51
|
He Y, Mei L, Jin Y, Li XP, Jin C. Overexpression of Hepatocyte Growth Factor mRNA Induced by Gene Transfer Attenuates Neointimal Hyperplasia After Balloon Injury. Hum Gene Ther 2018; 29:816-827. [PMID: 29382231 DOI: 10.1089/hum.2017.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hepatic growth factor (HGF) has been widely used in studies on arterial remodeling after injury, and results turn out to be inconsistent. The changes of endogenous HGF expression after injury also remain controversial. This study clarified the role of exogenous human HGF (hHGF) gene transfer in neointimal hyperplasia and investigated the associated alterations of endogenous HGF and c-Met expressions under endothelial denudation with or without hHGF gene transfer using a balloon-injured rabbit aorta model. Sixty-one rabbits were randomly divided into normal controls, endothelial injury, endothelial injury with hHGF, or the control vector gene transfer groups. On weeks 1, 2, 4, and 8 after injury, neointimal hyperplasia and endothelialization were evaluated by the ratio of neointimal area to medial area (N/M ratio), CD31-positive staining, α-smooth muscle actin, and endothelial nitric oxide synthase expressions using histological analysis, immunohistochemistry staining, or real-time quantitative reverse transcriptase polymerase chain reaction. Endogenous rabbit HGF (rHGF) and c-Met expressions were detected with immunohistochemistry staining and quantitative reverse transcriptase polymerase chain reaction. It was found that expressions of endogeneous rHGF and c-Met in endothelial injury upregulated with peak levels on week 2 or week 4 after injury (p < 0.01). On week 1 after hHGF transfer, neointimal hyperplasia was significantly inhibited (p < 0.001), with decreased α-smooth muscle actin expression (p < 0.05) and improved endothelial cells regeneration and function (p < 0.01). More remarkable overexpression of endogenous rHGF and c-Met mRNAs were detected, and lowered positive staining of rHGF and c-Met was shown in the neointima (p < 0.05). These results demonstrated hHGF gene transfer induced further overexpression of endogenous rHGF and c-Met mRNAs but lowered immunoreactivities of rHGF and c-Met in the neointima, thus leading to significant attenuation of neointimal hyperplasia.
Collapse
Affiliation(s)
- Yu He
- 1 Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, China
| | - Li Mei
- 2 Department of Ultrasound, the First Hospital of Jilin University , Changchun, China
| | - Ying Jin
- 3 Department of Surgery, the First Hospital of Jilin University , Changchun, China
| | - Xiao-Ping Li
- 1 Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, China
| | - Chunxiang Jin
- 1 Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, China
| |
Collapse
|
52
|
Renko O, Tolonen AM, Rysä J, Magga J, Mustonen E, Ruskoaho H, Serpi R. SDF1 gradient associates with the distribution of c-Kit+ cardiac cells in the heart. Sci Rep 2018; 8:1160. [PMID: 29348441 PMCID: PMC5773575 DOI: 10.1038/s41598-018-19417-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022] Open
Abstract
Identification of the adult cardiac stem cells (CSCs) has offered new therapeutic possibilities for treating ischemic myocardium. CSCs positive for the cell surface antigen c-Kit are known as the primary source for cardiac regeneration. Accumulating evidence shows that chemokines play important roles in stem cell homing. Here we investigated molecular targets to be utilized in modulating the mobility of endogenous CSCs. In a four week follow-up after experimental acute myocardial infarction (AMI) with ligation of the left anterior descending (LAD) coronary artery of Sprague-Dawley rats c-Kit+ CSCs redistributed in the heart. The number of c-Kit+ CSCs in the atrial c-Kit niche was diminished, whereas increased amount was observed in the left ventricle and apex. This was associated with increased expression of stromal cell-derived factor 1 alpha (SDF1α), and a significant positive correlation was found between c-Kit+ CSCs and SDF1α expression in the heart. Moreover, the migratory capacity of isolated c-Kit+ CSCs was induced by SDF1 treatment in vitro. We conclude that upregulation of SDF1α after AMI associates with increased expression of endogenous c-Kit+ CSCs in the injury area, and show induced migration of c-Kit+ cells by SDF1.
Collapse
Affiliation(s)
- Outi Renko
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Anna-Maria Tolonen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Johanna Magga
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Erja Mustonen
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.
| |
Collapse
|
53
|
Lewis FC, Kumar SD, Ellison-Hughes GM. Non-invasive strategies for stimulating endogenous repair and regenerative mechanisms in the damaged heart. Pharmacol Res 2018; 127:33-40. [DOI: 10.1016/j.phrs.2017.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023]
|
54
|
Cellular Therapeutics for Heart Failure: Focus on Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:9640108. [PMID: 29391871 PMCID: PMC5748110 DOI: 10.1155/2017/9640108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022] Open
Abstract
Resulting from a various etiologies, the most notable remains ischemia; heart failure (HF) manifests as the common end pathway of many cardiovascular processes and remains among the top causes for hospitalization and a major cause of morbidity and mortality worldwide. Current pharmacologic treatment for HF utilizes pharmacologic agents to control symptoms and slow further deterioration; however, on a cellular level, in a patient with progressive disease, fibrosis and cardiac remodeling can continue leading to end-stage heart failure. Cellular therapeutics have risen as the new hope for an improvement in the treatment of HF. Mesenchymal stem cells (MSCs) have gained popularity given their propensity of promoting endogenous cellular repair of a myriad of disease processes via paracrine signaling through expression of various cytokines, chemokines, and adhesion molecules resulting in activation of signal transduction pathways. While the exact mechanism remains to be completely elucidated, this remains the primary mechanism identified to date. Recently, MSCs have been incorporated as the central focus in clinical trials investigating the role how MSCs can play in the treatment of HF. In this review, we focus on the characteristics of MSCs that give them a distinct edge as cellular therapeutics and present results of clinical trials investigating MSCs in the setting of ischemic HF.
Collapse
|
55
|
Madonna R, Cevik C, Nasser M, De Caterina R. Hepatocyte growth factor: Molecular biomarker and player in cardioprotection and cardiovascular regeneration. Thromb Haemost 2017; 107:656-61. [DOI: 10.1160/th11-10-0711] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/03/2012] [Indexed: 11/05/2022]
Abstract
SummaryThe liver possesses impressive regenerative capacities. Grafts of embryonic liver explants and liver explant-conditioned media have been shown to enhance the mitotic activity of hepatocytes. Hepatocyte growth factor (HGF), also named scatter factor (SF), has been identified as a primary candidate in promoting and regulating liver regeneration. Although initially thought to be a liver-specific mitogen, HGF was later reported to have mitogenic, motogenic, morphogenic, and anti-apoptotic activities in various cell types. By promoting angiogenesis and inhibiting apoptosis, endogenous HGF may play an important role in cardioprotection as well as in the regeneration of endothelial cells and cardiomyocytes after myocardial infarction. Since serum concentration of HGF increases in the early phase of myocardial infarction and in heart failure, HGF may also play a key role as a prognostic and diagnostic biomarker of cardiovascular disease. Here we discuss the role of HGF as a biomarker and mediator in cardioprotection and cardiovascular regeneration.
Collapse
|
56
|
Detert S, Stamm C, Beez C, Diedrichs F, Ringe J, Van Linthout S, Seifert M, Tschöpe C, Sittinger M, Haag M. The atrial appendage as a suitable source to generate cardiac-derived adherent proliferating cells for regenerative cell-based therapies. J Tissue Eng Regen Med 2017; 12:e1404-e1417. [PMID: 28752609 DOI: 10.1002/term.2528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022]
Abstract
Cardiac-derived adherent proliferating (CardAP) cells obtained from endomyocardial biopsies (EMBs) with known anti-fibrotic and pro-angiogenic properties are good candidates for the autologous therapy of end-stage cardiac diseases such as dilated cardiomyopathy. However, due to the limited number of CardAP cells that can be obtained from EMBs, our aim is to isolate cells with similar properties from other regions of the heart with comparable tissue architecture. Here, we introduce the atrial appendage as a candidate region. Atrial appendage-derived cells were sorted with CD90 microbeads to obtain a CD90low cell population, which were subsequently analysed for their surface marker and gene expression profiles via flow cytometry and micro array analysis. Enzyme-linked immunosorbent assays for vascular endothelial growth factor and interleukin-8 as well as tube formation assays were performed to investigate pro-angiogenic properties. Furthermore, growth kinetic assays were performed to estimate the cell numbers needed for cell-based products. Microarray analysis revealed the expression of numerous pro-angiogenic genes and strong similarities to CardAP cells with which they also share expression levels of defined surface antigens, that is, CD29+ , CD44+ , CD45- , CD73+ , CD90low , CD105+ , and CD166+ . High secretion levels of vascular endothelial growth factor and interleukin-8 as well as improved properties of vascular structures in vitro could be detected. Based on growth parameters, cell dosages for the treatment of more than 250 patients are possible using one appendage. These results lead to the conclusion that isolating cells with regenerative characteristics from atrial appendages is feasible and permits further investigations towards allogenic cell-based therapies.
Collapse
Affiliation(s)
- Stephan Detert
- Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christien Beez
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Falk Diedrichs
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Jochen Ringe
- Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Van Linthout
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Martina Seifert
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Michael Sittinger
- Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marion Haag
- Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
57
|
Wu Z, Chen G, Zhang J, Hua Y, Li J, Liu B, Huang A, Li H, Chen M, Ou C. Treatment of Myocardial Infarction with Gene-modified Mesenchymal Stem Cells in a Small Molecular Hydrogel. Sci Rep 2017; 7:15826. [PMID: 29158523 PMCID: PMC5696474 DOI: 10.1038/s41598-017-15870-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/02/2017] [Indexed: 12/28/2022] Open
Abstract
The effect of transplanted rat mesenchymal stem cells (MSCs) can be reduced by extracellular microenvironment in myocardial infarction (MI). We tested a novel small-molecular hydrogel (SMH) on whether it could provide a scaffold for hepatocyte growth factor (HGF)-modified MSCs and alleviate ventricular remodeling while preserving cardiac function after MI. Overexpression of HGF in MSCs increased Bcl-2 and reduced Bax and caspase-3 levels in response to hypoxia in vitro. Immunocytochemistry demonstrated that cardiac troponin (cTnT), desmin and connexin 43 expression were significantly enhanced in the 5-azacytidine (5-aza) with SMH group compared with the 5-aza only group in vitro and in vivo. Bioluminescent imaging indicated that retention and survival of transplanted cells was highest when MSCs transfected with adenovirus (ad-HGF) were injected with SMH. Heart function and structure improvement were confirmed by echocardiography and histology in the Ad-HGF-SMHs-MSCs group compared to other groups. Our study showed that: HGF alleviated cell apoptosis and promoted MSC growth. SMHs improved stem cell adhesion, survival and myocardial cell differentiation after MSC transplantation. SMHs combined with modified MSCs significantly decreased the scar area and improved cardiac function.
Collapse
Affiliation(s)
- Zhiye Wu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Guoqin Chen
- Cardiovascular Medicine Department of Central Hospital of Panyu District, Guangzhou, 510280, China
| | - Jianwu Zhang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongquan Hua
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jinliang Li
- Cardiovascular Medicine Department of Central Hospital of Panyu District, Guangzhou, 510280, China
| | - Bei Liu
- Department of Cardiology, Shanghai general hospital, Shanghai, 200000, China
| | - Anqing Huang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Hekai Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Minsheng Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Caiwen Ou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
58
|
Sultan S, Kavanagh EP, Michalus R, Hynes N. Stem Cell Smart Technology, where are we now and how far we have to go? Vascular 2017; 26:216-228. [PMID: 28841129 DOI: 10.1177/1708538117727429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Approximately eight million people in the United States have peripheral arterial disease, which increases exponentially with age. There have been a plethora of available treatments including surgery, angioplasty, atherectomy, laser technology, and cell-based therapies. Cell-based therapies were developed in the hope of translating laboratory-based technology into clinical successes. However, clinical results have been disappointing. Infusion or injection for stem cell therapy is still considered experimental and investigational, and major questions on safety and durability have arisen. In no option patients, how can they be treated safely and successfully? In this article, we review contemporary practice for cell therapy, its pitfalls and breakthroughs, and look at the future ahead. We introduce a novel smart system for minimally invasive delivery of cell therapies, which exemplifies the next generation of endovascular solutions to stem cell technology and promises safety, efficacy, and reliability.
Collapse
Affiliation(s)
- Sherif Sultan
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| | - Edel P Kavanagh
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| | - Robert Michalus
- 2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| | - Niamh Hynes
- 1 Department of Vascular and Endovascular Surgery, Western Vascular Institute, University Hospital Galway, National University of Ireland Galway, Galway, Ireland.,2 Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Doughiska, Royal College of Surgeons in Ireland Affiliated Hospitals, Galway, Ireland
| |
Collapse
|
59
|
Abstract
Midkine (MDK) is a heparin-binding growth factor that is normally expressed in mid-gestational development mediating mesenchymal and epithelial interactions. As organisms age, expression of MDK diminishes; however, in adults, MDK expression is associated with acute and chronic pathologic conditions such as myocardial infarction and heart failure (HF). The role of MDK is not clear in cardiovascular disease and currently there is no consensus if it plays a beneficial or detrimental role in HF. The lack of clarity in the literature is exacerbated by differing roles that circulating and myocardial MDK play in signaling pathways in cardiomyocytes (some of which have yet to be elucidated). Of particular interest, serum MDK is elevated in adults with chronic heart failure and higher circulating MDK is associated with worse cardiac function. In addition, pediatric HF patients have higher levels of myocardial MDK. This review focuses on what is known about the effect of exogenous versus myocardial MDK in various cardiac disease models in an effort to better clarify the role of midkine in HF.
Collapse
|
60
|
Di Nunno V, Cubelli M, Massari F. The role of the MET/AXL pathway as a new target for multikinase inhibitors in renal cell carcinoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1347481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Marta Cubelli
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | | |
Collapse
|
61
|
Wang Z, Dong N, Niu Y, Zhang Z, Zhang C, Liu M, Zhou T, Wu Q, Cheng K. Transplantation of human villous trophoblasts preserves cardiac function in mice with acute myocardial infarction. J Cell Mol Med 2017; 21:2432-2440. [PMID: 28524367 PMCID: PMC5618685 DOI: 10.1111/jcmm.13165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/05/2017] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, cell therapies have provided promising strategies for the treatment of ischaemic cardiomyopathy. Particularly, the beneficial effects of stem cells, including bone marrow stem cells (BMSCs), endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs), have been demonstrated by substantial preclinical and clinical studies. Nevertheless stem cell therapy is not always safe and effective. Hence, there is an urgent need for alternative sources of cells to promote cardiac regeneration. Human villous trophoblasts (HVTs) play key roles in embryonic implantation and placentation. In this study, we show that HVTs can promote tube formation of human umbilical vein endothelial cells (HUVECs) on Matrigel and enhance the resistance of neonatal rat cardiomyocytes (NRCMs) to oxidative stress in vitro. Delivery of HVTs to ischaemic area of heart preserved cardiac function and reduced fibrosis in a mouse model of acute myocardial infarction (AMI). Histological analysis revealed that transplantation of HVTs promoted angiogenesis in AMI mouse hearts. In addition, our data indicate that HVTs exert their therapeutic benefit through paracrine mechanisms. Meanwhile, injection of HVTs to mouse hearts did not elicit severe immune response. Taken together, our study demonstrates HVT may be used as a source for cell therapy or a tool to study cell-derived soluble factors for AMI treatment.
Collapse
Affiliation(s)
- Zegen Wang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Thrombosis and Hemostasis Key Laboratory, Ministry of Education Engineering Center for Hematological Disease, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yayan Niu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhiwei Zhang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ce Zhang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Ke Cheng
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| |
Collapse
|
62
|
Xu HL, Yu WZ, Lu CT, Li XK, Zhao YZ. Delivery of growth factor-based therapeutics in vascular diseases: Challenges and strategies. Biotechnol J 2017; 12. [PMID: 28296342 DOI: 10.1002/biot.201600243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
Abstract
Either cardiovascular or peripheral vascular diseases have become the major cause of morbidity and mortality worldwide. Recently, growth factors therapeutics, whatever administrated in form of exogenous growth factors or their relevant genes have been discovered to be an effective strategy for the prevention and therapy of vascular diseases, because of their promoting angiogenesis. Besides, as an alternative, stem cell-based therapy has been also developed in view of their paracrine-mediated effect or ability of differentiation toward angiogenesis-related cells under assistance of growth factors. Despite of being specific and potent, no matter growth factors or stem cells-based therapy, their full clinical transformation is limited from bench to bedside. In this review, the potential choices of therapeutic modes based on types of different growth factors or stem cells were firstly summarized for vascular diseases. The confronted various challenges such as lack of non-invasive delivery method, the physiochemical challenge, the short half-life time, and poor cell survival, were carefully analyzed for these therapeutic modes. Various strategies to overcome these limitations are put forward from the perspective of drug delivery. The expertised design of a suitable delivery form will undoubtedly provide valuable insight into their clinical application in the regenerative medicine.
Collapse
Affiliation(s)
- He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Wen-Ze Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
- Collaborative Innovation Center of Biomedical Science by Wenzhou University & Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
63
|
Wang X, Li C, Gong H. Morphological and functional changes in bone marrow mesenchymal stem cells in rats with heart failure. Exp Ther Med 2017; 13:2888-2892. [PMID: 28587355 PMCID: PMC5450621 DOI: 10.3892/etm.2017.4341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
The changes in bone marrow-derived mesenchymal stem cells (BMSCs), in terms of cell morphology and protein expression in rats with heart failure, were studied. Pressure overload chronic heart failure rat model was induced with partial constriction of the abdominal aorta. BMSCs from the model and the sham operation groups were isolated and cultured (cell density, 108 cells/l), and supernatant was collected after 72 h. Enzyme-linked immunosorbent assay was used to measure HGF, IGF-1, PDGF, SCF, FGF and VEGF levels in the supernatant. Results showed that in the model group, the minimum cell diameter, the average cell area and the protein expression in single BMSCs were significantly less than those in the sham operation group. In the model group, SCF and PDGF levels were significantly lower than those in the sham operation group. VEGF concentration in the model group was significantly higher than that in the sham operation group. Compared with normal rats, the morphology of BMSCs in rats with heart failure changed considerably, the protein expression of a single cell and the ability to secrete cytokines decreased in a meaningful way.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| | - Chunmei Li
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| | - Haibin Gong
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Cardiovascular Disease Institute, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
64
|
Williams JK, Andersson KE. Regenerative pharmacology: recent developments and future perspectives. Regen Med 2016; 11:859-870. [DOI: 10.2217/rme-2016-0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the current status of research that utilizes the application of pharmacological sciences to accelerate, optimize and characterize the development, maturation and function of bioengineered and regenerating tissues. These regenerative pharmacologic approaches have been applied to diseases of the urogenital tract, the heart, the brain, the musculoskeletal system and diabetes. Approaches have included the use of growth factors (such as VEGF and chemokines (stromal-derived factor – CXCL12) to mobilize cell to the sights of tissue loss or damage. The promise of this approach is to bypass the lengthy and expensive processes of cell isolation and implant fabrication to stimulate the body to heal itself with its own tissue regenerative pathways.
Collapse
Affiliation(s)
- James Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
| | - Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC 27101, USA
- Institute for Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
65
|
Liu J, Wu P, Wang Y, Du Y, A N, Liu S, Zhang Y, Zhou N, Xu Z, Yang Z. Ad-HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis. Am J Transl Res 2016; 8:4605-4627. [PMID: 27904666 PMCID: PMC5126308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
Cell death in MI is the most critical determinant of subsequent left ventricular remodeling and heart failure. Besides apoptosis, autophagy and necroptosis have been recently found to be another two regulated cell death styles. HGF has been reported to have a protective role in MI, but its impact on the three death styles remains unclear. Thus, our study was performed to investigate the distribution of autophagy, apoptosis and necroptosis in cardiac tissues after MI and explore the role and mechanism of Ad-HGF on cardiac remodeling by regulating the three death styles. We firstly showed the distribution of autophagy, apoptosis and necroptosis differs in temporal and spatial context after MI using immunofluorescence. Notably, Ad-HGF treatment improves the cardiac remodeling of SD rats following MI by preserving the heart function, reducing the scar size and aggresomes. Further mechanism study reveals Ad-HGF promotes autophagy and necroptosis and inhibits apoptosis in vivo and in vitro. Co-immunoprecipitation assays showed Ad-HGF treatment significantly decreased the binding of Bcl-2 to Beclin1 but enhanced Bcl-2 binding to Bax in H9c2 cells under hypoxia. Moreover, HGF-induced sequestration of Bax by Bcl-2 allows Bax to become inactive, thereby inhibiting apoptosis. In addition, Ad-HGF markedly increased the formation of Beclin1-Vps34-Atg14L complex, which accounted for promoting autophagy. Both the western blot and activity assay showed Ad-HGF significantly decreased the caspase 8 protein and activity levels, which obligated the cell to undergo necroptosis under hypoxia and block apoptosis. Thus, our findings offer new evidence and strategies for the treatment of MI and post-MI cardiac remodeling.
Collapse
Affiliation(s)
- Jiabao Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Peng Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Yunle Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Yingqiang Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Nan A
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Shuiyuan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Yiming Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Ningtian Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Zhihui Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| |
Collapse
|
66
|
Rebouças JDS, Santos-Magalhães NS, Formiga FR. Cardiac Regeneration using Growth Factors: Advances and Challenges. Arq Bras Cardiol 2016; 107:271-275. [PMID: 27355588 PMCID: PMC5053196 DOI: 10.5935/abc.20160097] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction is the most significant manifestation of ischemic heart disease and is associated with high morbidity and mortality. Novel strategies targeting at regenerating the injured myocardium have been investigated, including gene therapy, cell therapy, and the use of growth factors. Growth factor therapy has aroused interest in cardiovascular medicine because of the regeneration mechanisms induced by these biomolecules, including angiogenesis, extracellular matrix remodeling, cardiomyocyte proliferation, stem-cell recruitment, and others. Together, these mechanisms promote myocardial repair and improvement of the cardiac function. This review aims to address the strategic role of growth factor therapy in cardiac regeneration, considering its innovative and multifactorial character in myocardial repair after ischemic injury. Different issues will be discussed, with emphasis on the regeneration mechanisms as a potential therapeutic resource mediated by growth factors, and the challenges to make these proteins therapeutically viable in the field of cardiology and regenerative medicine. Resumo O infarto do miocárdio representa a manifestação mais significativa da cardiopatia isquêmica e está associado a elevada morbimortalidade. Novas estratégias vêm sendo investigadas com o intuito de regenerar o miocárdio lesionado, incluindo a terapia gênica, a terapia celular e a utilização de fatores de crescimento. A terapia com fatores de crescimento despertou interesse em medicina cardiovascular, devido aos mecanismos de regeneração induzidos por essas biomoléculas, incluindo angiogênese, remodelamento da matriz extracelular, proliferação de cardiomiócitos e recrutamento de células-tronco, dentre outros. Em conjunto, tais mecanismos promovem a reparação do miocárdio e a melhora da função cardíaca. Esta revisão pretende abordar o papel estratégico da terapia, com fatores de crescimento, para a regeneração cardíaca, considerando seu caráter inovador e multifatorial sobre o reparo do miocárdio após dano isquêmico. Diferentes questões serão discutidas, destacando-se os mecanismos de regeneração como recurso terapêutico potencial mediado por fatores de crescimento e os desafios para tornar essas proteínas terapeuticamente viáveis no âmbito da cardiologia e da medicina regenerativa.
Collapse
Affiliation(s)
- Juliana de Souza Rebouças
- Laboratório de Imunopatologia Keizo-Asami - Universidade
Federal de Pernambuco (UFPE), Recife, PE - Brazil
| | | | - Fabio Rocha Formiga
- Programa de Pós-Graduação em Biologia Celular e
Molecular Aplicada - Universidade de Pernambuco (UPE), Recife, PE - Brazil
- Curso de Pós-Graduação em Patologia
(UFBA/FIOCRUZ) - Centro de Pesquisas Gonçalo Moniz, Fundação
Oswaldo Cruz (FIOCRUZ), Salvador, BA - Brazil
| |
Collapse
|
67
|
Pérez-Calvo JI, Morales-Rull JL, Gimeno-Orna JA, Lasierra-Díaz P, Josa-Laorden C, Puente-Lanzarote JJ, Bettencourt P, Pascual-Figal DA. Usefulness of the Hepatocyte Growth Factor as a Predictor of Mortality in Patients Hospitalized With Acute Heart Failure Regardless of Ejection Fraction. Am J Cardiol 2016; 118:543-9. [PMID: 27338207 DOI: 10.1016/j.amjcard.2016.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 11/16/2022]
Abstract
Hepatocyte growth factor (HGF) plays a role in the improvement of cardiac function and remodeling. Their serum levels are strongly related with mortality in chronic systolic heart failure (HF). The aim of this study was to study prognostic value of HGF in acute HF, interaction with ejection fraction, renal function, and natriuretic peptides. We included 373 patients (age 76 ± 10 years, left ventricular ejection fraction [LVEF] 46 ± 14%, 48% men) consecutively admitted for acute HF. Blood samples were obtained at admission. All patients were followed up until death or close of study (>1 year, median 371 days). HGF concentrations were determined using a commercial enzyme-linked immunosorbent assay (human HGF immunoassay). The predictive power of HGF was estimated by Cox regression with calculation of Harrell C-statistic. HGF had a median of 1,942 pg/ml (interquartile rank 1,354). According to HGF quartiles, mortality rates (per 1,000 patients/year) were 98, 183, 375, and 393, respectively (p <0.001). In Cox regression analysis, HGF (hazard ratio1SD = 1.5, 95% confidence interval 1.1 to 2.1, p = 0.002) and N-terminal pro b-type natriuretic peptide (NT-proBNP; hazard ratio1SD = 1.8, 95% confidence interval 1.2 to 2.6, p = 0.002) were independent predictors of mortality. Interaction between HGF and LVEF, origin, and renal function was nonsignificant. The addition of HGF improved the predictive ability of the models (C-statistic 0.768 vs 0.741, p = 0.016). HGF showed a complementary value over NT-proBNP (p = 0.001): mortality rate was 490 with both above the median versus 72 with both below. In conclusion, in patients with acute HF, serum HGF concentrations are elevated and identify patients at higher risk of mortality, regardless of LVEF, ischemic origin, or renal function. HGF had independent and additive information over NT-proBNP.
Collapse
Affiliation(s)
- Juan-Ignacio Pérez-Calvo
- Servicio de Medicina Interna, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain.
| | - José-Luis Morales-Rull
- Servicio de Medicina Interna, Hospital Universitario "Arnau de Villanova", Lleida, Spain
| | - José-Antonio Gimeno-Orna
- Servicio de Endocrinología y Metabolismo, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Pilar Lasierra-Díaz
- Laboratorio de Inmunología, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Claudia Josa-Laorden
- Servicio de Medicina Interna, Facultad de Medicina, Instituto de Investigación Sanitaria de Aragón, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | | | - Paulo Bettencourt
- Serviço de Medicina Interna, Hospital CUF-Porto, Faculdade Medicina Porto, Portugal
| | - Domingo A Pascual-Figal
- Servicio de Cardiología, Hospital Universitario "Virgen de la Arrixaca", Facultad de Medicina, Murcia, Spain
| |
Collapse
|
68
|
Lin YD, Ko MC, Wu ST, Li SF, Hu JF, Lai YJ, Harn HIC, Laio IC, Yeh ML, Yeh HI, Tang MJ, Chang KC, Su FC, Wei EIH, Lee ST, Chen JH, Hoffman AS, Wu WT, Hsieh PCH. A nanopatterned cell-seeded cardiac patch prevents electro-uncoupling and improves the therapeutic efficacy of cardiac repair. Biomater Sci 2016; 2:567-80. [PMID: 26827729 DOI: 10.1039/c3bm60289c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heart is an extremely sophisticated organ with nanoscale anisotropic structure, contractility and electro-conductivity; however, few studies have addressed the influence of cardiac anisotropy on cell transplantation for myocardial repair. Here, we hypothesized that a graft's anisotropy of myofiber orientation determines the mechano-electrical characteristics and the therapeutic efficacy. We developed aligned- and random-orientated nanofibrous electrospun patches (aEP and rEP, respectively) with or without seeding of cardiomyocytes (CMs) and endothelial cells (ECs) to test this hypothesis. Atomic force microscopy showed a better beating frequency and amplitude of CMs when cultured on aEP than that from cells cultured on rEP. For the in vivo test, a total of 66 rats were divided into six groups: sham, myocardial infarction (MI), MI + aEP, MI + rEP, MI + CM-EC/aEP and MI + CM-EC/rEP (n ≥ 10 for each group). Implantation of aEP or rEP provided mechanical support and thus retarded functional aggravation at 56 days after MI. Importantly, CM-EC/aEP implantation further improved therapeutic outcomes, while cardiac deterioration occurred on the CM-EC/rEP group. Similar results were shown by hemodynamic and infarct size examination. Another independent in vivo study was performed and electrocardiography and optical mapping demonstrated that there were more ectopic activities and defective electro-coupling after CM-EC/rEP implantation, which worsened cardiac functions. Together these results provide comprehensive functional characterizations and demonstrate the therapeutic efficacy of a nanopatterned anisotropic cardiac patch. Importantly, the study confirms the significance of cardiac anisotropy recapitulation in myocardial tissue engineering, which is valuable for the future development of translational nanomedicine.
Collapse
Affiliation(s)
- Yi-Dong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan and Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan and Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Surgery, National Cheng Kung University & Hospital, Tainan, Taiwan
| | - Ming-Chin Ko
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan and Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Surgery, National Cheng Kung University & Hospital, Tainan, Taiwan
| | - Su-Ting Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Feng Li
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Feng Hu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Jun Lai
- Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Mackay Medical College, New Taipei City, Taiwan
| | - Hans I-Chen Harn
- Institute of Physiology, National Cheng Kung University, Tainan, Taiwan and Institute of Basic Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Chuang Laio
- Department of Pathology, National Cheng Kung University & Hospital, Tainan, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hung-I Yeh
- Departments of Internal Medicine and Medical Research, Mackay Memorial Hospital, Mackay Medical College, New Taipei City, Taiwan
| | - Ming-Jer Tang
- Institute of Physiology, National Cheng Kung University, Tainan, Taiwan and Institute of Basic Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University & Hospital, Tainan, Taiwan
| | - Fong-Chin Su
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Erika I H Wei
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sho-Tone Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jyh-Hong Chen
- Department of Medicine, National Cheng Kung University & Hospital, Tainan, Taiwan
| | - Allan S Hoffman
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| | - Wen-Teng Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan and Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan and Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Surgery, National Cheng Kung University & Hospital, Tainan, Taiwan and Institute of Basic Medicine, National Cheng Kung University, Tainan, Taiwan and Department of Bioengineering, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
69
|
Fan Z, Guan J. Antifibrotic therapies to control cardiac fibrosis. Biomater Res 2016; 20:13. [PMID: 27226899 PMCID: PMC4879750 DOI: 10.1186/s40824-016-0060-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis occurs naturally after myocardial infarction. While the initially formed fibrotic tissue prevents the infarcted heart tissue from rupture, the progression of cardiac fibrosis continuously expands the size of fibrotic tissue and causes cardiac function decrease. Cardiac fibrosis eventually evolves the infarcted hearts into heart failure. Inhibiting cardiac fibrosis from progressing is critical to prevent heart failure. However, there is no efficient therapeutic approach currently available. Myofibroblasts are primarily responsible for cardiac fibrosis. They are formed by cardiac fibroblast differentiation, fibrocyte differentiation, epithelial to mesenchymal transdifferentiation, and endothelial to mesenchymal transition, driven by cytokines such as transforming growth factor beta (TGF-β), angiotensin II and platelet-derived growth factor (PDGF). The approaches that inhibit myofibroblast formation have been demonstrated to prevent cardiac fibrosis, including systemic delivery of antifibrotic drugs, localized delivery of biomaterials, localized delivery of biomaterials and antifibrotic drugs, and localized delivery of cells using biomaterials. This review addresses current progresses in cardiac fibrosis therapies.
Collapse
Affiliation(s)
- Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 USA
| |
Collapse
|
70
|
Mungunsukh O, Lee YH, Bottaro DP, Day RM. The hepatocyte growth factor isoform NK2 activates motogenesis and survival but not proliferation due to lack of Akt activation. Cell Signal 2016; 28:1114-23. [PMID: 27224506 DOI: 10.1016/j.cellsig.2016.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Abstract
Hepatocyte growth factor (HGF) is a pleiotrophic factor involved in cellular proliferation, migration and morphogenesis. HGF is required for normal tissue and organ development during embryogenesis, but in the adult HGF has been demonstrated to drive normal tissue repair and inhibit fibrotic remodeling. HGF has two naturally occurring human isoforms as a result of alternative splicing, NK1 and NK2. While NK1 has been defined as an agonist for HGF receptor, Met, NK2 is defined as a partial Met antagonist. Furthermore, under conditions of fibrotic remodeling, NK2 is still expressed while full length HGF is suppressed. Furthermore, the mechanism by which NK2 partially signals through Met is not completely understood. Here, we investigated the mitogenic, motogenic, and anti-apoptotic activities of NK2 compared with full length HGF in primary human bronchial epithelial cells (BEpC) and bovine pulmonary artery endothelial cells (PAEC). In human BEpC, NK2 partial activated Met, inducing Met phosphorylation at Y1234/1235 in the tyrosine-kinase domain but not at Y1349 site in the multifunctional docking domain. Partial phosphorylation of Met by NK2 resulted in activation of MAPK and STAT3, but not AKT. This correlated with motogenesis and survival in a MAPK-dependent manner, but not cell proliferation. Overexpression of a constitutively active AKT complemented NK2 signaling, allowing NK2 to induce cell proliferation. These data indicate that NK2 and HGF drive motogenic and anti-apoptotic signaling but only HGF drives cell proliferation by activating AKT-pathway signaling. These results have implications for the biological consequences of differential regulation of the two isoforms under pro-fibrotic conditions.
Collapse
Affiliation(s)
- Ognoon Mungunsukh
- The Uniformed Services University of the Health Sciences, Department of Pharmacology, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Young H Lee
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donald P Bottaro
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Regina M Day
- The Uniformed Services University of the Health Sciences, Department of Pharmacology, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
71
|
Zhao L, Liu X, Zhang Y, Liang X, Ding Y, Xu Y, Fang Z, Zhang F. Enhanced cell survival and paracrine effects of mesenchymal stem cells overexpressing hepatocyte growth factor promote cardioprotection in myocardial infarction. Exp Cell Res 2016; 344:30-39. [PMID: 27025401 DOI: 10.1016/j.yexcr.2016.03.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/21/2016] [Accepted: 03/25/2016] [Indexed: 01/16/2023]
Abstract
Poor cell survival post transplantation compromises the therapeutic benefits of mesenchymal stem cells (MSCs) in myocardial infarction (MI). Hepatocyte growth factor (HGF) is an important cytokine for angiogenesis, anti-inflammation and anti-apoptosis. This study aimed to evaluate the cardioprotective effects of MSCs overexpressing HGF in a mouse model of MI. The apoptosis of umbilical cord-derived MSCs (UC-MSCs) and HGF-UC-MSCs under normoxic and hypoxic conditions was detected. The conditioned medium (CdM) of UC-MSCs and HGF-UC-MSCs under a hypoxic condition was harvested and its protective effect on neonatal cardiomyocytes (NCMs) exposed to a hypoxic challenge was examined. UC-MSCs and HGF-UC-MSCs were transplanted into the peri-infarct region in mice following MI and heart function assessed 4 weeks post transplantation. The apoptosis of HGF-UC-MSCs under hypoxic conditions was markedly decreased compared with that of UC-MSCs. NCMs treated with HGF-UC-MSC hypoxic CdM (HGF-UC-MSCs-hy-CdM) exhibited less cell apoptosis in response to hypoxic challenge than those treated with UC-MSC hypoxic CdM (UC-MSCs-hy-CdM). HGF-UC-MSCs-hy-CdM released the inhibited p-Akt and lowered the enhanced ratio of Bax/Bcl-2 induced by hypoxia in the NCMs. HGF-UC-MSCs-hy-CdM expressed higher levels of HGF, EGF, bFGF and VEGF than UC-MSCs-hy-CdM. Transplantation of HGF-UC-MSCs or UC-MSCs greatly improved heart function in the mouse model of MI. Compared with UC-MSCs, transplantation of HGF-UC-MSCs was associated with less cardiomyocyte apoptosis, enhanced angiogenesis and increased proliferation of cardiomyocytes. This study may provide a novel therapeutic strategy for MSC-based therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Liyan Zhao
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolin Liu
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuelin Zhang
- Cardiology Division, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Xiaoting Liang
- Pudong District Clinical Translational Medical Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yue Ding
- Pudong District Clinical Translational Medical Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Xu
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Fang
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
72
|
Finisguerra V, Prenen H, Mazzone M. Preclinical and clinical evaluation of MET functions in cancer cells and in the tumor stroma. Oncogene 2016; 35:5457-5467. [PMID: 26996670 DOI: 10.1038/onc.2016.36] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 02/06/2023]
Abstract
A lot of attention has been dedicated to investigate the role of the tyrosine kinase receptor MET in tumors. The acquired notion that cancer cells from different histological origin strictly rely on the engagement of this specific oncogene for their growth and survival has certainly justified the development and the use of MET-targeted therapies in the clinic. However, the function and involvement of this pathway in the stroma (that often constitutes >50% of the global cellularity of the tumor) may offer the opportunity to conceive new patient stratification criteria, rational drug design and guided trials of new combination treatments. In this review, we will summarize and discuss the role of MET in cancer cells but especially in different stromal compartments, in light of the results showed by past and recent preclinical and clinical trials with anti-MET drugs.
Collapse
Affiliation(s)
- V Finisguerra
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - H Prenen
- Digestive Oncology, University Hospitals Leuven and Department of Oncology, KU Leuven, Leuven, Belgium
| | - M Mazzone
- Lab of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium.,Lab of Molecular Oncology and Angiogenesis, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
73
|
Ariyawutyakorn W, Saichaemchan S, Varella-Garcia M. Understanding and Targeting MET Signaling in Solid Tumors - Are We There Yet? J Cancer 2016; 7:633-49. [PMID: 27076844 PMCID: PMC4829549 DOI: 10.7150/jca.12663] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 01/22/2016] [Indexed: 12/22/2022] Open
Abstract
The MET signaling pathway plays an important role in normal physiology and its deregulation has proved critical for development of numerous solid tumors. Different technologies have been used to investigate the genomic and proteomic status of MET in cancer patients and its association with disease prognosis. Moreover, with the development of targeted therapeutic drugs, there is an urgent need to identify potential biomarkers for selection of patients who are more likely to derive benefit from these agents. Unfortunately, the variety of technical platforms and analysis criteria for diagnosis has brought confusion to the field and a lack of agreement in the evaluation of MET status as a prognostic or predictive marker for targeted therapy agents. We review the molecular mechanisms involved in the deregulation of the MET signaling pathway in solid tumors, the different technologies used for diagnosis, and the main factors that affect the outcome, emphasizing the urge for completing analytical and clinical validation of these tests. We also review the current clinical studies with MET targeted agents, which mostly focus on lung cancer.
Collapse
Affiliation(s)
- Witthawat Ariyawutyakorn
- 1. Faculty of Medicine, Chiang Mai University, 110 Intavarorod Rd., Muang, Chiang Mai, Thailand 50200
- 3. Department of Medicine, University of Colorado, Anschutz Medical Campus, 12801 East 17th Ave, RC1 South, L18-8118, Mail Stop 8117, Aurora, Colorado, USA 80045
| | - Siriwimon Saichaemchan
- 2. Division of Oncology, Department of Medicine, Phramongkutklao Hospital and College of Medicine, 315 Phayathai Rd., Ratchathewi, Bangkok, Thailand 10400
- 3. Department of Medicine, University of Colorado, Anschutz Medical Campus, 12801 East 17th Ave, RC1 South, L18-8118, Mail Stop 8117, Aurora, Colorado, USA 80045
| | - Marileila Varella-Garcia
- 3. Department of Medicine, University of Colorado, Anschutz Medical Campus, 12801 East 17th Ave, RC1 South, L18-8118, Mail Stop 8117, Aurora, Colorado, USA 80045
| |
Collapse
|
74
|
Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. Adv Drug Deliv Rev 2016; 96:54-76. [PMID: 25962984 DOI: 10.1016/j.addr.2015.04.021] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/20/2022]
Abstract
Alginate biomaterial is widely utilized for tissue engineering and regeneration due to its biocompatibility, non-thrombogenic nature, mild and physical gelation process, and the resemblance of its hydrogel matrix texture and stiffness to that of the extracellular matrix. In this review, we describe the versatile biomedical applications of alginate, from its use as a supporting cardiac implant in patients after acute myocardial infarction (MI) to its employment as a vehicle for stem cell delivery and for the controlled delivery and presentation of multiple combinations of bioactive molecules and regenerative factors into the heart. Preclinical and first-in-man clinical trials are described in details, showing the therapeutic potential of injectable acellular alginate implants to inhibit the damaging processes after MI, leading to myocardial repair and tissue reconstruction.
Collapse
Affiliation(s)
- Emil Ruvinov
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel; Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva, Israel; The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
75
|
Suarez SL, Muñoz A, Mitchell A, Braden RL, Luo C, Cochran JR, Almutairi A, Christman KL. Degradable acetalated dextran microparticles for tunable release of an engineered hepatocyte growth factor fragment. ACS Biomater Sci Eng 2015; 2:197-204. [PMID: 29333489 DOI: 10.1021/acsbiomaterials.5b00335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injectable biomaterials are promising as new therapies to treat myocardial infarction (MI). One useful property of biomaterials is the ability to protect and sustain release of therapeutic payloads. In order to create a platform for optimizing the release rate of cardioprotective molecules we utilized the tunable degradation of acetalated dextran (AcDex). We created microparticles with three distinct degradation profiles and showed that the consequent protein release profiles could be modulated within the infarcted heart. This enabled us to determine how delivery rate impacted the efficacy of a model therapeutic, an engineered hepatocyte growth factor fragment (HGF-f). Our results showed that the cardioprotective efficacy of HGF-f was optimal when delivered over three days post-intramyocardial injection, yielding the largest arterioles, fewest apoptotic cardiomyocytes bordering the infarct and the smallest infarcts compared to empty particle treatment four weeks after injection. This work demonstrates the potential of using AcDex particles as a delivery platform to optimize the time frame for delivering therapeutic proteins to the heart.
Collapse
Affiliation(s)
- Sophia L Suarez
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Adam Muñoz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Aaron Mitchell
- Department of Bioengineering, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Rebecca L Braden
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Colin Luo
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer R Cochran
- Department of Chemical Engineering, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Department of Bioengineering, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Karen L Christman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
76
|
Yamaguchi S, Shibata R, Yamamoto N, Nishikawa M, Hibi H, Tanigawa T, Ueda M, Murohara T, Yamamoto A. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Sci Rep 2015; 5:16295. [PMID: 26542315 PMCID: PMC4635346 DOI: 10.1038/srep16295] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHEDs) can regenerate various tissues. We investigated the impact of SHED-conditioned medium (SHED-CM) on myocardial injury in a mouse model of ischemia-reperfusion (I/R). Wild-type (WT) mice were subjected to myocardial ischemia followed by reperfusion. SHED-CM was intravenously injected at 5 min after reperfusion. Administration of SHED-CM reduced myocardial infarct size as well as decreased apoptosis and inflammatory cytokine levels, such as TNF-α, IL-6, and IL-β, in the myocardium following I/R. In cultured cardiac myocytes, SHED-CM significantly suppressed apoptosis under hypoxia/serum-deprivation and reduced LPS-induced expression of pro-inflammatory genes. Furthermore, anti-apoptotic action of SHED-CM was stronger than bone marrow-derived stem cell (BMSC)-CM or adipose-derived stem cell (ADSC)-CM in cardiac myocytes. SHED-CM contains a higher concentration of hepatocyte growth factor (HGF) than BMSC-CM and ADSC-CM, and neutralization of HGF attenuated the inhibitory actions of SHED-CM on apoptosis in cardiac myocytes. Finally, WT mice were intravenously treated with an HGF-depleted SHED-CM, followed by myocardial I/R. HGF depletion significantly attenuated the inhibitory actions of SHED-CM on myocardial infarct size and apoptosis after I/R. SHED-CM protects the heart from acute ischemic injury because it suppresses inflammation and apoptosis. SHED-CM could be a useful treatment option for acute myocardial infarction.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Yamamoto
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaya Nishikawa
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tohru Tanigawa
- Department of Otolaryngology, Aichi Medical University, Nagakute, Japan
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihito Yamamoto
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
77
|
Morley R, Cardenas A, Hawkins P, Suzuki Y, Paton V, Phan SC, Merchant M, Hsu J, Yu W, Xia Q, Koralek D, Luhn P, Aldairy W. Safety of Onartuzumab in Patients with Solid Tumors: Experience to Date from the Onartuzumab Clinical Trial Program. PLoS One 2015; 10:e0139679. [PMID: 26445503 PMCID: PMC4596876 DOI: 10.1371/journal.pone.0139679] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 09/15/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Onartuzumab, a recombinant humanized monovalent monoclonal antibody directed against MET, the receptor for the hepatocyte growth factor, has been investigated for the treatment of solid tumors. This publication describes the safety profile of onartuzumab in patients with solid tumors using data from the global onartuzumab clinical development program. METHODS Adverse event (AE) and laboratory data from onartuzumab phase II/III studies were analyzed and coded into standardized terms according to industry standards. The severity of AEs was assessed using the NCI Common Toxicity Criteria, Version 4. Medical Dictionary for Regulatory Activities (MedDRA) AEs were grouped using the standardized MedDRA queries (SMQs) "gastrointestinal (GI) perforation", "embolic and thrombotic events, venous (VTE)", and "embolic and thrombotic events, arterial (ATE)", and the Adverse Event Group Term (AEGT) "edema." The safety evaluable populations (patients who received at least one dose of study treatment) for each study were included in this analysis. RESULTS A total of 773 onartuzumab-treated patients from seven studies (phase II, n = 6; phase III, n = 1) were included. Edema and VTEs were reported in onartuzumab-treated patients in all seven studies. Edema events in onartuzumab arms were generally grade 1-2 in severity, observed more frequently than in control arms and at incidences ranging from 25.4-65.7% for all grades and from 1.2-14.1% for grade 3. Hypoalbuminemia was also more frequent in onartuzumab arms and observed at frequencies between 77.8% and 98.3%. The highest frequencies of all grade and grade ≥3 VTE events were 30.3% and 17.2%, respectively in onartuzumab arms. The cumulative incidence of all grade ATE events ranged from 0-5.6% (grade ≥3, 0-5.1%) in onartuzumab arms. The frequency of GI perforation was below 10% in all studies; the highest estimates were observed in studies with onartuzumab plus bevacizumab for all grades (0-6.2%) and grade ≥3 (0-6.2%). CONCLUSIONS The frequencies of VTE, ATE, GI perforation, hypoalbuminemia, and edema in clinical studies were higher in patients receiving onartuzumab than in control arms; these are considered to be expected events in patients receiving onartuzumab.
Collapse
Affiliation(s)
- Roland Morley
- Genentech Inc, South San Francisco, CA, United States of America
| | - Alison Cardenas
- Genentech Inc, South San Francisco, CA, United States of America
| | - Peter Hawkins
- Genentech Inc, South San Francisco, CA, United States of America
| | - Yasuyo Suzuki
- Genentech Inc, South San Francisco, CA, United States of America
| | - Virginia Paton
- Genentech Inc, South San Francisco, CA, United States of America
| | - See-Chun Phan
- Genentech Inc, South San Francisco, CA, United States of America
| | - Mark Merchant
- Genentech Inc, South San Francisco, CA, United States of America
| | - Jessie Hsu
- Genentech Inc, South San Francisco, CA, United States of America
| | - Wei Yu
- Genentech Inc, South San Francisco, CA, United States of America
| | - Qi Xia
- Genentech Inc, South San Francisco, CA, United States of America
| | - Daniel Koralek
- Genentech Inc, South San Francisco, CA, United States of America
| | - Patricia Luhn
- Genentech Inc, South San Francisco, CA, United States of America
| | - Wassim Aldairy
- Genentech Inc, South San Francisco, CA, United States of America
| |
Collapse
|
78
|
Zhu C, Xu J, Li M, Zhao G, Cao H. Heterogeneity of c-Met expression in Chinese gastric cancer patients. Hum Pathol 2015; 46:1901-7. [PMID: 26472163 DOI: 10.1016/j.humpath.2015.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 01/29/2023]
Abstract
c-Met is an attractive target for gastric cancer (GC) therapy, and detection of c-Met expression is critical for diagnosis. The aims of this study were to quantify the heterogeneous expression of c-Met in GC and to explore its impact on diagnosis. The expression of c-Met in 199 tumor fragments derived from 47 GC patients was evaluated by immunohistochemistry. In parallel, copy numbers of MET were determined by fluorescence in situ hybridization. Expression of c-Met was observed in 22 patients, and 18 (81.8%) of 22 were heterogeneous; but the incidence rate of heterogeneity was not significantly different among patient subgroups with various degrees of c-Met expression. MET copies were increased in 4 patients. Two represented polysomy, and 2 were caused by amplification. Expression of c-Met in MET-amplified tumors was homogeneous. In conclusion, heterogeneity of c-Met expression was widely observed in GC but was not associated with the extent of expression.
Collapse
Affiliation(s)
- Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jia Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Maoran Li
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - Hui Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| |
Collapse
|
79
|
Madonna R, Cadeddu C, Deidda M, Giricz Z, Madeddu C, Mele D, Monte I, Novo G, Pagliaro P, Pepe A, Spallarossa P, Tocchetti CG, Varga ZV, Zito C, Geng YJ, Mercuro G, Ferdinandy P. Cardioprotection by gene therapy. Int J Cardiol 2015; 191:203-10. [DOI: 10.1016/j.ijcard.2015.04.232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/16/2022]
|
80
|
Ozturk N, Aksoy H, Aksoy Y, Yildirim A, Akcay F, Yanmaz V. The low levels of circulating hepatocyte growth factor in nephrolithiasis cases: independent from gene polymorphism. Urolithiasis 2015; 43:427-32. [PMID: 26081218 DOI: 10.1007/s00240-015-0793-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 06/01/2015] [Indexed: 11/26/2022]
Abstract
Environmental and genetic factors are important in development of nephrolithiasis. In a recent study, it has been demonstrated that hepatocyte growth factor (HGF) has an anti-apoptotic effect and thus can reduce the adhesion of calcium oxalate monohydrate crystals to renal epithelial cells. The aim of this study was to evaluate the HGF serum levels and its two gene polymorphisms and possible association of the two in patients with nephrolithiasis. One hundred and five patients with nephrolithiasis and 70 healthy volunteers with similar demographic features were included in this study. Serum HGF levels were measured, and HGF intron 13 C>A (in 102 stone patients and 68 healthy subjects) and intron 14 T>C (in 99 stone patients and 56 healthy subjects) polymorphisms were determined using real-time polymerase chain reaction with TaqMan allelic discrimination method. There were no statistically significant differences in HGF intron 13 C>A and intron 14 T>C polymorphisms between the control and patient groups (X (2) = 1.72 df = 2; p = 0.42, and X (2) = 0.68 df = 2; p = 0.71, respectively). Mean serum HGF concentration was significantly lower in the stone disease patients than in the control subjects (1.05 ± 0.63 pg/mL and 1.35 ± 0.58 ng/mL respectively, p = 0.0001). When allele distribution frequency between stone patients and healthy subjects was compared, there were no significant differences in intron 13 and intron 14 allele distributions between two groups (p = 0.43 and p = 0.44, respectively). It may be concluded from the findings that decrease in HGF levels may play a role in renal stone formation, independent from gene polymorphisms.
Collapse
Affiliation(s)
- Nurinnisa Ozturk
- Department of Biochemistry, School of Medicine, Ataturk University, 25240, Erzurum, Turkey.
| | - Hulya Aksoy
- Department of Biochemistry, School of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Yilmaz Aksoy
- Department of Urology, School of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdulkadir Yildirim
- Department of Biochemistry, School of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Fatih Akcay
- Department of Biochemistry, School of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Vefa Yanmaz
- Kocaeli Karamursel State Hospital, Karamursel, Kocaeli, Turkey
| |
Collapse
|
81
|
Boucek RJ, Steele J, Jacobs JP, Steele P, Asante-Korang A, Quintessenza J, Steele A. Ex vivo paracrine properties of cardiac tissue: Effects of chronic heart failure. J Heart Lung Transplant 2015; 34:839-48. [DOI: 10.1016/j.healun.2014.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/11/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022] Open
|
82
|
Cross talk of the first-line defense TLRs with PI3K/Akt pathway, in preconditioning therapeutic approach. MOLECULAR AND CELLULAR THERAPIES 2015; 3:4. [PMID: 26056605 PMCID: PMC4456045 DOI: 10.1186/s40591-015-0041-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 05/19/2015] [Indexed: 01/04/2023]
Abstract
Toll-like receptor family (TLRs), pattern recognition receptors, is expressed not only on immune cells but also on non-immune cells, including cardiomyocytes, fibroblasts, and vascular endothelial cells. One main function of TLRs in the non-immune system is to regulate apoptosis. TLRs are the central mediators in hepatic, pulmonary, brain, and renal ischemic/reperfusion (I/R) injury. Up-regulation of TLRs and their ligation by either exogenous or endogenous danger signals plays critical roles in ischemia/reperfusion-induced tissue damage. Conventional TLR-NF-κB pathways are markedly activated in failing and ischemic myocardium. Recent studies have identified a cross talk between TLR activation and the PI3K/Akt pathway. The activation of TLRs is proposed to be the most potent preconditioning method after ischemia, to improve the cell survival via the mechanism involved the PI3K/Akt signaling pathway and to attenuate the subsequent TLR-NF-κB pathway stimulation. Thus, TLRs could be a great target in the new treatment approaches for myocardial I/R injury.
Collapse
|
83
|
Pourrajab F, Yazdi MB, Zarch MB, Zarch MB, Hekmatimoghaddam S. Cross talk of the first-line defense TLRs with PI3K/Akt pathway, in preconditioning therapeutic approach. MOLECULAR AND CELLULAR THERAPIES 2015; 3:4. [PMID: 26056605 PMCID: PMC4456045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 05/19/2015] [Indexed: 11/21/2023]
Abstract
Toll-like receptor family (TLRs), pattern recognition receptors, is expressed not only on immune cells but also on non-immune cells, including cardiomyocytes, fibroblasts, and vascular endothelial cells. One main function of TLRs in the non-immune system is to regulate apoptosis. TLRs are the central mediators in hepatic, pulmonary, brain, and renal ischemic/reperfusion (I/R) injury. Up-regulation of TLRs and their ligation by either exogenous or endogenous danger signals plays critical roles in ischemia/reperfusion-induced tissue damage. Conventional TLR-NF-κB pathways are markedly activated in failing and ischemic myocardium. Recent studies have identified a cross talk between TLR activation and the PI3K/Akt pathway. The activation of TLRs is proposed to be the most potent preconditioning method after ischemia, to improve the cell survival via the mechanism involved the PI3K/Akt signaling pathway and to attenuate the subsequent TLR-NF-κB pathway stimulation. Thus, TLRs could be a great target in the new treatment approaches for myocardial I/R injury.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- />School of Medicine, Shahid Sadoughi University of Medical Sciences, Professor Hessabi 11 BLV, Shohadaye Gomnam BLV, Yazd, Iran P.O. 8915173149
- />Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Baghi Yazdi
- />School of Medicine, Shahid Sadoughi University of Medical Sciences, Professor Hessabi 11 BLV, Shohadaye Gomnam BLV, Yazd, Iran P.O. 8915173149
| | - Mojtaba Babaei Zarch
- />School of Medicine, Shahid Sadoughi University of Medical Sciences, Professor Hessabi 11 BLV, Shohadaye Gomnam BLV, Yazd, Iran P.O. 8915173149
| | - Mohammadali Babaei Zarch
- />School of Medicine, Shahid Sadoughi University of Medical Sciences, Professor Hessabi 11 BLV, Shohadaye Gomnam BLV, Yazd, Iran P.O. 8915173149
| | | |
Collapse
|
84
|
Rao KS, Aronshtam A, McElory-Yaggy KL, Bakondi B, VanBuren P, Sobel BE, Spees JL. Human epicardial cell-conditioned medium contains HGF/IgG complexes that phosphorylate RYK and protect against vascular injury. Cardiovasc Res 2015; 107:277-86. [PMID: 26025956 DOI: 10.1093/cvr/cvv168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/21/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS The aim of this study was to evaluate the paracrine activity of human epicardial-derived cells (hEPDCs) to screen for secreted vasoprotective factors and develop therapeutics to treat vascular reperfusion injury. METHODS AND RESULTS Epicardial cells support cardiac development, repair, and remodelling after injury in part, through paracrine activity. We hypothesized that secreted ligands from hEPDCs would protect vascular integrity after myocardial infarction (MI) with reperfusion. During simulated ischaemia in culture (24-48 h), concentrated hEPDC-conditioned medium (EPI CdM) increased survival of primary cardiac endothelial cells. In a rat MI model, EPI CdM treatment reduced vascular injury in vivo after reperfusion. By phospho-receptor tyrosine kinase (RTK) arrays, ELISA, and neutralizing antibody screens, we identified hepatocyte growth factor (HGF) as a key vasoprotective factor in EPI CdM. Unexpectedly, we observed that some of the HGF in EPI CdM formed complexes with polyclonal IgG. Following reperfusion, preparations of HGF/IgG complexes provided greater vascular protection than free HGF with IgG. HGF/IgG complexes localized to blood vessels in vivo and increased HGF retention time after administration. In subsequent screens, we found that 'related to tyrosine kinase' (RYK) receptor was phosphorylated after exposure of cardiac endothelial cells to HGF/IgG complexes, but not to free HGF with IgG. The enhanced protection conferred by HGF/IgG complexes was lost after antibody blockade of RYK. Notably, the HGF/IgG complex is the first 'ligand' shown to promote phosphorylation of RYK. CONCLUSION Early treatment with HGF/IgG complexes after myocardial ischaemia with reperfusion may rescue tissue through vasoprotection conferred by c-Met and RYK signalling.
Collapse
Affiliation(s)
- Krithika S Rao
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Colchester, VT, USA Department of Medicine and Cardiovascular Research Institute, University of Vermont, 208 South Park Drive, Ste 2, Colchester, VT 05446, USA
| | - Alexander Aronshtam
- Department of Medicine and Cardiovascular Research Institute, University of Vermont, 208 South Park Drive, Ste 2, Colchester, VT 05446, USA
| | - Keara L McElory-Yaggy
- Department of Medicine and Cardiovascular Research Institute, University of Vermont, 208 South Park Drive, Ste 2, Colchester, VT 05446, USA
| | - Benjamin Bakondi
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Colchester, VT, USA Department of Medicine and Cardiovascular Research Institute, University of Vermont, 208 South Park Drive, Ste 2, Colchester, VT 05446, USA
| | - Peter VanBuren
- Department of Medicine and Cardiovascular Research Institute, University of Vermont, 208 South Park Drive, Ste 2, Colchester, VT 05446, USA
| | - Burton E Sobel
- Department of Medicine and Cardiovascular Research Institute, University of Vermont, 208 South Park Drive, Ste 2, Colchester, VT 05446, USA
| | - Jeffrey L Spees
- Department of Medicine and Cardiovascular Research Institute, University of Vermont, 208 South Park Drive, Ste 2, Colchester, VT 05446, USA Stem Cell Core, University of Vermont, Colchester, VT 05446, USA
| |
Collapse
|
85
|
Petrini I. Biology of MET: a double life between normal tissue repair and tumor progression. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:82. [PMID: 25992381 DOI: 10.3978/j.issn.2305-5839.2015.03.58] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 01/30/2023]
Abstract
MNNG HOS transforming gene (MET) is a class IV receptor tyrosine kinase, expressed on the surface of epithelial cells. The interaction with the hepatocyte grow factor (HGF) induces MET dimerization and the activation of multiple intracellular pathways leading to cell proliferation, anti-apoptosis, morphogenic differentiation, motility, invasion, and angiogenesis. Knock out mice have demonstrated that MET is necessary for normal embryogenesis including the formation of striate muscles, liver and trophoblastic structures. The overexpression of MET and HGF are common in solid tumors and contribute to determine their growth. Indeed, MET has been cloned as a transforming gene from a chemically induced human osteosarcoma cell line and therefore is considered a proto-oncogene. Germline MET mutations are characteristic of hereditary papillary kidney cancers and MET amplification is observed in tumors including lung and gastric adenocarcinomas. The inhibition of MET signaling is the target for specific drugs that are raising exciting expectation for medical treatment of cancer.
Collapse
|
86
|
Badalzadeh R, Mokhtari B, Yavari R. Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus. J Physiol Sci 2015; 65:201-15. [PMID: 25726180 PMCID: PMC10717803 DOI: 10.1007/s12576-015-0365-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/11/2015] [Indexed: 12/21/2022]
Abstract
Ischemic heart disease is one of the major causes of death worldwide. Ischemia is a condition in which blood flow of the myocardium declines, leading to cardiomyocyte death. However, reperfusion of ischemic regions decreases the rate of mortality, but it can also cause later complications. In a clinical setting, ischemic heart disease is always coincident with other co-morbidities such as diabetes. The risk of heart disease increases 2-3 times in diabetic patients. Apoptosis is considered to be one of the main pathophysiological mechanisms of myocardial ischemia-reperfusion injury. Diabetes can disrupt the anti-apoptotic intracellular signaling cascades involved in myocardial protection. Therefore, targeting these changes may be an effective cardioprotective approach in the diabetic myocardium against ischemia-reperfusion injury. In this article, we review the interaction of diabetes with the pathophysiology of myocardial ischemia-reperfusion injury, focusing on the contribution of apoptosis in this context, and then discuss the alterations of pro-apoptotic or anti-apoptotic pathways probably responsible for the loss of cardioprotection in diabetes.
Collapse
Affiliation(s)
- Reza Badalzadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mokhtari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raana Yavari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
87
|
Hastings CL, Roche ET, Ruiz-Hernandez E, Schenke-Layland K, Walsh CJ, Duffy GP. Drug and cell delivery for cardiac regeneration. Adv Drug Deliv Rev 2015; 84:85-106. [PMID: 25172834 DOI: 10.1016/j.addr.2014.08.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/24/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022]
Abstract
The spectrum of ischaemic cardiomyopathy, encompassing acute myocardial infarction to congestive heart failure is a significant clinical issue in the modern era. This group of diseases is an enormous source of morbidity and mortality and underlies significant healthcare costs worldwide. Cardiac regenerative therapy, whereby pro-regenerative cells, drugs or growth factors are administered to damaged and ischaemic myocardium has demonstrated significant potential, especially preclinically. While some of these strategies have demonstrated a measure of success in clinical trials, tangible clinical translation has been slow. To date, the majority of clinical studies and a significant number of preclinical studies have utilised relatively simple delivery methods for regenerative therapeutics, such as simple systemic administration or local injection in saline carrier vehicles. Here, we review cardiac regenerative strategies with a particular focus on advanced delivery concepts as a potential means to enhance treatment efficacy and tolerability and ultimately, clinical translation. These include (i) delivery of therapeutic agents in biomaterial carriers, (ii) nanoparticulate encapsulation, (iii) multimodal therapeutic strategies and (iv) localised, minimally invasive delivery via percutaneous transcatheter systems.
Collapse
|
88
|
Chen G, Jin Y, Shi X, Qiu Y, Zhang Y, Cheng M, Wang X, Chen C, Wu Y, Jiang F, Li L, Zhou H, Fu Q, Liu X. Adipose-derived stem cell-based treatment for acute liver failure. Stem Cell Res Ther 2015; 6:40. [PMID: 25890008 PMCID: PMC4425851 DOI: 10.1186/s13287-015-0040-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/14/2014] [Accepted: 03/05/2015] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Acute liver failure (ALF) is a highly lethal disease, for which effective therapeutic methods are limited. Although allogeneic liver transplantation is a viable treatment method for ALF, there is a serious shortage of liver donors. Recent studies suggest that stem cell transplantation is a more promising alternative. Hence, we investigate whether human adipose-derived stem cells (ASCs) have the therapeutic potential for ALF in this study based on the studies of rat models. METHODS Sprague Dawley rats were used to establish ALF models by D-galactosamine injection. These rats were randomly divided into a human ASC-treated group and a phosphate-buffered saline (PBS) control group. The human ASCs or PBS was transplanted through the spleen of rats. The indices of hepatic function and hepatic histology were dynamically detected, and the survival rates of rats were also counted. Double-fluorescence immunohistochemistry was employed to detect the ASC fate after transplantation. Moreover, both concentrated ASC conditional media and ASC lysates were transplanted through the femoral vain of rats to investigate the therapeutic potential for ALF. RESULTS The ASC transplantation group showed improved viability in comparison with the sham control. Histological and biochemical analysis suggested that liver morphology and function were improved in terms of cell proliferation and apoptosis. Although a plethora of ASCs persist in the spleen, the improvement in liver function was obvious. However, ASCs did not differentiate into hepatocytes after engrafting to livers within 3 days. In addition, both concentrated serum-free ASC conditional media and ASC lysates, characterized by high levels of hepatocyte growth factor and vascular endothelial growth factor, demonstrated obvious improvement in terms of high survival rates of ALF rats. CONCLUSION Our data suggest that ASC transplantation has the potential for ALF treatment partly by the mechanism of secreting growth factors contributing to liver regeneration.
Collapse
Affiliation(s)
- Guangfeng Chen
- Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchangzhong Road, Shanghai, 200072, P.R. China.
| | - Yinpeng Jin
- Shanghai Liver Diseases Research Center, The Nanjing Military Command, 9585 Humin Road, Shanghai, 200235, P.R. China.
| | - Xiujuan Shi
- Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchangzhong Road, Shanghai, 200072, P.R. China.
| | - Yu Qiu
- Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchangzhong Road, Shanghai, 200072, P.R. China.
| | - Yushan Zhang
- Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchangzhong Road, Shanghai, 200072, P.R. China.
| | - Mingliang Cheng
- Department of Infectious Diseases, Affiliated Hospital, Guiyang Medical College, 9 Beijing Road, Guiyang, 550004, P.R. China.
| | - Xiaojin Wang
- Shanghai Liver Diseases Research Center, The Nanjing Military Command, 9585 Humin Road, Shanghai, 200235, P.R. China.
| | - Chengwei Chen
- Shanghai Liver Diseases Research Center, The Nanjing Military Command, 9585 Humin Road, Shanghai, 200235, P.R. China.
| | - Yinxia Wu
- Shanghai Liver Diseases Research Center, The Nanjing Military Command, 9585 Humin Road, Shanghai, 200235, P.R. China.
| | - Fuzhu Jiang
- Shanghai Liver Diseases Research Center, The Nanjing Military Command, 9585 Humin Road, Shanghai, 200235, P.R. China.
| | - Li Li
- Shanghai Liver Diseases Research Center, The Nanjing Military Command, 9585 Humin Road, Shanghai, 200235, P.R. China.
| | - Heng Zhou
- Shanghai Liver Diseases Research Center, The Nanjing Military Command, 9585 Humin Road, Shanghai, 200235, P.R. China.
| | - Qingchun Fu
- Shanghai Liver Diseases Research Center, The Nanjing Military Command, 9585 Humin Road, Shanghai, 200235, P.R. China.
| | - Xiaoqing Liu
- Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchangzhong Road, Shanghai, 200072, P.R. China.
| |
Collapse
|
89
|
Soluble c-Met is a reliable and sensitive marker to detect c-Met expression level in lung cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:626578. [PMID: 25834821 PMCID: PMC4365312 DOI: 10.1155/2015/626578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 11/18/2022]
Abstract
c-Met has been demonstrated as an attractive target in lung cancer therapy. Current studies showed that detection of c-Met status in tumor is critical in Met-targeted therapy. However not all patients are suitable for tissue sample collection. It is important to discover novel surrogate markers to detect c-Met status. In the study, soluble c-Met (s-Met) in plasma from 146 Chinese lung cancer patients and 40 disease-free volunteers was measured by enzyme-linked immunosorbent. In parallel, expression of c-Met in those tumors was also assessed by immunohistochemistry. Results showed that, in 146 lung cancer patients, 93 were c-Met expression positive and 74 of 93 were overexpressed. In c-Met-overexpressed patients, plasma s-Met was significantly increased. And further studies showed that plasma s-Met linearly correlated with c-Met expression in tumor. After tumor was removed in Met-overexpressed patients via resection, plasma s-Met significantly decreased to basal level. In addition, plasma s-Met showed to be poorly correlated with tumor size in Met-overexpressed patients. These results demonstrated that plasma s-Met is a sensitive and reliable marker to detect c-Met overexpression in lung cancers, and it is independent of tumor volume.
Collapse
|
90
|
Lu XY, Liu BC, Wang LH, Yang LL, Bao Q, Zhai YJ, Alli AA, Thai TL, Eaton DC, Wang WZ, Ma HP. Acute ethanol induces apoptosis by stimulating TRPC6 via elevation of superoxide in oxygenated podocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:965-74. [PMID: 25601712 DOI: 10.1016/j.bbamcr.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 01/06/2023]
Abstract
Our recent studies indicate that hydrogen peroxide (H2O2) only at high concentrations can cause oxidative stress in renal epithelial cells and induce apoptosis of podocytes. Consistently, the present study shows that H2O2, even at 1 mM, failed to induce intracellular oxidative stress and apoptosis of the podocytes due to efficient activity of catalase, an enzyme which degrades H2O2 to produce water and oxygen (O2). However, H2O2 acted as a source of O2 to allow acute ethanol to induce superoxide production and cause apoptosis of the podocytes. In contrast, acute ethanol alone did not elevate intracellular superoxide, even though it stimulates expression and translocation of p47phox to the plasma membrane. Inhibition of catalase abolished not only O2 production from H2O2 degradation, but also NOX2-dependent superoxide production in the podocytes challenged by both H2O2 and acute ethanol. In parallel, acute ethanol in the presence of H2O2, but neither ethanol nor H2O2 alone, stimulated transient receptor potential canonical 6 (TRPC6) channels and caused TRPC6-dependent elevation of intracellular Ca2+. These data suggest that exogenous H2O2 does not induce oxidative stress due to rapid degradation to produce O2 in the podocytes, but the oxygenated podocytes become sensitive to acute ethanol challenge and undergo apoptosis via a TRPC6-dependent elevation of intracellular Ca2+. Since cultured podocytes are considered in hypoxic conditions, H2O2 may be used as a source of O2 to establish an ischemia-reperfusion model in some type of cultured cells in which H2O2 does not directly induce intracellular oxidative stress.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Bing-Chen Liu
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Radiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Li-Hua Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Li-Li Yang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Radiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Qing Bao
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Yu-Jia Zhai
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States; Department of Radiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China; Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Abdel A Alli
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Tiffany L Thai
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Wei-Zhi Wang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
91
|
Sonnenberg SB, Rane AA, Liu CJ, Rao N, Agmon G, Suarez S, Wang R, Munoz A, Bajaj V, Zhang S, Braden R, Schup-Magoffin PJ, Kwan OL, DeMaria AN, Cochran JR, Christman KL. Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative LV remodeling post-myocardial infarction. Biomaterials 2015; 45:56-63. [PMID: 25662495 DOI: 10.1016/j.biomaterials.2014.12.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/26/2014] [Accepted: 12/20/2014] [Indexed: 01/04/2023]
Abstract
Hepatocyte growth factor (HGF) has been shown to have anti-fibrotic, pro-angiogenic, and cardioprotective effects; however, it is highly unstable and expensive to manufacture, hindering its clinical translation. Recently, a HGF fragment (HGF-f), an alternative c-MET agonist, was engineered to possess increased stability and recombinant expression yields. In this study, we assessed the potential of HGF-f, delivered in an extracellular matrix (ECM)-derived hydrogel, as a potential treatment for myocardial infarction (MI). HGF-f protected cardiomyocytes from serum-starvation and induced down-regulation of fibrotic markers in whole cardiac cell isolate compared to the untreated control. The ECM hydrogel prolonged release of HGF-f compared to collagen gels, and in vivo delivery of HGF-f from ECM hydrogels mitigated negative left ventricular (LV) remodeling, improved fractional area change (FAC), and increased arteriole density in a rat myocardial infarction model. These results indicate that HGF-f may be a viable alternative to using recombinant HGF, and that an ECM hydrogel can be employed to increase growth factor retention and efficacy.
Collapse
Affiliation(s)
- Sonya B Sonnenberg
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Aboli A Rane
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Cassie J Liu
- Department of Chemical Engineering, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Bioengineering, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Nikhil Rao
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gillie Agmon
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sophia Suarez
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Raymond Wang
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Adam Munoz
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vaibhav Bajaj
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shirley Zhang
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Braden
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Pamela J Schup-Magoffin
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Oi Ling Kwan
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Anthony N DeMaria
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer R Cochran
- Department of Chemical Engineering, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Department of Bioengineering, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Karen L Christman
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
92
|
Vogel S, Börger V, Peters C, Förster M, Liebfried P, Metzger K, Meisel R, Däubener W, Trapp T, Fischer JC, Gawaz M, Sorg RV. Necrotic cell-derived high mobility group box 1 attracts antigen-presenting cells but inhibits hepatocyte growth factor-mediated tropism of mesenchymal stem cells for apoptotic cell death. Cell Death Differ 2015; 22:1219-30. [PMID: 25571972 DOI: 10.1038/cdd.2014.225] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 11/22/2014] [Accepted: 11/24/2014] [Indexed: 11/09/2022] Open
Abstract
Tissue damage due to apoptotic or necrotic cell death typically initiates distinct cellular responses, leading either directly to tissue repair and regeneration or to immunological processes first, to clear the site, for example, of potentially damage-inducing agents. Mesenchymal stem cells (MSC) as well as immature dendritic cells (iDC) and monocytes migrate to injured tissues. MSC have regenerative capacity, whereas monocytes and iDC have a critical role in inflammation and induction of immune responses, including autoimmunity after tissue damage. Here, we investigated the influence of apoptotic and necrotic cell death on recruitment of MSC, monocytes and iDC, and identified hepatocyte growth factor (HGF) and the alarmin high mobility group box 1 (HMGB1) as key factors differentially regulating these migratory responses. MSC, but not monocytes or iDC, were attracted by apoptotic cardiomyocytic and neuronal cells, whereas necrosis induced migration of monocytes and iDC, but not of MSC. Only apoptotic cell death resulted in HGF production and HGF-mediated migration of MSC towards the apoptotic targets. In contrast, HMGB1 was predominantly released by the necrotic cells and mediated recruitment of monocytes and iDC via the receptor of advanced glycation end products. Moreover, necrotic cardiomyocytic and neuronal cells caused an HMGB1/toll-like receptor-4-dependent inhibition of MSC migration towards apoptosis or HGF, while recruitment of monocytes and iDC by necrosis or HMGB1 was not affected by apoptotic cells or HGF. Thus, the type of cell death differentially regulates recruitment of either MSC or monocytes and iDC through HGF and HMGB1, respectively, with a dominant, HMGB1-mediated role of necrosis in determining tropism after tissue injury.
Collapse
Affiliation(s)
- S Vogel
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - V Börger
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - C Peters
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - M Förster
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - P Liebfried
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - K Metzger
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - R Meisel
- Clinic of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - W Däubener
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - T Trapp
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - J C Fischer
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - M Gawaz
- Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany
| | - R V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Düsseldorf, Germany
| |
Collapse
|
93
|
Chi C, Wang F, Xiang B, Deng J, Liu S, Lin HY, Natarajan K, Li G, Wang L, Wang J, Lin F, Freed DH, Arora RC, Liu H, Tian G. Adipose-derived stem cells from both visceral and subcutaneous fat deposits significantly improve contractile function of infarcted rat hearts. Cell Transplant 2015; 24:2337-51. [PMID: 25562327 DOI: 10.3727/096368914x685780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adipose-derived stem cells (ASCs) from subcutaneous and visceral adipose tissues have been studied individually. No studies have compared their abilities in treatment of heart failure. This study was designed to evaluate whether ASCs from the two sources could provide a long-term improvement of cardiac function in infarcted hearts. Rat subcutaneous and visceral adipose tissues were excised for isolation of ASCs. Morphology, yield, proliferation, surface markers, differentiation, and cytokine secretion of the subcutaneous ASCs (S-ASCs) and visceral ASCs (V-ASCs) were analyzed. Then a rat model of myocardial infarction (MI) was established by a coronary occlusion. Seven days after occlusion, S-ASCs (n = 22), V-ASCs (n = 22), and Dulbecco's modified Eagle medium (DMEM, n = 20) were injected into the infarct rim, respectively. Cardiac function was then monitored with MRI for up to 6 months. The hearts were then removed for histological assessments. The yield of V-ASCs per gram of the visceral adipose depot was significantly greater than that of S-ASCs in 1 g of the subcutaneous adipose depot. On the other hand, the S-ASCs showed a greater proliferation rate and colony-forming unit relative to the V-ASCs. In addition, the infarcted hearts treated with either S-ASCs or V-ASCs showed a significantly greater left ventricular ejection fraction (LVEF) than those treated with DMEM at 4 weeks and 6 months following the cell/DMEM transplantation. Moreover, the infarct sizes of both S-ASC- and V-ASC-treated hearts were significantly smaller than that in the DMEM-treated hearts. MRI showed the implanted ASCs at the end of 6 months of recovery. Despite the differences in cell yield, proliferation, and colony formation capacity, both S-ASCs and V-ASCs provide a long-lasting improvement of cardiac contractile function in infarcted hearts. We conclude that the subcutaneous and visceral adipose tissues are equally effective cell sources for cell therapy of heart failure.
Collapse
Affiliation(s)
- Chao Chi
- Department of Cardiac Surgery, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Hepatocyte growth factor: A regulator of inflammation and autoimmunity. Autoimmun Rev 2014; 14:293-303. [PMID: 25476732 DOI: 10.1016/j.autrev.2014.11.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Abstract
Hepatocyte growth factor (HGF) is a pleiotropic cytokine that has been extensively studied over several decades, but was only recently recognized as a key player in mediating protection of many types of inflammatory and autoimmune diseases. HGF was reported to prevent and attenuate disease progression by influencing multiple pathophysiological processes involved in inflammatory and immune response, including cell migration, maturation, cytokine production, antigen presentation, and T cell effector function. In this review, we discuss the actions and mechanisms of HGF in inflammation and immunity and the therapeutic potential of this factor for the treatment of inflammatory and autoimmune diseases.
Collapse
|
95
|
Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. Prog Neurobiol 2014; 125:26-46. [PMID: 25455861 DOI: 10.1016/j.pneurobio.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's (AD) and Parkinson's (PD) diseases are neurodegenerative diseases presently without effective drug treatments. AD is characterized by general cognitive impairment, difficulties with memory consolidation and retrieval, and with advanced stages episodes of agitation and anger. AD is increasing in frequency as life expectancy increases. Present FDA approved medications do little to slow disease progression and none address the underlying progressive loss of synaptic connections and neurons. New drug design approaches are needed beyond cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists. Patients with PD experience the symptomatic triad of bradykinesis, tremor-at-rest, and rigidity with the possibility of additional non-motor symptoms including sleep disturbances, depression, dementia, and autonomic nervous system failure. This review summarizes available information regarding the role of the brain renin-angiotensin system (RAS) in learning and memory and motor functions, with particular emphasis on research results suggesting a link between angiotensin IV (AngIV) interacting with the AT4 receptor subtype. Currently there is controversy over the identity of this AT4 receptor protein. Albiston and colleagues have offered convincing evidence that it is the insulin-regulated aminopeptidase (IRAP). Recently members of our laboratory have presented evidence that the brain AngIV/AT4 receptor system coincides with the brain hepatocyte growth factor/c-Met receptor system. In an effort to resolve this issue we have synthesized a number of small molecule AngIV-based compounds that are metabolically stable, penetrate the blood-brain barrier, and facilitate compromised memory and motor systems. These research efforts are described along with details concerning a recently synthesized molecule, Dihexa that shows promise in overcoming memory and motor dysfunctions by augmenting synaptic connectivity via the formation of new functional synapses.
Collapse
Affiliation(s)
- John W Wright
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Leen H Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| | - Joseph W Harding
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| |
Collapse
|
96
|
HGF-Met Pathway in Regeneration and Drug Discovery. Biomedicines 2014; 2:275-300. [PMID: 28548072 PMCID: PMC5344275 DOI: 10.3390/biomedicines2040275] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/15/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte growth factor (HGF) is composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. Activation of the HGF–Met pathway evokes dynamic biological responses that support morphogenesis (e.g., epithelial tubulogenesis), regeneration, and the survival of cells and tissues. Characterizations of conditional Met knockout mice have indicated that the HGF–Met pathway plays important roles in regeneration, protection, and homeostasis in various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. The promotion of cell growth, survival, migration, and morphogenesis that is associated with extracellular matrix proteolysis are the biological activities that underlie the therapeutic actions of HGF. Recombinant HGF protein and the expression vectors for HGF are biological drug candidates for the treatment of patients with diseases and injuries that are associated with impaired tissue function. The intravenous/systemic administration of recombinant HGF protein has been well tolerated in phase I/II clinical trials. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing.
Collapse
|
97
|
HGF/Met Axis in Heart Function and Cardioprotection. Biomedicines 2014; 2:247-262. [PMID: 28548070 PMCID: PMC5344277 DOI: 10.3390/biomedicines2040247] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/18/2014] [Accepted: 10/13/2014] [Indexed: 12/27/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its tyrosine kinase receptor (Met) play important roles in myocardial function both in physiological and pathological situations. In the developing heart, HGF influences cardiomyocyte proliferation and differentiation. In the adult, HGF/Met signaling controls heart homeostasis and prevents oxidative stress in normal cardiomyocytes. Thus, the possible cardiotoxicity of current Met-targeted anti-cancer therapies has to be taken in consideration. In the injured heart, HGF plays important roles in cardioprotection by promoting: (1) prosurvival (anti-apoptotic and anti-autophagic) effects in cardiomyocytes, (2) angiogenesis, (3) inhibition of fibrosis, (4) anti-inflammatory and immunomodulatory signals, and (5) regeneration through activation of cardiac stem cells. Furthermore, we discuss the putative role of elevated HGF as prognostic marker of severity in patients with cardiac diseases. Finally, we examine the potential of HGF-based molecules as new therapeutic tools for the treatment of cardiac diseases.
Collapse
|
98
|
Agwa ES, Ma PC. Targeting the MET receptor tyrosine kinase in non-small cell lung cancer: emerging role of tivantinib. Cancer Manag Res 2014; 6:397-404. [PMID: 25328417 PMCID: PMC4198276 DOI: 10.2147/cmar.s37345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
MET receptor tyrosine kinase and its natural ligand, hepatocyte growth factor, have been implicated in a variety of cancers, including non-small cell lung cancer (NSCLC). Mechanisms by which cellular deregulation of MET occurs include overexpression, genomic amplification, mutation, or alternative splicing. MET overexpression or activation is a known cause of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in NSCLC. Inhibition of MET signaling in these EGFR tyrosine kinase inhibitor-resistant cells may potentially restore sensitivity to EGFR inhibitors. Tivantinib (ARQ 197), reported as a small-molecule MET inhibitor, has demonstrated antitumor activity in early clinical studies. This review focuses on MET and lung cancer, the clinical development of tivantinib, the clinical trials of tivantinib in NSCLC to date, its current/emerging role in the management of NSCLC, and future directions.
Collapse
Affiliation(s)
- Eberechi S Agwa
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick C Ma
- Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
99
|
Chen L, Qin F, Ge M, Shu Q, Xu J. Application of adipose-derived stem cells in heart disease. J Cardiovasc Transl Res 2014; 7:651-63. [PMID: 25205213 DOI: 10.1007/s12265-014-9585-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
Therapy with mesenchymal stem cells is one of the promising tools to improve outcomes after myocardial infarction. Adipose-derived stem cells (ASCs) are an ideal source of mesenchymal stem cells due to their abundance and ease of preparation. Studies in animal models of myocardial infarction have demonstrated the ability of injected ASCs to engraft and differentiate into cardiomyocytes and vasculature cells. ASCs secrete a wide array of angiogenic and anti-apoptotic paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor 1. ASCs are capable of enhancing heart function, reducing myocardial infarction, promoting vascularization, and reversing remodeling in the ischemically injured hearts. Furthermore, several ongoing clinical trials using ASCs are producing promising results for heart diseases. This article reviews the isolation, differentiation, immunoregulatory properties, mechanisms of action, animal models, and ongoing clinical trials of ASCs for cardiac disease.
Collapse
Affiliation(s)
- Lina Chen
- Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | | | | | | | | |
Collapse
|
100
|
Di Scipio F, Sprio A, Folino A, Carere M, Salamone P, Yang Z, Berrone M, Prat M, Losano G, Rastaldo R, Berta G. Injured cardiomyocytes promote dental pulp mesenchymal stem cell homing. Biochim Biophys Acta Gen Subj 2014; 1840:2152-61. [DOI: 10.1016/j.bbagen.2014.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 02/07/2023]
|