51
|
Landa I, Thornton CEM, Xu B, Haase J, Krishnamoorthy GP, Hao J, Knauf JA, Herbert ZT, Blasco MA, Ghossein R, Fagin JA. Telomerase reactivation induces progression of mouse Braf V600E -driven thyroid cancers without telomere lengthening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525280. [PMID: 36747657 PMCID: PMC9900760 DOI: 10.1101/2023.01.24.525280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutations in the promoter of the telomerase reverse transcriptase ( TERT ) gene are the paradigm of a cross-cancer alteration in a non-coding region. TERT promoter mutations (TPMs) are biomarkers of poor prognosis in several tumors, including thyroid cancers. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert -123C>T ) and crossed it with thyroid-specific Braf V600E -mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all Braf V600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of Braf V600E +Tert -123C>T and Braf V600E +K5-Tert mice progressed to poorly differentiated thyroid cancers at week 20, respectively. Braf+Tert tumors showed increased mitosis and necrosis in areas of solid growth, and older animals from these cohorts displayed anaplastic-like features, i.e., spindle cells and macrophage infiltration. Murine Tert promoter mutation increased Tert transcription in vitro and in vivo , but temporal and intra-tumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine and chemokine signaling, were overactivated. Braf+Tert animals remained responsive to MAPK pathway inhibitors. These models constitute useful pre-clinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs.
Collapse
Affiliation(s)
- Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Caitlin EM Thornton
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob Haase
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gnana P. Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jingzhu Hao
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Knauf
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA, USA
| | - María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
52
|
Hasanau TN, Pisarev EP, Kisil OV, Zvereva ME. The TERT Promoter: A Key Player in the Fight for Cancer Cell Immortality. BIOCHEMISTRY (MOSCOW) 2023; 88:S21-S38. [PMID: 37069112 DOI: 10.1134/s000629792314002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The review describes the role of telomeres and telomerase in tumor progression, as well as various mechanisms of the activation of telomerase reverse transcriptase (TERT) expression in CNS tumors and other cancers. The main mechanism of TERT activation involves acquisition of somatic mutations by the TERT gene promoter (TERTp). The article presents information on the TERTp structure and transcription factors directly interacting with TERTp and regulating its transcription. The prospects of using the mutational status of TERTp as a prognostic marker of CNS malignancies and other tumors with a common profile of TERTp mutations are discussed.
Collapse
Affiliation(s)
- Tsimur N Hasanau
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eduard P Pisarev
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Kisil
- Gause Institute of New Antibiotics, Moscow, 119021, Russia
| | - Maria E Zvereva
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
53
|
Apolónio JD, Dias JS, Fernandes MT, Komosa M, Lipman T, Zhang CH, Leão R, Lee D, Nunes NM, Maia AT, Morera JL, Vicioso L, Tabori U, Castelo-Branco P. THOR is a targetable epigenetic biomarker with clinical implications in breast cancer. Clin Epigenetics 2022; 14:178. [PMID: 36529814 PMCID: PMC9759897 DOI: 10.1186/s13148-022-01396-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most frequently diagnosed cancer and a leading cause of death among women worldwide. Early BC is potentially curable, but the mortality rates still observed among BC patients demonstrate the urgent need of novel and more effective diagnostic and therapeutic options. Limitless self-renewal is a hallmark of cancer, governed by telomere maintenance. In around 95% of BC cases, this process is achieved by telomerase reactivation through upregulation of the human telomerase reverse transcriptase (hTERT). The hypermethylation of a specific region within the hTERT promoter, termed TERT hypermethylated oncological region (THOR) has been associated with increased hTERT expression in cancer. However, its biological role and clinical potential in BC have never been studied to the best of our knowledge. Therefore, we aimed to investigate the role of THOR as a biomarker and explore the functional impact of THOR methylation status in hTERT upregulation in BC. RESULTS THOR methylation status in BC was assessed by pyrosequencing on discovery and validation cohorts. We found that THOR is significantly hypermethylated in malignant breast tissue when compared to benign tissue (40.23% vs. 12.81%, P < 0.0001), differentiating malignant tumor from normal tissue from the earliest stage of disease. Using a reporter assay, the addition of unmethylated THOR significantly reduced luciferase activity by an average 1.8-fold when compared to the hTERT core promoter alone (P < 0.01). To further investigate its biological impact on hTERT transcription, targeted THOR demethylation was performed using novel technology based on CRISPR-dCas9 system and significant THOR demethylation was achieved. Cells previously demethylated on THOR region did not develop a histologic cancer phenotype in in vivo assays. Additional studies are required to validate these observations and to unravel the causality between THOR hypermethylation and hTERT upregulation in BC. CONCLUSIONS THOR hypermethylation is an important epigenetic mark in breast tumorigenesis, representing a promising biomarker and therapeutic target in BC. We revealed that THOR acts as a repressive regulatory element of hTERT and that its hypermethylation is a relevant mechanism for hTERT upregulation in BC.
Collapse
Affiliation(s)
- Joana Dias Apolónio
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - João S Dias
- University Hospital Center of Algarve, Faro, Portugal
| | - Mónica Teotónio Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Escola Superior de Saúde (ESSUAlg), Universidade Do Algarve, Faro, Portugal
| | - Martin Komosa
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Tatiana Lipman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Cindy H Zhang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ricardo Leão
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Donghyun Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Nuno Miguel Nunes
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ana-Teresa Maia
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
- Center for Research in Health Technologies and Information Systems (CINTESIS@RISE), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - José L Morera
- University Hospital Center of Algarve, Faro, Portugal
| | - Luis Vicioso
- Faculty of Medicine, Department of Histology and Pathological Anatomy, University of Malaga, Malaga, Spain
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal.
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
- Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
54
|
Barger CJ, Suwala AK, Soczek KM, Wang AS, Kim MY, Hong C, Doudna JA, Chang SM, Phillips JJ, Solomon DA, Costello JF. Conserved features of TERT promoter duplications reveal an activation mechanism that mimics hotspot mutations in cancer. Nat Commun 2022; 13:5430. [PMID: 36114166 PMCID: PMC9481613 DOI: 10.1038/s41467-022-33099-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
Mutations in the TERT promoter represent the genetic underpinnings of tumor cell immortality. Beyond the two most common point mutations, which selectively recruit the ETS factor GABP to activate TERT, the significance of other variants is unknown. In seven cancer types, we identify duplications of wildtype sequence within the core promoter region of TERT that have strikingly similar features including an ETS motif, the duplication length and insertion site. The duplications recruit a GABP tetramer by virtue of the native ETS motif and its precisely spaced duplicated counterpart, activate the promoter and are clonal in a TERT expressing multifocal glioblastoma. We conclude that recurrent TERT promoter duplications are functionally and mechanistically equivalent to the hotspot mutations that confer tumor cell immortality. The shared mechanism of these divergent somatic genetic alterations suggests a strong selective pressure for recruitment of the GABP tetramer to activate TERT.
Collapse
Affiliation(s)
- Carter J Barger
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Abigail K Suwala
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Katarzyna M Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Albert S Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Min Y Kim
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - David A Solomon
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| |
Collapse
|
55
|
Seddon AR, Das AB, Hampton MB, Stevens AJ. Site-specific decreases in DNA methylation in replicating cells following exposure to oxidative stress. Hum Mol Genet 2022; 32:632-648. [PMID: 36106794 PMCID: PMC9896486 DOI: 10.1093/hmg/ddac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is a common feature of inflammation-driven cancers, and it promotes genomic instability and aggressive tumour phenotypes. It is known that oxidative stress transiently modulates gene expression through the oxidation of transcription factors and associated regulatory proteins. Neutrophils are our most abundant white blood cells and accumulate at sites of infection and inflammation. Activated neutrophils produce hypochlorous acid and chloramines, which can disrupt DNA methylation by oxidizing methionine. The goal of the current study was to determine whether chloramine exposure results in sequence-specific modifications in DNA methylation that enable long-term alterations in transcriptional output. Proliferating Jurkat T-lymphoma cells were exposed to sublethal doses of glycine chloramine and differential methylation patterns were compared using Illumina EPIC 850 K bead chip arrays. There was a substantial genome-wide decrease in methylation 4 h after exposure that correlated with altered RNA expression for 24 and 48 h, indicating sustained impacts on exposed cells. A large proportion of the most significant differentially methylated CpG sites were situated towards chromosomal ends, suggesting that these regions are most susceptible to inhibition of maintenance DNA methylation. This may contribute to epigenetic instability of chromosomal ends in rapidly dividing cells, with potential implications for the regulation of telomere length and cellular longevity.
Collapse
Affiliation(s)
- Annika R Seddon
- University of Otago, Christchurch, Department of Pathology and Biomedical Science, Christchurch, 8011, New Zealand
| | - Andrew B Das
- University of Otago, Christchurch, Department of Pathology and Biomedical Science, Christchurch, 8011, New Zealand,Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Mark B Hampton
- University of Otago, Christchurch, Department of Pathology and Biomedical Science, Christchurch, 8011, New Zealand
| | - Aaron J Stevens
- To whom correspondence should be addressed at: Department of Pathology, University of Otago, Wellington, 23 Mein St, Newtown, Wellington 6021, New Zealand. Tel: +64 43855541; Fax: +64 4 389 5725;
| |
Collapse
|
56
|
Ott P, Araúzo-Bravo MJ, Hoffmann MJ, Poyet C, Bendhack ML, Santourlidis S, Erichsen L. Differential DNA Methylation of THOR and hTAPAS in the Regulation of hTERT and the Diagnosis of Cancer. Cancers (Basel) 2022; 14:cancers14184384. [PMID: 36139544 PMCID: PMC9497117 DOI: 10.3390/cancers14184384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Because of its high prevalence of >45% in 9 out of 11 (82%) cancer types screened, THOR hypermethylation has been suggested to be a frequent telomerase-activating mechanism in hTERT-expressing tumor types, e.g., in cancers of the prostate, breast, blood, colon, lung, bladder, and brain. In this prime example, we present detailed DNA methylation profiles in urothelial cancer that reveal the exact positions of the most differentially methylated CpG dinucleotides within the THOR region in order to design an efficient Methylation-Specific PCR (MSPCR) approach for diagnostic and prognostic purposes. Furthermore, our data suggest an epigenetic mechanism regulating hTERT expression through the methylation status of THOR and lncRNA hTAPAS. Abstract Background: Although DNA methylation in the gene promoters usually represses gene expression, the TERT hypermethylated oncological region (THOR) located 5′ of the hTERT gene is hypermethylated when hTERT is expressed in diverse cancer types, including urothelial cancer (UC). Methods: Comprehensive MeDIP and DNA methylation array analyses complemented by the technically independent method of bisulfite genomic sequencing were applied on pathologically reviewed and classified urothelial carcinoma specimens and healthy urothelial tissue samples to reveal the methylation status of THOR in detail. Results: The detailed DNA methylation profiles reveal the exact positions of differentially methylated CpG dinucleotides within THOR in urothelial cancer and provide evidence ofa diverging role of methylation of these CpGs in the regulation of hTERT. In particular, our data suggest a regulating mechanism in which THOR methylation acts on hTERT expression through epigenetic silencing of the lncRNA hTERT antisense promoter-associated (hTAPAS), which represses hTERT. Conclusions: These findings precisely define the most differentially methylated CpGs of THOR in early urothelial cancer, enabling optimal design of Methylation-Specific PCR (MSPCR) primers to reliably probe these methylation differences for diagnostic and prognostic purposes. In addition, this strategy presents a prime example that is also applicable to many other malignancies. Finally, the first evidence for the underlying epigenetic mechanism regulating hTERT expression through the methylation status of THOR is provided.
Collapse
Affiliation(s)
- Pauline Ott
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Marcos J. Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Michèle J. Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Cedric Poyet
- Department of Urology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Marcelo L. Bendhack
- Department of Urology, University Hospital, Positivo University, Curitiba 80420-011, Brazil
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
- Correspondence: (S.S.); (L.E.)
| | - Lars Erichsen
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
- Correspondence: (S.S.); (L.E.)
| |
Collapse
|
57
|
Şerifoğlu N, Erbaba B, Adams MM, Arslan-Ergül A. TERT distal promoter GC islands are critical for telomerase and together with DNMT3B silencing may serve as a senescence-inducing agent in gliomas. J Neurogenet 2022; 36:89-97. [PMID: 35997487 DOI: 10.1080/01677063.2022.2106371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomerase is reactivated in the majority of cancers. For instance, in gliomas, it is common that the TERT promoter is mutated. Research on telomere promoter GC islands have been focused primarily on proximal TERT promoter but little is known about the distal promoter. Therefore, in this study, we investigated the proximal and distal TERT promoter, in terms of DNA methylation. We did bisulfite sequencing in zebrafish tissue samples for the distal tert promoter. In the zebrafish brain tissues, we identified a hypomethylation site in the tert promoter, and found that this hypomethylation was associated with aging and shortened telomeres. Through site directed mutagenesis in glioma cell lines, we changed 10 GC spots individually, cloned into a reporter vector, and measured promoter activity. Finally, we silenced DNMT3B and measured telomerase activity along with vidaza and adriamycin treatments. Site directed mutagenesis of glioma cell lines revealed that each of the 10 GC spots are critical for telomerase activity. Changing GC to AT abolished promoter activity in all spots when transfected into glioma cell lines. Then, through silencing of DNMT3B, we observed a reduction in hTERT expression levels, while hTR remained the same, and a major increase in senescence-associated beta-galactosidase activity. Finally, we propose a model regarding the efficacy of two chemotherapeutic drugs, adriamycin and azacytidine, on gliomas. Here, we show that distal TERT promoter is critical; changing even one GC to AT abolishes TERT promoter activity. DNMT3B, a de novo methyltransferase, together with GC islands in distal TERT promoter plays an important role in regulation of telomerase expression and senescence.
Collapse
Affiliation(s)
- Naz Şerifoğlu
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.,Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,Institute for Research on Cancer and Aging of Nice, French National Centre for Scientific Research, Paris, France
| | - Begün Erbaba
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| | - Michelle M Adams
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.,Interdisciplinary Graduate Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,Department of Psychology, Bilkent University, Ankara, Turkey
| | - Ayça Arslan-Ergül
- National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
58
|
Lee S, Chang TC, Schreiner P, Fan Y, Agarwal N, Owens C, Dummer R, Kirkwood JM, Barnhill RL, Theodorescu D, Wu G, Bahrami A. Targeted Long-Read Bisulfite Sequencing Identifies Differences in the TERT Promoter Methylation Profiles between TERT Wild-Type and TERT Mutant Cancer Cells. Cancers (Basel) 2022; 14:4018. [PMID: 36011010 PMCID: PMC9406525 DOI: 10.3390/cancers14164018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background: TERT promoter methylation, located several hundred base pairs upstream of the transcriptional start site, is cancer specific and correlates with increased TERT mRNA expression and poorer patient outcome. Promoter methylation, however, is not mutually exclusive to TERT activating genetic alterations, as predicted for functionally redundant mechanisms. To annotate the altered patterns of TERT promoter methylation and their relationship with gene expression, we applied a Pacific Biosciences-based, long-read, bisulfite-sequencing technology and compared the differences in the methylation marks between wild-type and mutant cancers in an allele-specific manner. Results: We cataloged TERT genetic alterations (i.e., promoter point mutations or structural variations), allele-specific promoter methylation patterns, and allele-specific expression levels in a cohort of 54 cancer cell lines. In heterozygous mutant cell lines, the mutant alleles were significantly less methylated than their silent, mutation-free alleles (p < 0.05). In wild-type cell lines, by contrast, both epialleles were equally methylated to high levels at the TERT distal promoter, but differentially methylated in the proximal regions. ChIP analysis showed that epialleles with the hypomethylated proximal and core promoter were enriched in the active histone mark H3K4me2/3, whereas epialleles that were methylated in those regions were enriched in the repressive histone mark H3K27me3. Decitabine therapy induced biallelic expression in the wild-type cancer cells, whereas the mutant cell lines were unaffected. Conclusions: Long-read bisulfite sequencing analysis revealed differences in the methylation profiles and responses to demethylating agents between TERT wild-type and genetically altered cancer cell lines. The causal relation between TERT promoter methylation and gene expression remains to be established.
Collapse
Affiliation(s)
- Seungjae Lee
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Patrick Schreiner
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Neeraj Agarwal
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Charles Owens
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - John M. Kirkwood
- Department of Pathology, University of Pittsburgh Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gang Wu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Armita Bahrami
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| |
Collapse
|
59
|
Kim S, Chowdhury T, Yu HJ, Kahng JY, Lee CE, Choi SA, Kim KM, Kang H, Lee JH, Lee ST, Won JK, Kim KH, Kim MS, Lee JY, Kim JW, Kim YH, Kim TM, Choi SH, Phi JH, Shin YK, Ku JL, Lee S, Yun H, Lee H, Kim D, Kim K, Hur JK, Park SH, Kim SK, Park CK. The telomere maintenance mechanism spectrum and its dynamics in gliomas. Genome Med 2022; 14:88. [PMID: 35953846 PMCID: PMC9367055 DOI: 10.1186/s13073-022-01095-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The activation of the telomere maintenance mechanism (TMM) is one of the critical drivers of cancer cell immortality. In gliomas, TERT expression and TERT promoter mutation are considered to reliably indicate telomerase activation, while ATRX mutation and/or loss indicates an alternative lengthening of telomeres (ALT). However, these relationships have not been extensively validated in tumor tissues. METHODS Telomerase repeated amplification protocol (TRAP) and C-circle assays were used to profile and characterize the TMM cross-sectionally (n = 412) and temporally (n = 133) across glioma samples. WES, RNA-seq, and NanoString analyses were performed to identify and validate the genetic characteristics of the TMM groups. RESULTS We show through the direct measurement of telomerase activity and ALT in a large set of glioma samples that the TMM in glioma cannot be defined solely by the combination of telomerase activity and ALT, regardless of TERT expression, TERT promoter mutation, and ATRX loss. Moreover, we observed that a considerable proportion of gliomas lacked both telomerase activity and ALT. This telomerase activation-negative and ALT negative group exhibited evidence of slow growth potential. By analyzing a set of longitudinal samples from a separate cohort of glioma patients, we discovered that the TMM is not fixed and can change with glioma progression. CONCLUSIONS This study suggests that the TMM is dynamic and reflects the plasticity and oncogenicity of tumor cells. Direct measurement of telomerase enzyme activity and evidence of ALT should be considered when defining TMM. An accurate understanding of the TMM in glioma is expected to provide important information for establishing cancer management strategies.
Collapse
Affiliation(s)
- Sojin Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tamrin Chowdhury
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyeon Jong Yu
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jee Ye Kahng
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chae Eun Lee
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seung Ah Choi
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Kyung-Min Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ho Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joo Ho Lee
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Soon-Tae Lee
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Jae-Kyung Won
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Kyung Hyun Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Min-Sung Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Ji Yeoun Lee
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jin Wook Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yong-Hwy Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Tae Min Kim
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Seung Hong Choi
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Ji Hoon Phi
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Young-Kyoung Shin
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ja-Lok Ku
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hwajin Lee
- Biomedical Knowledge Engineering Laboratory and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Junho K Hur
- Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Sung-Hye Park
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Pathology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea.
| |
Collapse
|
60
|
Montero‐Conde C, Leandro‐García LJ, Martínez‐Montes ÁM, Martínez P, Moya FJ, Letón R, Gil E, Martínez‐Puente N, Guadalix S, Currás‐Freixes M, García‐Tobar L, Zafon C, Jordà M, Riesco‐Eizaguirre G, González‐García P, Monteagudo M, Torres‐Pérez R, Mancikova V, Ruiz‐Llorente S, Pérez‐Martínez M, Pita G, Galofré JC, Gonzalez‐Neira A, Cascón A, Rodríguez‐Antona C, Megías D, Blasco MA, Caleiras E, Rodríguez‐Perales S, Robledo M. Comprehensive molecular analysis of immortalization hallmarks in thyroid cancer reveals new prognostic markers. Clin Transl Med 2022; 12:e1001. [PMID: 35979662 PMCID: PMC9386325 DOI: 10.1002/ctm2.1001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Comprehensive molecular studies on tumours are needed to delineate immortalization process steps and identify sensitive prognostic biomarkers in thyroid cancer. METHODS AND RESULTS In this study, we extensively characterize telomere-related alterations in a series of 106 thyroid tumours with heterogeneous clinical outcomes. Using a custom-designed RNA-seq panel, we identified five telomerase holoenzyme-complex genes upregulated in clinically aggressive tumours compared to tumours from long-term disease-free patients, being TERT and TERC denoted as independent prognostic markers by multivariate regression model analysis. Characterization of alterations related to TERT re-expression revealed that promoter mutations, methylation and/or copy gains exclusively co-occurred in clinically aggressive tumours. Quantitative-FISH (fluorescence in situ hybridization) analysis of telomere lengths showed a significant shortening in these carcinomas, which matched with a high proliferative rate measured by Ki-67 immunohistochemistry. RNA-seq data analysis indicated that short-telomere tumours exhibit an increased transcriptional activity in the 5-Mb-subtelomeric regions, site of several telomerase-complex genes. Gene upregulation enrichment was significant for specific chromosome-ends such as the 5p, where TERT is located. Co-FISH analysis of 5p-end and TERT loci showed a more relaxed chromatin configuration in short telomere-length tumours compared to normal telomere-length tumours. CONCLUSIONS Overall, our findings support that telomere shortening leads to a 5p subtelomeric region reorganization, facilitating the transcription and accumulation of alterations at TERT-locus.
Collapse
|
61
|
Dobre EG, Constantin C, Neagu M. Skin Cancer Research Goes Digital: Looking for Biomarkers within the Droplets. J Pers Med 2022; 12:jpm12071136. [PMID: 35887633 PMCID: PMC9323323 DOI: 10.3390/jpm12071136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Skin cancer, which includes the most frequent malignant non-melanoma carcinomas (basal cell carcinoma, BCC, and squamous cell carcinoma, SCC), along with the difficult to treat cutaneous melanoma (CM), pose important worldwide issues for the health care system. Despite the improved anti-cancer armamentarium and the latest scientific achievements, many skin cancer patients fail to respond to therapies, due to the remarkable heterogeneity of cutaneous tumors, calling for even more sophisticated biomarker discovery and patient monitoring approaches. Droplet digital polymerase chain reaction (ddPCR), a robust method for detecting and quantifying low-abundance nucleic acids, has recently emerged as a powerful technology for skin cancer analysis in tissue and liquid biopsies (LBs). The ddPCR method, being capable of analyzing various biological samples, has proved to be efficient in studying variations in gene sequences, including copy number variations (CNVs) and point mutations, DNA methylation, circulatory miRNome, and transcriptome dynamics. Moreover, ddPCR can be designed as a dynamic platform for individualized cancer detection and monitoring therapy efficacy. Here, we present the latest scientific studies applying ddPCR in dermato-oncology, highlighting the potential of this technology for skin cancer biomarker discovery and validation in the context of personalized medicine. The benefits and challenges associated with ddPCR implementation in the clinical setting, mainly when analyzing LBs, are also discussed.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania;
- Correspondence:
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania;
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
62
|
Shang Y, Jiang T, Ran L, Hu W, Wu Y, Ye J, Peng Z, Chen L, Wang R. TET2-BCLAF1 transcription repression complex epigenetically regulates the expression of colorectal cancer gene Ascl2 via methylation of its promoter. J Biol Chem 2022; 298:102095. [PMID: 35660018 PMCID: PMC9251787 DOI: 10.1016/j.jbc.2022.102095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Ascl2 has been shown to be involved in tumorigenesis in colorectal cancer (CRC), although its epigenetic regulatory mechanism is largely unknown. Here, we found that methylation of the Ascl2 promoter (bp -1670 ∼ -1139) was significantly increased compared to the other regions of the Ascl2 locus in CRC cells and was associated with elevated Ascl2 mRNA expression. Furthermore, we found that promoter methylation was predictive of CRC patient survival after analyzing DNA methylation data, RNA-Seq data, and clinical data of 410 CRC patient samples from the MethHC database, the MEXPRESS database, and the Cbioportal website. Using the established TET methylcytosine dioxygenase 2 (TET2) knockdown and ectopic TET2 catalytic domain–expression cell models, we performed glucosylated hydroxymethyl–sensitive quatitative PCR (qPCR), real-time PCR, and Western blot assays to further confirm that hypermethylation of the Ascl2 promoter, and elevated Ascl2 expression in CRC cells was partly due to the decreased expression of TET2. Furthermore, BCLAF1 was identified as a TET2 interactor in CRC cells by LC-MS/MS, coimmunoprecipitation, immunofluorescence colocalization, and proximity ligation assays. Subsequently, we found the TET2–BCLAF1 complex bound to multiple elements around CCGG sites at the Ascl2 promoter and further restrained its hypermethylation by inducing its hydroxymethylation using chromatin immunoprecipitation-qPCR and glucosylated hydroxymethyl-qPCR assays. Finally, we demonstrate that TET2-modulated Ascl2-targeted stem gene expression in CRC cells was independent of Wnt signaling. Taken together, our data suggest an additional option for inhibiting Ascl2 expression in CRC cells through TET2–BCLAF1–mediated promoter methylation, Ascl2-dependent self-renewal of CRC progenitor cells, and TET2–BCLAF1–related CRC progression.
Collapse
Affiliation(s)
- Yangyang Shang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Tao Jiang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Lijian Ran
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Wenjing Hu
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Yun Wu
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Jun Ye
- Department of Gastroenterology of 958 Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Zhihong Peng
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Lei Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China
| | - Rongquan Wang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University) Chongqing 400038, China.
| |
Collapse
|
63
|
Momeni-Boroujeni A, Yousefi E, Gupta S, Benayed R, Berger MF, Ladanyi M, Monroe R, Kim J, Jungbluth A, Weigelt B, Park KJ. Evaluation of TERT mRNA expression using RNAscope®: A potential histopathologic diagnostic and prognostic tool. Pathol Res Pract 2022; 233:153892. [DOI: 10.1016/j.prp.2022.153892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
|
64
|
Gringmuth M, Walther J, Greiser S, Toussaint M, Schwalm B, Kool M, Kortmann RD, Glasow A, Patties I. Enhanced Survival of High-Risk Medulloblastoma-Bearing Mice after Multimodal Treatment with Radiotherapy, Decitabine, and Abacavir. Int J Mol Sci 2022; 23:ijms23073815. [PMID: 35409174 PMCID: PMC8998934 DOI: 10.3390/ijms23073815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Children with high-risk SHH/TP53-mut and Group 3 medulloblastoma (MB) have a 5-year overall survival of only 40%. Innovative approaches to enhance survival while preventing adverse effects are urgently needed. We investigated an innovative therapy approach combining irradiation (RT), decitabine (DEC), and abacavir (ABC) in a patient-derived orthotopic SHH/TP53-mut and Group 3 MB mouse model. MB-bearing mice were treated with DEC, ABC and RT. Mouse survival, tumor growth (BLI, MRT) tumor histology (H/E), proliferation (Ki-67), and endothelial (CD31) staining were analyzed. Gene expression was examined by microarray and RT-PCR (Ki-67, VEGF, CD31, CD15, CD133, nestin, CD68, IBA). The RT/DEC/ABC therapy inhibited tumor growth and enhanced mouse survival. Ki-67 decreased in SHH/TP53-mut MBs after RT, DEC, RT/ABC, and RT/DEC/ABC therapy. CD31 was higher in SHH/TP53-mut compared to Group 3 MBs and decreased after RT/DEC/ABC. Microarray analyses showed a therapy-induced downregulation of cell cycle genes. By RT-PCR, no therapy-induced effect on stem cell fraction or immune cell invasion/activation could be shown. We showed for the first time that RT/DEC/ABC therapy improves survival of orthotopic SHH/TP53-mut and Group 3 MB-bearing mice without inducing adverse effects suggesting the potential for an adjuvant application of this multimodal therapy approach in the human clinic.
Collapse
Affiliation(s)
- Marieke Gringmuth
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
| | - Jenny Walther
- Fraunhofer Center for Microelectronic and Optical Systems for Biomedicine, Herman-Hollerith-Straße 3, 99099 Erfurt, Germany; (J.W.); (S.G.)
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Sebastian Greiser
- Fraunhofer Center for Microelectronic and Optical Systems for Biomedicine, Herman-Hollerith-Straße 3, 99099 Erfurt, Germany; (J.W.); (S.G.)
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, Permoserstraße 15, 04318 Leipzig, Germany;
| | - Benjamin Schwalm
- Hopp Children’s Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; (B.S.); (M.K.)
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marcel Kool
- Hopp Children’s Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; (B.S.); (M.K.)
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Rolf-Dieter Kortmann
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
| | - Annegret Glasow
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
| | - Ina Patties
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
- Correspondence:
| |
Collapse
|
65
|
Telomeric Repeat-Containing RNA (TERRA): A Review of the Literature and First Assessment in Cutaneous T-Cell Lymphomas. Genes (Basel) 2022; 13:genes13030539. [PMID: 35328092 PMCID: PMC8953746 DOI: 10.3390/genes13030539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
Telomeric Repeat-containing RNA (TERRA) are long non-coding RNAs transcribed from telomeric DNA sequences from multiple chromosome ends. Major research efforts have been made to understand TERRA roles and functions in several physiological and pathological processes. We summarize herein available data regarding TERRA’s roles in human cells and we report the first investigation in cutaneous T-cells lymphomas (CTCL) using real-time PCR. Among the TERRA analysed, our data suggest a particular role for TERRA 16p downregulation and TERRA 11q upregulation in CTCL lymphomagenesis.
Collapse
|
66
|
Nguyen E, Richerolle A, Sánchez-Bellver J, Varennes J, Ségal-Bendirdjian E. hTERT DNA Methylation Analysis Identifies a Biomarker for Retinoic Acid-Induced hTERT Repression in Breast Cancer Cell Lines. Biomedicines 2022; 10:biomedicines10030695. [PMID: 35327497 PMCID: PMC8945736 DOI: 10.3390/biomedicines10030695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022] Open
Abstract
Telomerase reactivation is responsible for telomere preservation in about 90% of cancers, providing cancer cells an indefinite proliferating potential. Telomerase consists of at least two main subunits: a catalytic reverse transcriptase protein (hTERT) and an RNA template subunit. Strategies to inhibit hTERT expression seem promising for cancer treatment. Previous works showed that all-trans retinoic acid (ATRA) induces hTERT repression in acute promyelocytic leukemia cells, resulting in their death. Here, we investigated the effects of ATRA in a subset of breast cancer cell lines. The mutational status of hTERT promoter and the methylation patterns at a single CpG resolution were assessed. We observed an inverse relationship between hTERT expression after ATRA treatment and the methylation level of a specific CpG at chr5: 1,300,438 in a region of hTERT gene at −5 kb of the transcription initiation site. This observation highlighted the significance of this region, whose methylation profile could represent a promising biomarker to predict the sensitivity to ATRA-induced hTERT repression in specific breast cancer subtypes. As hTERT repression promotes drug-induced cell death, checking the methylation status of this unique region and the specific CpG included can help in decision-making to include ATRA in combination therapy and contributes to a better clinical outcome.
Collapse
Affiliation(s)
- Eric Nguyen
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
| | - Andréa Richerolle
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
- Ecole Pratique des Hautes Etudes, F-75014 Paris, France
| | | | - Jacqueline Varennes
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
| | - Evelyne Ségal-Bendirdjian
- Université Paris Cité, INSERM, CNRS, T3S “Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers”, F-75006 Paris, France; (E.N.); (A.R.); (J.V.)
- Correspondence: ; Tel.: +33-1-42-86-22-46
| |
Collapse
|
67
|
El Ahanidi H, El Azzouzi M, Hafidi Alaoui C, Tetou M, Bensaid M, Chaoui I, Benbacer L, Hassan I, Oukabli M, Michaud K, Ameur A, Al Bouzidi A, El Mzibri M, Jandus C, Attaleb M. Immune Checkpoint and Telomerase Crosstalk Is Mediated by miRNA-138 in Bladder Cancer. Front Oncol 2022; 11:795242. [PMID: 35223454 PMCID: PMC8874320 DOI: 10.3389/fonc.2021.795242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 11/15/2022] Open
Abstract
Background Tumor recurrence and progression in non-muscle invasive bladder cancer (NMIBC), therapy failure, and severe side effects in muscle invasive bladder cancer (MIBC) are the major challenges in the clinical management of bladder cancer (BC). Here, we identify new molecular targetable signatures to improve BC patients’ stratification and the outcome of current immunotherapies. Material and Methods In a prospective cohort of 70 BC patients, we assessed the genetic and molecular regulation of TERT in maintaining telomere length in parallel to immune checkpoint and microRNA expression. Results TERT was undetectable in healthy bladder tissues but upregulated in invasive BC stages and high tumor grade. Its expression was linked with the combined effect of the C250T mutation and THOR hypermethylation, associated with progressing tumors and maintaining of telomere length. In the same cohort, PD-L1 scored highest in NMIBC, while PD-L2 was upregulated in MIBC. We also show that miR-100-5p and 138-5p were highly expressed in healthy bladder specimens and cell line, while expression decreased in the BC tissues and BC cell lines. In line with the binding prediction for these miRNAs on target genes, miRs 100-5p and 138-5p expression strongly inverse correlated with TERT, PD-L1, and PD-L2 expression, but not PD1. Conclusion We identify a loop involving TERT, PD1-ligands, and miR-138-5p in BC, that might represent not only a useful biomarker for improved diagnosis and patients’ stratification but also as a promising axis that might be therapeutically targeted in situ.
Collapse
Affiliation(s)
- Hajar El Ahanidi
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Meryem El Azzouzi
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Chaimae Hafidi Alaoui
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
- Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohammed Tetou
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Military Hospital Mohammed V, Rabat, Morocco
| | | | - Imane Chaoui
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
| | - Laila Benbacer
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
| | - Ilias Hassan
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Military Hospital Mohammed V, Rabat, Morocco
| | - Mohamed Oukabli
- Rabat Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
- Military Hospital Mohammed V, Rabat, Morocco
| | - Katarzyna Michaud
- University Center of Legal Medicine Lausanne-Geneva, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Ahmed Ameur
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
- Military Hospital Mohammed V, Rabat, Morocco
| | | | - Mohammed El Mzibri
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
| | - Camilla Jandus
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Mohammed Attaleb
- Biology and Medical Research Unit, Centre National de l'Energie, des Sciences et Techniques Nucleaires (CNESTEN), Rabat, Morocco
- *Correspondence: Mohammed Attaleb, ;
| |
Collapse
|
68
|
Arita H, Ichimura K. Prognostic significance of TERT promoter mutations in adult-type diffuse gliomas. Brain Tumor Pathol 2022; 39:121-129. [DOI: 10.1007/s10014-021-00424-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
|
69
|
Takeda H, Takai A, Eso Y, Takahashi K, Marusawa H, Seno H. Genetic Landscape of Multistep Hepatocarcinogenesis. Cancers (Basel) 2022; 14:568. [PMID: 35158835 PMCID: PMC8833551 DOI: 10.3390/cancers14030568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Although several targeted therapy agents are available for advanced HCC, their antitumor efficacy remains limited. As the complex genetic landscape of HCC would compromise the antitumor efficacy of targeted therapy, a deeper understanding of the genetic landscape of hepatocarcinogenesis is necessary. Recent comprehensive genetic analyses have revealed the driver genes of HCC, which accumulate during the multistage process of hepatocarcinogenesis, facilitating HCC genetic heterogeneity. In addition, as early genetic changes may represent key therapeutic targets, the genetic landscapes of early HCC and precancerous liver tissues have been characterized in recent years, in parallel with the advancement of next-generation sequencing analysis. In this review article, we first summarize the landscape of the liver cancer genome and its intratumor heterogeneity. We then introduce recent insight on early genetic alterations in hepatocarcinogenesis, especially those in early HCC and noncancerous liver tissues. Finally, we summarize the multistep accumulation of genetic aberrations throughout cancer progression and discuss the future perspective towards the clinical application of this genetic information.
Collapse
Affiliation(s)
- Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka 543-8555, Japan;
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.T.); (Y.E.); (K.T.); (H.S.)
| |
Collapse
|
70
|
Yan Y, He W, Chen Y, Li Q, Pan J, Yuan Y, Zeng W, Chen D, Xing W. Comprehensive Analysis to Identify the Encoded Gens of Sodium Channels as a Prognostic Biomarker in Hepatocellular Carcinoma. Front Genet 2022; 12:802067. [PMID: 35126466 PMCID: PMC8815461 DOI: 10.3389/fgene.2021.802067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
The SCN family as the encoded gens of sodium channels has been proven to participate in development of cancers including hepatocellular carcinoma (HCC), but the prognostic value of the SCN family is unclear. The results of the UALCAN database had showed that SCN2A/4A/5A/8A mRNA were highly expressed in tumour tissues, while SCN1A/7A/11A mRNA were expressed at low levels (p < 0.05), furthermore, the expression of SCN4A and SCN7A had the similar levels in microarray analysis result. The pan-tumour analysis showed that SCN7A expression was stably lower in tumours than SCN4A expression by TIMER. Both SCN4A and SCN7A were related to tumour grade, nodal metastatic status, histological subtype, patient race, individual cancer stages and TP53 mutation status to varying degrees. The Kaplan–Meier plotter demonstrated that high SCN4A mRNA expression was correlated with better overall survival (OS), disease-specific survival (DSS) and progression-free survival (PFS) and that high expression of SCN7A mRNA was associated with better OS; however, in Asians, higher SCN4A was correlated with better OS and DSS, and higher SCN7A was well correlated with better OS, recurrence-free survival (RFS), DSS and PFS. Analysis of data from cBioPortal showed that mutation of SCN7A was related to RFS and PFS. The protein expression of SCN4A and SCN7A had been detected by Immunohistochemistry. Univariate survival analysis revealed that high SCN7A protein expression was significantly linked to better OS (p = 0.001) and RFS (p = 0.003). Moreover, SCN7A displayed as an independent prognostic factor by multivariate analysis. In addition, a lower methylation level indicated a poor outcome. Pathway and functional enrichment analysis predicted a relationship between SCN7A and the PI3K pathway. In conclusion, there are significant and stable changes in SCN4A and SCN7A expression in HCC. SCN7A expression has better prognostic value and might participate in HCC progression.
Collapse
Affiliation(s)
- Yan Yan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Anesthesiology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Wen He
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yonghua Chen
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qiang Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiahao Pan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunfei Yuan
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- *Correspondence: Weian Zeng, ; Dongtai Chen, ; Wei Xing,
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- *Correspondence: Weian Zeng, ; Dongtai Chen, ; Wei Xing,
| | - Wei Xing
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- *Correspondence: Weian Zeng, ; Dongtai Chen, ; Wei Xing,
| |
Collapse
|
71
|
El Azzouzi M, El Ahanidi H, Hafidi Alaoui C, Chaoui I, Benbacer L, Tetou M, Hassan I, Bensaid M, Oukabli M, Ameur A, Al Bouzidi A, El Mzibri M, Attaleb M. Evaluation of DNA methylation in promoter regions of hTERT, TWIST1, VIM and NID2 genes in Moroccan bladder cancer patients. Cancer Genet 2021; 260-261:41-45. [PMID: 34922269 DOI: 10.1016/j.cancergen.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/08/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022]
Abstract
Promoter hypermethylation have been reported to play a key role in bladder cancer development and progression. The aim of this study is to evaluate the methylation status of hTERT, TWIST1, VIM and NID2 genes in bladder cancer. The methylation status was evaluated using the Methylation-Specific PCR (MSP) approach on 70 tumour biopsies from Moroccan bladder cancer patients. Overall, methylation frequencies of hTERT, TWIST1, VIM and NID2 genes, were 90%, 85.71%, 67.14% and 67.14%, respectively. Hypermethylation of all studied genes was found in all pathological grades and stages of bladder cancer. Nevertheless, statistical analysis showed no significant association between promoter methylation of hTERT, TWIST1, VIM and NID2 genes and tumours stage/grade (p value >0.05). Moreover, we have investigated the association between the methylation pattern of selected genes and the treatment outcome in a sub-group of non-muscle-invasive bladder cancer cases (52/70). Hypermethylation of hTERT, TWIST1, VIM and NID2 was detected in 83.34%; 66.67%; 83.34% and 58.34% of recurrent cases, respectively, and in 80%; 80%; 80% and 60% of progressive cases, respectively. Statistical analysis highlighted a significant association between TWIST1 hypermethylation and tumour recurrence (p = 0.041<0.05). Our results indicate that hypermethylation of hTERT, TWIST1, VIM and NID2 genes is a frequent epigenetic event in bladder cancer and could be a promising therapeutic target to prevent bladder cancer progression and metastasis.
Collapse
Affiliation(s)
- Meryem El Azzouzi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Faculty of Medicine and Pharmacy of Rabat. Mohammed V University in Rabat, Rabat, Morocco
| | - Hajar El Ahanidi
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Faculty of Medicine and Pharmacy of Rabat. Mohammed V University in Rabat, Rabat, Morocco
| | - Chaimae Hafidi Alaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco; Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Imane Chaoui
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | - Laila Benbacer
- Biology and Medical Research Unit, CNESTEN, Rabat, Morocco
| | | | | | | | - Mohamed Oukabli
- Faculty of Medicine and Pharmacy of Rabat. Mohammed V University in Rabat, Rabat, Morocco; Mohammed V Military Hospital, Rabat, Morocco
| | - Ahmed Ameur
- Faculty of Medicine and Pharmacy of Rabat. Mohammed V University in Rabat, Rabat, Morocco; Mohammed V Military Hospital, Rabat, Morocco
| | | | | | | |
Collapse
|
72
|
Rios RS, Zheng KI, Zheng MH. Non-alcoholic steatohepatitis and risk of hepatocellular carcinoma. Chin Med J (Engl) 2021; 134:2911-2921. [PMID: 34855640 PMCID: PMC8710331 DOI: 10.1097/cm9.0000000000001888] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of non-alcoholic fatty liver disease (NAFLD) as the leading chronic liver disease worldwide raises some concerns. In particular, NAFLD is closely tied to sedentary lifestyle habits and associated with other metabolic diseases, such as obesity and diabetes. At the end of the disease spectrum, non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular carcinoma (HCC), representing a serious health problem to modern society. Recently, an increasing number of HCC cases originating from this progressive disease spectrum have been identified, with different levels of severity and complications. Updating the current guidelines by placing a bigger focus on this emerging cause and highlighting some of its unique features is necessary. Since, the drivers of the disease are complex and multifactorial, in order to improve future outcomes, having a better understanding of NASH progression into HCC may be helpful. The risks that can promote disease progression and currently available management strategies employed to monitor and treat NASH-related HCC make up the bulk of this review.
Collapse
Affiliation(s)
- Rafael S. Rios
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kenneth I. Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
73
|
TERT Promoter Mutations Increase Sense and Antisense Transcription from the TERT Promoter. Biomedicines 2021; 9:biomedicines9121773. [PMID: 34944589 PMCID: PMC8698883 DOI: 10.3390/biomedicines9121773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Chief among mechanisms of telomerase reverse transcriptase (TERT) reactivation is the appearance of mutations in the TERT promoter. The two main TERT promoter mutations are C>T transitions located −146C>T and −124C>T upstream from the translational start site. They generate a novel Ets/TCF binding site. Both mutations are mutually exclusive and −124C>T is strikingly overrepresented in most cancers. We investigated whether this mutational bias and mutual exclusion could be due to transcriptional constraints. Methods: We compared sense and antisense transcription of a panel of TERT promoter-luciferase vectors harboring the −124C>T and -146C>T mutations alone or together. lncRNA TAPAS levels were measured by RT-PCR. Results: Both mutations generally increased TERT transcription by 2–4-fold regardless of upstream and downstream regulatory elements. The double mutant increased transcription in an additive fashion, arguing against a direct transcriptional constraint. The −146C>T mutation, alone or in combination with −124C>T, also unleashed antisense transcription. In line with this finding, lncRNA TAPAS was higher in cells with mutated TERT promoter (T98G and U87) than in cells with wild-type promoter, suggesting that lncRNA TAPAS may balance the effect of TERT promoter mutations. Conclusions: −146C>T and −124C>T TERT promoter mutations increase TERT sense and antisense transcription, and the double mutant features higher transcription levels. Increased antisense transcription may contain TERT expression within sustainable levels.
Collapse
|
74
|
Gutierrez A, Demond H, Brebi P, Ili CG. Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 2021; 11:1722. [PMID: 34827720 PMCID: PMC8615818 DOI: 10.3390/biom11111722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) comprises the third most common cancer worldwide and the second regarding number of deaths. In order to make a correct and early diagnosis to predict metastasis formation, biomarkers are an important tool. Although there are multiple signaling pathways associated with cancer progression, the most recognized are the MAPK pathway, p53 pathway, and TGF-β pathway. These pathways regulate many important functions in the cell, such as cell cycle regulation, proliferation, differentiation, and metastasis formation, among others. Changes in expression in genes belonging to these pathways are drivers of carcinogenesis. Often these expression changes are caused by mutations; however, epigenetic changes, such as DNA methylation, are increasingly acknowledged to play a role in the deregulation of oncogenic genes. This makes DNA methylation changes an interesting biomarkers in cancer. Among the newly identified biomarkers for CRC metastasis INHBB, SMOC2, BDNF, and TBRG4 are included, all of which are highly deregulated by methylation and closely associated with metastasis. The identification of such biomarkers in metastasis of CRC may allow a better treatment and early identification of cancer formation in order to perform better diagnostics and improve the life expectancy.
Collapse
Affiliation(s)
| | | | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| |
Collapse
|
75
|
Wang H, DeFina SM, Bajpai M, Yan Q, Yang L, Zhou Z. DNA methylation markers in esophageal cancer: an emerging tool for cancer surveillance and treatment. Am J Cancer Res 2021; 11:5644-5658. [PMID: 34873485 PMCID: PMC8640794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023] Open
Abstract
Esophageal carcinoma (EC) is one of the most pervasive cancers in the world, with upwards of 500,000 new diagnoses, annually. Despite its prominence, advancements in the detection and treatment of EC have been marginal over the past 30 years and the survival rate continues to stay below 20%. This is due to the uncommonly heterogeneous presentation of EC which presents unprecedented challenges in improving patient survival and quality of care. However, distinct epigenetic alterations to the DNA methylome may provide an avenue to drastically improve the detection and treatment of EC. Specifically, the creation of novel biomarker panels that consist of EC-specific methylation markers have shown promise as a potential alternative to the more invasive, contemporary diagnostic methods. Additionally, growing insight into the biological and clinical properties of EC-specific methylation patterns have opened a window of opportunity for enhanced treatment; of growing interest is the application of "DNMT inhibitors" - a class of drugs which inhibit excessive methylation and have been shown to re-sensitize chemoresistant tumors. Here we provide a comprehensive review of the current advancements in EC DNA methylation to underscore a potential approach to its detection and treatment.
Collapse
Affiliation(s)
- He Wang
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Samuel M DeFina
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Manisha Bajpai
- Department of Medicine-Gastroenterology and Hepatology, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New JerseyNew Brunswick, NJ, United States
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Lei Yang
- Department of Pathology, Yale School of Medicine, Yale UniversityNew Haven, Connecticut, United States
| | - Zhongren Zhou
- Department of Pathology & Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Rutgers The State University of New JerseyNew Brunswick, NJ, United States
| |
Collapse
|
76
|
Lee DD, Komosa M, Sudhaman S, Leão R, Zhang CH, Apolonio JD, Hermanns T, Wild PJ, Klocker H, Nassiri F, Zadeh G, Diplas BH, Yan H, Gallinger S, Pugh TJ, Ramaswamy V, Taylor MD, Castelo-Branco P, Nunes NM, Tabori U. Dual role of allele-specific DNA hypermethylation within the TERT promoter in cancer. J Clin Invest 2021; 131:146915. [PMID: 34720085 DOI: 10.1172/jci146915] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Aberrant activation of telomerase in human cancer is achieved by various alterations within the TERT promoter, including cancer-specific DNA hypermethylation of the TERT hypermethylated oncological region (THOR). However, the impact of allele-specific DNA methylation within the TERT promoter on gene transcription remains incompletely understood. Using allele-specific next-generation sequencing, we screened a large cohort of normal and tumor tissues (n = 652) from 10 cancer types and identified that differential allelic methylation (DAM) of THOR is restricted to cancerous tissue and commonly observed in major cancer types. THOR-DAM was more common in adult cancers, which develop through multiple stages over time, than in childhood brain tumors. Furthermore, THOR-DAM was especially enriched in tumors harboring the activating TERT promoter mutations (TPMs). Functional studies revealed that allele-specific gene expression of TERT requires hypomethylation of the core promoter, both in TPM and TERT WT cancers. However, the expressing allele with hypomethylated core TERT promoter universally exhibits hypermethylation of THOR, while the nonexpressing alleles are either hypermethylated or hypomethylated throughout the promoter. Together, our findings suggest a dual role for allele-specific DNA methylation within the TERT promoter in the regulation of TERT expression in cancer.
Collapse
Affiliation(s)
- Donghyun D Lee
- Program in Genetics and Genome Biology and.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Martin Komosa
- Program in Genetics and Genome Biology and.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sumedha Sudhaman
- Program in Genetics and Genome Biology and.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ricardo Leão
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cindy H Zhang
- Program in Genetics and Genome Biology and.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joana D Apolonio
- Program in Genetics and Genome Biology and.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Hermanns
- Department of Urology, University Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Germany.,Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Farshad Nassiri
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, University of Toronto, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Bill H Diplas
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pedro Castelo-Branco
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal.,Algarve Biomedical Center Research Institute, Faro, Portugal.,Centre for Biomedical Research, University of Algarve, Faro, Portugal.,Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Miguel Nunes
- Program in Genetics and Genome Biology and.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Program in Genetics and Genome Biology and.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
77
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
78
|
Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma. Cancers (Basel) 2021; 13:cancers13194758. [PMID: 34638246 PMCID: PMC8507560 DOI: 10.3390/cancers13194758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Telomere maintenance involving TERT and ATRX genes has been recently described in metastatic pheochromocytoma and paraganglioma, reinforcing the importance of immortalization mechanisms in the progression of these tumors. Thus, the aim of this study was to analyze additional telomere-related genes to uncover potential new markers capable of identifying metastatic-risk patients more accurately. After analyzing 29 telomere-related genes, we were able to validate the predictive value of TERT and ATRX in mPPGL progression. In addition, we were able to identify NOP10 as a novel prognostic risk marker of mPPGLs, which also facilitates telomerase-dependent telomere length maintenance in these tumors. Interestingly, NOP10 overexpression assessment by IHC could be easily included within the current battery of markers for stratifying PPGL patients to fine-tune their clinical diagnoses. Abstract One of the main problems we face with PPGL is the lack of molecular markers capable of predicting the development of metastases in patients. Telomere-related genes, such as TERT and ATRX, have been recently described in PPGL, supporting the association between the activation of immortalization mechanisms and disease progression. However, the contribution of other genes involving telomere preservation machinery has not been previously investigated. In this work, we aimed to analyze the prognostic value of a comprehensive set of genes involved in telomere maintenance. For this study, we collected 165 PPGL samples (97 non-metastatic/63 metastatic), genetically characterized, in which the expression of 29 genes of interest was studied by NGS. Three of the 29 genes studied, TERT, ATRX and NOP10, showed differential expression between metastatic and non-metastatic cases, and alterations in these genes were associated with a shorter time to progression, independent of SDHB-status. We studied telomere length by Q-FISH in patient samples and in an in vitro model. NOP10 overexpressing tumors displayed an intermediate-length telomere phenotype without ALT, and in vitro results suggest that NOP10 has a role in telomerase-dependent telomere maintenance. We also propose the implementation of NOP10 IHC to better stratify PPGL patients.
Collapse
|
79
|
Kato K, Kawaguchi A, Nagata K. Template activating factor-I epigenetically regulates the TERT transcription in human cancer cells. Sci Rep 2021; 11:17726. [PMID: 34489496 PMCID: PMC8421516 DOI: 10.1038/s41598-021-97009-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 08/19/2021] [Indexed: 11/09/2022] Open
Abstract
Telomere, the terminus of linear chromosome in eukaryotes, is composed of specific repeat DNA which is mainly synthesized by a protein complex called telomerase. The maintenance of telomere DNA is important for unlimited proliferative capacity of cancer cells. The telomerase activity is controlled by the expression level of telomerase reverse transcriptase (TERT), a catalytic unit of telomerase, in some species including human. Therefore, to reveal the regulatory mechanisms of the transcription of TERT gene is important for understanding the tumor development. We found that template activating factor-I (TAF-I), a multifunctional nuclear protein, is involved in the transcriptional activation of TERT for the maintenance of telomere DNA in HeLa cells. TAF-I maintains the histone H3 modifications involved in transcriptional activation and hypomethylated cytosines in CpG dinucleotides around the transcription start site (TSS) in the TERT gene locus. Collectively, TAF-I is involved in the maintenance of telomere DNA through the regulation of TERT transcription, then consequently the occurrence and/or recurrence of cancer cells.
Collapse
Affiliation(s)
- Kohsuke Kato
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan.,Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
80
|
Mechanism of Human Telomerase Reverse Transcriptase ( hTERT) Regulation and Clinical Impacts in Leukemia. Genes (Basel) 2021; 12:genes12081188. [PMID: 34440361 PMCID: PMC8392866 DOI: 10.3390/genes12081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
The proliferative capacity and continuous survival of cells are highly dependent on telomerase expression and the maintenance of telomere length. For this reason, elevated expression of telomerase has been identified in virtually all cancers, including leukemias; however, it should be noted that expression of telomerase is sometimes observed later in malignant development. This time point of activation is highly dependent on the type of leukemia and its causative factors. Many recent studies in this field have contributed to the elucidation of the mechanisms by which the various forms of leukemias increase telomerase activity. These include the dysregulation of telomerase reverse transcriptase (TERT) at various levels which include transcriptional, post-transcriptional, and post-translational stages. The pathways and biological molecules involved in these processes are also being deciphered with the advent of enabling technologies such as next-generation sequencing (NGS), ribonucleic acid sequencing (RNA-Seq), liquid chromatography-mass spectrometry (LCMS/MS), and many others. It has also been established that TERT possess diagnostic value as most adult cells do not express high levels of telomerase. Indeed, studies have shown that prognosis is not favorable in patients who have leukemias expressing high levels of telomerase. Recent research has indicated that targeting of this gene is able to control the survival of malignant cells and therefore offers a potential treatment for TERT-dependent leukemias. Here we review the mechanisms of hTERT regulation and deliberate their association in malignant states of leukemic cells. Further, we also cover the clinical implications of this gene including its use in diagnostic, prognostic, and therapeutic discoveries.
Collapse
|
81
|
Ellingsen EB, Mangsbo SM, Hovig E, Gaudernack G. Telomerase as a Target for Therapeutic Cancer Vaccines and Considerations for Optimizing Their Clinical Potential. Front Immunol 2021; 12:682492. [PMID: 34290704 PMCID: PMC8288190 DOI: 10.3389/fimmu.2021.682492] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Telomerase-based therapeutic cancer vaccines (TCVs) have been under clinical investigation for the past two decades. Despite past failures, TCVs have gained renewed enthusiasm for their potential to improve the efficacy of checkpoint inhibition. Telomerase stands as an attractive target for TCVs due to its almost universal presence in cancer and its essential function promoting tumor growth. Herein, we review tumor telomerase biology that may affect the efficacy of therapeutic vaccination and provide insights on optimal vaccine design and treatment combinations. Tumor types possessing mechanisms of increased telomerase expression combined with an immune permissive tumor microenvironment are expected to increase the therapeutic potential of telomerase-targeting cancer vaccines. Regardless, rational treatment combinations, such as checkpoint inhibitors, are likely necessary to bring out the true clinical potential of TCVs.
Collapse
Affiliation(s)
- Espen Basmo Ellingsen
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Research and Development, Ultimovacs ASA, Oslo, Norway
| | - Sara M Mangsbo
- Research and Development, Ultimovacs AB, Uppsala, Sweden.,Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway.,Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | | |
Collapse
|
82
|
Bhari VK, Kumar D, Kumar S, Mishra R. Shelterin complex gene: Prognosis and therapeutic vulnerability in cancer. Biochem Biophys Rep 2021; 26:100937. [PMID: 33553693 PMCID: PMC7859307 DOI: 10.1016/j.bbrep.2021.100937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Telomere encompasses a (TTAGGG)n tandem repeats, and its dysfunction has emerged as the epicenter of driving carcinogenesis by promoting genetic instability. Indeed, they play an essential role in stabilizing chromosomes and therefore protecting them from end-to-end fusion and DNA degradation. Telomere length homeostasis is regulated by several key players including shelterin complex genes, telomerase, and various other regulators. Targeting these regulatory players can be a good approach to combat cancer as telomere length is increasingly correlated with cancer initiation and progression. In this review, we have aimed to describe the telomere length regulator's role in prognostic significance and important drug targets in breast cancer. Moreover, we also assessed alteration in telomeric function by various telomere length regulators and compares this to the regulatory mechanisms that can be associated with clinical biomarkers in cancer. Using publicly available software we summarized mutational and CpG island prediction analysis of the TERT gene breast cancer patient database. Studies have reported that the TERT gene has prognostic significance in breast cancer progression however mechanistic approaches are not defined yet. Interestingly, we reported using the UCSC Xena web-based tool, we confirmed a positive correlation of shelterin complex genes TERF1 and TERF2 in recurrent free survival, indicating the critical role of these genes in breast cancer prognosis. Moreover, the epigenetic landscape of DNA damage repair genes in different breast cancer subtypes also being analyzed using the UCSC Xena database. Together, these datasets provide a comprehensive resource for shelterin complex gene profiles and define epigenetic landscapes of DNA damage repair genes which reveals the key role of shelterin complex genes in breast cancer with the potential to identify novel and actionable targets for treatment.
Collapse
Affiliation(s)
- Vikas Kumar Bhari
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| | - Durgesh Kumar
- Department of Physiology, Government Medical College, Kannauj, Uttar Pradesh, India
| | - Surendra Kumar
- Department of Neurology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Rajeev Mishra
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| |
Collapse
|
83
|
Fujimoto A, Wong JH, Yoshii Y, Akiyama S, Tanaka A, Yagi H, Shigemizu D, Nakagawa H, Mizokami M, Shimada M. Whole-genome sequencing with long reads reveals complex structure and origin of structural variation in human genetic variations and somatic mutations in cancer. Genome Med 2021; 13:65. [PMID: 33910608 PMCID: PMC8082928 DOI: 10.1186/s13073-021-00883-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Identification of germline variation and somatic mutations is a major issue in human genetics. However, due to the limitations of DNA sequencing technologies and computational algorithms, our understanding of genetic variation and somatic mutations is far from complete. METHODS In the present study, we performed whole-genome sequencing using long-read sequencing technology (Oxford Nanopore) for 11 Japanese liver cancers and matched normal samples which were previously sequenced for the International Cancer Genome Consortium (ICGC). We constructed an analysis pipeline for the long-read data and identified germline and somatic structural variations (SVs). RESULTS In polymorphic germline SVs, our analysis identified 8004 insertions, 6389 deletions, 27 inversions, and 32 intra-chromosomal translocations. By comparing to the chimpanzee genome, we correctly inferred events that caused insertions and deletions and found that most insertions were caused by transposons and Alu is the most predominant source, while other types of insertions, such as tandem duplications and processed pseudogenes, are rare. We inferred mechanisms of deletion generations and found that most non-allelic homolog recombination (NAHR) events were caused by recombination errors in SINEs. Analysis of somatic mutations in liver cancers showed that long reads could detect larger numbers of SVs than a previous short-read study and that mechanisms of cancer SV generation were different from that of germline deletions. CONCLUSIONS Our analysis provides a comprehensive catalog of polymorphic and somatic SVs, as well as their possible causes. Our software are available at https://github.com/afujimoto/CAMPHOR and https://github.com/afujimoto/CAMPHORsomatic .
Collapse
Affiliation(s)
- Akihiro Fujimoto
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jing Hao Wong
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Yoshii
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shintaro Akiyama
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Azusa Tanaka
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hitomi Yagi
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daichi Shigemizu
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Hidewaki Nakagawa
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mihoko Shimada
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
84
|
Chebly A, Ropio J, Peloponese JM, Poglio S, Prochazkova-Carlotti M, Cherrier F, Ferrer J, Idrissi Y, Segal-Bendirdjian E, Chouery E, Farra C, Pham-Ledard A, Beylot-Barry M, Philippe Merlio J, Tomb R, Chevret E. Exploring hTERT promoter methylation in cutaneous T-cell lymphomas. Mol Oncol 2021; 16:1931-1946. [PMID: 33715271 PMCID: PMC9067155 DOI: 10.1002/1878-0261.12946] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022] Open
Abstract
Cutaneous T‐cell lymphomas (CTCLs) are telomerase‐positive tumors expressing hTERT, although neither gene rearrangement/amplification nor promoter hotspot mutations could explain the hTERT re‐expression. As the hTERT promoter is rich in CpG, we investigated the contribution of epigenetic mechanisms in its re‐expression. We analyzed hTERT promoter methylation status in CTCL cells compared with healthy cells. Gene‐specific methylation analyses revealed a common methylation pattern exclusively in tumor cells. This methylation pattern encompassed a hypermethylated distal region from −650 to −150 bp and a hypomethylated proximal region from −150 to +150 bp. Interestingly, the hypermethylated region matches with the recently named TERT hypermethylated oncogenic region (THOR). THOR has been associated with telomerase reactivation in many cancers, but it has so far not been reported in cutaneous lymphomas. Additionally, we assessed the effect of THOR on two histone deacetylase inhibitors (HDACi), romidepsin and vorinostat, both approved for CTCL treatment and a DNA methyltransferase inhibitor (DNMTi) 5‐azacytidine, unapproved for CTCL. Contrary to our expectations, the findings reported herein revealed that THOR methylation is relatively stable under these epigenetic drugs' pressure, whereas these drugs reduced the hTERT gene expression.
Collapse
Affiliation(s)
- Alain Chebly
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Joana Ropio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Porto University, Institute of Biomedical Sciences of Abel Salazar, Instituto de Investigação e Inovação em Saúde, Institute of Molecular Pathology and Immunology (Ipatimup), Cancer Biology group, 4200-465, Porto, Portugal
| | - Jean-Marie Peloponese
- University of Montpellier, CNRS, IRIM-UMR 9004, Research Institute in Infectiology of Montpellier, Montpellier, France
| | - Sandrine Poglio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | | | | | - Jacky Ferrer
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | - Yamina Idrissi
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | - Evelyne Segal-Bendirdjian
- INSERM, UMR-S 1124, Team: Cellular Homeostasis Cancer and Therapies, Université de Paris, Paris, France
| | - Eliane Chouery
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Chantal Farra
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Hotel Dieu de France Medical Center, Faculty of Medicine, Genetics Department, Beirut, Lebanon
| | - Anne Pham-Ledard
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Dermatology Department, F-33000, Bordeaux, France
| | - Marie Beylot-Barry
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Dermatology Department, F-33000, Bordeaux, France
| | - Jean Philippe Merlio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, F-33600, Pessac, France
| | - Roland Tomb
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Saint Joseph University, Faculty of Medicine, Dermatology Department, Beirut, Lebanon
| | - Edith Chevret
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| |
Collapse
|
85
|
Dogan F, Forsyth NR. Telomerase Regulation: A Role for Epigenetics. Cancers (Basel) 2021; 13:cancers13061213. [PMID: 33802026 PMCID: PMC8000866 DOI: 10.3390/cancers13061213] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Maintenance of telomeres is a fundamental step in human carcinogenesis and is primarily regulated by telomerase and the human telomerase reverse transcriptase gene (TERT). Improved understanding of the transcriptional control of this gene may provide potential therapeutic targets. Epigenetic modifications are a prominent mechanism to control telomerase activity and regulation of the TERT gene. TERT-targeting miRNAs have been widely studied and their function explained through pre-clinical in vivo model-based validation studies. Further, histone deacetylase inhibitors are now in pre and early clinical trials with significant clinical success. Importantly, TERT downregulation through epigenetic modifications including TERT promoter methylation, histone deacetylase inhibitors, and miRNA activity might contribute to clinical study design. This review provides an overview of the epigenetic mechanisms involved in the regulation of TERT expression and telomerase activity. Abstract Telomerase was first described by Greider and Blackburn in 1984, a discovery ultimately recognized by the Nobel Prize committee in 2009. The three decades following on from its discovery have been accompanied by an increased understanding of the fundamental mechanisms of telomerase activity, and its role in telomere biology. Telomerase has a clearly defined role in telomere length maintenance and an established influence on DNA replication, differentiation, survival, development, apoptosis, tumorigenesis, and a further role in therapeutic resistance in human stem and cancer cells including those of breast and cervical origin. TERT encodes the catalytic subunit and rate-limiting factor for telomerase enzyme activity. The mechanisms of activation or silencing of TERT remain open to debate across somatic, cancer, and stem cells. Promoter mutations upstream of TERT may promote dysregulated telomerase activation in tumour cells but additional factors including epigenetic, transcriptional and posttranscriptional modifications also have a role to play. Previous systematic analysis indicated methylation and mutation of the TERT promoter in 53% and 31%, respectively, of TERT expressing cancer cell lines supporting the concept of a key role for epigenetic alteration associated with TERT dysregulation and cellular transformation. Epigenetic regulators including DNA methylation, histone modification, and non-coding RNAs are now emerging as drivers in the regulation of telomeres and telomerase activity. Epigenetic regulation may be responsible for reversible silencing of TERT in several biological processes including development and differentiation, and increased TERT expression in cancers. Understanding the epigenetic mechanisms behind telomerase regulation holds important prospects for cancer treatment, diagnosis and prognosis. This review will focus on the role of epigenetics in telomerase regulation.
Collapse
Affiliation(s)
- Fatma Dogan
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
| | - Nicholas R. Forsyth
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
- School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence:
| |
Collapse
|
86
|
Abstract
Decades of study on cell cycle regulation have provided great insight into human cellular life span barriers, as well as their dysregulation during tumorigenesis. Telomeres, the extremities of linear chromosomes, perform an essential role in implementing these proliferative boundaries and preventing the propagation of potentially cancerous cells. The tumor-suppressive function of telomeres relies on their ability to initiate DNA damage signaling pathways and downstream cellular events, ranging from cell cycle perturbation to inflammation and cell death. While the tumor-suppressor role of telomeres is undoubtable, recent advances have pointed to telomeres as a major source of many of the genomic aberrations found in both early- and late-stage cancers, including the most recently discovered mutational phenomenon of chromothripsis. Telomere shortening appears as a double-edged sword that can function in opposing directions in carcinogenesis. This review focuses on the current knowledge of the dual role of telomeres in cancer and suggests a new perspective to reconcile the paradox of telomeres and their implications in cancer etiology.
Collapse
Affiliation(s)
- Joe Nassour
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Tobias T Schmidt
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Jan Karlseder
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
87
|
Minasi S, Baldi C, Gianno F, Antonelli M, Buccoliero AM, Pietsch T, Massimino M, Buttarelli FR. Alternative lengthening of telomeres in molecular subgroups of paediatric high-grade glioma. Childs Nerv Syst 2021; 37:809-818. [PMID: 33128602 PMCID: PMC7875853 DOI: 10.1007/s00381-020-04933-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE The maintenance of telomere length prevents cancer cell senescence and occurs via two mutually exclusive mechanisms: (a) reactivation of telomerase expression and (b) activation of alternative lengthening of telomeres (ALT). ALT is frequently related to alterations on ATRX, a chromatin-remodelling protein. Recent data have identified different molecular subgroups of paediatric high-grade glioma (pHGG) with mutations of H3F3A, TERTp and ATRX; however, differences in telomere length among these molecular subgroups were not thoroughly examined. METHODS We investigated which genetic alterations trigger the ALT mechanism in 52 IDH-wildtype, 1p/19q-wildtype pHGG. Samples were analysed for telomere length using Tel-FISH. ATRX nuclear loss of expression was assessed by IHC, H3F3A and TERTp mutations by DNA sequencing, and TERTp methylation by MS-PCR. RESULTS Mutant H3.3 was found in 21 cases (40.3%): 19.2% with K27M mutation and 21.1% with G34R mutation. All H3.3G34R-mutated cases showed the ALT phenotype (100%); on the opposite, only 40% of the H3.3K27M-mutated showed ALT activation. ATRX nuclear loss was seen in 16 cases (30.7%), associated sometimes with the G34R mutation, and never with the K27M mutation. ATRX nuclear loss was always related to telomere elongation. TERTp C250T mutations were rare (5.4%) and were not associated with high intensity Tel-FISH signals, as TERTp hyper-methylation detected in 21% of the cases. H3.3/ATRX/TERTp-wildtype pHGG revealed all basal levels of telomere length. CONCLUSION Our results show a strong association between H3.3 mutations and ALT, and highlight the different telomeric profiles in histone-defined subgroups: H3.3-G34R mutants always trigger ALT to maintain telomere length, irrespective of ATRX status, whereas only some H3.3-K27M tumours activate ALT. These findings suggest that acquiring the gly34 mutation on H3.3 might suffice to trigger the ALT mechanism.
Collapse
Affiliation(s)
- Simone Minasi
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Baldi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumour Reference Centre, University of Bonn Medical Centre, Bonn, Germany
| | - Maura Massimino
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Francesca Romana Buttarelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy.
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
88
|
Chen W, Gu M, Gao C, Chen B, Yang J, Xie X, Wang X, Sun J, Wang J. The Prognostic Value and Mechanisms of TMEM16A in Human Cancer. Front Mol Biosci 2021; 8:542156. [PMID: 33681289 PMCID: PMC7930745 DOI: 10.3389/fmolb.2021.542156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
As a calcium ion-dependent chloride channel transmembrane protein 16A (TMEM16A) locates on the cell membrane. Numerous research results have shown that TMEM16A is abnormally expressed in many cancers. Mechanically, TMEM16A participates in cancer proliferation and migration by affecting the MAPK and CAMK signaling pathways. Additionally, it is well documented that TMEM16A exerts a regulative impact on the hyperplasia of cancer cells by interacting with EGFR in head and neck squamous cell carcinoma (HNSCC), an epithelial growth factor receptor in head and neck squamous cell carcinoma respectively. Meanwhile, as an EGFR activator, TMEM16A is considered as an oncogene or a tumor-promoting factor. More and more experimental data showed that down-regulation of TMEM16A or gene targeted therapy may be an effective treatment for cancer. This review summarized its role in various cancers and research advances related to its clinical application included treatment and diagnosis.
Collapse
Affiliation(s)
- Wenjian Chen
- Anhui Province Children's Hospital Affiliated to Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - Meng Gu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Chaobing Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Bangjie Chen
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Junfa Yang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaoli Xie
- Anhui Medicine Centralized Procurement Service Center, Hefei, China
| | - Xinyi Wang
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Jun Sun
- Anhui Province Children's Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jinian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
89
|
Chen X, Zhang J, Ruan W, Huang M, Wang C, Wang H, Jiang Z, Wang S, Liu Z, Liu C, Tan W, Yang J, Chen J, Chen Z, Li X, Zhang X, Xu P, Chen L, Xie R, Zhou Q, Xu S, Irwin DL, Fan JB, Huang J, Lin T. Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer. J Clin Invest 2021; 130:6278-6289. [PMID: 32817589 DOI: 10.1172/jci139597] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUNDCurrent methods for the detection and surveillance of bladder cancer (BCa) are often invasive and/or possess suboptimal sensitivity and specificity, especially in early-stage, minimal, and residual tumors.METHODSWe developed an efficient method, termed utMeMA, for the detection of urine tumor DNA methylation at multiple genomic regions by MassARRAY. We identified the BCa-specific methylation markers by combined analyses of cohorts from Sun Yat-sen Memorial Hospital (SYSMH), The Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) database. The BCa diagnostic model was built in a retrospective cohort (n = 313) and validated in a multicenter, prospective cohort (n = 175). The performance of this diagnostic assay was analyzed and compared with urine cytology and FISH.RESULTSWe first discovered 26 significant methylation markers of BCa in combined analyses. We built and validated a 2-marker-based diagnostic model that discriminated among patients with BCa with high accuracy (86.7%), sensitivity (90.0%), and specificity (83.1%). Furthermore, the utMeMA-based assay achieved a great improvement in sensitivity over urine cytology and FISH, especially in the detection of early-stage (stage Ta and low-grade tumor, 64.5% vs. 11.8%, 15.8%), minimal (81.0% vs. 14.8%, 37.9%), residual (93.3% vs. 27.3%, 64.3%), and recurrent (89.5% vs. 31.4%, 52.8%) tumors. The urine diagnostic score from this assay was better associated with tumor malignancy and burden.CONCLUSIONUrine tumor DNA methylation assessment for early diagnosis, minimal, residual tumor detection and surveillance in BCa is a rapid, high-throughput, noninvasive, and promising approach, which may reduce the burden of cystoscopy and blind second surgery.FUNDINGThis study was supported by the National Key Research and Development Program of China and the National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Jingtong Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Weimei Ruan
- AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Chanjuan Wang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong Wang
- AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Zeyu Jiang
- AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Yang
- Department of Urology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Jiaxin Chen
- AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Zhiwei Chen
- AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Xia Li
- AnchorDx Medical Co., Ltd., Guangzhou, China
| | - Xiaoyu Zhang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Xu
- Department of Urology, Zhujiang Hospital, and
| | - Lin Chen
- Department of Urology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Shizhong Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | | | - Jian-Bing Fan
- AnchorDx Medical Co., Ltd., Guangzhou, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Clinical Research Center for Urinary Diseases, Guangzhou, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Clinical Research Center for Urinary Diseases, Guangzhou, China.,Department of Urology, The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, China
| |
Collapse
|
90
|
Mathkar PP, Chen X, Sulovari A, Li D. Characterization of Hepatitis B Virus Integrations Identified in Hepatocellular Carcinoma Genomes. Viruses 2021; 13:v13020245. [PMID: 33557409 PMCID: PMC7915589 DOI: 10.3390/v13020245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. Almost half of HCC cases are associated with hepatitis B virus (HBV) infections, which often lead to HBV sequence integrations in the human genome. Accurate identification of HBV integration sites at a single nucleotide resolution is critical for developing a better understanding of the cancer genome landscape and of the disease itself. Here, we performed further analyses and characterization of HBV integrations identified by our recently reported VIcaller platform in recurrent or known HCC genes (such as TERT, MLL4, and CCNE1) as well as non-recurrent cancer-related genes (such as CSMD2, NKD2, and RHOU). Our pathway enrichment analysis revealed multiple pathways involving the alcohol dehydrogenase 4 gene, such as the metabolism pathways of retinol, tyrosine, and fatty acid. Further analysis of the HBV integration sites revealed distinct patterns involving the integration upper breakpoints, integrated genome lengths, and integration allele fractions between tumor and normal tissues. Our analysis also implies that the VIcaller method has diagnostic potential through discovering novel clonal integrations in cancer-related genes. In conclusion, although VIcaller is a hypothesis free virome-wide approach, it can still be applied to accurately identify genome-wide integration events of a specific candidate virus and their integration allele fractions.
Collapse
Affiliation(s)
- Pranav P. Mathkar
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
| | - Xun Chen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: (X.C.); (D.L.)
| | - Arvis Sulovari
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Cajal Neuroscience Inc., Seattle, WA 98102, USA
| | - Dawei Li
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; (P.P.M.); (A.S.)
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence: (X.C.); (D.L.)
| |
Collapse
|
91
|
Chebly A, Peloponese JM, Ségal-Bendirdjian E, Merlio JP, Tomb R, Chevret E. hMZF-2, the Elusive Transcription Factor. Front Genet 2021; 11:581115. [PMID: 33424921 PMCID: PMC7793725 DOI: 10.3389/fgene.2020.581115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/20/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Alain Chebly
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, Bordeaux, France.,Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Jean-Marie Peloponese
- University of Montpellier, CNRS IRIM-UMR 9004, Research Institute in Infectiology of Montpellier, Montpellier, France
| | - Evelyne Ségal-Bendirdjian
- Université de Paris, INSERM UMR-S 1124, Team: Cellular Homeostasis, Cancer and Therapies, INSERM US36/CNRS UMS 2009, BioMedTech Facilities, Paris, France
| | - Jean-Philippe Merlio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, Bordeaux, France.,Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, Pessac, France
| | - Roland Tomb
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.,Department of Dermatology, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Edith Chevret
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, Bordeaux, France
| |
Collapse
|
92
|
Karamat U, Ejaz S. Overexpression of RAD50 is the Marker of Poor Prognosis and Drug Resistance in Breast Cancer Patients. Curr Cancer Drug Targets 2021; 21:163-176. [PMID: 33038913 DOI: 10.2174/1568009620666201009125507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prevalence of breast cancer is increasing at an alarming rate and thus demands exploration of the most relevant diagnostic biomarkers. RAD50 is a cancer susceptibility gene that encodes a DNA damage repairing protein. Its role in breast cancer as clinico-pathological specific biomarker has yet to be explored. OBJECTIVE This study was aimed to investigate the RAD50 expression and its promoter's methylation level variations in breast invasive carcinoma patients having different clinico-pathological features. This study further explored the mutational spectrum of RAD50 and the correlation of its expression with the survival of patients and the effectiveness of drugs used for treatment. METHODS Enrichment analysis of RAD50 was accomplished using the platform of GeneCards. The information regarding RAD50 expression, its promoter methylation and impact on survival of patient was retrieved from TCGA and CPTAC databases. However, the effect of RAD50 expression on tumor's response to various drugs was deduced through the analysis of CCLE and genomic of GDSC dataset. RESULTS The promoter hyper-methylation and elevated expression of RAD50 was documented in various subgroups of breast invasive carcinoma. The subjects having low/medium expression levels were observed to survive longer than patients exhibiting high expression of RAD50 except for post-menopausal subjects. The frequency of missense mutations was higher in RAD50 than truncating mutations. Most of the drugs were found to have a positive correlation with RAD50 expression. CONCLUSION The status of RAD50 promoter's methylation inversely correlates with the expression level of RAD50. While RAD50 is overexpressed in breast cancer patients and thus makes tumor resistant against many anti-cancer drugs.
Collapse
Affiliation(s)
- Uzma Karamat
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), Faculty of Science, The Islamia University of Bahwalpur, Bahwalpur, Pakistan
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), Faculty of Science, The Islamia University of Bahawalpur, Bahwalpur, Pakistan
| |
Collapse
|
93
|
Byun Y, Choi YC, Jeong Y, Yoon J, Baek K. Long Noncoding RNA Expression Profiling Reveals Upregulation of Uroplakin 1A and Uroplakin 1A Antisense RNA 1 under Hypoxic Conditions in Lung Cancer Cells. Mol Cells 2020; 43:975-988. [PMID: 33273139 PMCID: PMC7772508 DOI: 10.14348/molcells.2020.0126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxia plays important roles in cancer progression by inducing angiogenesis, metastasis, and drug resistance. However, the effects of hypoxia on long noncoding RNA (lncRNA) expression have not been clarified. Herein, we evaluated alterations in lncRNA expression in lung cancer cells under hypoxic conditions using lncRNA microarray analyses. Among 40,173 lncRNAs, 211 and 113 lncRNAs were up- and downregulated, respectively, in both A549 and NCI-H460 cells. Uroplakin 1A (UPK1A) and UPK1A-antisense RNA 1 (AS1), which showed the highest upregulation under hypoxic conditions, were selected to investigate the effects of UPK1AAS1 on the expression of UPK1A and the mechanisms of hypoxia-inducible expression. Following transfection of cells with small interfering RNA (siRNA) targeting hypoxiainducible factor 1α (HIF-1α), the hypoxia-induced expression of UPK1A and UPK1A-AS1 was significantly reduced, indicating that HIF-1α played important roles in the hypoxiainduced expression of these targets. After transfection of cells with UPK1A siRNA, UPK1A and UPK1A-AS1 levels were reduced. Moreover, transfection of cells with UPK1A-AS1 siRNA downregulated both UPK1A-AS1 and UPK1A. RNase protection assays demonstrated that UPK1A and UPK1A-AS1 formed a duplex; thus, transfection with UPK1A-AS1 siRNA decreased the RNA stability of UPK1A. Overall, these results indicated that UPK1A and UPK1A-AS1 expression increased under hypoxic conditions in a HIF-1α-dependent manner and that formation of a UPK1A/UPK1A-AS1 duplex affected RNA stability, enabling each molecule to regulate the expression of the other.
Collapse
MESH Headings
- Cell Hypoxia/genetics
- Cell Line, Tumor
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung Neoplasms/genetics
- Methylation
- RNA Stability/genetics
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reproducibility of Results
- Ribonucleases/metabolism
- Up-Regulation/genetics
- Uroplakin Ia/genetics
Collapse
Affiliation(s)
- Yuree Byun
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Young-Chul Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Jaeseung Yoon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Kwanghee Baek
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
94
|
Yuan X, Dai M, Xu D. Telomere-related Markers for Cancer. Curr Top Med Chem 2020; 20:410-432. [PMID: 31903880 PMCID: PMC7475940 DOI: 10.2174/1568026620666200106145340] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023]
Abstract
Telomeres are structurally nucleoprotein complexes at termini of linear chromosomes and essential to chromosome stability/integrity. In normal human cells, telomere length erodes progressively with each round of cell divisions, which serves as an important barrier to uncontrolled proliferation and malignant transformation. In sharp contrast, telomere maintenance is a key feature of human malignant cells and required for their infinite proliferation and maintenance of other cancer hallmarks as well. Thus, a telomere-based anti-cancer strategy has long been suggested. However, clinically efficient and specific drugs targeting cancer telomere-maintenance have still been in their infancy thus far. To achieve this goal, it is highly necessary to elucidate how exactly cancer cells maintain functional telomeres. In the last two decades, numerous studies have provided profound mechanistic insights, and the identified mechanisms include the aberrant activation of telomerase or the alternative lengthening of telomere pathway responsible for telomere elongation, dysregulation and mutation of telomere-associated factors, and other telomere homeostasis-related signaling nodes. In the present review, these various strategies employed by malignant cells to regulate their telomere length, structure and function have been summarized, and potential implications of these findings in the rational development of telomere-based cancer therapy and other clinical applications for precision oncology have been discussed.
Collapse
Affiliation(s)
- Xiaotian Yuan
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
| | - Mingkai Dai
- Central Research Laboratory, Shandong University Second Hospital, Jinan, 250033, China.,Karolinska Institute Collaborative Laboratory for Cancer and Stem Cell Research, Shandong University Second Hospital, Jinan, 250033, China
| | - Dawei Xu
- Karolinska Institute Collaborative Laboratory for Cancer and Stem Cell Research, Shandong University Second Hospital, Jinan, 250033, China.,Department of Medicine, Division of Hematology, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, Solna 171 64, Sweden
| |
Collapse
|
95
|
Li S, Huang W, Li Y, Chen B, Li D. A Study of hTERT Promoter Methylation in Circulating Tumour DNAs of Patients with Ovarian Magnificent Tumour. Onco Targets Ther 2020; 13:12317-12323. [PMID: 33293825 PMCID: PMC7719343 DOI: 10.2147/ott.s274743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/24/2020] [Indexed: 02/01/2023] Open
Abstract
Objective Human telomerase reverse transcriptase (hTERT), a crucial enzyme for telomere maintenance, has been associated with the development of ovarian cancer (OC). The purpose of this study was to investigate the difference of methylation rates of hTERT promoter in tumour tissues and plasma samples of patients with ovarian magnificent tumour and those with ovarian benign tumour, as well as in plasma samples of healthy women. This study further aimed to establish a possible association between increased methylation rate of hTERT promoter and circulating tumour DNAs (ctDNA) amongst patients with ovarian magnificent tumour. Methods Tumour tissue samples and plasma samples were separately obtained from 17 patients with ovarian magnificent tumour (experiment group, group A) and from 15 patients with ovarian benign tumour (control group, group B). Another 15 plasma samples were acquired from healthy women (control group, group C). Promoter methylation was assessed by methylation-specific PCR (MSP). Statistical analysis was conducted using SPSS 22.0. Results Methylation of hTERT was observed in 76.5% of tumour tissue samples and in 70.6% of plasma samples from patients with ovarian magnificent tumour. It was also observed in 26.7% of tumour tissue samples and 20% of plasma samples from patients with ovarian benign tumour, and in 13.3% of plasma samples from healthy women. Comparing between plasmas and tissues, the respective rates of consistency, sensitivity and specificity were 70.59%, 76.9% and 50% in group A, and 80%, 50% and 90.9% in group B. Hence, the associations of hTERT methylation with ctDNAs (p=0.001) and tumour tissue samples (p=0.012) amongst patients with ovarian magnificent tumour were established. Conclusion An increased methylation of hTERT promoter is related to ctDNAs and tumour tissues of patients with ovarian magnificent tumour.
Collapse
Affiliation(s)
- Songyi Li
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Wei Huang
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Yinghua Li
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Beibei Chen
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Dingheng Li
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| |
Collapse
|
96
|
Takeda H, Takai A, Kumagai K, Iguchi E, Arasawa S, Eso Y, Shimizu T, Ueda Y, Taura K, Uemoto S, Kita R, Haga H, Marusawa H, Fujimoto A, Seno H. Multiregional whole-genome sequencing of hepatocellular carcinoma with nodule-in-nodule appearance reveals stepwise cancer evolution. J Pathol 2020; 252:398-410. [PMID: 32815153 DOI: 10.1002/path.5533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 01/04/2025]
Abstract
Recent genetic analyses revealed genetic heterogeneity in hepatocellular carcinoma (HCC), although it remains unclear how genetic alterations contribute to the multistage progression of HCC, especially the early step from hypovascular liver nodules to hypervascular HCC. We conducted multiregional whole-genome sequencing on HCCs with a nodule-in-nodule appearance, consisting of inner hypervascular HCC surrounded by hypovascular HCC arising from a common origin, and identified point mutations, structural variations, and copy-number variations in each specimen. According to the genetic landscape of the inner and outer regions, together with the pathological and radiological findings, we examined the stepwise evolution of cancer cells from slow-growing HCC to rapid-growing HCC. We first demonstrated that most tumor cells consisting of hypovascular well-differentiated HCCs already harbored thousands of point mutations and even several structural variations, including chromosomal translocations and chromothripsis, as the trunk events. Telomerase reverse transcriptase (TERT)-associated aberrations, including promoter mutations, chromosomal translocation, and hepatitis B virus DNA integration, as well as abnormal methylation status, were commonly detected as the trunk aberrations, while various liver cancer-related genes, which differed in each case, had additionally accumulated in the inner dedifferentiated nodules. Further, differences in the trunk and branch mutational signatures suggested a multistep contribution to the mutagenesis in each case. In conclusion, genomic alterations associated with the TERT gene could be the key driver events to form the hypovascular HCC, and additional case-specific driver mutations accumulate during the progression phase, forming intra- and inter-tumoral heterogeneity, confirming the importance of genetic testing before targeting therapy. These data shed light on the process of multistep hepatocarcinogenesis and will be helpful toward investigating new therapeutic strategies for HCC. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Haruhiko Takeda
- Department of Gastroenterology and Hepatology; Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology; Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Kumagai
- Department of Gastroenterology and Hepatology; Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eriko Iguchi
- Department of Gastroenterology and Hepatology; Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Soichi Arasawa
- Department of Gastroenterology and Hepatology; Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Eso
- Department of Gastroenterology and Hepatology; Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology; Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihide Ueda
- Department of Gastroenterology and Hepatology; Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kojiro Taura
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryuichi Kita
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology; Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Akihiro Fujimoto
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology; Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
97
|
Idilli AI, Pazzi C, dal Pozzolo F, Roccuzzo M, Mione MC. Rad21 Haploinsufficiency Prevents ALT-Associated Phenotypes in Zebrafish Brain Tumors. Genes (Basel) 2020; 11:E1442. [PMID: 33266037 PMCID: PMC7760354 DOI: 10.3390/genes11121442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/17/2023] Open
Abstract
Cohesin is a protein complex consisting of four core subunits responsible for sister chromatid cohesion in mitosis and meiosis, and for 3D genome organization and gene expression through the establishment of long distance interactions regulating transcriptional activity in the interphase. Both roles are important for telomere integrity, but the role of cohesin in telomere maintenance mechanisms in highly replicating cancer cells in vivo is poorly studied. Here we used a zebrafish model of brain tumor, which uses alternative lengthening of telomeres (ALT) as primary telomere maintenance mechanism to test whether haploinsufficiency for Rad21, a member of the cohesin ring, affects ALT development. We found that a reduction in Rad21 levels prevents ALT-associated phenotypes in zebrafish brain tumors and triggers an increase in tert expression. Despite the rescue of ALT phenotypes, tumor cells in rad21+/- fish exhibit an increase in DNA damage foci, probably due to a reduction in double-strand breaks repair efficiency.
Collapse
Affiliation(s)
- Aurora Irene Idilli
- Experimental Cancer Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.I.I.); (C.P.); (F.d.P.)
| | - Cecilia Pazzi
- Experimental Cancer Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.I.I.); (C.P.); (F.d.P.)
| | - Francesca dal Pozzolo
- Experimental Cancer Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.I.I.); (C.P.); (F.d.P.)
| | - Michela Roccuzzo
- Advanced Imaging Facility, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy;
| | - Maria Caterina Mione
- Experimental Cancer Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.I.I.); (C.P.); (F.d.P.)
| |
Collapse
|
98
|
Dratwa M, Wysoczańska B, Łacina P, Kubik T, Bogunia-Kubik K. TERT-Regulation and Roles in Cancer Formation. Front Immunol 2020; 11:589929. [PMID: 33329574 PMCID: PMC7717964 DOI: 10.3389/fimmu.2020.589929] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase. Telomerase complex plays a key role in cancer formation by telomere dependent or independent mechanisms. Telomere maintenance mechanisms include complex TERT changes such as gene amplifications, TERT structural variants, TERT promoter germline and somatic mutations, TERT epigenetic changes, and alternative lengthening of telomere. All of them are cancer specific at tissue histotype and at single cell level. TERT expression is regulated in tumors via multiple genetic and epigenetic alterations which affect telomerase activity. Telomerase activity via TERT expression has an impact on telomere length and can be a useful marker in diagnosis and prognosis of various cancers and a new therapy approach. In this review we want to highlight the main roles of TERT in different mechanisms of cancer development and regulation.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Barbara Wysoczańska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Tomasz Kubik
- Department of Computer Engineering, Faculty of Electronics, Wrocław University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
99
|
Nogueira BMD, Machado CB, Montenegro RC, DE Moraes MEA, Moreira-Nunes CA. Telomere Length and Hematological Disorders: A Review. In Vivo 2020; 34:3093-3101. [PMID: 33144412 DOI: 10.21873/invivo.12142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
Telomeres compose the end portions of human chromosomes, and their main function is to protect the genome. In hematological disorders, telomeres are shortened, predisposing to genetic instability that may cause DNA damage and chromosomal rearrangements, inducing a poor clinical outcome. Studies from 2010 to 2019 were compiled and experimental studies using samples of patients diagnosed with hematological malignancies that reported the size of the telomeres were described. Abnormal telomere shortening is described in cancer, but in hematological neoplasms, telomeres are still shortened even after telomerase reactivation. In this study, we compared the sizes of telomeres in leukemias, myelodysplastic syndrome and lymphomas, identifying that the smallest telomeres are present in patients at relapse. In conclusion, the experimental and clinical data analyzed in this review demonstrate that excessive telomere shortening is present in major hematological malignancies and its analysis and measurement is a crucial step in determining patient prognosis, predicting disease risk and assisting in the decision for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Beatriz Maria Dias Nogueira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caio Bezerra Machado
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Elisabete Amaral DE Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
100
|
Novel copper complex CTB regulates methionine cycle induced TERT hypomethylation to promote HCC cells senescence via mitochondrial SLC25A26. Cell Death Dis 2020; 11:844. [PMID: 33041323 PMCID: PMC7548283 DOI: 10.1038/s41419-020-03048-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Related research has recognized the vital role of methionine cycle metabolism in cancers. However, the role and mechanism of methionine cycle metabolism in hepatocellular carcinoma are still unknown. In this study, we found that [Cu(ttpy-tpp)Br2]Br (Referred to as CTB) could induce hepatocellular carcinoma cells senescence, which is a new copper complex synthesized by our research group. Interestingly, CTB induces senescence by inhibiting the methionine cycle metabolism of HCC cells. Furthermore, the inhibitory effect of CTB on the methionine cycle depends on mitochondrial carrier protein SLC25A26, which was also required for CTB-induced HCC cells senescence. Importantly, we found that CTB-induced upregulation of SLC25A26 could cause abnormal methylation of TERT and inhibited TERT expression, which is considered to be an essential cause of cell senescence. The same results were also obtained in vivo, CTB inhibits the growth of subcutaneously implanted tumors in nude mice and promoted the expression of senescence markers in tumor tissues, and interference with SLC25A26 partially offset the antitumor effect of CTB.
Collapse
|