF velocity variability at low frequencies increased in parallel by 277% and 217%, respectively (P < 0.05). However, transfer function gain remained unchanged. During tilt with L-NMMA, changes in steady-state hemodynamics and BP and CBF velocity variability as well as transfer gain and phase were similar to those without L-NMMA. These data suggest that inhibition of tonic production of NO does not appear to alter dynamic cerebral autoregulation in humans.
Collapse
Affiliation(s)
- Rong Zhang
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas 75231, USA
| | | | | | | | | | | |
Collapse
|
59
|
Gisolf J, Wilders R, Immink RV, van Lieshout JJ, Karemaker JM. Tidal volume, cardiac output and functional residual capacity determine end-tidal CO2 transient during standing up in humans. J Physiol 2004; 554:579-90. [PMID: 14608002 PMCID: PMC1664761 DOI: 10.1113/jphysiol.2003.056895] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/15/2003] [Accepted: 11/03/2003] [Indexed: 11/08/2022] Open
Abstract
In man assuming the upright position, end-tidal P(CO(2)) (P(ETCO(2))) decreases. With the rising interest in cerebral autoregulation during posture change, which is known to be affected by P(ETCO(2)), we sought to determine the factors leading to hypocapnia during standing up from the supine position. To study the contribution of an increase in tidal volume (V(T)) and breathing frequency, a decrease in stroke volume (SV), a ventilation-perfusion (V/Q) gradient and an increase in functional residual capacity (FRC) to hypocapnia in the standing position, we developed a mathematical model of the lung to follow breath-to-breath variations in P(ETCO(2)). A gravity-induced apical-to-basal V/Q gradient in the lung was modelled using nine lung segments. We tested the model using an eight-subject data set with measurements of V(T), pulmonary O(2) uptake and breath-to-breath lumped SV. On average, the P(ETCO(2)) decreased from 40 mmHg to 36 mmHg after 150 s standing. Results show that the model is able to track breath-to-breath P(ETCO(2)) variations (r(2)= 0.74, P P 0.05). Model parameter sensitivity analysis demonstrates that the decrease in P(ETCO(2)) during standing is due primarily to increased V(T), and transiently to decreased SV and increased FRC; a slight gravity-induced V/Q mismatch also contributes to the hypocapnia. The influence of cardiac output on hypocapnia in the standing position was verified in experiments on human subjects, where first breathing alone, and then breathing, FRC and V/Q were controlled.
Collapse
Affiliation(s)
- Janneke Gisolf
- Department of Physiology, Academic Medical Center, Cardiovascular Research Institute, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
60
|
Brown CM, Dütsch M, Ohring S, Neundörfer B, Hilz MJ. Cerebral autoregulation is compromised during simulated fluctuations in gravitational stress. Eur J Appl Physiol 2003; 91:279-86. [PMID: 14574578 DOI: 10.1007/s00421-003-0965-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2003] [Indexed: 10/26/2022]
Abstract
Gravity places considerable stress on the cardiovascular system but cerebral autoregulation usually protects the cerebral blood vessels from fluctuations in blood pressure. However, in conditions such as those encountered on board a high-performance aircraft, the gravitational stress is constantly changing and might compromise cerebral autoregulation. In this study we assessed the effect of oscillating orthostatic stress on cerebral autoregulation. Sixteen (eight male) healthy subjects [aged 27 (1) years] were exposed to steady-state lower body negative pressure (LBNP) at -15 and -40 mmHg and then to oscillating LBNP at the same pressures. The oscillatory LBNP was applied at 0.1 and 0.2 Hz. We made continuous recordings of RR-interval, blood pressure, cerebral blood flow velocity (CBFV), respiratory frequency and end-tidal CO(2). Oscillations in mean arterial pressure (MAP) and CBFV were assessed by autoregressive spectral analysis. Respiration was paced at 0.25 Hz to avoid interference from breathing. Steady-state LBNP at -40 mmHg significantly increased low-frequency (LF, 0.03-0.14 Hz) powers of MAP ( P<0.01) but not of CBFV. Oscillatory 0.1 Hz LBNP (0 to -40 mmHg) significantly increased the LF power of MAP to a similar level as steady-state LBNP but also resulted in a significant increase in the LF power of CBFV ( P<0.01). Oscillatory LBNP at 0.2 Hz induced oscillations in MAP and CBFV at 0.2 Hz. Cross-spectral analysis showed that the transfer of LBNP-induced oscillations in MAP onto the CBFV was significantly greater at 0.2 Hz than at 0.1 Hz ( P<0.01). These results show that the ability of the cerebral vessels to modulate fluctuations in blood pressure is compromised during oscillatory compared with constant gravitational stress. Furthermore, this effect seems to be more pronounced at higher frequencies of oscillatory stress.
Collapse
Affiliation(s)
- Clive M Brown
- Autonomic Laboratory, Dept. of Neurology, University of Erlangen-Nuremberg, Germany.
| | | | | | | | | |
Collapse
|
61
|
Van Lieshout JJ, Wieling W, Karemaker JM, Secher NH. Syncope, cerebral perfusion, and oxygenation. J Appl Physiol (1985) 2003; 94:833-48. [PMID: 12571122 DOI: 10.1152/japplphysiol.00260.2002] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During standing, both the position of the cerebral circulation and the reductions in mean arterial pressure (MAP) and cardiac output challenge cerebral autoregulatory (CA) mechanisms. Syncope is most often associated with the upright position and can be provoked by any condition that jeopardizes cerebral blood flow (CBF) and regional cerebral tissue oxygenation (cO(2)Hb). Reflex (vasovagal) responses, cardiac arrhythmias, and autonomic failure are common causes. An important defense against a critical reduction in the central blood volume is that of muscle activity ("the muscle pump"), and if it is not applied even normal humans faint. Continuous tracking of CBF by transcranial Doppler-determined cerebral blood velocity (V(mean)) and near-infrared spectroscopy-determined cO(2)Hb contribute to understanding the cerebrovascular adjustments to postural stress; e.g., MAP does not necessarily reflect the cerebrovascular phenomena associated with (pre)syncope. CA may be interpreted as a frequency-dependent phenomenon with attenuated transfer of oscillations in MAP to V(mean) at low frequencies. The clinical implication is that CA does not respond to rapid changes in MAP; e.g., there is a transient fall in V(mean) on standing up and therefore a feeling of lightheadedness that even healthy humans sometimes experience. In subjects with recurrent vasovagal syncope, dynamic CA seems not different from that of healthy controls even during the last minutes before the syncope. Redistribution of cardiac output may affect cerebral perfusion by increased cerebral vascular resistance, supporting the view that cerebral perfusion depends on arterial inflow pressure provided that there is a sufficient cardiac output.
Collapse
Affiliation(s)
- Johannes J Van Lieshout
- Cardiovascular Research Institute Amsterdam and Departments of Medicine and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
62
|
Edwards MR, Topor ZL, Hughson RL. A new two-breath technique for extracting the cerebrovascular response to arterial carbon dioxide. Am J Physiol Regul Integr Comp Physiol 2003; 284:R853-9. [PMID: 12571080 DOI: 10.1152/ajpregu.00601.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebrovascular autoregulation is evaluated from spontaneous fluctuations in mean flow velocity (MFV) by transcranial Doppler ultrasound of the middle cerebral artery (MCA) with respect to changes in arterial blood pressure (BP(MCA)), but the effects of spontaneous fluctuations in arterial Pco(2) on MFV have been largely ignored. Autoregressive moving average analysis (ARMA), a closed-loop system identification technique, was applied to data from nine healthy subjects during spontaneous breathing, during inspiration of 10% CO(2) for two breaths once per minute for 4 min, and during sustained breathing of 7% CO(2). Cerebrovascular resistance index (CVRi) was calculated (CVRi = BP(MCA)/MFV). Reliable estimates of gain for BP(MCA) --> MFV were obtained for spontaneous breathing and the two-breath method. In contrast, reliable gain estimates for Pco(2) --> MFV or Pco(2) --> CVRi were achieved only under the two-breath method. Pco(2) --> MFV gain was smaller with the two-breath method than during sustained 7% CO(2) (P < 0.05). BP(MCA) was elevated by 7% CO(2) but not by the two-breath method. The closed-loop model provides insight into interactions between BP(MCA) and Pco(2) on cerebrovascular control, but reliable solutions for Pco(2) effects with ARMA analysis require perturbation by the two-breath method.
Collapse
Affiliation(s)
- Michael R Edwards
- Cardiorespiratory and Vascular Dynamics Laboratory, Faculty of Applied Health Sciences, University of waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
63
|
Mankovsky BN, Piolot R, Mankovsky OL, Ziegler D. Impairment of cerebral autoregulation in diabetic patients with cardiovascular autonomic neuropathy and orthostatic hypotension. Diabet Med 2003; 20:119-26. [PMID: 12581263 DOI: 10.1046/j.1464-5491.2003.00885.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Impaired cerebrovascular reactivity and autoregulation has been previously reported in patients with diabetes mellitus. However, the contribution of cardiovascular diabetic autonomic neuropathy and orthostatic hypotension to the pathogenesis of such disturbances is not known. The purpose of this study was to evaluate cerebral blood flow velocity in response to standing in patients with diabetes and cardiovascular autonomic neuropathy with or without orthostatic hypotension. METHODS We studied 27 patients with diabetes--eight had cardiovascular autonomic neuropathy and orthostatic hypotension (age 46.4 +/- 13.5 years, diabetes duration 25.0 +/- 11.0 years), seven had autonomic neuropathy without hypotension (age 47.3 +/- 12.7 years, diabetes duration 26.4 +/- 12.1 years), and 12 had no evidence of autonomic neuropathy (age 44.1 +/- 13.8 years, diabetes duration 17.1 +/- 10.2 years)-and 12 control subjects (age 42.6 +/- 9.7 years). Flow velocity was recorded in the right middle cerebral artery using transcranial Doppler sonography in the supine position and after active standing. RESULTS Cerebral flow velocity in the supine position was not different between the groups studied. Active standing resulted in a significant drop of mean and diastolic flow velocities in autonomic neuropathy patients with orthostatic hypotension, while there were no such changes in the other groups. The relative changes in mean flow velocity 1 min after standing up were -22.7 +/- 16.25% in patients with neuropathy and orthostatic hypotension, +0.02 +/- 9.8% in those with neuropathy without hypotension, -2.8 +/- 14.05% in patients without neuropathy, and -9.2 +/- 15.1% in controls. CONCLUSIONS Patients with diabetes and cardiovascular autonomic neuropathy with orthostatic hypotension show instability in cerebral blood flow upon active standing, which suggests impaired cerebral autoregulation.
Collapse
Affiliation(s)
- B N Mankovsky
- Institute of Endocrinology and Metabolism, Kiev, Ukraine.
| | | | | | | |
Collapse
|
64
|
Edwards MR, Shoemaker JK, Hughson RL. Dynamic modulation of cerebrovascular resistance as an index of autoregulation under tilt and controlled PET(CO(2)). Am J Physiol Regul Integr Comp Physiol 2002; 283:R653-62. [PMID: 12185000 DOI: 10.1152/ajpregu.00452.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transfer function analysis of the arterial blood pressure (BP)-mean flow velocity (MFV) relationship describes an aspect of cerebrovascular autoregulation. We hypothesized that the transfer function relating BP to cerebrovascular resistance (CVRi) would be sensitive to low-frequency changes in autoregulation induced by head-up tilt (HUT) and altered arterial PCO(2). Nine subjects were studied in supine and HUT positions with end-tidal PCO(2) (PET(CO(2))) kept constant at normal levels: +5 and -5 mmHg. The BP-MFV relationship had low coherence at low frequencies, and there were significant effects of HUT on gain only at high frequencies and of PCO(2) on phase only at low frequencies. BP --> CVRi had coherence >0.5 from very low to low frequencies. There was a significant reduction of gain with increased PCO(2) in the very low and low frequencies and with HUT at the low frequency. Phase was affected by PCO(2) in the very low frequencies. Transfer function analysis of BP --> CVRi provides direct evidence of altered cerebrovascular autoregulation under HUT and higher levels of PCO(2).
Collapse
Affiliation(s)
- Michael R Edwards
- Cardiorespiratory and Vascular Dynamics Laboratory, Faculty of Applied Health Sciences, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada N6A 3K7
| | | | | |
Collapse
|