51
|
Cervantes-Pérez LG, Ibarra-Lara MDLL, Escalante B, Del Valle-Mondragón L, Vargas-Robles H, Pérez-Severiano F, Pastelín G, Sánchez-Mendoza MA. Endothelial nitric oxide synthase impairment is restored by clofibrate treatment in an animal model of hypertension. Eur J Pharmacol 2012; 685:108-15. [PMID: 22542661 DOI: 10.1016/j.ejphar.2012.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 12/29/2022]
Abstract
Adequate production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) requires eNOS coupling promoted by tetrahydrobiopterin (BH(4)). Under pathological conditions such as hypertension, BH(4) is diminished, avoiding eNOS coupling. When eNOS is "uncoupled", it yields a superoxide anion instead of NO. Peroxisome proliferator activated receptors (NR1C) are a family of nuclear receptors activated by ligand. Clofibrate, a member of a hypolipidemic class of drugs, acts by activating the alpha isoform of NR1C. To determine the participation of NR1C1 activation in BH(4) and dihydrobiopterin (BH(2)) metabolism and its implications on eNOS coupling in hypertension, we performed aortic coarctation (AoCo) at inter-renal level on male Wistar rats in order to have a hypertensive model. Rats were divided into the following groups: Sham+vehicle (Sham-V); AoCo+vehicle (AoCo-V); Sham+clofibrate (Sham-C), and AoCo+clofibrate (AoCo-C). Clofibrate (7 days) increased eNOS coupling in the AoCo-C group compared with AoCo-V. Clofibrate also recovered the BH(4):BH(2) ratio in control values and prevented the rise in superoxide anion production, lipoperoxidation, and reactive oxygen species production. In addition, clofibrate increased GTP cyclohydrolase-1 (GTPCH-1) protein expression, which is related with BH(4) recovered production. NR1C1 stimulation re-establishes eNOS coupling, apparently through recovering the BH(4):BH(2) equilibrium and diminishing oxidative stress. Both can contribute to high blood pressure attenuation in hypertension secondary to AoCo.
Collapse
Affiliation(s)
- Luz Graciela Cervantes-Pérez
- Department of Pharmacology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080 México, DF, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Elesgaray R, Caniffi C, Savignano L, Romero M, Mac Laughlin M, Arranz C, Costa MA. Renal actions of atrial natriuretic peptide in spontaneously hypertensive rats: the role of nitric oxide as a key mediator. Am J Physiol Renal Physiol 2012; 302:F1385-94. [DOI: 10.1152/ajprenal.00624.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is an important regulator of blood pressure (BP). One of the mechanisms whereby ANP impacts BP is by stimulation of nitric oxide (NO) production in different tissues involved in BP control. We hypothesized that ANP-stimulated NO is impaired in the kidneys of spontaneously hypertensive rats (SHR) and this contributes to the development and/or maintenance of high levels of BP. We investigated the effects of ANP on the NO system in SHR, studying the changes in renal nitric oxide synthase (NOS) activity and expression in response to peptide infusion, the signaling pathways implicated in the signaling cascade that activates NOS, and identifying the natriuretic peptide receptors (NPR), guanylyl cyclase receptors (NPR-A and NPR-B) and/or NPR-C, and NOS isoforms involved. In vivo, SHR and Wistar-Kyoto rats (WKY) were infused with saline (0.05 ml/min) or ANP (0.2 μg·kg−1·min−1). NOS activity and endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) NOS expression were measured in the renal cortex and medulla. In vitro, ANP-induced renal NOS activity was determined in the presence of iNOS and nNOS inhibitors, NPR-A/B blockers, guanine nucleotide-regulatory (Gi) protein, and calmodulin inhibitors. Renal NOS activity was higher in SHR than in WKY. ANP increased NOS activity, but activation was lower in SHR than in WKY. ANP had no effect on expression of NOS isoforms. ANP-induced NOS activity was not modified by iNOS and nNOS inhibitors. NPR-A/B blockade blunted NOS stimulation via ANP in kidney. The renal NOS response to ANP was reduced by Gi protein and calmodulin inhibitors. We conclude that ANP interacts with NPR-C, activating Ca-calmodulin eNOS through Gi protein. NOS activation also involves NPR-A/B. The NOS response to ANP was diminished in kidneys of SHR. The impaired NO system response to ANP in SHR participates in the maintenance of high blood pressure.
Collapse
Affiliation(s)
- Rosana Elesgaray
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Carolina Caniffi
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Lucía Savignano
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Mariana Romero
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Myriam Mac Laughlin
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - Cristina Arranz
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| | - María A. Costa
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
53
|
Förstermann U, Li H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol 2012; 164:213-23. [PMID: 21198553 DOI: 10.1111/j.1476-5381.2010.01196.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO(-)). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH(4) ) is highly sensitive to oxidation by this ONOO(-). In BH(4) deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.
| | | |
Collapse
|
54
|
Aoki C, Nakano A, Tanaka S, Yanagi K, Ohta S, Jojima T, Kasai K, Takekawa H, Hirata K, Hattori Y. Fluvastatin upregulates endothelial nitric oxide synthase activity via enhancement of its phosphorylation and expression and via an increase in tetrahydrobiopterin in vascular endothelial cells. Int J Cardiol 2012; 156:55-61. [PMID: 21093076 DOI: 10.1016/j.ijcard.2010.10.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/17/2010] [Accepted: 10/23/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND An HMG-CoA reductase inhibitor, fluvastatin, appears to act directly on the blood vessel wall to stabilize plaques in situ, agents that share this property have been termed vascular statins. METHODS We investigated the effects of fluvastatin on endothelial nitric oxide synthase (eNOS) phosphorylation and expression, as well as terahydrobiopterin (BH4) metabolism, in human umbilical vein endothelial cells (HUVEC). RESULTS Fluvastatin was observed to enhance eNOS phosphorylation at Ser-1177 and Ser-633 through the PI3-kinase/Akt and PKA pathways, respectively. Inhibition of eNOS phosphorylation using inhibitors of these pathways attenuated acute NO release in response to fluvastatin. The mRNA of GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme of the first step of de novo BH4 synthesis, as well as eNOS, was upregulated in HUVEC treated with fluvastatin. In parallel with this observation, fluvastatin increased intracellular BH4. Pre-treatment of HUVEC with the selective GTPCH inhibitor, 2,4-diamino-6-hydroxypyrimidine, reduced intracellular BH4 and decreased citrulline formation following stimulation with ionomycin. Furthermore, the potentiating effect of fluvastatin was reduced by limiting the cellular availability of BH4. CONCLUSIONS Our data demonstrate that fluvastatin phosphorylates and activates eNOS, and increases eNOS expression in vascular endothelial cells. In addition to modulating eNOS, fluvastatin potentiates GTPCH gene expression and BH4 synthesis, thereby increasing NO production and preventing relative shortages of BH4.
Collapse
Affiliation(s)
- Chie Aoki
- Department of Endocrinology and Metabolism, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33:829-37, 837a-837d. [PMID: 21890489 PMCID: PMC3345541 DOI: 10.1093/eurheartj/ehr304] [Citation(s) in RCA: 2854] [Impact Index Per Article: 219.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 07/14/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS; EC 1.14.13.39). They all utilize l-arginine and molecular oxygen as substrates and require the cofactors reduced nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). All NOS bind calmodulin and contain haem. Neuronal NOS (nNOS, NOS I) is constitutively expressed in central and peripheral neurons and some other cell types. Its functions include synaptic plasticity in the central nervous system (CNS), central regulation of blood pressure, smooth muscle relaxation, and vasodilatation via peripheral nitrergic nerves. Nitrergic nerves are of particular importance in the relaxation of corpus cavernosum and penile erection. Phosphodiesterase 5 inhibitors (sildenafil, vardenafil, and tadalafil) require at least a residual nNOS activity for their action. Inducible NOS (NOS II) can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents. Inducible NOS generates large amounts of NO that have cytostatic effects on parasitic target cells. Inducible NOS contributes to the pathophysiology of inflammatory diseases and septic shock. Endothelial NOS (eNOS, NOS III) is mostly expressed in endothelial cells. It keeps blood vessels dilated, controls blood pressure, and has numerous other vasoprotective and anti-atherosclerotic effects. Many cardiovascular risk factors lead to oxidative stress, eNOS uncoupling, and endothelial dysfunction in the vasculature. Pharmacologically, vascular oxidative stress can be reduced and eNOS functionality restored with renin- and angiotensin-converting enzyme-inhibitors, with angiotensin receptor blockers, and with statins.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55101 Mainz, Germany.
| | | |
Collapse
|
56
|
Changes in hepatic protein expression in spontaneously hypertensive rats suggest early stages of non-alcoholic fatty liver disease. J Proteomics 2012; 75:1752-63. [DOI: 10.1016/j.jprot.2011.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/03/2011] [Accepted: 12/10/2011] [Indexed: 02/07/2023]
|
57
|
Zhang Z, Wang M, Xue SJ, Liu DH, Tang YB. Simvastatin ameliorates angiotensin II-induced endothelial dysfunction through restoration of Rho-BH4-eNOS-NO pathway. Cardiovasc Drugs Ther 2012; 26:31-40. [PMID: 22083280 DOI: 10.1007/s10557-011-6351-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endothelial dysfunction contributes to the initiation and development of hypertension. We previously found that simvastatin moderately decreases blood pressure in 2-kidney-2-clip (2k2c) renal hypertension, but the precise mechanisms are still unclear. The present study was designed to examine the protective actions of simvastatin in 2k2c-evoked endothelial dysfunction and also delineate the underlying mechanisms. Here we show that 2k2c-induced elevation in plasma angiotensin II impaired acetylcholine-induced endothelium-dependent vascular relaxation, suppressed endothelial NO synthase (eNOS) activity and reduced nitric oxide (NO) production. Additionally, the levels of tetrahydrobiopterin (BH4), an essential cofactor of eNOS, as well as the activity of GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme for BH4 synthesis, were markedly reduced. Administration of simvastatin significantly improved acetylcholine-induced endothelium-dependent carotid arteries relaxation at 9 weeks in reno-hypertensive rats. Notably, GTPCH I activity, BH4 production, p-eNOS expression and NO levels in the vascular endothelium were elevated as a result of simvastatin administration. In cultured rat arterial endothelial cells, simvastatin restored BH4, GTPCH I activity and NO release impaired by angiotensin II, and pretreatment with mevalonate (MVA) or geranylgeranyl pyrophosphate (GGPP) abolished the beneficial effects exerted by simvastatin. Moreover, RhoA inhibitor C3 exoenzyme, Rho kinase inhibitor Y-27632 and dominant negative mutant of RhoA prevented BH4 and NO loss due to Ang II treatment. Taken together, normalization of BH4-eNOS-NO pathway at least in part accounts for the beneficial actions of simvastatin on vascular endothelium during 2k2c hypertension, and RhoA-Rho kinase pathway is involved in regulation of BH4 production.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
58
|
Cheng PY, Lee YM, Chung MT, Shih YC, Yen MH. Role of AMP-activated protein kinase in α-lipoic acid-induced vasodilatation in spontaneously hypertensive rats. Am J Hypertens 2012; 25:152-8. [PMID: 22052076 DOI: 10.1038/ajh.2011.196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Adenosine monophosphate (AMP)-activated protein kinase (AMPK) has recently emerged as an attractive and novel target for the regulation of vascular smooth muscle contraction. The present study investigated the vasodilatory effects of α-lipoic acid (α-LA) and the possible mechanism of its action on aortic rings from Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). METHODS Aortae were removed from WKY and SHR, and contractile responses to acetylcholine and α-LA studied in organ chamber. Phosphorylated AMPK (pAMPK), phosphorylated Peutz-Jeghers syndrome kinase LKB1 (pLKB1) and calcium/calmodulin-dependent protein kinase (CaMKK) protein level were measured in SHR, WKY, and aortic smooth muscle (A10) cells. RESULTS α-LA (1-500 µmol/l) produced a concentration-dependent relaxation of precontracted aortic rings from 8- and 16-week-old SHR, but not in those from WKY rats. This vasodilatory effect of α-LA did not change after preincubation with N(G)-nitro-L-arginine methyl ester (100 µmol/l), but significantly suppressed by an AMPK inhibitor, compound C (40 µmol/l). The expression of pAMPKα, pLKB1, and CaMKK were also significantly reduced in endothelium-denuded arteries from 16-week-old SHR compared with those from younger SHR or age-matched WKY rats. After incubation with α-LA (100 µmol/l), the expression of pAMPKα and pLKB1 was significantly increased in the endothelium-denuded aortas from 16-week-old SHR, the expression of CaMKK was more reduced in the endothelium-denuded aortas of 8-week-old SHR, but this was not observed in WKY rats. α-LA also activated AMPKα phosphorylation in A10 cells. CONCLUSIONS The effects of α-LA on vascular relaxation in SHR result from the enhanced phosphorylation of LKB1-AMPK in aortic smooth muscle.
Collapse
|
59
|
Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: a novel target for antihypertensive agents. Prostaglandins Other Lipid Mediat 2011; 98:69-74. [PMID: 22210049 DOI: 10.1016/j.prostaglandins.2011.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/18/2011] [Accepted: 12/12/2011] [Indexed: 12/24/2022]
Abstract
The aim of this review is to discuss the contribution of cytochrome P450 (CYP) 1B1 in vascular smooth muscle cell growth, hypertension, and associated pathophysiology. CYP1B1 is expressed in cardiovascular and renal tissues, and mediates angiotensin II (Ang II)-induced activation of NADPH oxidase and generation of reactive oxygen species (ROS), and vascular smooth muscle cell migration, proliferation, and hypertrophy. Moreover, CYP1B1 contributes to the development and/or maintenance of hypertension produced by Ang II-, deoxycorticosterone (DOCA)-salt-, and N(ω)-nitro-L-arginine methyl ester-induced hypertension and in spontaneously hypertensive rats. The pathophysiological changes, including cardiovascular hypertrophy, increased vascular reactivity, endothelial and renal dysfunction, injury and inflammation associated with Ang II- and/or DOCA-salt induced hypertension in rats, and Ang II-induced hypertension in mice are minimized by inhibition of CYP1B1 activity with 2,4,3',5'-tetramethoxystilbene or by Cyp1b1 gene disruption in mice. These pathophysiological changes appear to be mediated by increased production of ROS via CYP1B1-dependent NADPH oxidase activity and extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and c-Src.
Collapse
|
60
|
Moens AL, Kietadisorn R, Lin JY, Kass D. Targeting endothelial and myocardial dysfunction with tetrahydrobiopterin. J Mol Cell Cardiol 2011; 51:559-63. [PMID: 21458460 DOI: 10.1016/j.yjmcc.2011.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/11/2011] [Accepted: 03/16/2011] [Indexed: 11/24/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is an essential cofactor for aromatic amino acid hydroxylases and for all three nitric oxide synthase (NOS) isoforms. It also has a protective role in the cell as an antioxidant and scavenger of reactive nitrogen and oxygen species. Experimental studies in humans and animals demonstrate that decreased BH(4)-bioavailability, with subsequent uncoupling of endothelial NOS (eNOS) plays an important role in the pathogenesis of endothelial dysfunction, hypertension, ischemia-reperfusion injury, and pathologic cardiac remodeling. Synthetic BH(4) is clinically approved for the treatment of phenylketonuria, and experimental studies support its capacity for ameliorating cardiovascular pathophysiologies. To date, however, the translation of these studies to human patients remains limited, and early results have been mixed. In this review, we discuss the pathophysiologic role of decreased BH(4) bioavailability, molecular mechanisms regulating its metabolism, and its potential therapeutic use as well as pitfalls as an NOS-modulating drug. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.''
Collapse
Affiliation(s)
- An L Moens
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Dept. of Cardiology, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
61
|
Intravenous ascorbic acid infusion improves myocardial perfusion grade during elective percutaneous coronary intervention: relationship with oxidative stress markers. JACC Cardiovasc Interv 2011; 3:221-9. [PMID: 20170881 DOI: 10.1016/j.jcin.2009.10.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 10/23/2009] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Our goal was to explore whether antioxidant vitamin C infusion is able to affect the microcirculation perfusion in patients undergoing elective percutaneous coronary intervention for stable angina. BACKGROUND Periprocedural myocardial injury in the setting of elective percutaneous coronary intervention is associated with increased risk of death, recurrent infarction, and revascularization at follow-up. Despite excellent epicardial blood flow, impaired microcirculatory reperfusion may persist and increases the risk of vascular recurrences. Post-percutaneous coronary intervention induced-oxidative stress is one of the potential mechanisms accounting for impaired perfusion. METHODS Fifty-six patients were enrolled in a prospective, single-center, randomized study comparing 1 g vitamin C infusion (16.6 mg/min, over 1 h before percutaneous coronary intervention) versus placebo. RESULTS At the baseline, Thrombolysis In Myocardial Infarction (TIMI) myocardial perfusion grade <2 was observed in 89% and in 86% of patients randomized to the placebo or vitamin C infusion group, respectively (p > 0.05). After percutaneous coronary intervention, these percentages decreased in the placebo group (32%) and in greater measure in the vitamin C group (4%, p < 0.01). Complete microcirculatory reperfusion (TIMI myocardial perfusion grade = 3) was achieved in 79% of the vitamin C-treated group compared with 39% of the placebo group (p < 0.01); 8-hydroxy-2-deoxyguanosine (p < 0.002) and 8-iso-prostaglandin F(2alpha) (p < 0.02) plasma levels significantly increased in the placebo group while they were significantly reduced in the vitamin C-treated group (p < 0.0001). TIMI myocardial perfusion grade changes from the baseline showed significant correlation with 8-hydroxy-2-deoxyguanosine (p < 0.006) or 8-iso-prostaglandin F(2alpha) (p < 0.01) plasma levels changes. CONCLUSIONS In patients undergoing elective percutaneous coronary intervention, impaired microcirculatory reperfusion is improved by vitamin C infusion suggesting that oxidative stress is implicated in such a phenomenon.
Collapse
|
62
|
Ong SLH, Whitworth JA. How do glucocorticoids cause hypertension: role of nitric oxide deficiency, oxidative stress, and eicosanoids. Endocrinol Metab Clin North Am 2011; 40:393-407, ix. [PMID: 21565674 DOI: 10.1016/j.ecl.2011.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The exact mechanism by which glucocorticoid induces hypertension is unclear. Several mechanisms have been proposed, although there is evidence against the role of sodium and water retention as well as sympathetic nerve activation. This review highlights the role of nitric oxide-redox imbalance and their interactions with arachidonic acid metabolism in glucocorticoid-induced hypertension in humans and experimental animal models.
Collapse
Affiliation(s)
- Sharon L H Ong
- Department of Nephrology, St George Hospital, 50 Montgomery Street, Kogarah, Sydney, NSW 2217, Australia
| | | |
Collapse
|
63
|
Bhatt SR, Lokhandwala MF, Banday AA. Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. Eur J Pharmacol 2011; 667:258-64. [PMID: 21640096 DOI: 10.1016/j.ejphar.2011.05.026] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 01/03/2023]
Abstract
Endothelial dysfunction is a hallmark of hypertension and vascular oxidative stress can contribute to endothelial dysfunction and hypertension development. Resveratrol is an antioxidant polyphenol which improves endothelium dependent relaxation, the mechanisms of which are unknown. Also, the role of resveratrol in hypertension remains to be established. The purpose of this study was to investigate the mechanisms of resveratrol induced improvement of endothelial function and establish its role in hypertension. SHR and WKY rats, 3-4 weeks old, were treated with resveratrol in drinking water for 10 weeks, untreated SHR and WKY rats served as controls. At the end of the treatment, control SHR exhibited increased blood pressure, oxidative stress and attenuated endothelium dependent relaxation in comparison to WKY rats. The impaired endothelium function in SHR was associated with lower nitrite/nitrate levels, elevated nitrotyrosine content and eNOS uncoupling. Resveratrol treatment attenuated hypertension development in SHR as indicated by lower blood pressure in resveratrol treated SHR (SHR-R) compared to control SHR. SHR-R also exhibited reduced H(2)O(2) content and elevated superoxide dismutase activity. Resveratrol treatment normalized endothelium dependent vasorelaxation in SHR. In parallel, resveratrol restored nitrite/nitrate levels and normalized nitrotyrosine content in SHR. SHR exhibited increased l-arginine dependent superoxide production which was blocked by NOS inhibitor l-NNA, suggesting eNOS uncoupling. eNOS uncoupling was prevented by resveratrol treatment. In conclusion, early treatment with resveratrol lowers oxidative stress, preserves endothelial function and attenuates development of hypertension in SHR. More importantly, prevention of eNOS uncoupling and NO scavenging could represent novel mechanisms for resveratrol-mediated antihypertensive effects.
Collapse
Affiliation(s)
- Siddhartha R Bhatt
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | | | | |
Collapse
|
64
|
Kang KT, Sullivan JC, Spradley FT, d'Uscio LV, Katusic ZS, Pollock JS. Antihypertensive therapy increases tetrahydrobiopterin levels and NO/cGMP signaling in small arteries of angiotensin II-infused hypertensive rats. Am J Physiol Heart Circ Physiol 2011; 300:H718-24. [PMID: 21148769 PMCID: PMC3064310 DOI: 10.1152/ajpheart.00393.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023]
Abstract
We previously reported that small mesenteric arteries from hypertensive rats have increased NOS-derived H(2)O(2) and reduced NO/cGMP signaling. We hypothesized that antihypertensive therapy lowers blood pressure through a tetrahydrobiopterin (BH(4))-dependent mechanism restoring NO/cGMP signaling and endothelial NOS (NOS3; eNOS) phosphorylation in small arteries. To test this hypothesis, small mesenteric arteries from normotensive rats (NORM), angiotensin II-infused rats (ANG), ANG rats with triple therapy (reserperine, hydrochlorothiazide, and hydralazine), or ANG rats with oral BH(4) therapy were studied. Both triple therapy and oral BH(4) therapy attenuated the rise in systolic blood pressure in ANG rats and restored NO/cGMP signaling in small arteries similarly. Triple therapy significantly increased vascular BH(4) levels and BH(4)-to-BH(2) ratio similar to ANG rats with BH(4) supplementation. Furthermore, triple therapy (but not oral BH(4) therapy) significantly increased GTP cyclohydrolase I (GTPCH I) activity in small arteries without a change in expression. NOS3 phosphorylation at Ser1177 was reduced in small arteries from ANG compared with NORM, while NOS3 phosphorylation at Ser633 and Thr495 were similar in ANG and NORM. NOS3 phosphorylation at Ser1177 was restored with triple therapy or oral BH(4) in ANG rats. In conclusion, antihypertensive therapy regulates NO/cGMP signaling in small arteries through increasing BH(4) levels and NOS3 phosphorylation at Ser1177.
Collapse
Affiliation(s)
- Kyu-Tae Kang
- Vascular Biology Center, CB 3213, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
65
|
Sahan-Firat S, Jennings BL, Yaghini FA, Song CY, Estes AM, Fang XR, Farjana N, Khan AI, Malik KU. 2,3',4,5'-Tetramethoxystilbene prevents deoxycorticosterone-salt-induced hypertension: contribution of cytochrome P-450 1B1. Am J Physiol Heart Circ Physiol 2010; 299:H1891-901. [PMID: 20852048 DOI: 10.1152/ajpheart.00655.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) contribute to various models of hypertension, including deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Recently, we have shown that ROS, generated by cytochrome P-450 1B1 (CYP1B1) from arachidonic acid, mediate vascular smooth muscle cell growth caused by angiotensin II. This study was conducted to determine the contribution of CYP1B1 to hypertension and associated pathophysiological changes produced by DOCA (30 mg/kg) given subcutaneously per week with 1% NaCl + 0.1% KCl in drinking water to uninephrectomized rats for 6 wk. DOCA-salt treatment increased systolic blood pressure (SBP). Injections of the selective inhibitor of CYP1B1, 2,3',4,5'-tetramethoxystilbene (TMS; 300 μg/kg ip every 3rd day) initiated at the 4th week of DOCA-salt treatment normalized SBP and decreased CYP1B1 activity but not its expression in the aorta, heart, and kidney. TMS also inhibited cardiovascular and kidney hypertrophy, prevented the increase in vascular reactivity and endothelial dysfunction, and minimized the increase in urinary protein and K(+) output and the decrease in urine osmolality, Na(+) output, and creatinine clearance associated with DOCA-salt treatment. These pathophysiological changes caused by DOCA-salt treatment and associated increase in vascular superoxide production, NADPH oxidase activity, and expression of NOX-1, and ERK1/2 and p38 MAPK activities in the aorta, heart, and kidney were inhibited by TMS. These data suggest that CYP1B1 contributes to DOCA-salt-induced hypertension and associated pathophysiological changes, most likely as a result of increased ROS production and ERK1/2 and p38 MAPK activity, and could serve as a novel target for the development of agents like TMS to treat hypertension.
Collapse
Affiliation(s)
- Seyhan Sahan-Firat
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Acute superoxide scavenging restores depressed baroreflex sensitivity in renovascular hypertensive rats. Auton Neurosci 2010; 159:38-44. [PMID: 20719579 DOI: 10.1016/j.autneu.2010.07.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/26/2010] [Accepted: 07/27/2010] [Indexed: 11/22/2022]
Abstract
In some pathological conditions such as hypertension, there is an impairment in the autonomic control of blood pressure resulting in changes in baroreflex sensitivity. In the present study we tested the hypothesis that acute superoxide scavenging would restore the reduced baroreflex sensitivity in renovascular hypertension. Male Wistar rats underwent 2-Kidney-1-Clip (2K1C) or sham surgery and were maintained untouched for six weeks to develop hypertension. After six weeks, animals from the 2K1C group were hypertensive when compared to the sham group (165±9 vs. 108±7mm Hg, P<0.05). As a proof of principle for the hypertension model adopted, animals from the 2K1C group presented increased non-clipped kidney and cardiac mass index and reduced clipped kidney mass index. Regarding baroreflex, 2K1C rats presented diminished baroreflex sensitivity when compared to the sham group (2K1C+saline: -1.61±0.15 vs. sham+saline: -2.79±0.24bpm mm Hg(-1), p<0.05). Moreover, acute administration of Vitamin C (150mg/Kg, i.v.) restored baroreflex sensitivity in 2K1C rats (2K1C+Vit C: -3.08±0.37 vs. 2K1C+saline: -1.61±0.15bpm mm Hg(-1), p<0.05). Furthermore, administration of apocynin (30μg/Kg, i.v.), a NADPH oxidase inhibitor, also improved baroreflex sensitivity in the 2K1C group (2K1C+apocynin: -2.81±0.24 vs. 2K1C+saline: -1.61±0.15bpm mm Hg(-1), p<0.05). In addition, autonomic blockade with either methylatropine or propranolol reduced the changes in heart rate to the same extent in all groups suggesting that improved baroreflex sensitivity by antioxidants were mediated by improvement in autonomic function. Taken together, these data suggest that NADPH oxidase-derived reactive oxygen species are involved in the blunted baroreflex sensitivity in renovascular hypertension and that acute scavenging of superoxide restores baroreflex sensitivity.
Collapse
|
67
|
Schmidt TS, McNeill E, Douglas G, Crabtree MJ, Hale AB, Khoo J, O'Neill CA, Cheng A, Channon KM, Alp NJ. Tetrahydrobiopterin supplementation reduces atherosclerosis and vascular inflammation in apolipoprotein E-knockout mice. Clin Sci (Lond) 2010; 119:131-42. [PMID: 20337596 DOI: 10.1042/cs20090559] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BH4 (tetrahydrobiopterin) supplementation improves endothelial function in models of vascular disease by maintaining eNOS (endothelial nitric oxide synthase) coupling and NO (nitric oxide) bioavailability. However, the cellular mechanisms through which enhanced endothelial function leads to reduced atherosclerosis remain unclear. We have used a pharmaceutical BH4 formulation to investigate the effects of BH4 supplementation on atherosclerosis progression in ApoE-KO (apolipoprotein E-knockout) mice. Single oral dose pharmacokinetic studies revealed rapid BH4 uptake into plasma and organs. Plasma BH4 levels returned to baseline by 8 h after oral dosing, but remained markedly increased in aorta at 24 h. Daily oral BH4 supplementation in ApoE-KO mice from 8 weeks of age, for a period of 8 or 12 weeks, had no effect on plasma lipids or haemodynamic parameters, but significantly reduced aortic root atherosclerosis compared with placebo-treated animals. BH4 supplementation significantly reduced VCAM-1 (vascular cell adhesion molecule 1) mRNA levels in aortic endothelial cells, markedly reduced the infiltration of T-cells, macrophages and monocytes into plaques, and reduced T-cell infiltration in the adjacent adventitia, but importantly had no effect on circulating leucocytes. GCH (GTP cyclohydrolase I)-transgenic mice, with a specific increase in endothelial BH4 levels, exhibited a similar reduction in vascular immune cell infiltration compared with BH4-deficient controls, suggesting that BH4 reduces vascular inflammation via endothelial cell signalling. In conclusion, BH4 supplementation reduces vascular immune cell infiltration in atherosclerosis and may therefore be a rational therapeutic approach to reduce the progression of atherosclerosis.
Collapse
Affiliation(s)
- Tim S Schmidt
- Department of Cardiovascular Medicine, Oxford University, John Radcliffe Hospital, Oxford, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 2010; 459:923-39. [PMID: 20306272 DOI: 10.1007/s00424-010-0808-2] [Citation(s) in RCA: 527] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 02/07/2023]
Abstract
Endothelium-derived nitric oxide (NO) is a paracrine factor that controls vascular tone, inhibits platelet function, prevents adhesion of leukocytes, and reduces proliferation of the intima. An enhanced inactivation and/or reduced synthesis of NO is seen in conjunction with risk factors for cardiovascular disease. This condition, referred to as endothelial dysfunction, can promote vasospasm, thrombosis, vascular inflammation, and proliferation of vascular smooth muscle cells. Vascular oxidative stress with an increased production of reactive oxygen species (ROS) contributes to mechanisms of vascular dysfunction. Oxidative stress is mainly caused by an imbalance between the activity of endogenous pro-oxidative enzymes (such as NADPH oxidase, xanthine oxidase, or the mitochondrial respiratory chain) and anti-oxidative enzymes (such as superoxide dismutase, glutathione peroxidase, heme oxygenase, thioredoxin peroxidase/peroxiredoxin, catalase, and paraoxonase) in favor of the former. Also, small molecular weight antioxidants may play a role in the defense against oxidative stress. Increased ROS concentrations reduce the amount of bioactive NO by chemical inactivation to form toxic peroxynitrite. Peroxynitrite-in turn-can "uncouple" endothelial NO synthase to become a dysfunctional superoxide-generating enzyme that contributes to vascular oxidative stress. Oxidative stress and endothelial dysfunction can promote atherogenesis. Therapeutically, drugs in clinical use such as ACE inhibitors, AT(1) receptor blockers, and statins have pleiotropic actions that can improve endothelial function. Also, dietary polyphenolic antioxidants can reduce oxidative stress, whereas clinical trials with antioxidant vitamins C and E failed to show an improved cardiovascular outcome.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Obere Zahlbacher Strasse 67, 55101, Mainz, Germany.
| |
Collapse
|
69
|
Thida M, Earl J, Zhao Y, Wang H, Tse CS, Vickers JJ, Sutton M, Ong SLH, Mori TA, Croft KD, Whitworth JA, Zhang Y. Effects of sepiapterin supplementation and NOS inhibition on glucocorticoid-induced hypertension. Am J Hypertens 2010; 23:569-74. [PMID: 20186125 DOI: 10.1038/ajh.2010.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Glucocorticoid-induced hypertension is associated with imbalance between nitric oxide (NO) and superoxide. One of the pathways that causes this imbalance is endothelial NO synthase (eNOS) uncoupling. In the present study, adrenocorticotrophic hormone (ACTH)- and dexamethasone-treated rats were further treated with sepiapterin, a precursor of tetrahydrobiopterin, or N-nitro-L-arginine (NOLA), an inhibitor of NOS, to investigate the role of eNOS uncoupling in glucocorticoid-induced hypertension. METHODS Male Sprague-Dawley (SD) rats (n = 7-13/group) were treated with either sepiapterin (5 mg/kg/day, IP) or saline (sham) 4 days before and during ACTH (0.2 mg/kg/day, SC), dexamethasone (0.03 mg/kg/day, SC), or saline treatment. NOLA (0.4 mg/ml in drinking water) was given to rats 4 days before and during dexamethasone treatment. Systolic blood pressure (SBP) was measured by the tail-cuff method. RESULTS Both ACTH (116 +/- 2 to 135 +/- 3 mm Hg (mean +/- s.e.m.), P < 0.001) and dexamethasone (114 +/- 4 to 133 +/- 3 mm Hg, P < 0.0005) increased SBP. Sepiapterin alone did not alter SBP. Sepiapterin did not prevent ACTH- (129 +/- 4 mm Hg, NS) or dexamethasone-induced hypertension (135 +/- 3 mm Hg, NS), although plasma total biopterin concentrations were increased. NOLA increased SBP in rats prior to dexamethasone or saline treatment. NOLA further increased SBP in both saline- (133 +/- 4 to 157 +/- 3 mm Hg, P < 0.05) and dexamethasone-treated rats (135 +/- 5 to 170 +/- 6 mm Hg, P < 0.05). ACTH and dexamethasone increased plasma F(2)-isoprostane concentrations. Neither sepiapterin nor NOLA significantly affected this marker of oxidative stress. CONCLUSION Sepiapterin did not prevent ACTH- or dexamethasone-induced hypertension. NOLA exacerbated dexamethasone-induced hypertension. These data suggest that eNOS uncoupling does not play a major role in the genesis of glucocorticoid-induced hypertension in the rat.
Collapse
Affiliation(s)
- Mya Thida
- The High Blood Pressure Research Unit, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Noguchi K, Hamadate N, Matsuzaki T, Sakanashi M, Nakasone J, Sakanashi M, Tsutsui M, Sakanashi M. Improvement of impaired endothelial function by tetrahydrobiopterin in stroke-prone spontaneously hypertensive rats. Eur J Pharmacol 2010; 631:28-35. [PMID: 20096684 DOI: 10.1016/j.ejphar.2010.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 12/04/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
To investigate the role of tetrahydrobiopterin (BH4), an essential cofactor of nitric oxide synthase, in endothelial function in a model of genetic hypertension, acetylcholine- and sodium nitroprusside (SNP)-induced vasodilator responses were examined in the absence and presence of BH4 in age-matched adult stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto (WKY) rats. Acetylcholine-induced depressor responses attenuated significantly in SHRSP compared with those in WKY rats. Acetylcholine-induced relaxations in phenylephrine-precontracted aortic rings of SHRSP were also significantly impaired as compared to those of WKY rats, while SNP-induced relaxations were similar between both strains. In SHRSP, intravenous infusion of BH4 (0.12 mg/kg per min for 20 min following a bolus injection of 0.48 mg/kg) significantly improved vasodilator responses to acetylcholine without affecting those to SNP, but in WKY rats BH4 did not influence those to acetylcholine. BH4 infusion itself had no hemodynamic effect in both strains. However, BH4 levels in plasma and thoracic aorta as well as plasma concentrations of nitrite plus nitrate, metabolites of NO, in SHRSP were all significantly greater than those in WKY rats, suggesting the occurrence of compensatory upregulation of NO synthesis in SHRSP. These results demonstrate that the impaired endothelial function in SHRSP cannot be explained simply by the decrease in absolute amount of BH4.
Collapse
Affiliation(s)
- Katsuhiko Noguchi
- Department of Pharmacology, School of Medicine, Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Costa MA, Elesgaray R, Caniffi C, Fellet A, Mac Laughlin M, Arranz C. Role of nitric oxide as a key mediator on cardiovascular actions of atrial natriuretic peptide in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2010; 298:H778-86. [DOI: 10.1152/ajpheart.00488.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective was to study atrial natriuretic peptide (ANP) effects on mean arterial pressure (MAP) and cardiovascular nitric oxide (NO) system in spontaneously hypertensive rats (SHRs), investigating the receptors and signaling pathways involved. In vivo, SHRs and Wistar-Kyoto (WKY) rats were infused with saline (0.05 ml/min) or ANP (0.2 μg·kg−1·min−1) for 1 h. MAP and nitrites and nitrates excretion (NOx) were determined. NO synthase (NOS) activity and endothelial (eNOS), neuronal (nNOS) and inducible (iNOS) NOS expression were measured in the heart and aorta. In vitro, heart and aortic NOS activity induced by ANP was determined in the presence of iNOS and nNOS inhibitors, natriuretic peptide receptor (NPR)-A/B blocker, Gi protein, and calmodulin inhibitors. As a result, ANP diminished MAP and increased NOx in both groups. Cardiovascular NOS activity was higher in SHRs than in WKY rats. ANP increased NOS activity, but the activation was lower in SHRs than in WKY rats. ANP had no effect on NOS isoform expression. NOS activity induced by ANP was not modified by iNOS and nNOS inhibitors. NPR-A/B blockade blunted NOS stimulation via ANP in ventricle and aorta but not in atria. Cardiovascular NOS response to ANP was reduced by Gi protein and calmodulin inhibitors in both groups. In conclusion, in atria, ventricle, and aorta, ANP interacts with NPR-C receptors, activating Ca2+-calmodulin eNOS through Gi protein. In ventricle and aorta, NOS activation also involves NPR-A/B. The NOS response to ANP was impaired in heart and aorta of SHRs. The impaired NO-system response to ANP in hypertensive animals, involving alterations in the signaling pathway, could participate in the maintenance of high blood pressure in this model of hypertension.
Collapse
Affiliation(s)
- María A. Costa
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rosana Elesgaray
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Caniffi
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Fellet
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Myriam Mac Laughlin
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina Arranz
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
72
|
Nurkiewicz TR, Wu G, Li P, Boegehold MA. Decreased arteriolar tetrahydrobiopterin is linked to superoxide generation from nitric oxide synthase in mice fed high salt. Microcirculation 2010; 17:147-57. [PMID: 20163541 PMCID: PMC3402363 DOI: 10.1111/j.1549-8719.2009.00014.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Impaired endothelium-dependent arteriolar dilation in mice fed high salt (HS) is due to local oxidation of nitric oxide (NO) by superoxide anion (O(2) (-)). We explored the possibility that "uncoupled" endothelial nitric oxide synthase (eNOS) is the source of this O(2) (-). METHODS Levels of L-arginine (L-Arg), tetrahydrobiopterin (BH(4)), and O(2) (-) (hydroethidine oxidation) were measured in spinotrapezius muscle arterioles of mice fed normal salt (0.45%, NS) or (4%, HS) diets for 4 weeks, with or without dietary L-Arg supplementation. The contribution of NO to endothelium-dependent dilation was determined from the effect of N(omega)-nitro-L-arginine methyl ester (L-NAME) on responses to acetylcholine (ACh). RESULTS Arterioles in HS mice had lower [BH(4)] and higher O(2) (-) levels than those in NS mice. ACh further increased arteriolar O(2) (-) in HS mice only. L-Arg supplementation prevented the reduction in [BH(4)] in arterioles of HS mice, and O(2) (-) was not elevated in these vessels. Compared to NS mice, arteriolar ACh responses were diminished and insensitive to L-NAME in HS mice, but not in HS mice supplemented with L-Arg. CONCLUSIONS These findings suggest that eNOS uncoupling due to low [BH(4)] is responsible for O(2) (-) generation and reduced NO-dependent dilation in arterioles of mice fed a HS diet.
Collapse
Affiliation(s)
- Timothy R. Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine
- Department of Physiology and Pharmacology, West Virginia University School of Medicine
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University
| | - Peng Li
- Department of Animal Science, Texas A&M University
| | - Matthew A. Boegehold
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine
- Department of Physiology and Pharmacology, West Virginia University School of Medicine
| |
Collapse
|
73
|
Moss MB, Siqueira MA, Mann GE, Brunini TMC, Mendes-Ribeiro AC. Platelet aggregation in arterial hypertension: Is there a nitric oxide-urea connection? Clin Exp Pharmacol Physiol 2010; 37:167-72. [DOI: 10.1111/j.1440-1681.2009.05247.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
74
|
Schmidt K, Rehn M, Stessel H, Wölkart G, Mayer B. Evidence against tetrahydrobiopterin depletion of vascular tissue exposed to nitric oxide/superoxide or nitroglycerin. Free Radic Biol Med 2010; 48:145-52. [PMID: 19853656 DOI: 10.1016/j.freeradbiomed.2009.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/15/2009] [Accepted: 10/16/2009] [Indexed: 11/22/2022]
Abstract
Several cardiovascular disorders, including atherosclerosis and tolerance to the antianginal drug nitroglycerin (GTN), may be associated with the generation of superoxide anions, which react with nitric oxide (NO) to yield peroxynitrite. According to a widely held view, oxidation of tetrahydrobiopterin (BH(4)) by peroxynitrite causes uncoupling of endothelial NO synthase (eNOS), resulting in reduced NO bioavailability and endothelial dysfunction under conditions of oxidative stress. In this study we determined the levels of reduced biopterins and endothelial function in cultured cells exposed to peroxynitrite and GTN as well as in blood vessels isolated from GTN-tolerant guinea pigs and rats. BH(4) was rapidly oxidized by peroxynitrite and 3-morpholino sydnonimine (SIN-1) in buffer, but this was prevented by glutathione and not observed in endothelial cells exposed to SIN-1 or GTN. Prolonged treatment of the cells with 0.1 mM GTN caused slow N(G)-nitro-l-arginine-sensitive formation of reactive oxygen species without affecting eNOS activity. Endothelial function and BH(4)/BH(2) levels were identical in blood vessels of control and GTN-tolerant animals. Our results suggest that peroxynitrite-triggered BH(4) oxidation does not occur in endothelial cells or GTN-exposed blood vessels. GTN seems to trigger minor eNOS uncoupling that is unrelated to BH(4) depletion and without observable consequence on eNOS function.
Collapse
Affiliation(s)
- Kurt Schmidt
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
75
|
Harrison DG, Chen W, Dikalov S, Li L. Regulation of endothelial cell tetrahydrobiopterin pathophysiological and therapeutic implications. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 60:107-32. [PMID: 21081217 DOI: 10.1016/b978-0-12-385061-4.00005-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is a critical cofactor for the nitric oxide synthases. In the absence of BH(4), these enzymes become uncoupled, fail to produce nitric oxide, and begin to produce superoxide and other reactive oxygen species (ROS). BH(4) levels are modulated by a complex biosynthetic pathway, salvage enzymes, and by oxidative degradation. The enzyme GTP cyclohydrolase-1 catalyzes the first step in the de novo synthesis of BH(4) and new evidence shows that this enzyme is regulated by phosphorylation, which reduces its interaction with its feedback regulatory protein (GFRP). In the setting of a variety of common diseases, such as atherosclerosis, hypertension, and diabetes, reactive oxygen species promote oxidation of BH(4) and inhibit expression of the salvage enzyme dihydrofolate reductase (DHFR), promoting accumulation of BH(2) and NOS uncoupling. There is substantial interest in therapeutic approaches to increasing tissue levels of BH(4), largely by oral administration of this agent. BH(4) treatment has proved effective in decreasing atherosclerosis, reducing blood pressure, and preventing complications of diabetes in experimental animals. While these basic studies have been very promising, there are only a few studies showing any effect of BH(4) therapy in humans in treatment of these common problems. Whether BH(4) or related agents will be useful in treatment of human diseases needs additional study.
Collapse
Affiliation(s)
- David G Harrison
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Decatur, Georgia, USA
| | | | | | | |
Collapse
|
76
|
Tamura Y, Naemura A, Inoue A, Ijiri Y, Seki J, Yada T, Goto M, Shinohara M, Kawashima S, Giddings JC, Yamamoto J. Impaired endothelial function may be due to decreased aortic tetrahydrobiopterin, assessed by a new flow-mediated vasodilation in vivo in hypercholesterolemic/atherogenic mice. Blood Coagul Fibrinolysis 2009; 20:699-705. [PMID: 19741507 DOI: 10.1097/mbc.0b013e328331fd18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tetrahydrobiopterin (BH4) is an important cofactor for endothelial nitric oxide synthase activity. The relationship between endothelial function in vivo and aortic BH4 level is not fully understood, however. In the present study, we aimed to clarify whether reduction of aortic BH4 levels contributes to endothelial dysfunction in vivo using spontaneously hyperlipidemic mice. To estimate endothelial function in vivo and in real-time state, we developed a flow-mediated vasodilation (FMV) method in mice, which measured changes in the diameter of the femoral artery in response to increased blood flow. C57BL/6 mice and apoE/low-density lipoprotein receptor double knock-out mice were fed a low-fat diet (LFD) or a high-fat diet (HFD) for 12 weeks from 6 weeks of age. HFD feeding impaired FMV in double knock-out mice, but not in C57BL/6 mice. Furthermore, HFD feeding reduced plasma NOx concentration and aortic BH4 level in double knock-out mice. Conversely, exogenous injection of BH4 (2 mg/kg) markedly increased aortic BH4 levels and restored endothelial function. In conclusion, we demonstrated that HFD feeding impaired nitric oxide-mediated endothelial function and reduced BH4 level in vivo, and that acute augmentation of aortic BH4 levels improved endothelial function. These findings indicate that BH4 is a critical determinant of nitric oxide-mediated endothelial function in hypercholesterolemia.
Collapse
Affiliation(s)
- Yukinori Tamura
- Laboratory of Physiology, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Chatterjee M, Saluja R, Tewari S, Barthwal MK, Goel SK, Dikshit M. Augmented nitric oxide generation in neutrophils: Oxidative and pro-inflammatory implications in hypertension. Free Radic Res 2009; 43:1195-204. [DOI: 10.3109/10715760903247256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
78
|
Sullivan JC, Pardieck JL, Hyndman KA, Pollock JS. Renal NOS activity, expression, and localization in male and female spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2009; 298:R61-9. [PMID: 19889864 DOI: 10.1152/ajpregu.00526.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to examine the status of the renal nitric oxide (NO) system by determining NO synthase (NOS) isoform activity and expression within the three regions of the kidney in 14-wk-old male and female spontaneously hypertensive rats (SHR). NOS activity, and NOS1 and NOS3 protein expressions and localization were comparable in the renal cortex and outer medulla of male and female SHR. In contrast, male SHR had significantly less NOS1 and NOS3 enzymatic activity (0 +/- 5 and 53 +/- 7 pmol.mg(-1).30 min(-1), respectively) compared with female SHR (37 +/- 16 and 172 +/- 40 pmol.mg(-1).30 min(-1), respectively). Lower levels of inner medullary NOS1 activity in male SHR were associated with less NOS1 protein expression [45 +/- 7 relative densitometric units (RDU)] and fewer NOS1-positive cells in the renal inner medulla compared with female SHR (79 +/- 12 RDU). Phosphorylation of NOS3 is an important determinant of NOS activity. Male SHR had significantly greater phosphorylation of NOS3 on threonine 495 in the renal cortex compared with females (0.25 +/- 0.05 vs. 0.15 +/- 0.06 RDU). NOS3 phosphorylation was comparable in males and females in the other regions of the kidney. cGMP levels were measured as an indirect index of NO production. cGMP levels were significantly lower in the renal cortex (0.08 +/- 0.01 pmol/mg) and inner medulla (0.43 +/- 0.02 pmol/mg) of male SHR compared with females (cortex: 0.14 +/- 0.02 pmol/mg; inner medulla: 0.56 +/- 0.02 pmol/mg). Our data suggest that the effect of the sex of the animal on NOS activity and expression is different in the three regions of the SHR kidney and supports the hypothesis that male SHR have lower NO bioavailability compared with females.
Collapse
Affiliation(s)
- Jennifer C Sullivan
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | |
Collapse
|
79
|
Lee CK, Han JS, Won KJ, Jung SH, Park HJ, Lee HM, Kim J, Park YS, Kim HJ, Park PJ, Park TK, Kim B. Diminished expression of dihydropteridine reductase is a potent biomarker for hypertensive vessels. Proteomics 2009; 9:4851-8. [PMID: 19743417 DOI: 10.1002/pmic.200800973] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 07/20/2009] [Indexed: 11/11/2022]
Abstract
To identify the new targets for hypertension, we analyzed the protein expression profiles of aortic smooth muscle in spontaneously hypertensive rats (SHR) of various ages during the development of hypertension, as well as in age-matched normotensive Wistar-Kyoto (WKY) rats, using a proteomic analysis. The expressions of seven proteins were altered in SHR compared with WKY rats. Of these proteins, NADH dehydrogenase 1alpha, GSTomega1, peroxi-redoxin I and transgelin were upregulated in SHR compared with WKY rats. On the other hand, the expression of HSP27 and Ran protein decreased in SHR. The diminution of dihydrobiopterin reductase, an enzyme located in the regeneration pathways of tetrahydrobiopterin (BH4), was also prominent in SHR. The results from a PCR analysis revealed that the expression of BH4 biosynthesis enzymes - GTP cyclohydrolase-1 and sepiapterin reductase - decreased and increased, respectively, in SHR compared with WKY rats. The level of BH4 was less in aortic strips from SHR than from WKY rats. Moreover, treatment with BH4 inhibited aortic smooth muscle contraction induced by serotonin. These results suggest that the deficiency in BH4 regeneration produced by diminished dihydrobiopterin reductase expression is involved in vascular disorders in hypertensive rats.
Collapse
Affiliation(s)
- Chang-Kwon Lee
- Institute of Functional Genomics, School of Medicine, Konkuk University, Danwol-dong, Choonju, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
|
81
|
Zhang C, Rogers PA, Merkus D, Muller‐Delp JM, Tiefenbacher CP, Potter B, Knudson JD, Rocic P, Chilian WM. Regulation of Coronary Microvascular Resistance in Health and Disease. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
82
|
Chatterjee A, Black SM, Catravas JD. Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul Pharmacol 2008; 49:134-40. [PMID: 18692595 PMCID: PMC2592563 DOI: 10.1016/j.vph.2008.06.008] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 06/16/2008] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a gaseous lipophilic free radical generated by three distinct isoforms of nitric oxide synthases (NOS), type 1 or neuronal (nNOS), type 2 or inducible (iNOS) and type 3 or endothelial NOS (eNOS). Expression of eNOS is altered in many types of cardiovascular disease, such as atherosclerosis, diabetes and hypertension. The ubiquitous chaperone heat shock protein 90 (hsp90) associates with NOS and is important for its proper folding and function. Current studies point toward a therapeutic potential by modulating hsp90-NOS association in various vascular diseases. Here we review the transcriptional regulation of endothelial NOS and factors affecting eNOS activity and function, as well as the important vascular pathologies associated with altered NOS function, focusing on the regulatory role of hsp90 and other factors in NO-associated pathogenesis of these diseases.
Collapse
Affiliation(s)
- Anuran Chatterjee
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912-2500, USA
| | | | | |
Collapse
|
83
|
Rao F, Zhang L, O'Connor DT. Complex trait genetics the role of mechanistic "intermediate phenotypes" and candidate genetic loci. J Am Coll Cardiol 2008; 52:166-8. [PMID: 18598897 PMCID: PMC3320655 DOI: 10.1016/j.jacc.2008.02.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 02/18/2008] [Indexed: 11/19/2022]
|
84
|
d'Uscio LV, Katusic ZS. Erythropoietin increases endothelial biosynthesis of tetrahydrobiopterin by activation of protein kinase B alpha/Akt1. Hypertension 2008; 52:93-9. [PMID: 18519842 PMCID: PMC2646900 DOI: 10.1161/hypertensionaha.108.114041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/02/2008] [Indexed: 12/22/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is an essential cofactor required for enzymatic activity of endothelial NO synthase. Recently, it has been shown that vascular protective effects of erythropoietin (EPO) are dependent on activation of endothelial NO synthase. Therefore, our objective was to characterize the effect of EPO on the biosynthesis of BH(4) in the vascular wall. Incubation of isolated C57BL/6J mouse aortas for 18 hours with recombinant human EPO (1 to 50 U/mL) caused a concentration-dependent increase in intracellular BH(4) levels and activity of GTP-cyclohydrolase I. Maximal biosynthesis of BH(4) was detected at therapeutic concentrations of 5 U/mL. Removal of the endothelium abolished EPO-induced biosynthesis of BH(4) demonstrating that the vascular endothelium is a major source of BH(4). Treatment with a selective phosphatidylinositol 3-kinase inhibitor wortmannin significantly reduced BH(4) biosynthesis stimulated by EPO. The stimulatory effect of EPO on vascular GTP-cyclohydrolase I activity, BH(4) production, and phosphorylation of endothelial NO synthase was also detected in vivo in mice treated with recombinant human EPO. These effects of EPO were abolished in protein kinase Balpha/Akt1-deficient mice. In addition, EPO significantly increased systolic blood pressure and the number of circulating platelets in Akt1-deficient mice. Our results demonstrate that EPO stimulates biosynthesis of BH(4) in vascular endothelium and that the increase in BH(4) levels is caused by de novo biosynthesis of BH(4) via the phosphatidylinositol 3-kinase/Akt1 pathway. This effect is most likely designed to provide optimal intracellular concentration of the cofactor necessary for EPO-induced elevation of endothelial NO synthase activity.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Department of Anesthesiology and Molecular, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
85
|
Porkert M, Sher S, Reddy U, Cheema F, Niessner C, Kolm P, Jones DP, Hooper C, Taylor WR, Harrison D, Quyyumi AA. Tetrahydrobiopterin: a novel antihypertensive therapy. J Hum Hypertens 2008; 22:401-7. [PMID: 18322548 DOI: 10.1038/sj.jhh.1002329] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 11/21/2007] [Accepted: 12/01/2007] [Indexed: 11/09/2022]
Abstract
Tetrahydrobiopterin (BH(4)) is a cofactor for the nitric oxide (NO) synthase enzymes, such that its insufficiency results in uncoupling of the enzyme, leading to release of superoxide rather than NO in disease states, including hypertension. We hypothesized that oral BH(4) will reduce arterial blood pressure (BP) and improve endothelial function in hypertensive subjects. Oral BH(4) was given to subjects with poorly controlled hypertension (BP >135/85 mm Hg) and weekly measurements of BP and endothelial function made. In Study 1, 5 or 10 mg kg(-1) day(-1) of BH(4) (n=8) was administered orally for 8 weeks, and in Study 2, 200 and 400 mg of BH(4) (n=16) was given in divided doses for 4 weeks. Study 1: significant reductions in systolic (P=0.005) and mean BP (P=0.01) were observed with both doses of BH(4). Systolic BP was 15+/-15 mm Hg (P=0.04) lower after 5 weeks and persisted for the 8-week study period. Study 2: subjects given 400 mg BH(4) had decreased systolic (P=0.03) and mean BP (P=0.04), with a peak decline of 16+/-19 mm Hg (P=0.04) at 3 weeks. BP returned to baseline 4 weeks after discontinuation. Significant improvement in endothelial function was observed in Study 1 subjects and those receiving 400 mg BH(4). There was no significant change in subjects given the 200 mg dose. This pilot investigation indicates that oral BH(4) at a daily dose of 400 mg or higher has a significant and sustained antihypertensive effect in subjects with poorly controlled hypertension, an effect that is associated with improved endothelial NO bioavailability.
Collapse
Affiliation(s)
- M Porkert
- Division of Cardiology, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Wood KC, Hsu LL, Gladwin MT. Sickle cell disease vasculopathy: a state of nitric oxide resistance. Free Radic Biol Med 2008; 44:1506-28. [PMID: 18261470 DOI: 10.1016/j.freeradbiomed.2008.01.008] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/21/2007] [Accepted: 01/11/2008] [Indexed: 12/31/2022]
Abstract
Sickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by microvascular vaso-occlusion with erythrocytes containing polymerized sickle (S) hemoglobin, erythrocyte hemolysis, vasculopathy, and both acute and chronic multiorgan injury. It is associated with steady state increases in plasma cell-free hemoglobin and overproduction of reactive oxygen species (ROS). Hereditary and acquired hemolytic conditions release into plasma hemoglobin and other erythrocyte components that scavenge endothelium-derived NO and metabolize its precursor arginine, impairing NO homeostasis. Overproduction of ROS, such as superoxide, by enzymatic (xanthine oxidase, NADPH oxidase, uncoupled eNOS) and nonenzymatic pathways (Fenton chemistry), promotes intravascular oxidant stress that can likewise disrupt NO homeostasis. The synergistic bioinactivation of NO by dioxygenation and oxidation reactions with cell-free plasma hemoglobin and ROS, respectively, is discussed as a mechanism for NO resistance in SCD vasculopathy. Human physiological and transgenic animal studies provide experimental evidence of cardiovascular and pulmonary resistance to NO donors and reduced NO bioavailability that is associated with vasoconstriction, decreased blood flow, platelet activation, increased endothelin-1 expression, and end-organ injury. Emerging epidemiological data now suggest that chronic intravascular hemolysis is associated with certain clinical complications: pulmonary hypertension, cutaneous leg ulcerations, priapism, and possibly stroke. New therapeutic strategies to limit intravascular hemolysis and ROS generation and increase NO bioavailability are discussed.
Collapse
Affiliation(s)
- Katherine C Wood
- Vascular Medicine Branch, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
87
|
Abstract
Few controversies in medicine have such a long history as that of whether salt is identifiably dangerous or not dangerous. The most common reported association between excess dietary salt intake and clinical outcome has been in the field of hypertension, but dietary sodium intake mediates effects that go far beyond, and are independent of, extracellular fluid expansion and elevation in blood pressure. For nephrologists, clinical trials that demonstrate no negative outcome of a high salt diet in the general population are thus not particularly assuasive, because patients with chronic kidney disease (CKD) represent an entity that is by no means comparable to the general population. This review takes a look at the challenges associated with salt balance in CKD patients (particularly at K/DOQI stage 5), followed by a summary of current concepts believed to play a part in salt-mediated pathophysiology, and the conclusion, based on the present state of scientific knowledge, that it appears advisable to advocate low dietary salt intake in this patient population.
Collapse
|
88
|
Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 2008; 31 Suppl 2:S170-80. [PMID: 18227481 DOI: 10.2337/dc08-s247] [Citation(s) in RCA: 499] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reactive oxygen species (ROS) influence many physiological processes including host defense, hormone biosynthesis, fertilization, and cellular signaling. Increased ROS production (termed "oxidative stress") has been implicated in various pathologies, including hypertension, atherosclerosis, diabetes, and chronic kidney disease. A major source for vascular and renal ROS is a family of nonphagocytic NAD(P)H oxidases, including the prototypic Nox2 homolog-based NAD(P)H oxidase, as well as other NAD(P)H oxidases, such as Nox1 and Nox4. Other possible sources include mitochondrial electron transport enzymes, xanthine oxidase, cyclooxygenase, lipoxygenase, and uncoupled nitric oxide synthase. NAD(P)H oxidase-derived ROS plays a physiological role in the regulation of endothelial function and vascular tone and a pathophysiological role in endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, fibrosis, angiogenesis, and rarefaction, important processes underlying cardiovascular and renal remodeling in hypertension and diabetes. These findings have evoked considerable interest because of the possibilities that therapies against nonphagocytic NAD(P)H oxidase to decrease ROS generation and/or strategies to increase nitric oxide (NO) availability and antioxidants may be useful in minimizing vascular injury and renal dysfunction and thereby prevent or regress target organ damage associated with hypertension and diabetes. Here we highlight current developments in the field of reactive oxygen species and cardiovascular disease, focusing specifically on the recently identified novel Nox family of NAD(P)H oxidases in hypertension. We also discuss the potential role of targeting ROS as a therapeutic possibility in the management of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Tamara M Paravicini
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, 451 Smyth Rd., Ottawa, K1H 8M5, Ontario, Canada
| | | |
Collapse
|
89
|
Carey RM. Pathophysiology of Primary Hypertension. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
90
|
Liao SJ, Lin L, Zeng JS, Huang RX, Channon KM, Chen AF. Endothelium-targeted transgenic GTP-cyclohydrolase I overexpression inhibits neointima formation in mouse carotid artery. Clin Exp Pharmacol Physiol 2007; 34:1260-6. [PMID: 17973864 DOI: 10.1111/j.1440-1681.2007.04719.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Tetrahydrobiopterin (BH(4)) is an essential cofactor that maintains the normal function of endothelial nitric oxide (NO) synthase. Restenosis is a key complication after transluminal angioplasty. Guanosine 5'-triphosphate-cyclohydrolase I (GTPCH) is the first rate-limiting enzyme for de novo BH(4) synthesis. However, the role of GTPCH in restenosis is not fully understood. The present study tested the hypothesis that endothelial-targeted GTPCH overexpression retards neointimal formation, a hallmark of restenosis, in mouse carotid artery. 2. Transluminal wire injury was induced in the left carotid arteries of adult male wild-type C57BL/6 (WT) and endothelial GTPCH transgenic (Tg-GCH) mice. Re-endothelialization was confirmed with in vivo Evans blue staining. Endothelium-dependent and -independent relaxations were measured using isometric tension recording. Morphological analysis was performed 2 and 4 weeks after carotid injury to assess neointimal formation. Fluorescence-based high-performance liquid chromatography (HPLC) was used to determine GTPCH activity and BH(4) levels. Basal NO release following carotid injury was assessed by N(G)-nitro-L-arginine methyl ester-induced vascular contraction. 3. The endothelium was completely removed upon transluminal wire injury and full re-endothelialization was achieved at Day 10. Endothelium-dependent relaxation was impaired 10 days and 4 weeks after carotid injury, whereas endothelium-independent relaxation remained unaffected. Morphological analysis revealed that the endothelial-specific overexpression of GTPCH reduced neointimal formation and medial hypertrophy 2 and 4 weeks after carotid injury. Both arterial GTPCH enzyme activity and BH(4) levels were significantly elevated in Tg-GCH mice compared with WT mice and basal NO release of the injured carotid artery tended to increase in Tg-GCH mice. 4. These findings suggest that the endothelial overexpression of GTPCH increased endothelial BH(4) synthesis and played a preventive role in neointimal formation induced by endothelium denudation.
Collapse
Affiliation(s)
- Song-Jie Liao
- Department of Pharmacology and Neurology, Neuroscience Program and Molecular Biology Program, Michigan State University, East Lansing, MI 48824-1317, USA
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
Vitamin C is required for collagen synthesis and biosynthesis of certain hormones and recommended dietary intake levels are largely based these requirements. However, to function effectively as an antioxidant (or a pro-oxidant), relatively high levels of this vitamin must be maintained in the body. The instability of vitamin C combined with its relatively poor intestinal absorption and ready excretion from the body reduce physiological availability of this vitamin. This inability to maintain high serum levels of vitamin C may have serious health implications and is particularly relevant in the onset and progression of degenerative disease, such as cancer and cardiovascular disease (CVD), which have a strong contributing oxidative damage factor. In this review, we examine recent studies on the regulation of transport mechanisms for vitamin C, related clinical ramifications, and potential implications in high-dose vitamin C therapy. We also evaluate recent clinical and scientific evidence on the effects of this vitamin on cancer and CVD, with focus on the key mechanisms of action that may contribute to the therapeutic potential of this vitamin in these diseases. Several animal models that could be utilized to address unresolved questions regarding the feasibility of vitamin C therapy are also discussed.
Collapse
Affiliation(s)
- Yi Li
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | |
Collapse
|
92
|
Wood KC, Granger DN. Sickle cell disease: role of reactive oxygen and nitrogen metabolites. Clin Exp Pharmacol Physiol 2007; 34:926-32. [PMID: 17645642 DOI: 10.1111/j.1440-1681.2007.04639.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Sickle cell disease (SCD) is an inherited disorder of haemoglobin synthesis that is associated with significant morbidity and mortality due to sequelae of episodic vaso-occlusive events: pain crises and multiorgan damage. The microvascular responses to the initiation, progression and resolution of vaso-occlusive events are consistent with an inflammatory phenotype as suggested by activation of multiple cell types, an oxidatively stressed environment and endothelial cell dysfunction. 2. Decreased anti-oxidant defences in SCD patients and mice are accompanied by activation of enzymatic (NADPH oxidase, xanthine oxidase) and non-enzymatic (sickle haemoglobin auto-oxidation) sources of reactive oxygen species. The resultant oxidative stress leads to dysfunction/activation of arteriolar and venular endothelial cells, resulting in impaired vasomotor function and blood cell-endothelial cell adhesion. 3. Changes in substrate and cofactor availability for endothelial cell nitric oxide synthase may underlie reactive oxygen- and nitrogen-induced events that contribute to SCD-induced vasculopathy. 4. The emerging role of reactive oxygen and nitrogen species in the pathogenesis of SCD provides a platform for the development of novel agents to treat this painful and lethal disease.
Collapse
Affiliation(s)
- Katherine C Wood
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | |
Collapse
|
93
|
Zhang L, Rao F, Zhang K, Khandrika S, Das M, Vaingankar SM, Bao X, Rana BK, Smith DW, Wessel J, Salem RM, Rodriguez-Flores JL, Mahata SK, Schork NJ, Ziegler MG, O’Connor DT. Discovery of common human genetic variants of GTP cyclohydrolase 1 (GCH1) governing nitric oxide, autonomic activity, and cardiovascular risk. J Clin Invest 2007; 117:2658-71. [PMID: 17717598 PMCID: PMC1950457 DOI: 10.1172/jci31093] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 05/18/2007] [Indexed: 11/17/2022] Open
Abstract
GTP cyclohydrolase 1 (GCH1) is rate limiting in the provision of the cofactor tetrahydrobiopterin for biosynthesis of catecholamines and NO. We asked whether common genetic variation at GCH1 alters transmitter synthesis and predisposes to disease. Here we undertook a systematic search for polymorphisms in GCH1, then tested variants' contributions to NO and catecholamine release as well as autonomic function in twin pairs. Renal NO and neopterin excretions were significantly heritable, as were baroreceptor coupling (heart rate response to BP fluctuation) and pulse interval (1/heart rate). Common GCH1 variant C+243T in the 3'-untranslated region (3'-UTRs) predicted NO excretion, as well as autonomic traits: baroreceptor coupling, maximum pulse interval, and pulse interval variability, though not catecholamine secretion. In individuals with the most extreme BP values in the population, C+243T affected both diastolic and systolic BP, principally in females. In functional studies, C+243T decreased reporter expression in transfected 3'-UTRs plasmids. We conclude that human NO secretion traits are heritable, displaying joint genetic determination with autonomic activity by functional polymorphism at GCH1. Our results document novel pathophysiological links between a key biosynthetic locus and NO metabolism and suggest new strategies for approaching the mechanism, diagnosis, and treatment of risk predictors for cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Fangwen Rao
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Kuixing Zhang
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Srikrishna Khandrika
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Madhusudan Das
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Sucheta M. Vaingankar
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Xuping Bao
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Brinda K. Rana
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Douglas W. Smith
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Jennifer Wessel
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Rany M. Salem
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Juan L. Rodriguez-Flores
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Sushil K. Mahata
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Nicholas J. Schork
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Michael G. Ziegler
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| | - Daniel T. O’Connor
- Department of Medicine,
Department of Psychiatry, and
Department of Biology, UCSD School of Medicine, San Diego, California, USA.
VA San Diego Healthcare System, San Diego, California, USA.
Center for Human Genetics and Genomics and
Department of Pharmacology, UCSD School of Medicine, San Diego, California, USA
| |
Collapse
|
94
|
Gao M, Kondo F, Murakami T, Xu JW, Ma N, Zhu X, Mori K, Ishida T. 1-Aminocyclopropanecarboxylic acid, an antagonist of N-methyl-D-aspartate receptors, causes hypotensive and antioxidant effects with upregulation of heme oxygenase-1 in stroke-prone spontaneously hypertensive rats. Hypertens Res 2007; 30:249-57. [PMID: 17510507 DOI: 10.1291/hypres.30.249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
1-Aminocyclopropanecarboxylic acid (ACPC) has been shown to protect neurons against glutamate-induced neurotoxicity by reducing N-methyl-D-aspartate (NMDA) receptor activation. Recent studies have demonstrated that several antagonists of NMDA receptors have important cardiovascular effects. In this study, we examined whether the cardiovascular effects of ACPC involve the role of heme oxygenase-1 (HO-1) and its antioxidant effect in stroke-prone spontaneously hypertensive rats (SHRSP). Male SHRSP were divided into two groups: a control group and an ACPC group administered ACPC at 50 mg/kg per day for 4 weeks by peritoneal injection. Systolic blood pressure (SBP) and mortality of stroke were significantly lower in the ACPC group than in the control group. Urinary Na(+) and Cl(-) excretion and plasma superoxide dismutase (SOD) activity were increased in the ACPC group. Western analysis detected proteins that were immunoreactive to anti-nitrotyrosine antibody and showed lower levels of expression in the cerebral cortex compared to that in the control group. Immunohistochemical analysis revealed that 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in the hippocampus and cerebral cortex was reduced in the ACPC group. Quantitative reverse-transcription-polymerase chain reaction (RT-PCR) showed that administration of ACPC also significantly decreased the expression of neuronal nitric oxide synthase (nNOS) mRNA in the hippocampus and endotherial nitric oxide synthase (eNOS) mRNA in the cerebral cortex, and drastically increased HO-1 mRNA in the cerebral cortex. Enhanced HO-1 staining on sections from the hippocampus and cerebral cortex was observed in the ACPC group. These data suggest that the normalization by ACPC of blood pressure elevation and mortality of stroke involves induction of the expression of HO-1, which exerts antioxidant and vascular relaxation effects, in SHRSP.
Collapse
Affiliation(s)
- Ming Gao
- Faculty of Pharmaceutical Science, School of Human Environmental Science, Mukogawa Women's University, Nishinomiya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Schmidt TS, Alp NJ. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond) 2007; 113:47-63. [PMID: 17555404 DOI: 10.1042/cs20070108] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
NO produced by eNOS (endothelial nitric oxide synthase) is a key mediator of vascular homoeostasis. NO bioavailability is reduced early in vascular disease states, such as hypercholesterolaemia, diabetes and hypertension, and throughout the progression of atherosclerosis. This is a result of both reduced NO synthesis and increased NO consumption by reactive oxygen species. eNOS enzymatic activity appears to be determined by the availability of its cofactor BH4 (tetrahydrobiopterin). When BH4 levels are adequate, eNOS produces NO; when BH4 levels are limiting, eNOS becomes enzymatically uncoupled and generates superoxide, contributing to vascular oxidative stress and endothelial dysfunction. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus oxidative degradation in dysfunctional endothelium. Augmenting vascular BH4 levels by pharmacological supplementation, by enhancing the rate of de novo biosynthesis or by measures to reduce BH4 oxidation have been shown in experimental studies to enhance NO bioavailability. Thus BH4 represents a potential therapeutic target for preserving eNOS function in vascular disease.
Collapse
Affiliation(s)
- Tim S Schmidt
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
96
|
Nurkiewicz TR, Boegehold MA. High salt intake reduces endothelium-dependent dilation of mouse arterioles via superoxide anion generated from nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1550-6. [PMID: 17138723 DOI: 10.1152/ajpregu.00703.2006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In skeletal muscle arterioles of normotensive rats fed a high salt diet, the bioavailability of endothelium-derived nitric oxide (NO) is reduced by superoxide anion. Because the impact of dietary salt on resistance vessels in other species is largely unknown, we investigated endothelium-dependent dilation and oxidant activity in spinotrapezius muscle arterioles of C57BL/6J mice fed normal (0.45%, NS) or high salt (7%, HS) diets for 4 wk. Mean arterial pressure in HS mice was not different from that in NS mice, but the magnitude of arteriolar dilation in response to different levels of ACh was 42–57% smaller in HS mice than in NS mice. Inhibition of nitric oxide synthase (NOS) with NG monomethyl l-arginine (l-NMMA) significantly reduced resting diameters and reduced responses to ACh (by 45–63%) in NS mice but not in HS mice. Arteriolar wall oxidant activity, as assessed by tetranitroblue tetrazolium reduction or hydroethidine oxidation, was greater in HS mice than in NS mice. Exposure to the superoxide scavenger 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO) + catalase reduced this oxidant activity to normal and restored normal arteriolar responsiveness to ACh in HS mice but had no effect in NS mice. l-NMMA also restored arteriolar oxidant activity to normal in HS mice. ACh further increased arteriolar oxidant activity in HS mice but not in NS mice, and this effect was prevented with l-NMMA. These data suggest that a high salt diet promotes increased generation of superoxide anion from NOS in the murine skeletal muscle microcirculation, thus impairing endothelium-dependent dilation through reduced NO bioavailability.
Collapse
Affiliation(s)
- Timothy R Nurkiewicz
- Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, PO Box 9105, Robert C. Byrd Health Sciences Center, Morgantown, WV 26506-9105, USA
| | | |
Collapse
|
97
|
Liu DD, Hsu YH, Chen HI. Endotoxin-induced acute lung injury is enhanced in rats with spontaneous hypertension. Clin Exp Pharmacol Physiol 2007; 34:61-9. [PMID: 17201737 DOI: 10.1111/j.1440-1681.2007.04526.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. Acute lung injury (ALI), or acute respiratory distress syndrome, is a major cause of mortality in endotoxaemia. The present study tested whether the endotoxaemia-induced changes and associated ALI were enhanced in rats with established hypertension and to examine the possible mechanisms involved. 2. Fifty spontaneously hypertensive rats (SHR) and the same number of normotensive Wistar Kyoto (WKY) rats, aged 12-15 weeks, were used. The experiments were performed in conscious, unanaesthetized rats. Endotoxaemia was produced by intravenous lipopolysaccharide (LPS; 10 mg/kg). N(G)-Nitro-L-arginine methyl ester (L-NAME; 10 mg/kg, i.v.), L-N(6)-(1-iminoethyl)-lysine (L-Nil; 5 mg/kg, i.v.) and 3-morpholinosydnonimine (SIN-1; 5 mg/kg, i.v.) were given 5 min before LPS to observe the effects of nitric oxide synthase (NOS) inhibition and nitric oxide (NO) donation. 3. We monitored arterial pressure and heart rate and evaluated ALI by determining the lung weight/bodyweight ratio, lung weight gain, leakage of Evans blue dye, the protein concentration in bronchoalveolar lavage and histopathological examination. Plasma nitrate/nitrite, methyl guanidine, pro-inflammatory cytokines, including tumour necrosis factor-alpha and interleukin-1beta, and lung tissue cGMP were determined. Expression of mRNA for inducible and endothelial NOS was examined using reverse transcription-polymerase chain reaction. 4. Lipopolysaccharide caused systemic hypotension, ALI and increases in plasma nitrate/nitrite, methyl guanidine, pro-inflammatory cytokines and lung cGMP content. The LPS-induced changes were greater in SHR than in WKY rats. Pretreatment with L-NAME or L-Nil attenuated, whereas the NO donor SIN-1 aggravated, the endotoxin-induced changes. 5. In conclusion, rats with genetic hypertension are more susceptible to endotoxaemia and this results in a greater extent of ALI compared with normotensive WKY rats.
Collapse
Affiliation(s)
- Demeral D Liu
- Department of Dentistry, Tzu Chi Hospital and University Hualien, Taiwan
| | | | | |
Collapse
|
98
|
Yamamizu K, Shinozaki K, Ayajiki K, Gemba M, Okamura T. Oral administration of both tetrahydrobiopterin and L-arginine prevents endothelial dysfunction in rats with chronic renal failure. J Cardiovasc Pharmacol 2007; 49:131-9. [PMID: 17414224 DOI: 10.1097/fjc.0b013e31802f9923] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the mechanism of endothelial dysfunction in chronic renal failure (CRF), with reference to NO synthase. CRF was induced by 5/6 nephrectomy in rats. Either L-arginine (1.25 g/L in drinking water), tetrahydrobiopterin (BH4, 10 mg/kg per day in food), or a combination of the 2 were orally administered to CRF rats for 9 weeks. CRF rats showed elevation of systolic blood pressure compared with sham-operated rats. Endothelium-dependent relaxation induced by acetylcholine or A23187 in the isolated aorta was significantly reduced, and in vitro treatment with L-arginine, BH4, or superoxide dismutase restored the relaxation. Aortic segments from CRF rats showed significantly higher superoxide production in response to A23187, which was inhibited by L-NAME. Plasma concentrations of asymmetric dimethylarginine and symmetric dimethylarginine were higher in CRF rats. These changes in CRF rats were totally or partially decreased by L-arginine or BH4 supplementation in vivo. Interestingly, the combined treatment showed additive effects in certain parameters. These results suggest that vascular disorders in CRF rats may be partly due to NOS uncoupling caused by a relative deficiency of BH4 and partially due to accumulation of endogenous inhibitors of NOS and L-arginine uptake, resulting in the decrease of NO production and the increase of reactive oxygen species.
Collapse
Affiliation(s)
- Kohei Yamamizu
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | |
Collapse
|
99
|
Förstermann U. Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol Chem 2007; 387:1521-33. [PMID: 17132097 DOI: 10.1515/bc.2006.190] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial NO synthase (eNOS) is the predominant enzyme responsible for vascular NO synthesis. A functional eNOS transfers electrons from NADPH to its heme center, where L-arginine is oxidized to L-citrulline and NO. Common conditions predisposing to atherosclerosis, such as hypertension, hypercholesterolemia, diabetes mellitus and smoking, are associated with enhanced production of reactive oxygen species (ROS) and reduced amounts of bioactive NO in the vessel wall. NADPH oxidases represent major sources of ROS in cardiovascular pathophysiology. NADPH oxidase-derived superoxide avidly interacts with eNOS-derived NO to form peroxynitrite (ONOO(-)), which oxidizes the essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). As a consequence, oxygen reduction uncouples from NO synthesis, thereby rendering NOS to a superoxide-producing pro-atherosclerotic enzyme. Supplementation with BH(4) corrects eNOS dysfunction in several animal models and in patients. Administration of high local doses of the antioxidant L-ascorbic acid (vitamin C) improves endothelial function, whereas large-scale clinical trials do not support a strong role for oral vitamin C and/or E in reducing cardiovascular disease. Statins, angiotensin-converting enzyme inhibitors and AT1 receptor blockers have the potential of reducing vascular oxidative stress. Finally, novel approaches are being tested to block pathways leading to oxidative stress (e.g. protein kinase C) or to upregulate antioxidant enzymes.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University, D-55101 Mainz, Germany.
| |
Collapse
|
100
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|