51
|
Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med 2012; 40:1254-60. [PMID: 22425820 DOI: 10.1097/ccm.0b013e31823c8cc9] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Previous workers have demonstrated that controlled mechanical ventilation results in diaphragm inactivity and elicits a rapid development of diaphragm weakness as a result of both contractile dysfunction and fiber atrophy. Limited data exist regarding the impact of pressure support ventilation, a commonly used mode of mechanical ventilation-that permits partial mechanical activity of the diaphragm-on diaphragm structure and function. We carried out the present study to test the hypothesis that high-level pressure support ventilation decreases the diaphragm pathology associated with CMV. METHODS Sprague-Dawley rats were randomly assigned to one of the following five groups:1) control (no mechanical ventilation); 2) 12 hrs of controlled mechanical ventilation (12CMV); 3) 18 hrs of controlled mechanical ventilation (18CMV); 4) 12 hrs of pressure support ventilation (12PSV); or 5) 18 hrs of pressure support ventilation (18PSV). MEASUREMENTS AND MAIN RESULTS We carried out the following measurements on diaphragm specimens: 4-hydroxynonenal-a marker of oxidative stress, active caspase-3 (casp-3), active calpain-1 (calp-1), fiber type cross-sectional area, and specific force (sp F). Compared with the control, both 12PSV and 18PSV promoted a significant decrement in diaphragmatic specific force production, but to a lesser degree than 12CMV and 18CMV. Furthermore, 12CMV, 18PSV, and 18CMV resulted in significant atrophy in all diaphragm fiber types as well as significant increases in a biomarker of oxidative stress (4-hydroxynonenal) and increased proteolytic activity (20S proteasome, calpain-1, and caspase-3). Furthermore, although no inspiratory effort occurs during controlled mechanical ventilation, it was observed that pressure support ventilation resulted in large decrement, approximately 96%, in inspiratory effort compared with spontaneously breathing animals. CONCLUSIONS High levels of prolonged pressure support ventilation promote diaphragmatic atrophy and contractile dysfunction. Furthermore, similar to controlled mechanical ventilation, pressure support ventilation-induced diaphragmatic atrophy and weakness are associated with both diaphragmatic oxidative stress and protease activation.
Collapse
|
52
|
Nuclear factor-κB signaling contributes to mechanical ventilation-induced diaphragm weakness*. Crit Care Med 2012; 40:927-34. [PMID: 22080641 DOI: 10.1097/ccm.0b013e3182374a84] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Although mechanical ventilation is a life-saving measure for patients in respiratory failure, prolonged mechanical ventilation results in diaphragmatic weakness attributable to fiber atrophy and contractile dysfunction. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragmatic weakness is important. In this context, it is established that oxidative stress is required for mechanical ventilation-induced diaphragmatic weakness to occur. Numerous redox-sensitive signaling pathways exist in muscle including the transcription factor nuclear factor-κB. Although it has been suggested that nuclear factor-κB contributes to proteolytic signaling in inactivity-induced atrophy in locomotor muscles, the role that nuclear factor-κB plays in mechanical ventilation-induced diaphragmatic weakness is unknown. We tested the hypothesis that nuclear factor-κB activation plays a key signaling role in mechanical ventilation-induced diaphragmatic weakness and that oxidative stress is required for nuclear factor-κB activation. DESIGN Cause and effect was determined by independently treating mechanically ventilated animals with either a specific nuclear factor-κB inhibitor (SN50) or a clinically relevant antioxidant (curcumin). MEASUREMENTS AND MAIN RESULTS Inhibition of nuclear factor-κB activity partially attenuated both mechanical ventilation-induced diaphragmatic atrophy and contractile dysfunction. Further, treatment with the antioxidant curcumin prevented mechanical ventilation-induced activation of nuclear factor-κB in the diaphragm and rescued the diaphragm from both mechanical ventilation-induced atrophy and contractile dysfunction. CONCLUSIONS Collectively, these findings support the hypothesis that nuclear factor-κB activation plays a significant signaling role in mechanical ventilation-induced diaphragmatic weakness and that oxidative stress is an upstream activator of nuclear factor-κB. Finally, our results suggest that prevention of mechanical ventilation-induced oxidative stress in the diaphragm could be a useful clinical strategy to prevent or delay mechanical ventilation-induced diaphragmatic weakness.
Collapse
|
53
|
van Hees HWH, Schellekens WJM, Andrade Acuña GL, Linkels M, Hafmans T, Ottenheijm CAC, Granzier HL, Scheffer GJ, van der Hoeven JG, Dekhuijzen PNR, Heunks LMA. Titin and diaphragm dysfunction in mechanically ventilated rats. Intensive Care Med 2012; 38:702-9. [PMID: 22327561 PMCID: PMC3308006 DOI: 10.1007/s00134-012-2504-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/25/2011] [Indexed: 01/11/2023]
Abstract
Purpose Diaphragm weakness induced by mechanical ventilation may contribute to difficult weaning from the ventilator. For optimal force generation the muscle proteins myosin and titin are indispensable. The present study investigated if myosin and titin loss or dysfunction are involved in mechanical ventilation-induced diaphragm weakness. Methods Male Wistar rats were either assigned to a control group (n = 10) or submitted to 18 h of mechanical ventilation (MV, n = 10). At the end of the experiment, diaphragm and soleus muscle were excised for functional and biochemical analysis. Results Maximal specific active force generation of muscle fibers isolated from the diaphragm of MV rats was lower than controls (128 ± 9 vs. 165 ± 13 mN/mm2, p = 0.02) and was accompanied by a proportional reduction of myosin heavy chain concentration in these fibers. Passive force generation upon stretch was significantly reduced in diaphragm fibers from MV rats by ca. 35%. Yet, titin content was not significantly different between control and MV diaphragm. In vitro pre-incubation with phosphatase-1 decreased passive force generation upon stretch in diaphragm fibers from control, but not from MV rats. Mechanical ventilation did not affect active or passive force generation in the soleus muscle. Conclusions Mechanical ventilation leads to impaired diaphragm fiber active force-generating capacity and passive force generation upon stretch. Loss of myosin contributes to reduced active force generation, whereas reduced passive force generation is likely to result from a decreased phosphorylation status of titin. These impairments were not discernable in the soleus muscle of 18 h mechanically ventilated rats. Electronic supplementary material The online version of this article (doi:10.1007/s00134-012-2504-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hieronymus W H van Hees
- Department of Pulmonary Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Kim WY, Suh HJ, Hong SB, Koh Y, Lim CM. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med 2012; 39:2627-30. [PMID: 21705883 DOI: 10.1097/ccm.0b013e3182266408] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine the prevalence of diaphragmatic dysfunction diagnosed by M-mode ultrasonography (vertical excursion <10 mm or paradoxic movements) in medical intensive care unit patients and to assess the influence of diaphragmatic dysfunction on weaning outcome. DESIGN Prospective, observational study. SETTING Twenty-eight-bed medical intensive care unit in a university-affiliated hospital. PATIENTS Eighty-eight consecutive patients in the medical intensive care unit who required mechanical ventilation over 48 hrs and met the criteria for a spontaneous breathing trial were assessed. Patients with a history of diaphragmatic or neuromuscular disease or evidence of pneumothorax or pneumomediastinum were excluded. INTERVENTIONS During spontaneous breathing trial, each hemidiaphragm was evaluated by M-mode ultrasonography using the liver and spleen as windows with the patient supine. Rapid shallow breathing index was simultaneously calculated at the bedside. MEASUREMENTS AND MAIN RESULTS The prevalence of ultrasonographic diaphragmatic dysfunction among the eligible 82 patients was 29% (n = 24). Patients with diaphragmatic dysfunction had longer weaning time (401 [range, 226-612] hrs vs. 90 [range, 24-309] hrs, p < .01) and total ventilation time (576 [range, 374-850] hrs vs. 203 [range, 109-408] hrs, p < .01) than patients without diaphragmatic dysfunction. Patients with diaphragmatic dysfunction also had higher rates of primary (20 of 24 vs. 34 of 58, p < .01) and secondary (ten of 20 vs. ten of 46, p = .01) weaning failures than patients without diaphragmatic dysfunction. The area under the receiver operating characteristics curve of ultrasonographic criteria in predicting weaning failure was similar to that of rapid shallow breathing index. CONCLUSIONS Using M-mode ultrasonography, diaphragmatic dysfunction was found in a substantial number of medical intensive care unit patients without histories of diaphragmatic disease. Patients with such diaphragmatic dysfunction showed frequent early and delayed weaning failures. Ultrasonography of the diaphragm may be useful in identifying patients at high risk of difficulty weaning.
Collapse
Affiliation(s)
- Won Young Kim
- Department of Emergency Medicine, Ulsan University College of Medicine, Asan Medical Center, Seoul, Korea
| | | | | | | | | |
Collapse
|
55
|
Armbruster C, Dassow C, Gamerdinger K, Schneider M, Sumkauskaite M, Guttmann J, Schumann S. Mechanostimulation, electrostimulation and force measurement in anin vitromodel of the isolated rat diaphragm. Physiol Meas 2011; 32:1899-912. [DOI: 10.1088/0967-3334/32/12/002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
56
|
Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 2011; 39:1749-59. [PMID: 21460706 DOI: 10.1097/ccm.0b013e3182190b62] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mechanical ventilation is a life-saving intervention used to provide adequate pulmonary ventilation in patients suffering from respiratory failure. However, prolonged mechanical ventilation is associated with significant diaphragmatic weakness resulting from both myofiber atrophy and contractile dysfunction. Although several signaling pathways contribute to diaphragm weakness during mechanical ventilation, it is established that oxidative stress is required for diaphragmatic weakness to occur. Therefore, identifying the site(s) of mechanical ventilation- induced reactive oxygen species production in the diaphragm is important. OBJECTIVE These experiments tested the hypothesis that elevated mitochondrial reactive oxygen species emission is required for mechanical ventilation-induced oxidative stress, atrophy, and contractile dysfunction in the diaphragm. DESIGN Cause and effect was determined by preventing mechanical ventilation-induced mitochondrial reactive oxygen species emission in the diaphragm of rats using a novel mitochondria-targeted antioxidant (SS-31). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Compared to mechanically ventilated animals treated with saline, animals treated with SS-31 were protected against mechanical ventilation-induced mitochondrial dysfunction, oxidative stress, and protease activation in the diaphragm. Importantly, treatment of animals with the mitochondrial antioxidant also protected the diaphragm against mechanical ventilation-induced myofiber atrophy and contractile dysfunction. CONCLUSIONS These results reveal that prevention of mechanical ventilation-induced increases in diaphragmatic mitochondrial reactive oxygen species emission protects the diaphragm from mechanical ventilation-induced diaphragmatic weakness. This important new finding indicates that mitochondria are a primary source of reactive oxygen species production in the diaphragm during prolonged mechanical ventilation. These results could lead to the development of a therapeutic intervention to impede mechanical ventilation-induced diaphragmatic weakness.
Collapse
|
57
|
High dose methylprednisolone counteracts the negative effects of rocuronium on diaphragm function. Intensive Care Med 2011; 37:1865-72. [DOI: 10.1007/s00134-011-2337-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
|
58
|
Tang H, Lee M, Budak MT, Pietras N, Hittinger S, Vu M, Khuong A, Hoang CD, Hussain SNA, Levine S, Shrager JB. Intrinsic apoptosis in mechanically ventilated human diaphragm: linkage to a novel Fos/FoxO1/Stat3-Bim axis. FASEB J 2011; 25:2921-36. [PMID: 21597002 DOI: 10.1096/fj.11-183798] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mechanical ventilation (MV) is a life-saving measure in many critically ill patients. However, prolonged MV results in diaphragm dysfunction that contributes to the frequent difficulty in weaning patients from the ventilator. The molecular mechanisms underlying ventilator-induced diaphragm dysfunction (VIDD) remain poorly understood. We report here that MV induces myonuclear DNA fragmentation (3-fold increase; P<0.01) and selective activation of caspase 9 (P<0.05) and Bcl2-interacting mediator of cell death (Bim; 2- to 7-fold increase; P<0.05) in human diaphragm. MV also statistically significantly down-regulates mitochondrial gene expression and induces oxidative stress. In cultured muscle cells, we show that oxidative stress activates each of the catabolic pathways thought to underlie VIDD: apoptotic (P<0.05), proteasomal (P<0.05), and autophagic (P<0.01). Further, silencing Bim expression blocks (P<0.05) oxidative stress-induced apoptosis. Overlapping the gene expression profiles of MV human diaphragm and H₂O₂-treated muscle cells, we identify Fos, FoxO1, and Stat3 as regulators of Bim expression as well as of expression of the catabolic markers atrogin and LC3. We thus identify a novel Fos/FoxO1/Stat3-Bim intrinsic apoptotic pathway and establish the centrality of oxidative stress in the development of VIDD. This information may help in the design of specific drugs to prevent this condition.
Collapse
Affiliation(s)
- Huibin Tang
- Division of Thoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Agten A, Maes K, Smuder A, Powers SK, Decramer M, Gayan-Ramirez G. N-Acetylcysteine protects the rat diaphragm from the decreased contractility associated with controlled mechanical ventilation*. Crit Care Med 2011; 39:777-82. [DOI: 10.1097/ccm.0b013e318206cca9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
60
|
Jaber S, Jung B, Matecki S, Petrof BJ. Clinical review: ventilator-induced diaphragmatic dysfunction--human studies confirm animal model findings! Crit Care 2011; 15:206. [PMID: 21457528 PMCID: PMC3219309 DOI: 10.1186/cc10023] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diaphragmatic function is a major determinant of the ability to successfully wean patients from mechanical ventilation. However, the use of controlled mechanical ventilation in animal models results in a major reduction of diaphragmatic force-generating capacity together with structural injury and atrophy of diaphragm muscle fibers, a condition termed ventilator-induced diaphragmatic dysfunction (VIDD). Increased oxidative stress and exaggerated proteolysis in the diaphragm have been linked to the development of VIDD in animal models, but much less is known about the extent to which these phenomena occur in humans undergoing mechanical ventilation in the ICU. In the present review, we first briefly summarize the large body of evidence demonstrating the existence of VIDD in animal models, and outline the major cellular mechanisms that have been implicated in this process. We then relate these findings to very recently published data in critically ill patients, which have thus far been found to exhibit a remarkable degree of similarity with the animal model data. Hence, the human studies to date have indicated that mechanical ventilation is associated with increased oxidative stress, atrophy, and injury of diaphragmatic muscle fibers along with a rapid loss of diaphragmatic force production. These changes are, to a large extent, directly proportional to the duration of mechanical ventilation. In the context of these human data, we also review the methods that can be used in the clinical setting to diagnose and/or monitor the development of VIDD in critically ill patients. Finally, we discuss the potential for using different mechanical ventilation strategies and pharmacological approaches to prevent and/or to treat VIDD and suggest promising avenues for future research in this area.
Collapse
Affiliation(s)
- Samir Jaber
- Department of Critical Care and Anesthesiology (DAR B), CHU Montpellier, Hôpital Saint Eloi, 80 avenue Augustin Fliche, 34295 Montpellier Cedex 5, France
- Intensive Care Unit, Anesthesia and Critical Care Department B, Saint Eloi Teaching Hospital, Equipe soutenue par la Région et l'Institut National de la Santé et de la Recherche Médicale 25, Université Montpellier 1, Centre Hospitalier Universitaire Montpellier, Montpellier 34000, France
- Clinical Physiology Center, Arnaud de Villeneuve Teaching Hospital, Equipe soutenue par la Région et l'Institut National de la Santé et de la Recherche Médicale 25, Université Montpellier 1, Centre Hospitalier Universitaire Montpellier, Montpellier 34000, France
| | - Boris Jung
- Intensive Care Unit, Anesthesia and Critical Care Department B, Saint Eloi Teaching Hospital, Equipe soutenue par la Région et l'Institut National de la Santé et de la Recherche Médicale 25, Université Montpellier 1, Centre Hospitalier Universitaire Montpellier, Montpellier 34000, France
- Clinical Physiology Center, Arnaud de Villeneuve Teaching Hospital, Equipe soutenue par la Région et l'Institut National de la Santé et de la Recherche Médicale 25, Université Montpellier 1, Centre Hospitalier Universitaire Montpellier, Montpellier 34000, France
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Center and Research Institute, Montreal, Quebec H2X 2P2, Canada
| | - Stefan Matecki
- Clinical Physiology Center, Arnaud de Villeneuve Teaching Hospital, Equipe soutenue par la Région et l'Institut National de la Santé et de la Recherche Médicale 25, Université Montpellier 1, Centre Hospitalier Universitaire Montpellier, Montpellier 34000, France
| | - Basil J Petrof
- Meakins-Christie Laboratories and Respiratory Division, McGill University Health Center and Research Institute, Montreal, Quebec H2X 2P2, Canada
| |
Collapse
|
61
|
Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, Bouyabrine H, Courouble P, Koechlin-Ramonatxo C, Sebbane M, Similowski T, Scheuermann V, Mebazaa A, Capdevila X, Mornet D, Mercier J, Lacampagne A, Philips A, Matecki S. Rapidly Progressive Diaphragmatic Weakness and Injury during Mechanical Ventilation in Humans. Am J Respir Crit Care Med 2011; 183:364-71. [DOI: 10.1164/rccm.201004-0670oc] [Citation(s) in RCA: 439] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
62
|
Maes K, Agten A, Smuder A, Powers SK, Decramer M, Gayan-Ramirez G. Corticosteroid effects on ventilator-induced diaphragm dysfunction in anesthetized rats depend on the dose administered. Respir Res 2010; 11:178. [PMID: 21156051 PMCID: PMC3009634 DOI: 10.1186/1465-9921-11-178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 12/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High dose of corticosteroids has been previously shown to protect against controlled mechanical ventilation (CMV)-induced diaphragmatic dysfunction while inhibiting calpain activation. Because literature suggests that the calpain inhibiting effect of corticosteroid depends on the dose administered, we determined whether lower doses of corticosteroids would also provide protection of the diaphragm during CMV. This may be important for patients undergoing mechanical ventilation and receiving corticosteroids. METHODS Rats were assigned to controls or to 24 hours of CMV while being treated at the start of mechanical ventilation with a single intramuscular administration of either saline, or 5 mg/kg (low MP) or 30 mg/kg (high MP) of methylprednisolone. RESULTS Diaphragmatic force was decreased after CMV and this was exacerbated in the low MP group while high MP rescued this diaphragmatic dysfunction. Atrophy was more severe in the low MP group than after CMV while no atrophy was observed in the high MP group. A significant and similar increase in calpain activity was observed in both the low MP and CMV groups whereas the high dose prevented calpain activation. Expression of calpastatin, the endogenous inhibitor of calpain, was decreased in the CMV and low MP groups but its level was preserved to controls in the high MP group. Caspase-3 activity increased in all CMV groups but to a lesser extent in the low and high MP groups. The 20S proteasome activity was increased in CMV only. CONCLUSIONS Administration of 30 mg/kg methylprednisolone during CMV protected against CMV-induced diaphragm dysfunction while 5 mg/kg was more deleterious. The protective effect is due mainly to an inhibition of the calpain system through preservation of calpastatin levels and to a lesser extent to a caspase-3 inhibition.
Collapse
Affiliation(s)
- Karen Maes
- Respiratory Muscle Research Unit, Laboratory of Pneumology and Respiratory Division, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
63
|
Falk DJ, Kavazis AN, Whidden MA, Smuder AJ, McClung JM, Hudson MB, Powers SK. Mechanical ventilation-induced oxidative stress in the diaphragm: role of heme oxygenase-1. Chest 2010; 139:816-824. [PMID: 21106654 DOI: 10.1378/chest.09-2787] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Prolonged mechanical ventilation (MV) results in a rapid onset of diaphragmatic atrophy that is primarily due to increased proteolysis. Although MV-induced protease activation can involve several factors, it is clear that oxidative stress is a required signal for protease activation in the diaphragm during prolonged MV. However, the oxidant-producing pathways in the diaphragm that contribute to MV-induced oxidative stress remain unknown. We have demonstrated that prolonged MV results in increased diaphragmatic expression of a key stress-sensitive enzyme, heme oxygenase (HO)-1. Paradoxically, HO-1 can function as either a pro-oxidant or an antioxidant, and the role that HO-1 plays in MV-induced diaphragmatic oxidative stress is unknown. We tested the hypothesis that HO-1 acts as a pro-oxidant in the diaphragm during prolonged MV. METHODS To determine whether HO-1 functions as a pro-oxidant or an antioxidant in the diaphragm during MV, we assigned rats into three experimental groups: (1) a control group, (2) a group that received 18 h of MV and saline solution, and (3) a group that received 18 h of MV and was treated with a selective HO-1 inhibitor. Indices of oxidative stress, protease activation, and fiber atrophy were measured in the diaphragm. RESULTS Inhibition of HO-1 activity did not prevent or exacerbate MV-induced diaphragmatic oxidative stress (as indicated by biomarkers of oxidative damage). Further, inhibition of HO-1 activity did not influence MV-induced protease activation or myofiber atrophy in the diaphragm. CONCLUSIONS Our results indicate that HO-1 is neither a pro-oxidant nor an antioxidant in the diaphragm during MV. Furthermore, our findings reveal that HO-1 does not play an important role in MV-induced protease activation and diaphragmatic atrophy.
Collapse
Affiliation(s)
- Darin J Falk
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Andreas N Kavazis
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Melissa A Whidden
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Joseph M McClung
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Matthew B Hudson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL.
| |
Collapse
|
64
|
Hussain SNA, Mofarrahi M, Sigala I, Kim HC, Vassilakopoulos T, Maltais F, Bellenis I, Chaturvedi R, Gottfried SB, Metrakos P, Danialou G, Matecki S, Jaber S, Petrof BJ, Goldberg P. Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med 2010; 182:1377-86. [PMID: 20639440 DOI: 10.1164/rccm.201002-0234oc] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Controlled mechanical ventilation (CMV) results in atrophy of the human diaphragm. The autophagy-lysosome pathway (ALP) contributes to skeletal muscle proteolysis, but its contribution to diaphragmatic protein degradation in mechanically ventilated patients is unknown. OBJECTIVES To evaluate the autophagy pathway responses to CMV in the diaphragm and limb muscles of humans and to identify the roles of FOXO transcription factors in these responses. METHODS Muscle biopsies were obtained from nine control subjects and nine brain-dead organ donors. Subjects were mechanically ventilated for 2 to 4 hours and 15 to 276 hours, respectively. Activation of the ubiquitin-proteasome system was detected by measuring mRNA expressions of Atrogin-1, MURF1, and protein expressions of UBC2, UBC4, and the α subunits of the 20S proteasome (MCP231). Activation of the ALP was detected by electron microscopy and by measuring the expressions of several autophagy-related genes. Total carbonyl content and HNE-protein adduct formation were measured to assess oxidative stress. Total AKT, phosphorylated and total FOXO1, and FOXO3A protein levels were also measured. MEASUREMENTS AND MAIN RESULTS Prolonged CMV triggered activation of the ALP as measured by the appearance of autophagosomes in the diaphragm and increased expressions of autophagy-related genes, as compared with controls. Induction of autophagy was associated with increased protein oxidation and enhanced expression of the FOXO1 gene, but not the FOXO3A gene. CMV also triggered the inhibition of both AKT expression and FOXO1 phosphorylation. CONCLUSIONS We propose that prolonged CMV causes diaphragm disuse, which, in turn, leads to activation of the ALP through oxidative stress and the induction of the FOXO1 transcription factor.
Collapse
|
65
|
Supinski GS, Vanags J, Callahan LA. Eicosapentaenoic acid preserves diaphragm force generation following endotoxin administration. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R35. [PMID: 20233404 PMCID: PMC2887142 DOI: 10.1186/cc8913] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 01/22/2010] [Accepted: 03/16/2010] [Indexed: 01/06/2023]
Abstract
Introduction Infections produce severe respiratory muscle weakness, which contributes to the development of respiratory failure. An effective, safe therapy to prevent respiratory muscle dysfunction in infected patients has not been defined. This study examined the effect of eicosapentaenoic acid (EPA), an immunomodulator that can be safely administered to patients, on diaphragm force generation following endotoxin administration. Methods Rats were administered the following (n = 5/group): (a) saline, (b) endotoxin, 12 mg/kg IP, (c) endotoxin + EPA (1.0 g/kg/d), and (d) EPA alone. Diaphragms were removed and measurements made of the diaphragm force-frequency curve, calpain activation, caspase activation, and protein carbonyl levels. Results Endotoxin elicited large reductions in diaphragm specific force generation (P < 0.001), and increased diaphragm caspase activation (P < 0.01), calpain activation (P < 0.001) and protein carbonyl levels (P < 0.01). EPA administration attenuated endotoxin-induced reductions in diaphragm specific force, with maximum specific force levels of 27 ± 1, 14 ± 1, 23 ± 1, and 24 ± 1 N/cm2, respectively, for control, endotoxin, endotoxin + EPA, and EPA treated groups (P < 0.001). EPA did not prevent endotoxin induced caspase activation or protein carbonyl formation but significantly reduced calpain activation (P < 0.02). Conclusions These data indicate that endotoxin-induced reductions in diaphragm specific force generation can be partially prevented by administration of EPA, a nontoxic biopharmaceutical that can be safely given to patients. We speculate that it may be possible to reduce infection-induced skeletal muscle weakness in critically ill patients by administration of EPA.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, 740 South Limestone, Lexington, KY 40536-0284, USA.
| | | | | |
Collapse
|
66
|
Whidden MA, Smuder AJ, Wu M, Hudson MB, Nelson WB, Powers SK. Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. J Appl Physiol (1985) 2010; 108:1376-82. [PMID: 20203072 DOI: 10.1152/japplphysiol.00098.2010] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prolonged mechanical ventilation (MV) results in diaphragmatic weakness due to fiber atrophy and contractile dysfunction. Recent work reveals that activation of the proteases calpain and caspase-3 is required for MV-induced diaphragmatic atrophy and contractile dysfunction. However, the mechanism(s) responsible for activation of these proteases remains unknown. To address this issue, we tested the hypothesis that oxidative stress is essential for the activation of calpain and caspase-3 in the diaphragm during MV. Cause-and-effect was established by prevention of MV-induced diaphragmatic oxidative stress using the antioxidant Trolox. Treatment of animals with Trolox prevented MV-induced protein oxidation and lipid peroxidation in the diaphragm. Importantly, the Trolox-mediated protection from MV-induced oxidative stress prevented the activation of calpain and caspase-3 in the diaphragm during MV. Furthermore, the avoidance of MV-induced oxidative stress not only averted the activation of these proteases but also rescued the diaphragm from MV-induced diaphragmatic myofiber atrophy and contractile dysfunction. Collectively, these findings support the prediction that oxidative stress is required for MV-induced activation of calpain and caspase-3 in the diaphragm and are consistent with the concept that antioxidant therapy can retard MV-induced diaphragmatic weakness.
Collapse
Affiliation(s)
- Melissa A Whidden
- Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118205, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
OBJECTIVE To review current knowledge about the impact of prolonged mechanical ventilation on diaphragmatic function and biology. MEASUREMENTS Systematic literature review. CONCLUSIONS Prolonged mechanical ventilation can promote diaphragmatic atrophy and contractile dysfunction. As few as 18 hrs of mechanical ventilation results in diaphragmatic atrophy in both laboratory animals and humans. Prolonged mechanical ventilation is also associated with diaphragmatic contractile dysfunction. Studies using animal models revealed that mechanical ventilation-induced diaphragmatic atrophy is due to increased diaphragmatic protein breakdown and decreased protein synthesis. Recent investigations have identified calpain, caspase-3, and the ubiquitin-proteasome system as key proteases that contribute to mechanical ventilation-induced diaphragmatic proteolysis. The scientific challenge for the future is to delineate the mechanical ventilation-induced signaling pathways that activate these proteases and depress protein synthesis in the diaphragm. Future investigations that define the signaling mechanisms responsible for mechanical ventilation-induced diaphragmatic weakness will provide the knowledge required for the development of new medicines that can maintain diaphragmatic mass and function during prolonged mechanical ventilation.
Collapse
|
68
|
|
69
|
Critical illness neuromyopathy and muscle weakness in patients in the intensive care unit. AACN Adv Crit Care 2009; 20:243-53. [PMID: 19638746 DOI: 10.1097/nci.0b013e3181ac2551] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuromuscular complications of critical illness are common and can be severe and persistent in some patients. Neuromyopathy from critical illness and disuse atrophy from prolonged immobility contribute to muscle weakness acquired while in the intensive care unit. Although various risk factors (eg, severity of illness, corticosteroids, neuromuscular blocking agents) have been implicated in critical illness neuromyopathy (CINM), the evidence supporting these associations is inconsistent. Hyperglycemia may be an important risk factor for CINM, with tight glycemic control through intensive insulin therapy reducing the incidence of CINM. Early mobility in the intensive care unit may minimize disuse atrophy and possibly CINM, through exercise training and its anti-inflammatory effects. Although emerging data have demonstrated the safety, feasibility, and benefit of early mobility in critically ill patients, randomized controlled trials are needed to thoroughly evaluate its potential benefits on patients' muscle strength, physical function, and quality of life. Future studies are needed to elucidate the multiple mechanisms by which immobility, CINM, and other aspects of critical illness lead to muscle loss and neuromuscular dysfunction.
Collapse
|
70
|
Powers SK, Duarte J, Kavazis AN, Talbert EE. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol 2009; 95:1-9. [PMID: 19880534 PMCID: PMC2906150 DOI: 10.1113/expphysiol.2009.050526] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increased reactive oxygen species (ROS) production is crucial to the remodelling that occurs in skeletal muscle in response to both exercise training and prolonged periods of disuse. This review discusses the redox-sensitive signalling pathways that are responsible for this ROS-induced skeletal muscle adaptation. We begin with a discussion of the sites of ROS production in skeletal muscle fibres. This is followed by an overview of the putative redox-sensitive signalling pathways that promote skeletal muscle adaptation. Specifically, this discussion highlights redox-sensitive kinases, phosphatases and the transcription factor nuclear factor-κB. We also discuss the evidence that connects redox signalling to skeletal muscle adaptation in response to increased muscular activity (i.e. exercise training) and during prolonged periods of muscular inactivity (i.e. immobilization). In an effort to stimulate further research, we conclude with a discussion of unanswered questions about redox signalling in skeletal muscle.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Room 25, Florida Gym, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
71
|
Sassoon CS, Caiozzo VJ. Bench-to-bedside review: Diaphragm muscle function in disuse and acute high-dose corticosteroid treatment. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:221. [PMID: 19769782 PMCID: PMC2784339 DOI: 10.1186/cc7971] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Critically ill patients may require mechanical ventilatory support and short-term high-dose corticosteroid to treat some specific underlying disease processes. Diaphragm muscle inactivity induced by controlled mechanical ventilation produces dramatic alterations in diaphragm muscle structure and significant losses in function. Although the exact mechanisms responsible for losses in diaphragm muscle function are still unknown, recent studies have highlighted the importance of proteolysis and oxidative stress. In experimental animals, short-term strategies that maintain partial diaphragm muscle neuromechanical activation mitigate diaphragmatic force loss. In animal models, studies on the influence of combined controlled mechanical ventilation and short-term high-dose methylprednisolone have given inconsistent results in regard to the effects on diaphragm muscle function. In the critically ill patient, further research is needed to establish the prevalence and mechanisms of ventilator-induced diaphragm muscle dysfunction, and the possible interaction between mechanical ventilation and the administration of high-dose corticosteroid. Until then, in caring for these patients, it is imperative to allow partial activation of the diaphragm, and to administer the lowest dose of corticosteroid for the shortest duration possible.
Collapse
|
72
|
Supinski GS, Wang W, Callahan LA. Caspase and calpain activation both contribute to sepsis-induced diaphragmatic weakness. J Appl Physiol (1985) 2009; 107:1389-96. [PMID: 19661453 DOI: 10.1152/japplphysiol.00341.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cecal ligation perforation (CLP) model of sepsis is known to induce severe diaphragm dysfunction, but the cellular mechanisms by which this occurs remain unknown. We hypothesized that CLP induces diaphragm caspase-3 and calpain activation, and that these two enzymes act at the level of the contractile proteins to reduce muscle force generation. Rats (n = 4/group) were subjected to 1) sham surgery plus saline (intraperitoneal); 2) CLP; 3) CLP plus administration of calpain inhibitor peptide III (12 mg/kg ip); or 4) CLP plus administration of a caspase inhibitor, zVAD-fmk (3 mg/kg). At 24 h, diaphragms were removed, and the following were determined: 1) calpain and caspase-3 activities by fluorogenic assay; 2) caspase-3 and calpain I protein levels; 3) the intact diaphragm force-frequency relationship; and 4) the force generated by contractile proteins of single, permeabilized diaphragm fibers in response to exogenous calcium. CLP significantly increased diaphragm calpain activity (P < 0.02), caspase-3 activity (P < 0.02), active calpain I protein levels (P < 0.02), and active caspase-3 protein (P < 0.02). CLP also reduced the force generated by intact diaphragm muscle (P < 0.001) and the force generated by single-fiber contractile proteins (P < 0.001). Administration of either calpain inhibitor III or zVAD-fmk markedly improved force generation of both intact diaphragm muscle (P < 0.01) and single-fiber contractile proteins (P < 0.001). CLP induces significant reductions in diaphragm contractile protein force-generating capacity. This force reduction is mediated by the combined effects of activated caspase and calpain. Inhibition of these pathways may prevent diaphragm weakness in infected patients.
Collapse
Affiliation(s)
- G S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | | | | |
Collapse
|
73
|
Supinski GS, Vanags J, Callahan LA. Effect of proteasome inhibitors on endotoxin-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol 2009; 296:L994-L1001. [PMID: 19376888 DOI: 10.1152/ajplung.90404.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infections produce severe respiratory muscle dysfunction. It is known that the proteasome proteolytic system is activated in skeletal muscle in sepsis, and it has been postulated that this degradative pathway is responsible for inducing skeletal muscle weakness and wasting. The objective of this study was to determine if administration of proteasomal inhibitors (MG132, epoxomicin, bortezomib) can prevent sepsis-induced diaphragm weakness. Rats were given either 1) saline (0.5 ml ip), 2) endotoxin (12 mg/kg ip), 3) endotoxin plus MG132 (2.5 mg/kg), 4) endotoxin plus epoxomicin (1 micromol/kg), or 5) endotoxin plus bortezomib (0.05 mg/kg). Animals were killed either 48 or 96 h after injections, and assessments were made of diaphragm proteolysis, force-frequency relationships, mass, protein content, and caspase activation. Endotoxin increased proteolysis (P <0.001). MG132, epoxomicin, and bortezomib each prevented the endotoxin-induced increase in proteolysis (P <0.01). Endotoxin induced severe reductions in diaphragm force generation by 48 h (P <0.01); none of the proteasomal inhibitors prevented loss of force. Endotoxin induced significant reductions in diaphragm mass and protein content by 96 h (P <0.01); neither MG132 nor epoxomicin prevented loss of mass or protein, but bortezomib attenuated the reduction in protein content (P <0.05). Endotoxin increased diaphragm caspase-3 activity (P <0.01); caspase-3 activity remained high when either MG132, epoxomicin, or bortezomib were given. These data suggest proteasomal inhibitors are not an adequate treatment to prevent endotoxin-induced diaphragmatic dysfunction.
Collapse
Affiliation(s)
- G S Supinski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY 40536-0284, USA.
| | | | | |
Collapse
|
74
|
Kavazis AN, Talbert EE, Smuder AJ, Hudson MB, Nelson WB, Powers SK. Mechanical ventilation induces diaphragmatic mitochondrial dysfunction and increased oxidant production. Free Radic Biol Med 2009; 46:842-50. [PMID: 19185055 PMCID: PMC2906125 DOI: 10.1016/j.freeradbiomed.2009.01.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 12/16/2022]
Abstract
Mechanical ventilation (MV) is a life-saving intervention used in patients with acute respiratory failure. Unfortunately, prolonged MV results in diaphragmatic weakness, which is an important contributor to the failure to wean patients from MV. Our laboratory has previously shown that reactive oxygen species (ROS) play a critical role in mediating diaphragmatic weakness after MV. However, the pathways responsible for MV-induced diaphragmatic ROS production remain unknown. These experiments tested the hypothesis that prolonged MV results in an increase in mitochondrial ROS release, mitochondrial oxidative damage, and mitochondrial dysfunction. To test this hypothesis, adult (3-4 months of age) female Sprague-Dawley rats were assigned to either a control or a 12-h MV group. After treatment, diaphragms were removed and mitochondria were isolated for subsequent respiratory and biochemical measurements. Compared to control, prolonged MV resulted in a lower respiratory control ratio in diaphragmatic mitochondria. Furthermore, diaphragmatic mitochondria from MV animals released higher rates of ROS in both State 3 and State 4 respiration. Prolonged MV was also associated with diaphragmatic mitochondrial oxidative damage as indicated by increased lipid peroxidation and protein oxidation. Finally, our data also reveal that the activities of the electron transport chain complexes II, III, and IV are depressed in mitochondria isolated from diaphragms of MV animals. In conclusion, these results are consistent with the concept that diaphragmatic inactivity promotes an increase in mitochondrial ROS emission, mitochondrial oxidative damage, and mitochondrial respiratory dysfunction.
Collapse
Affiliation(s)
- Andreas N Kavazis
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
75
|
McClung JM, Judge AR, Talbert EE, Powers SK. Calpain-1 is required for hydrogen peroxide-induced myotube atrophy. Am J Physiol Cell Physiol 2008; 296:C363-71. [PMID: 19109522 DOI: 10.1152/ajpcell.00497.2008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent reports suggest numerous roles for cysteine proteases in the progression of skeletal muscle atrophy due to disuse or disease. Nonetheless, a specific requirement for these proteases in the progression of skeletal muscle atrophy has not been demonstrated. Therefore, this investigation determined whether calpains or caspase-3 is required for oxidant-induced C2C12 myotube atrophy. We demonstrate that exposure to hydrogen peroxide (25 microM H2O2) induces myotube oxidative damage and atrophy, with no evidence of cell death. Twenty-four hours of exposure to H2O2 significantly reduced both myotube diameter and the abundance of numerous proteins, including myosin (-81%), alpha-actinin (-40%), desmin (-79%), talin (-37%), and troponin I (-80%). Myotube atrophy was also characterized by increased cleavage of the cysteine protease substrate alphaII-spectrin following 4 h and 24 h of H2O2 treatment. This degradation was blocked by administration of the protease inhibitor leupeptin (10 microM). Using small interfering RNA transfection of mature myotubes against the specific proteases calpain-1, calpain-2, and caspase-3, we demonstrated that calpain-1 is required for H2O2-induced myotube atrophy. Collectively, our data provide the first evidence for an absolute requirement for calpain-1 in the development of skeletal muscle myotube atrophy in response to oxidant-induced cellular stress.
Collapse
Affiliation(s)
- J M McClung
- Dept. of Applied Physiology and Kinesiology, Univ. of Florida, Rm. 25 Florida Gym, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
76
|
Hermans G, De Jonghe B, Bruyninckx F, Van den Berghe G. Clinical review: Critical illness polyneuropathy and myopathy. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:238. [PMID: 19040777 PMCID: PMC2646339 DOI: 10.1186/cc7100] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Critical illness polyneuropathy (CIP) and myopathy (CIM) are major complications of severe critical illness and its management. CIP/CIM prolongs weaning from mechanical ventilation and physical rehabilitation since both limb and respiratory muscles can be affected. Among many risk factors implicated, sepsis, systemic inflammatory response syndrome, and multiple organ failure appear to play a crucial role in CIP/CIM. This review focuses on epidemiology, diagnostic challenges, the current understanding of pathophysiology, risk factors, important clinical consequences, and potential interventions to reduce the incidence of CIP/CIM. CIP/CIM is associated with increased hospital and intensive care unit (ICU) stays and increased mortality rates. Recently, it was shown in a single centre that intensive insulin therapy significantly reduced the electrophysiological incidence of CIP/CIM and the need for prolonged mechanical ventilation in patients in a medical or surgical ICU for at least 1 week. The electrophysiological diagnosis was limited by the fact that muscle membrane inexcitability was not detected. These results have yet to be confirmed in a larger patient population. One of the main risks of this therapy is hypoglycemia. Also, conflicting evidence concerning the neuromuscular effects of corticosteroids exists. A systematic review of the available literature on the optimal approach for preventing CIP/CIM seems warranted.
Collapse
Affiliation(s)
- Greet Hermans
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
77
|
Callahan LA. Invited editorial on "acquired respiratory muscle weakness in critically ill patients: what is the role of mechanical ventilation-induced diaphragm dysfunction?". J Appl Physiol (1985) 2008; 106:360-1. [PMID: 19023013 DOI: 10.1152/japplphysiol.91486.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
78
|
Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88:1243-76. [PMID: 18923182 DOI: 10.1152/physrev.00031.2007] [Citation(s) in RCA: 1478] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The first suggestion that physical exercise results in free radical-mediated damage to tissues appeared in 1978, and the past three decades have resulted in a large growth of knowledge regarding exercise and oxidative stress. Although the sources of oxidant production during exercise continue to be debated, it is now well established that both resting and contracting skeletal muscles produce reactive oxygen species and reactive nitrogen species. Importantly, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Furthermore, oxidants can modulate a number of cell signaling pathways and regulate the expression of multiple genes in eukaryotic cells. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, DNA repair proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species promote contractile dysfunction resulting in muscle weakness and fatigue. Ongoing research continues to probe the mechanisms by which oxidants influence skeletal muscle contractile properties and to explore interventions capable of protecting muscle from oxidant-mediated dysfunction.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
79
|
Whidden MA, McClung JM, Falk DJ, Hudson MB, Smuder AJ, Nelson WB, Powers SK. Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction. J Appl Physiol (1985) 2008; 106:385-94. [PMID: 18974366 DOI: 10.1152/japplphysiol.91106.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Respiratory muscle weakness resulting from both diaphragmatic contractile dysfunction and atrophy has been hypothesized to contribute to the weaning difficulties associated with prolonged mechanical ventilation (MV). While it is clear that oxidative injury contributes to MV-induced diaphragmatic weakness, the source(s) of oxidants in the diaphragm during MV remain unknown. These experiments tested the hypothesis that xanthine oxidase (XO) contributes to MV-induced oxidant production in the rat diaphragm and that oxypurinol, a XO inhibitor, would attenuate MV-induced diaphragmatic oxidative stress, contractile dysfunction, and atrophy. Adult female Sprague-Dawley rats were randomly assigned to one of six experimental groups: 1) control, 2) control with oxypurinol, 3) 12 h of MV, 4) 12 h of MV with oxypurinol, 5) 18 h of MV, or 6) 18 h of MV with oxypurinol. XO activity was significantly elevated in the diaphragm after MV, and oxypurinol administration inhibited this activity and provided protection against MV-induced oxidative stress and contractile dysfunction. Specifically, oxypurinol treatment partially attenuated both protein oxidation and lipid peroxidation in the diaphragm during MV. Further, XO inhibition retarded MV-induced diaphragmatic contractile dysfunction at stimulation frequencies >60 Hz. Collectively, these results suggest that oxidant production by XO contributes to MV-induced oxidative injury and contractile dysfunction in the diaphragm. Nonetheless, the failure of XO inhibition to completely prevent MV-induced diaphragmatic oxidative damage suggests that other sources of oxidant production are active in the diaphragm during prolonged MV.
Collapse
Affiliation(s)
- Melissa A Whidden
- Dept. of Applied Physiology and Kinesiology, Univ. of Florida,Gainesville, FL 32611, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Maes K, Testelmans D, Cadot P, Deruisseau K, Powers SK, Decramer M, Gayan-Ramirez G. Effects of acute administration of corticosteroids during mechanical ventilation on rat diaphragm. Am J Respir Crit Care Med 2008; 178:1219-26. [PMID: 18849500 DOI: 10.1164/rccm.200702-296oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Mechanical ventilation is known to induce ventilator-induced diaphragm dysfunction. Patients submitted to mechanical ventilation often receive massive doses of corticosteroids that may cause further deterioration of diaphragm function. OBJECTIVES To examine whether the combination of 24 hours of controlled mechanical ventilation with corticosteroid administration would exacerbate ventilator-induced diaphragm dysfunction. METHODS Rats were randomly assigned to a group submitted to 24 hours of controlled mechanical ventilation receiving an intramuscular injection of saline or 80 mg/kg methylprednisolone, a group submitted to 24 hours of spontaneous breathing receiving saline, or methylprednisolone and a control group. MEASUREMENTS AND MAIN RESULTS The diaphragm force-frequency curve was shifted downward in the mechanical ventilation group, but this deleterious effect was prevented when corticosteroids were administered. Diaphragm cross-sectional area of type I fibers was similarly decreased in both mechanical ventilation groups while atrophy of type IIx/b fibers was attenuated after corticosteroid administration. The mechanical ventilation-induced reduction in diaphragm MyoD and myogenin protein expression was attenuated after corticosteroids. Plasma cytokine levels were unchanged while diaphragm lipid hydroperoxides were similarly increased in both mechanical ventilation groups. Diaphragmatic calpain activity was significantly increased in the mechanical ventilation group, but calpain activation was abated with corticosteroid administration. Inverse correlations were found between calpain activity and diaphragm force. CONCLUSIONS A single high dose of methylprednisolone combined with controlled mechanical ventilation protected diaphragm function from the deleterious effects of controlled mechanical ventilation. Inhibition of the calpain system is most likely the mechanism by which corticosteroids induce this protective effect.
Collapse
Affiliation(s)
- Karen Maes
- Respiratory Muscle Research Unit, Laboratory of Pneumology and Respiratory Division, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
81
|
Futier E, Constantin JM, Combaret L, Mosoni L, Roszyk L, Sapin V, Attaix D, Jung B, Jaber S, Bazin JE. Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:R116. [PMID: 18786263 PMCID: PMC2592744 DOI: 10.1186/cc7010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 07/31/2008] [Accepted: 09/11/2008] [Indexed: 11/10/2022]
Abstract
Introduction Controlled mechanical ventilation (CMV) induces profound modifications of diaphragm protein metabolism, including muscle atrophy and severe ventilator-induced diaphragmatic dysfunction. Diaphragmatic modifications could be decreased by spontaneous breathing. We hypothesized that mechanical ventilation in pressure support ventilation (PSV), which preserves diaphragm muscle activity, would limit diaphragmatic protein catabolism. Methods Forty-two adult Sprague-Dawley rats were included in this prospective randomized animal study. After intraperitoneal anesthesia, animals were randomly assigned to the control group or to receive 6 or 18 hours of CMV or PSV. After sacrifice and incubation with 14C-phenylalanine, in vitro proteolysis and protein synthesis were measured on the costal region of the diaphragm. We also measured myofibrillar protein carbonyl levels and the activity of 20S proteasome and tripeptidylpeptidase II. Results Compared with control animals, diaphragmatic protein catabolism was significantly increased after 18 hours of CMV (33%, P = 0.0001) but not after 6 hours. CMV also decreased protein synthesis by 50% (P = 0.0012) after 6 hours and by 65% (P < 0.0001) after 18 hours of mechanical ventilation. Both 20S proteasome activity levels were increased by CMV. Compared with CMV, 6 and 18 hours of PSV showed no significant increase in proteolysis. PSV did not significantly increase protein synthesis versus controls. Both CMV and PSV increased protein carbonyl levels after 18 hours of mechanical ventilation from +63% (P < 0.001) and +82% (P < 0.0005), respectively. Conclusions PSV is efficient at reducing mechanical ventilation-induced proteolysis and inhibition of protein synthesis without modifications in the level of oxidative injury compared with continuous mechanical ventilation. PSV could be an interesting alternative to limit ventilator-induced diaphragmatic dysfunction.
Collapse
Affiliation(s)
- Emmanuel Futier
- General Intensive Care Unit, Hotel-Dieu Hospital, University Hospital of Clermont-Ferrand, Boulevard L. Malfreyt, Clermond-Ferrand, 63058, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
van Hees HWH, Li YP, Ottenheijm CAC, Jin B, Pigmans CJC, Linkels M, Dekhuijzen PNR, Heunks LMA. Proteasome inhibition improves diaphragm function in congestive heart failure rats. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1260-8. [PMID: 18424622 DOI: 10.1152/ajplung.00035.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In congestive heart failure (CHF), diaphragm weakness is known to occur and is associated with myosin loss and activation of the ubiquitin-proteasome pathway. The effect of modulating proteasome activity on myosin loss and diaphragm function is unknown. The present study investigated the effect of in vivo proteasome inhibition on myosin loss and diaphragm function in CHF rats. Coronary artery ligation was used as an animal model for CHF. Sham-operated rats served as controls. Animals were treated with the proteasome inhibitor bortezomib (intravenously) or received saline (0.9%) injections. Force generating capacity, cross-bridge cycling kinetics, and myosin content were measured in diaphragm single fibers. Proteasome activity, caspase-3 activity, and MuRF-1 and MAFbx mRNA levels were determined in diaphragm homogenates. Proteasome activities in the diaphragm were significantly reduced by bortezomib. Bortezomib treatment significantly improved diaphragm single fiber force generating capacity (approximately 30-40%) and cross-bridge cycling kinetics (approximately 20%) in CHF. Myosin content was approximately 30% higher in diaphragm fibers from bortezomib-treated CHF rats than saline. Caspase-3 activity was decreased in diaphragm homogenates from bortezomib-treated rats. CHF increased MuRF-1 and MAFbx mRNA expression in the diaphragm, and bortezomib treatment diminished this rise. The present study demonstrates that treatment with a clinically used proteasome inhibitor improves diaphragm function by restoring myosin content in CHF.
Collapse
Affiliation(s)
- Hieronymus W H van Hees
- Deptartment of Pulmonary Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Vassilakopoulos T. Ventilator-induced diaphragm dysfunction: the clinical relevance of animal models. Intensive Care Med 2007; 34:7-16. [DOI: 10.1007/s00134-007-0866-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Accepted: 08/28/2007] [Indexed: 11/25/2022]
|