51
|
Increased retention of LDL from type 1 diabetic patients in atherosclerosis-prone areas of the murine arterial wall. Atherosclerosis 2019; 286:156-162. [PMID: 30871723 DOI: 10.1016/j.atherosclerosis.2019.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Type 1 diabetes accelerates the development of atherosclerotic cardiovascular diseases. Retention of low-density lipoprotein (LDL) in the arterial wall is a causal step in atherogenesis, but it is unknown whether diabetes alters the propensity of LDL for retention. The present study investigated whether LDL from type 1 diabetic and healthy non-diabetic subjects differed in their ability to bind to the arterial wall in a type 1 diabetic mouse model. METHODS Fluorescently-labeled LDL obtained from type 1 diabetic patients or healthy controls was injected into mice with type 1 diabetes. The amount of retained LDL in the atherosclerosis-prone inner curvature of the aortic arch was quantified by fluorescence microscopy. Healthy control LDL was in vitro glycated, analyzed for protein glycation by LC-MS/MS, and tested for retention propensity. RESULTS Retention of LDL from type 1 diabetic patients was 4.35-fold higher compared to LDL from nondiabetic subjects. Nuclear magnetic resonance (NMR) spectroscopy analysis of LDL revealed no differences in the concentration of the atherogenic small dense LDL between type 1 diabetic and non-diabetic subjects. In vitro glycation of LDL from a non-diabetic subject increased retention compared to non-glycated LDL. LC-MS/MS revealed four new glycated spots in the protein sequence of ApoB of in vitro glycated LDL. CONCLUSIONS LDL from type 1 diabetic patients showed increased retention at atherosclerosis-prone sites in the arterial wall of diabetic mice. Glycation of LDL is one modification that may increase retention, but other, yet unknown, mechanisms are also likely to contribute.
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW Development of atherosclerosis contributes to cardiovascular diseases that still are the leading cause of mortality worldwide. Successful strategies for treating inflammatory aspects of atherosclerotic lesion development are rare. Here, we review new insights into the impact of circadian rhythmicity on atherogenesis and their potential for innovative time-optimized pharmacological treatment strategies. RECENT FINDINGS Studies on the circadian clock revealed an extensive influence on immune cell activity. Immune cell functionality and their recruitment to injured tissues exhibit circadian rhythmicity. Many indications that the circadian clock also modulates atherogenesis were given in the past. Transcriptome analysis of the aorta reveals a time-dependent expression profile. Furthermore, deficiency of the core clock proteins Bmal1 and Clock consistently accelerates atherosclerosis. Recent work provided new insights on time-dependent leukocyte recruitment to atherosclerotic lesions and its regulatory mechanisms through the CCR2-CCL2 axis. Based on timed CCR2-CCL2 signaling blockage, an effective chronopharmacological treatment strategy was established to reduce early lesion development with concomitant reduction of systemic side effects. SUMMARY Circadian rhythmicity impacts on the pathogenesis of atherosclerosis. Circadian oscillation in the expression of drug targets may license timed intervention strategies with improved efficacy and lower risk.
Collapse
Affiliation(s)
- Carla Winter
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany
- Department of Physiology and Pharmacology (FyFa) & Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
53
|
Wight TN. A role for proteoglycans in vascular disease. Matrix Biol 2018; 71-72:396-420. [PMID: 29499356 PMCID: PMC6110991 DOI: 10.1016/j.matbio.2018.02.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
Abstract
The content of proteoglycans (PGs) is low in the extracellular matrix (ECM) of vascular tissue, but increases dramatically in all phases of vascular disease. Early studies demonstrated that glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) accumulate in vascular lesions in both humans and in animal models in areas of the vasculature that are susceptible to disease initiation (such as at branch points) and are frequently coincident with lipid deposits. Later studies showed the GAGs were covalently attached to specific types of core proteins that accumulate in vascular lesions. These molecules include versican (CSPG), biglycan and decorin (DS/CSPGs), lumican and fibromodulin (KSPGs) and perlecan (HSPG), although other types of PGs are present, but in lesser quantities. While the overall molecular design of these macromolecules is similar, there is tremendous structural diversity among the different PG families creating multiple forms that have selective roles in critical events that form the basis of vascular disease. PGs interact with a variety of different molecules involved in disease pathogenesis. For example, PGs bind and trap serum components that accumulate in vascular lesions such as lipoproteins, amyloid, calcium, and clotting factors. PGs interact with other ECM components and regulate, in part, ECM assembly and turnover. PGs interact with cells within the lesion and alter the phenotypes of both resident cells and cells that invade the lesion from the circulation. A number of therapeutic strategies have been developed to target specific PGs involved in key pathways that promote vascular disease. This review will provide a historical perspective of this field of research and then highlight some of the evidence that defines the involvement of PGs and their roles in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, United States.
| |
Collapse
|
54
|
|
55
|
Khosravi M, Hosseini-Fard R, Najafi M. Circulating low density lipoprotein (LDL). Horm Mol Biol Clin Investig 2018; 35:/j/hmbci.ahead-of-print/hmbci-2018-0024/hmbci-2018-0024.xml. [PMID: 30059347 DOI: 10.1515/hmbci-2018-0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Low-density lipoprotein (LDL) particles are known as atherogenic agents in coronary artery diseases. They modify to other electronegative forms and may be the subject for improvement of inflammatory events in vessel subendothelial spaces. The circulating LDL value is associated with the plasma PCSK-9 level. They internalize into macrophages using the lysosomal receptor-mediated pathways. LDL uptake is related to the membrane scavenger receptors, modifications of lipid and protein components of LDL particles, vesicular maturation and lipid stores of cells. Furthermore, LDL vesicular trafficking is involved with the function of some proteins such as Rab and Lamp families. These proteins also help in the transportation of free cholesterol from lysosome into the cytosol. The aggregation of lipids in the cytosol is a starting point for the formation of foam cells so that they may participate in the primary core of atherosclerosis plaques. The effects of macrophage subclasses are different in the formation and remodeling of plaques. This review is focused on the cellular and molecular events involved in cholesterol homeostasis.
Collapse
Affiliation(s)
- Mohsen Khosravi
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Hosseini-Fard
- Biochemistry Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran, Phone: 09155192401
| |
Collapse
|
56
|
Afroz R, Cao Y, Rostam MA, Ta H, Xu S, Zheng W, Osman N, Kamato D, Little PJ. Signalling pathways regulating galactosaminoglycan synthesis and structure in vascular smooth muscle: Implications for lipoprotein binding and atherosclerosis. Pharmacol Ther 2018; 187:88-97. [DOI: 10.1016/j.pharmthera.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
57
|
The Multifaceted Uses and Therapeutic Advantages of Nanoparticles for Atherosclerosis Research. MATERIALS 2018; 11:ma11050754. [PMID: 29738480 PMCID: PMC5978131 DOI: 10.3390/ma11050754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
Nanoparticles are uniquely suited for the study and development of potential therapies against atherosclerosis by virtue of their size, fine-tunable properties, and ability to incorporate therapies and/or imaging modalities. Furthermore, nanoparticles can be specifically targeted to the atherosclerotic plaque, evading off-target effects and/or associated cytotoxicity. There has been a wealth of knowledge available concerning the use of nanotechnologies in cardiovascular disease and atherosclerosis, in particular in animal models, but with a major focus on imaging agents. In fact, roughly 60% of articles from an initial search for this review included examples of imaging applications of nanoparticles. Thus, this review focuses on experimental therapy interventions applied to and observed in animal models. Particular emphasis is placed on how nanoparticle materials and properties allow researchers to learn a great deal about atherosclerosis. The objective of this review was to provide an update for nanoparticle use in imaging and drug delivery studies and to illustrate how nanoparticles can be used for sensing and modelling, for studying fundamental biological mechanisms, and for the delivery of biotherapeutics such as proteins, peptides, nucleic acids, and even cells all with the goal of attenuating atherosclerosis. Furthermore, the various atherosclerosis processes targeted mainly for imaging studies have been summarized in the hopes of inspiring new and exciting targeted therapeutic and/or imaging strategies.
Collapse
|
58
|
Kijani S, Vázquez AM, Levin M, Borén J, Fogelstrand P. Intimal hyperplasia induced by vascular intervention causes lipoprotein retention and accelerated atherosclerosis. Physiol Rep 2018; 5:5/14/e13334. [PMID: 28716818 PMCID: PMC5532481 DOI: 10.14814/phy2.13334] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 01/20/2023] Open
Abstract
Accelerated atherosclerosis diminishes the long term patency of vascular interventions, such as percutaneous coronary intervention and implantation of saphenous vein grafts. However, the cause of this accelerated atherosclerosis is unclear. In this study, we tested the hypothesis that intimal hyperplasia formed following vascular intervention promotes retention of atherogenic lipoproteins. Intimal hyperplasia was surgically induced in the mouse common carotid artery. The surgery was combined with different mouse models of hypercholesterolemia to obtain different cholesterol levels and to control the onsets of hypercholesterolemia. Three weeks after surgery, samples were immunostained for apoB lipoproteins, smooth muscle cells and leukocytes. Already at mild hypercholesterolemia (193 mg/dL), pronounced apoB lipoprotein retention was found in the extracellular matrix in both intimal hyperplasia and the injured underlying media. In contrast, minimal retention was detected in the uninjured proximal region of the same vessel, or in vessels from mice with normal cholesterol levels (81 mg/dL). Induction of aggravated hypercholesterolemia 3 weeks after surgery, when a mature intimal hyperplasia had been formed, caused a very rapid development of atherosclerotic lesions. Mechanistically, we show that lipoprotein retention was almost exclusively dependent on electrostatic interactions to proteoglycan glycosaminoglycans, and the lipoprotein retention to intimal hyperplasia could be inhibited in vivo using glycosaminoglycan‐binding antibodies. Thus, formation of intimal hyperplasia following vascular intervention makes the vessel wall highly susceptible for lipoprotein retention and accelerated atherosclerosis. The increased lipoprotein retention in intimal hyperplasia can be targeted by blocking the interaction between apoB lipoproteins and glycosaminoglycans in the extracellular matrix.
Collapse
Affiliation(s)
- Siavash Kijani
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ana Maria Vázquez
- Innovation Managing Direction, Center of Molecular Immunology, Havana, Cuba
| | - Malin Levin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
59
|
Maaninka K, Nguyen SD, Mäyränpää MI, Plihtari R, Rajamäki K, Lindsberg PJ, Kovanen PT, Öörni K. Human mast cell neutral proteases generate modified LDL particles with increased proteoglycan binding. Atherosclerosis 2018; 275:390-399. [PMID: 29703634 DOI: 10.1016/j.atherosclerosis.2018.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/06/2018] [Accepted: 04/12/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. METHODS Mature human MCs were differentiated from human peripheral blood-derived CD34+ progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. RESULTS Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. CONCLUSIONS The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention.
Collapse
Affiliation(s)
- Katariina Maaninka
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Su Duy Nguyen
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Mikko I Mäyränpää
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Pathology, University of Helsinki and Helsinki University Hospital, Finland
| | - Riia Plihtari
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Kristiina Rajamäki
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Clinicum Department, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu J Lindsberg
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
60
|
Lehti S, Nguyen SD, Belevich I, Vihinen H, Heikkilä HM, Soliymani R, Käkelä R, Saksi J, Jauhiainen M, Grabowski GA, Kummu O, Hörkkö S, Baumann M, Lindsberg PJ, Jokitalo E, Kovanen PT, Öörni K. Extracellular Lipids Accumulate in Human Carotid Arteries as Distinct Three-Dimensional Structures and Have Proinflammatory Properties. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:525-538. [PMID: 29154769 DOI: 10.1016/j.ajpath.2017.09.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/11/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
Lipid accumulation is a key characteristic of advancing atherosclerotic lesions. Herein, we analyzed the ultrastructure of the accumulated lipids in endarterectomized human carotid atherosclerotic plaques using three-dimensional (3D) electron microscopy, a method never used in this context before. 3D electron microscopy revealed intracellular lipid droplets and extracellular lipoprotein particles. Most of the particles were aggregated, and some connected to needle-shaped or sheet-like cholesterol crystals. Proteomic analysis of isolated extracellular lipoprotein particles revealed that apolipoprotein B is their main protein component, indicating their origin from low-density lipoprotein, intermediate-density lipoprotein, very-low-density lipoprotein, lipoprotein (a), or chylomicron remnants. The particles also contained small exchangeable apolipoproteins, complement components, and immunoglobulins. Lipidomic analysis revealed differences between plasma lipoproteins and the particles, thereby indicating involvement of lipolytic enzymes in their generation. Incubation of human monocyte-derived macrophages with the isolated extracellular lipoprotein particles or with plasma lipoproteins that had been lipolytically modified in vitro induced intracellular lipid accumulation and triggered inflammasome activation in them. Taken together, extracellular lipids accumulate in human carotid plaques as distinct 3D structures that include aggregated and fused lipoprotein particles and cholesterol crystals. The particles originate from plasma lipoproteins, show signs of lipolytic modifications, and associate with cholesterol crystals. By inducing intracellular cholesterol accumulation (ie, foam cell formation) and inflammasome activation, the extracellular lipoprotein particles may actively enhance atherogenesis.
Collapse
Affiliation(s)
- Satu Lehti
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Su D Nguyen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna M Heikkilä
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Rabah Soliymani
- Clinical Proteomics Core Facility, Medicum-Biochemistry and Developmental Biology, School of Medicine, University of Helsinki, Helsinki, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jani Saksi
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Matti Jauhiainen
- National Institute for Health and Welfare, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Gregory A Grabowski
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Kiniksa Pharmaceuticals, Ltd., Wellesley, Massachusetts
| | - Outi Kummu
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Medical Research Center and Nordlab Oulu, University Hospital and University of Oulu, Oulu, Finland
| | - Marc Baumann
- Clinical Proteomics Core Facility, Medicum-Biochemistry and Developmental Biology, School of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu J Lindsberg
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri T Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland; Helsinki University Lipidomics Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
61
|
Brito V, Mellal K, Zoccal KF, Soto Y, Ménard L, Sarduy R, Faccioli LH, Ong H, Vázquez AM, Marleau S. Atheroregressive Potential of the Treatment with a Chimeric Monoclonal Antibody against Sulfated Glycosaminoglycans on Pre-existing Lesions in Apolipoprotein E-Deficient Mice. Front Pharmacol 2017; 8:782. [PMID: 29163168 PMCID: PMC5672559 DOI: 10.3389/fphar.2017.00782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023] Open
Abstract
The retention of lipoprotein particles in the intima, in particular to glycosaminoglycan side chains of proteoglycans, is a critical step in atherosclerosis initiation. Administration of chP3R99, a chimeric mouse/human monoclonal antibody inducing an anti-idiotypic network response against glycosaminoglycans was previously shown to prevent atherosclerotic lesion progression, yet its effect in the late-stage progression of lesions remains unknown. This study investigated the effect of chP3R99 at a late stage of disease development in apolipoprotein E-deficient mice and the vascular mechanisms involved. Male apolipoprotein E-deficient mice were fed a high-fat high-cholesterol diet from 4 to 19 weeks old, at which time mice were fed normal chow and 5 doses of chP3R99 (50 μg) or isotype-matched IgG (hR3) were administered subcutaneously weekly for the first 3 administrations, then at weeks 24 and 26 before sacrifice (week 28). Lesions progression was reduced by 88% in treated mice with no change in total plasma cholesterol levels, yet with increased sera reactivity to chP3R99 idiotype and heparin, suggesting the induction of an anti-idiotype antibody cascade against glycosaminoglycans, which was likely related with the atheroprotective effect. chP3R99 treatment initiated regression in a significant number of mice. Circulating levels of interleukin-6 were reduced along with a striking diminution of inflammatory cell accumulation in the vessel wall, and of VCAM-1 labeling in vivo. The ratio of IL-10/iNOS gene expression in aortas increased in chP3R99-treated mice. In conclusion, our results show that treatment with chP3R99 reduces vascular inflammatory burden and halts lesion progression with potential for regression in the late phase of the disease in atherosclerotic mice, and support the therapeutic intervention against glycosaminoglycans as a novel strategy to reverse atherosclerosis.
Collapse
Affiliation(s)
- Victor Brito
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada.,Division of Immunobiology, Center of Molecular Immunology, Havana, Cuba
| | - Katia Mellal
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Karina F Zoccal
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada.,Department of Clinical Analysis, Toxicology and Bromatology, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Yosdel Soto
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada.,Division of Immunobiology, Center of Molecular Immunology, Havana, Cuba
| | - Liliane Ménard
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Roger Sarduy
- Division of Immunobiology, Center of Molecular Immunology, Havana, Cuba
| | - Lucia H Faccioli
- Department of Clinical Analysis, Toxicology and Bromatology, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Huy Ong
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Ana M Vázquez
- Division of Immunobiology, Center of Molecular Immunology, Havana, Cuba
| | - Sylvie Marleau
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
62
|
Abstract
It is now evident that elevated circulating levels of triglycerides in the non-fasting state, a marker for triglyceride (TG)-rich remnant particles, are associated with increased risk of premature cardiovascular disease (CVD). Recent findings from basic and clinical studies have begun to elucidate the mechanisms that contribute to the atherogenicity of these apoB-containing particles. Here, we review current knowledge of the formation, intravascular remodelling and catabolism of TG-rich lipoproteins and highlight (i) the pivotal players involved in this process, including lipoprotein lipase, glycosylphosphatidylinositol HDL binding protein 1 (GPIHBP1), apolipoprotein (apo) C-II, apoC-III, angiopoietin-like protein (ANGPTL) 3, 4 and 8, apoA-V and cholesteryl ester transfer protein; (ii) key determinants of triglyceride (TG) levels and notably rates of production of very-low-density lipoprotein 1 (VLDL1) particles; and (iii) the mechanisms which underlie the atherogenicity of remnant particles. Finally, we emphasise the polygenic nature of moderate hypertriglyceridemia and briefly discuss modalities for its clinical management. Several new therapeutic strategies to attenuate hypertriglyceridemia have appeared recently, among which those targeted to apoC-III appear to hold considerable promise.
Collapse
Affiliation(s)
- Geesje M Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands. .,Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | - Jeffrey Kroon
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- INSERM and University of Pierre and Marie Curie, Pitie-Salpetriere University Hospital, 75651, Paris Cedex 13, France
| |
Collapse
|
63
|
Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA CLINICAL 2017; 8:66-77. [PMID: 28936395 PMCID: PMC5597817 DOI: 10.1016/j.bbacli.2017.07.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Abstract
Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation. Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids. Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.
Collapse
|
64
|
Oztas Y, Yalcinkaya A. Oxidative alterations in sickle cell disease: Possible involvement in disease pathogenesis. World J Hematol 2017; 6:55-61. [DOI: 10.5315/wjh.v6.i3.55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/25/2017] [Accepted: 05/22/2017] [Indexed: 02/05/2023] Open
Abstract
Sickle cell disease (SCD) is the first molecular disease in the literature. Although the structural alteration and dysfunction of the sickle hemoglobin (HbS) are well understood, the many factors modifying the clinical signs and symptoms of the disease are under investigation. Besides having an abnormal electrophoretic mobility and solubility, HbS is unstable. The autooxidation rate of the abnormal HbS has been reported to be almost two times of the normal. There are two more components of the oxidative damage in SCD: Free radical induced oxidative damage during vaso-occlusion induced ischemia-reperfusion injury and decreased antioxidant capacity in the erythrocyte and in the circulation. We will discuss the effects of oxidative alterations in the erythrocyte and in the plasma of SCD patients in this review.
Collapse
|
65
|
Printsev I, Curiel D, Carraway KL. Membrane Protein Quantity Control at the Endoplasmic Reticulum. J Membr Biol 2017; 250:379-392. [PMID: 27743014 PMCID: PMC5392169 DOI: 10.1007/s00232-016-9931-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this 'quantity control' capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need. In this review, we discuss in detail seven proteins that are targeted by the ERAD quantity control system. Not surprisingly, ERAD-mediated protein degradation is a key regulatory feature of a variety of ER-resident proteins, including HMG-CoA reductase, cytochrome P450 3A4, IP3 receptor, and type II iodothyronine deiodinase. In addition, the ERAD quantity control system plays roles in maintaining the proper stoichiometry of multi-protein complexes by mediating the degradation of components that are produced in excess of the limiting subunit. Perhaps somewhat unexpectedly, recent evidence suggests that the ERAD quantity control system also contributes to the regulation of plasma membrane-localized signaling receptors, including the ErbB3 receptor tyrosine kinase and the GABA neurotransmitter receptors. For these substrates, a proportion of the newly synthesized yet properly folded receptors are diverted for degradation at the ER, and are unable to traffic to the plasma membrane. Given that receptor abundance or concentration within the plasma membrane plays key roles in determining signaling efficiency, these observations may point to a novel mechanism for modulating receptor-mediated cellular signaling.
Collapse
Affiliation(s)
- Ignat Printsev
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Daniel Curiel
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
66
|
Durgin BG, Cherepanova OA, Gomez D, Karaoli T, Alencar GF, Butcher JT, Zhou YQ, Bendeck MP, Isakson BE, Owens GK, Connelly JJ. Smooth muscle cell-specific deletion of Col15a1 unexpectedly leads to impaired development of advanced atherosclerotic lesions. Am J Physiol Heart Circ Physiol 2017; 312:H943-H958. [PMID: 28283548 PMCID: PMC5451587 DOI: 10.1152/ajpheart.00029.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/28/2022]
Abstract
Atherosclerotic plaque rupture with subsequent embolic events is a major cause of sudden death from myocardial infarction or stroke. Although smooth muscle cells (SMCs) produce and respond to collagens in vitro, there is no direct evidence in vivo that SMCs are a crucial source of collagens and that this impacts lesion development or fibrous cap formation. We sought to determine how conditional SMC-specific knockout of collagen type XV (COL15A1) in SMC lineage tracing mice affects advanced lesion formation given that 1) we have previously identified a Col15a1 sequence variant associated with age-related atherosclerosis, 2) COL15A1 is a matrix organizer enhancing tissue structural integrity, and 3) small interfering RNA-mediated Col15a1 knockdown increased migration and decreased proliferation of cultured human SMCs. We hypothesized that SMC-derived COL15A1 is critical in advanced lesions, specifically in fibrous cap formation. Surprisingly, we demonstrated that SMC-specific Col15a1 knockout mice fed a Western diet for 18 wk failed to form advanced lesions. SMC-specific Col15a1 knockout resulted in lesions reduced in size by 78%, with marked reductions in numbers and proliferating SMCs, and lacked a SMC and extracellular matrix-rich lesion or fibrous cap. In vivo RNA-seq analyses on SMC Col15a1 knockout and wild-type lesions suggested that a mechanism for these effects is through global repression of multiple proatherogenic inflammatory pathways involved in lesion development. These results provide the first direct evidence that a SMC-derived collagen, COL15A1, is critical during lesion pathogenesis, but, contrary to expectations, its loss resulted in marked attenuation rather than exacerbation of lesion pathogenesis.NEW & NOTEWORTHY We report the first direct in vivo evidence that a smooth muscle cell (SMC)-produced collagen, collagen type XV (COL15A1), is critical for atherosclerotic lesion development. SMC Col15a1 knockout markedly attenuated advanced lesion formation, likely through reducing SMC proliferation and impairing multiple proatherogenic inflammatory processes.
Collapse
Affiliation(s)
- Brittany G Durgin
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Olga A Cherepanova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Delphine Gomez
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Themistoclis Karaoli
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Yu-Qing Zhou
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP, University of Toronto, Toronto, Ontario, Canada; and
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP, University of Toronto, Toronto, Ontario, Canada; and
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Jessica J Connelly
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; .,Department of Psychology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
67
|
Sarduy R, Brito V, Castillo A, Soto Y, Griñán T, Marleau S, Vázquez AM. Dose-Dependent Induction of an Idiotypic Cascade by Anti-Glycosaminoglycan Monoclonal Antibody in apoE -/- Mice: Association with Atheroprotection. Front Immunol 2017; 8:232. [PMID: 28316603 PMCID: PMC5334371 DOI: 10.3389/fimmu.2017.00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/17/2017] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis, the underlying pathology of most cardiovascular diseases, is triggered by the retention of apolipoprotein B (apoB)-containing lipoproteins in the arterial wall through electrostatic interactions with glycosaminoglycan (GAG) side chains of proteoglycans. Previously, we reported the antiatherogenic properties of the chimeric monoclonal antibody (mAb) chP3R99-LALA, which binds sulfated GAGs, inhibits low-density lipoprotein (LDL)–chondroitin sulfate (CS) association, and abrogates LDL oxidation and foam cell formation. In preventive and therapeutic settings, apoE-deficient (apoE−/−) mice immunized with 50 μg of this mAb showed reduced atherosclerotic lesions related with the induction of autologous anti-GAG antibodies. Knowing that age and sex are major non-modifiable risk factors in the development of atherosclerosis, the present study aimed to assess the influence of these variables on the capacity of chP3R99-LALA mAb to generate an anti-CS antibody response. Also, we aimed at defining the impact of the dose of chP3R99-LALA on the anti-CS antibody induction and the atheroprotective effect of this mAb in apoE−/− mice. Neither age nor sex had an impact in the IgG anti-CS antibody response induced by s.c. immunization with this mAb. Moreover, chP3R99-LALA mAb reduced atherosclerotic lesions to a similar extent in both young male and female apoE−/− mice fed a hypercholesterolemic diet and, in middle-aged female apoE−/− mice, with spontaneous lesions. On the other hand, increasing the dose of chP3R99-LALA (200 vs. 50 μg) elicited an anti-idiotype antibody cascade characterized by higher levels of anti-idiotype (Ab2), anti-anti-idiotype (Ab3), and anti-CS antibody responses. Moreover, this dose increment resulted in a striking reduction of aortic atherosclerotic lesions in immunized mice.
Collapse
Affiliation(s)
- Roger Sarduy
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Victor Brito
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Adriana Castillo
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Yosdel Soto
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Tania Griñán
- Division of Immunobiology, Center of Molecular Immunology , Havana , Cuba
| | - Sylvie Marleau
- Faculté de Pharmacie, Université de Montréal , Montréal, QC , Canada
| | - Ana María Vázquez
- Innovation Managing Direction, Center of Molecular Immunology , Havana , Cuba
| |
Collapse
|
68
|
Abstract
Cholesterol-rich, apolipoprotein B (apoB)-containing lipoproteins are now widely accepted as the most important causal agents of atherosclerotic cardiovascular disease. Multiple unequivocal and orthogonal lines of evidence all converge on low-density lipoprotein and related particles as being the principal actors in the genesis of atherosclerosis. Here, we review the fundamental role of atherogenic apoB-containing lipoproteins in cardiovascular disease and several other humoral and parietal factors that are required to initiate and maintain arterial degeneration. The biology of foam cells and their interactions with high-density lipoproteins, including cholesterol efflux, are also briefly reviewed.
Collapse
Affiliation(s)
- Michael D Shapiro
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Sergio Fazio
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| |
Collapse
|
69
|
Bai Y, Sun Q. Fine particulate matter air pollution and atherosclerosis: Mechanistic insights. Biochim Biophys Acta Gen Subj 2016; 1860:2863-8. [DOI: 10.1016/j.bbagen.2016.04.030] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/11/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
|
70
|
Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol 2016; 27:473-83. [PMID: 27472409 DOI: 10.1097/mol.0000000000000330] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Today, it is no longer a hypothesis, but an established fact, that increased plasma concentrations of cholesterol-rich apolipoprotein-B (apoB)-containing lipoproteins are causatively linked to atherosclerotic cardiovascular disease (ASCVD) and that lowering plasma LDL concentrations reduces cardiovascular events in humans. Here, we review evidence behind this assertion, with an emphasis on recent studies supporting the 'response-to-retention' model - namely, that the key initiating event in atherogenesis is the retention, or trapping, of cholesterol-rich apoB-containing lipoproteins within the arterial wall. RECENT FINDINGS New clinical trials have shown that ezetimibe and anti-PCSK9 antibodies - both nonstatins - lower ASCVD events, and they do so to the same extent as would be expected from comparable plasma LDL lowering by a statin. These studies demonstrate beyond any doubt the causal role of apoB-containing lipoproteins in atherogenesis. In addition, recent laboratory experimentation and human Mendelian randomization studies have revealed novel information about the critical role of apoB-containing lipoproteins in atherogenesis. New information has also emerged on mechanisms for the accumulation in plasma of harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoproteins in states of overnutrition. Like LDL, these harmful cholesterol-rich and triglyceride-rich apoB-containing remnant lipoprotein remnants become retained and modified within the arterial wall, causing atherosclerosis. SUMMARY LDL and other cholesterol-rich, apoB-containing lipoproteins, once they become retained and modified within the arterial wall, cause atherosclerosis. This simple, robust pathophysiologic understanding may finally allow us to eradicate ASCVD, the leading killer in the world.
Collapse
Affiliation(s)
- Jan Borén
- aDepartment of Molecular and Clinical Medicine, University of Gothenburg bSahlgrenska University Hospital, Gothenburg, Sweden cSection of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
71
|
Al Gwairi O, Osman N, Getachew R, Zheng W, Liang XL, Kamato D, Thach L, Little PJ. Multiple Growth Factors, But Not VEGF, Stimulate Glycosaminoglycan Hyperelongation in Retinal Choroidal Endothelial Cells. Int J Biol Sci 2016; 12:1041-51. [PMID: 27570478 PMCID: PMC4997048 DOI: 10.7150/ijbs.16134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023] Open
Abstract
A major feature of early age-related macular degeneration (AMD) is the thickening of Bruch's membrane in the retina and an alteration in its composition with increased lipid deposition. In certain pathological conditions proteoglycans are responsible for lipid retention in tissues. Growth factors are known to increase the length of glycosaminoglycan chains and this can lead to a large increase in the interaction between proteoglycans and lipids. Using choroidal endothelial cells, we investigated the effects of a number of AMD relevant growth factors TGFβ, thrombin, PDGF, IGF and VEGF on proteoglycan synthesis. Cells were characterized as of endothelial origin using the specific cell markers endothelial nitric oxide synthesis and von Willebrand factor and imaged using confocal microscopy. Cells were treated with growth factors in the presence and absence of the appropriate inhibitors and were radiolabeled with [35S]-SO4. Proteoglycans were isolated by ion exchange chromatography and sized using SDS-PAGE. Radiosulfate incorporation was determined by the cetylpyridinium chloride (CPC) precipitation technique. To measure cellular glycosaminoglycan synthesizing capacity we added xyloside and assessed the xyloside-GAGs by SDS-PAGE. TGFβ, thrombin, PDGF & IGF dose-dependently stimulated radiosulfate incorporation and GAG elongation as well as xyloside-GAG synthesis, however VEGF treatment did not stimulate any changes in proteoglycan synthesis. VEGF did not increase pAKT but caused a large increase in pERK relative to the response to PDGF. Thus, AMD relevant agonists cause glycosaminoglycan hyperelongation of proteoglycans synthesised and secreted by retinal choroidal endothelial cells. The absence of a response to VEGF is intriguing and identifies proteoglycans as a novel potential target in AMD. Future studies will examine the relevance of these changes to enhanced lipid binding and the development of AMD.
Collapse
Affiliation(s)
- Othman Al Gwairi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia;; Department of Immunology, Monash University, Melbourne 3004 VIC, Australia
| | - Robel Getachew
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China;; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510006, China
| | - X-L Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Danielle Kamato
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Lyna Thach
- School of Pharmacy. The University of Queensland, Wooloongabba, QLD 4102, Australia
| | - Peter J Little
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia;; School of Pharmacy. The University of Queensland, Wooloongabba, QLD 4102, Australia
| |
Collapse
|
72
|
Getz GS, Reardon CA. Do the Apoe-/- and Ldlr-/- Mice Yield the Same Insight on Atherogenesis? Arterioscler Thromb Vasc Biol 2016; 36:1734-41. [PMID: 27386935 DOI: 10.1161/atvbaha.116.306874] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/24/2016] [Indexed: 02/02/2023]
Abstract
Murine models of atherosclerosis are useful for investigating the environmental and genetic influences on lesion formation and composition. Apoe(-/-) and Ldlr(-/-) mice are the 2 most extensively used models. The models differ in important ways with respect to the precise mechanism by which their absence enhances atherosclerosis, including differences in plasma lipoproteins. The majority of the gene function studies have utilized only 1 model, with the results being generalized to atherogenic mechanisms. In only a relatively few cases have studies been conducted in both atherogenic murine models. This review will discuss important differences between the 2 atherogenic models and will point out studies that have been performed in the 2 models where results are comparable and those where different results were obtained.
Collapse
Affiliation(s)
- Godfrey S Getz
- From the Department of Pathology (G.S.G.) and Ben May Institute for Cancer Biology (C.A.R.), University of Chicago, IL.
| | - Catherine A Reardon
- From the Department of Pathology (G.S.G.) and Ben May Institute for Cancer Biology (C.A.R.), University of Chicago, IL
| |
Collapse
|
73
|
Abstract
The introduction of statins ≈ 30 years ago ushered in the era of lipid lowering as the most effective way to reduce risk of atherosclerotic cardiovascular disease. Nonetheless, residual risk remains high, and statin intolerance is frequently encountered in clinical practice. After a long dry period, the field of therapeutics targeted to lipids and atherosclerosis has entered a renaissance. Moreover, the demonstration of clinical benefits from the addition of ezetimibe to statin therapy in subjects with acute coronary syndromes has renewed the enthusiasm for the cholesterol hypothesis and the hope that additional agents that lower low-density lipoprotein will decrease risk of atherosclerotic cardiovascular disease. Drugs in the orphan disease category are now available for patients with the most extreme hypercholesterolemia. Furthermore, discovery and rapid translation of a novel biological pathway has given rise to a new class of cholesterol-lowering drugs, the proprotein convertase subtilisin kexin-9 inhibitors. Trials of niacin added to statin have failed to demonstrate cardiac benefits, and 3 cholesterol ester transfer protein inhibitors have also failed to reduce atherosclerotic cardiovascular disease risk, despite producing substantial increases in HDL levels. Although the utility of triglyceride-lowering therapies remains uncertain, 2 large clinical trials are testing the influence of omega-3 polyunsaturated fatty acids on atherosclerotic events in hypertriglyceridemia. Novel antisense therapies targeting apolipoprotein C-III (for triglyceride reduction) and apo(a) (for lipoprotein(a) reduction) are showing a promising trajectory. Finally, 2 large clinical trials are formally putting the inflammatory hypothesis of atherosclerosis to the test and may open a new avenue for cardiovascular disease risk reduction.
Collapse
Affiliation(s)
- Michael D Shapiro
- From the Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR
| | - Sergio Fazio
- From the Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health & Science University, Portland, OR.
| |
Collapse
|
74
|
Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y, Ali F. Atherosclerotic cardiovascular disease: a review of initiators and protective factors. Inflammopharmacology 2016; 24:1-10. [PMID: 26750181 DOI: 10.1007/s10787-015-0255-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
Atherosclerotic cardiovascular disease (CVD) is a collective term comprising of a group of disorders of the heart and blood vessels. These diseases are the largest cause of morbidity and premature death worldwide. Coronary heart disease and cerebrovascular disease (stroke) are the most frequently occurring diseases. The two major initiators involved in the development of atherosclerotic CVD are vascular production of reactive oxygen species (ROS) and lipid oxidation. In atherosclerosis development, ROS is associated with rapid loss of anti-inflammatory and anti-atherogenic activities of the endothelium-derived nitric oxide (NO(·)) resulting in endothelial dysfunction. In part involving activation of the transcription factor NF-κB, ROS have been involved in signaling cascades leading to vascular pro-inflammatory and pro-thrombotic gene expression. ROS is also a potent activator of matrix metalloproteinases (MMPs), which indicate plaque destabilization and rupture. The second initiator involved in atherosclerotic CVD is the oxidation of low-density lipoproteins (LDL). Oxidation of LDL in vessel wall leads to an inflammatory cascade that activates atherogenic pathway leading to foam cell formation. The accumulation of foam cells leads to fatty streak formation, which is the earliest visible atherosclerotic lesion. In contrast, the cardiac sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) and hepatic apolipoprotein E (apoE) expression can improve cardiovascular function. SERCA2a regulates the cardiac contractile function by lowering cytoplasmic calcium levels during relaxation, and affecting NO(·) action in vascular cells, while apoE is a critical ligand in the plasma clearance of triglyceride- and cholesterol-rich lipoproteins.
Collapse
Affiliation(s)
- Mohammed S Ellulu
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Malaysia.
| | - Ismail Patimah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Malaysia.
| | - Huzwah Khaza'ai
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Malaysia.
| | - Asmah Rahmat
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Malaysia.
| | - Yehia Abed
- Faculty of Public Health, Al Quds University of Gaza, Gaza, Palestine.
| | - Faisal Ali
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Malaysia.
| |
Collapse
|
75
|
Morita SY. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis. Biol Pharm Bull 2016; 39:1-24. [DOI: 10.1248/bpb.b15-00716] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
76
|
Affiliation(s)
- Per Fogelstrand
- From the Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- From the Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
77
|
Delgado-Roche L, Brito V, Acosta E, Pérez A, Fernández JR, Hernández-Matos Y, Griñán T, Soto Y, León OS, Marleau S, Vázquez AM. Arresting progressive atherosclerosis by immunization with an anti-glycosaminoglycan monoclonal antibody in apolipoprotein E-deficient mice. Free Radic Biol Med 2015; 89:557-66. [PMID: 26454078 DOI: 10.1016/j.freeradbiomed.2015.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 12/01/2022]
Abstract
Atherogenesis is associated with the early retention of low-density lipoproteins (LDL) in the arterial intima by interaction with glycosaminoglycan (GAG)-side chains of proteoglycans. Retained LDL undergo reactive oxygen species-mediated oxidation. Oxidized LDL trigger oxidative stress (OS) and inflammation, contributing to atherosclerosis development. Recently, we reported the preventive anti-atherogenic properties of the chimeric mouse/human monoclonal antibody (mAb) chP3R99-LALA, which were related to the induction of anti-chondroitin sulfate antibody response able to inhibit chondroitin sulfate dependent LDL-enhanced oxidation. In the present work, we aimed at further investigating the impact of chP3R99-LALA mAb vaccination on progressive atherosclerosis in apolipoprotein E-deficient mice (apoE(-/-)) fed with a high-fat high-cholesterol diet receiving 5 doses (50 µg) of the antibody subcutaneously, when ~5% of the aortic area was covered by lesions. Therapeutic immunization with chP3R99-LALA mAb halted atherosclerotic lesions progression. In addition, aortic OS was modulated, as shown by a significant (p<0.05) reduction of lipid and protein oxidation, preservation of antioxidant enzymes activity and reduced glutathione, together with a decrease of nitric oxide levels. chP3R99-LALA mAb immunization also regulated aortic NF-κB activation, diminishing the proinflammatory IL1-β and TNF-α gene expression as well as the infiltration of macrophages into the arterial wall. The therapeutic immunization of apoE(-/-) with progressive atheromas and persistent hypercholesterolemia using chP3R99-LALA mAb arrested further development of lesions, accompanied by a decrease of aortic OS and NF-κB-regulated pro-inflammatory cytokine gene expression. These results contribute to broaden the potential use of this anti-GAG antibody-based immunotherapy as a novel approach to target atherosclerosis at different phases of progression.
Collapse
Affiliation(s)
- Livan Delgado-Roche
- Department of Pharmacology, Center of Marine Bioproducts, Havana 10600, Cuba
| | - Víctor Brito
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Emilio Acosta
- Center of Advanced Studies of Cuba, La Lisa, Havana 13600, Cuba
| | - Arlenis Pérez
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Julio R Fernández
- Department of Genomic, Center for Genetic Engineering and Biotechnology, Havana 11600, Cuba
| | - Yanet Hernández-Matos
- Department of Pharmacology and Toxicology, Pharmacy and Food Sciences Institute, University of Havana, Havana 13600, Cuba
| | - Tania Griñán
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Yosdel Soto
- Division of Immunobiology, Center of Molecular Immunology, Havana 11600, Cuba
| | - Olga S León
- Department of Pharmacology and Toxicology, Pharmacy and Food Sciences Institute, University of Havana, Havana 13600, Cuba
| | - Sylvie Marleau
- Faculty de of Pharmacy Université de Montréal, Montréal, Québec, Canada
| | - Ana M Vázquez
- Innovation Managing Direction, Center of Molecular Immunology, Havana 11600, Cuba.
| |
Collapse
|
78
|
Hultgårdh-Nilsson A, Borén J, Chakravarti S. The small leucine-rich repeat proteoglycans in tissue repair and atherosclerosis. J Intern Med 2015; 278:447-61. [PMID: 26477596 PMCID: PMC4616156 DOI: 10.1111/joim.12400] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteoglycans consist of a protein core with one or more covalently attached glycosaminoglycan (GAG) side chains and have multiple roles in the initiation and progression of atherosclerosis. Here we discuss the potential and known functions of a group of small leucine-rich repeat proteoglycans (SLRPs) in atherosclerosis. We focus on five SLRPs, decorin, biglycan, lumican, fibromodulin and PRELP, because these have been detected in atherosclerotic plaques or demonstrated to have a role in animal models of atherosclerosis. Decorin and biglycan are modified post-translationally by substitution with chondroitin/dermatan sulphate GAGs, whereas lumican, fibromodulin and PRELP have keratan sulphate side chains, and the core proteins have leucine-rich repeat (LRR) motifs that are characteristic of the LRR superfamily. The chondroitin/dermatan sulphate GAG side chains have been implicated in lipid retention in atherosclerosis. The core proteins are discussed here in the context of (i) interactions with collagens and their implications in tissue integrity, fibrosis and wound repair and (ii) interactions with growth factors, cytokines, pathogen-associated molecular patterns and cell surface receptors that impact normal physiology and disease processes such as inflammation, innate immune responses and wound healing (i.e. processes that are all important in plaque development and progression). Thus, studies of these SLRPs in the context of wound healing are providing clues about their functions in early stages of atherosclerosis to plaque vulnerability and cardiovascular disease at later stages. Understanding of signal transduction pathways regulated by the core protein interactions is leading to novel roles and therapeutic potential for these proteins in wound repair and atherosclerosis.
Collapse
Affiliation(s)
| | - J Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S Chakravarti
- Departments of Medicine, Ophthalmology and Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
79
|
Carthy JM, Abraham T, Meredith AJ, Boroomand S, McManus BM. Versican localizes to the nucleus in proliferating mesenchymal cells. Cardiovasc Pathol 2015; 24:368-74. [PMID: 26395512 DOI: 10.1016/j.carpath.2015.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Versican is a versatile and highly interactive chondroitin sulfate proteoglycan that is found in the extracellular matrix (ECM) of many tissues and is a major component of developing and developed lesions in atherosclerotic vascular disease. In this paper, we present data to indicate that versican may have important intracellular functions in addition to its better known roles in the ECM. METHODS AND RESULTS Rat aortic smooth muscle cells were fixed and immunostained for versican and images of fluorescently labeled cells were obtained by confocal microscopy. Intracellular versican was detected in the nucleus and cytosol of vascular smooth muscle cells. The use of a synthetic neutralizing peptide eliminated versican immunostaining, demonstrating the specificity of the antibody used in this study. Western blot of pure nuclear extracts confirmed the presence of versican in the nucleus, and multifluorescent immunostaining showed strong colocalization of versican and nucleolin, suggesting a nucleolar localization of versican in nondividing cells. In dividing valve interstitial cells, a strong signal for versican was observed in and around the condensed chromosomes during the various stages of mitosis. Multifluorescent immunostaining for versican and tubulin revealed versican aggregated at opposing poles of the mitotic spindle during metaphase. Knockdown of versican expression using siRNA disrupted the organization of the mitotic spindle and led to the formation of multipolar spindles during metaphase. CONCLUSIONS Collectively, these data suggest an intracellular function for versican in vascular cells where it appears to play a role in mitotic spindle organization during cell division. These observations open a new avenue for studies of versican, suggesting even more diverse roles in vascular health and disease.
Collapse
Affiliation(s)
- Jon M Carthy
- UBC James Hogg Research Centre, Institute for Heart+Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia, Providence Health Care, Vancouver, BC, Canada
| | - Thomas Abraham
- UBC James Hogg Research Centre, Institute for Heart+Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia, Providence Health Care, Vancouver, BC, Canada
| | - Anna J Meredith
- UBC James Hogg Research Centre, Institute for Heart+Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia, Providence Health Care, Vancouver, BC, Canada
| | - Seti Boroomand
- UBC James Hogg Research Centre, Institute for Heart+Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia, Providence Health Care, Vancouver, BC, Canada
| | - Bruce M McManus
- UBC James Hogg Research Centre, Institute for Heart+Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia, Providence Health Care, Vancouver, BC, Canada.
| |
Collapse
|
80
|
Steffensen LB, Mortensen MB, Kjolby M, Hagensen MK, Oxvig C, Bentzon JF. Disturbed Laminar Blood Flow Vastly Augments Lipoprotein Retention in the Artery Wall. Arterioscler Thromb Vasc Biol 2015; 35:1928-35. [DOI: 10.1161/atvbaha.115.305874] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/06/2015] [Indexed: 01/21/2023]
Abstract
Objective—
Atherosclerosis develops initially at branch points and in areas of high vessel curvature. Moreover, experiments in hypercholesterolemic mice have shown that the introduction of disturbed flow in straight, atherosclerosis-resistant arterial segments turns them highly atherosclerosis susceptible. Several biomechanical mechanisms have been proposed, but none has been demonstrated. In the present study, we examined whether a causal link exists between disturbed laminar flow and the ability of the arterial wall to retain lipoproteins.
Approach and Results—
Lipoprotein retention was detected at natural predilection sites of the murine thoracic aorta 18 hours after infusion of fluorescently labeled low-density lipoprotein. To test for causality between blood flow and the ability of these areas to retain lipoproteins, we manipulated blood flow in the straight segment of the common carotid artery using a constrictive collar. Disturbed laminar flow did not affect low-density lipoprotein influx, but increased the ability of the artery wall to bind low-density lipoprotein. Concordantly, disturbed laminar flow led to differential expression of genes associated with phenotypic modulation of vascular smooth muscle cells, increased expression of proteoglycan core proteins associated with lipoprotein retention, and of enzymes responsible for chondroitin sulfate glycosaminoglycan synthesis and sulfation.
Conclusions—
Blood flow regulates genes associated with vascular smooth muscle cell phenotypic modulation, as well as the expression and post-translational modification of lipoprotein-binding proteoglycan core proteins, and the introduction of disturbed laminar flow vastly augments the ability of a previously resistant, straight arterial segment to retain lipoproteins.
Collapse
Affiliation(s)
- Lasse Bach Steffensen
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| | - Martin Bødtker Mortensen
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| | - Mads Kjolby
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| | - Mette Kallestrup Hagensen
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| | - Claus Oxvig
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| | - Jacob Fog Bentzon
- From the Department of Cardiology, and Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Denmark (L.B.S., M.B.M., M.K., M.K.H., J.F.B.); Department of Molecular Biology and Genetics (L.B.S., C.O.) and Department of Biomedicine (M.K.), Aarhus University, Aarhus, Denmark; and Department of Molecular Biology and Genetics (L.B.S., C.O.) and DANDRITE and Danish Diabetes Academy, Department of Biomedicine (M.K.), Aarhus University, Denmark
| |
Collapse
|
81
|
Ivanova EA, Bobryshev YV, Orekhov AN. LDL electronegativity index: a potential novel index for predicting cardiovascular disease. Vasc Health Risk Manag 2015; 11:525-32. [PMID: 26357481 PMCID: PMC4559248 DOI: 10.2147/vhrm.s74697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
High cardiovascular risk conditions are frequently associated with altered plasma lipoprotein profile, such as elevated low-density lipoprotein (LDL) and LDL cholesterol and decreased high-density lipoprotein. There is, however, accumulating evidence that specific subclasses of LDL may play an important role in cardiovascular disease development, and their relative concentration can be regarded as a more relevant risk factor. LDL particles undergo multiple modifications in plasma that can lead to the increase of their negative charge. The resulting electronegative LDL [LDL(–)] subfraction has been demonstrated to be especially atherogenic, and became a subject of numerous recent studies. In this review, we discuss the physicochemical properties of LDL(–), methods of its detection, atherogenic activity, and relevance of the LDL electronegativity index as a potential independent predictor of cardiovascular risk.
Collapse
Affiliation(s)
- Ekaterina A Ivanova
- Department of Pediatric Nephrology and Growth and Regeneration, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Yuri V Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia ; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Kensington, Sydney, NSW, Australia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia ; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia ; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
82
|
Viola J, Soehnlein O. Atherosclerosis - A matter of unresolved inflammation. Semin Immunol 2015; 27:184-93. [PMID: 25865626 DOI: 10.1016/j.smim.2015.03.013] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is commonly looked upon as a chronic inflammatory disease of the arterial wall arising from an unbalanced lipid metabolism and a maladaptive inflammatory response. However, atherosclerosis is not merely an inflammation of the vessel wall. In fact, the cardinal signs of unstable atherosclerotic lesions are primarily characteristics of failed resolution of a chronic inflammation. In contrast to acute inflammatory events which are typically self-limiting, atherosclerosis is an unresolved inflammatory condition, lacking the switch from the pro-inflammatory to the pro-resolving phase, the latter characterized by termination of inflammatory cell recruitment, removal of inflammatory cells from the site of inflammation by apoptosis and dead cell clearance, reprogramming of macrophages toward an anti-inflammatory, regenerative phenotype, and finally egress of effector cells and tissue regeneration. Here we present an overview on mechanisms of failed resolution contributing to atheroprogression and deliver a summary of novel therapeutic strategies to restore resolution in inflamed arteries.
Collapse
Affiliation(s)
- Joana Viola
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany.
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany; Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
83
|
Yang L, Kirikoshi J, Sekimoto S, Takasugi M, Fukunaga K, Hosomi R, Hishida A, Kawahara N, Yamagishi T, Arai H. Effect of Bean Extract of Yabumame ( Amphicarpaea bracteata (L.) Fernald subsp. edgeworthii (Benth.) H.Ohashi) on Low-Density Lipoprotein Oxidation In Vitro. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lifeng Yang
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology
| | - Jyunichi Kirikoshi
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology
| | - Shogo Sekimoto
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology
| | - Mikako Takasugi
- Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University
| | - Kenji Fukunaga
- Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Ryota Hosomi
- Faculty of Chemistry, Materials and Bioengineering, Kansai University
| | - Atsuyuki Hishida
- Division of Hokkaido, Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation
| | - Nobuo Kawahara
- Division of Hokkaido, Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation
| | | | - Hirofumi Arai
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology
| |
Collapse
|
84
|
Thompson JC, Jayne C, Thompson J, Wilson PG, Yoder MH, Webb N, Tannock LR. A brief elevation of serum amyloid A is sufficient to increase atherosclerosis. J Lipid Res 2014; 56:286-93. [PMID: 25429103 DOI: 10.1194/jlr.m054015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Serum amyloid A (SAA) has a number of proatherogenic effects including induction of vascular proteoglycans. Chronically elevated SAA was recently shown to increase atherosclerosis in mice. The purpose of this study was to determine whether a brief increase in SAA similarly increased atherosclerosis in a murine model. The recombination activating gene 1-deficient (rag1(-/-)) × apolipoprotein E-deficient (apoe(-/-)) and apoe(-/-) male mice were injected, multiple times or just once respectively, with an adenoviral vector encoding human SAA1 (ad-SAA); the injected mice and controls were maintained on chow for 12-16 weeks. Mice receiving multiple injections of ad-SAA, in which SAA elevation was sustained, had increased atherosclerosis compared with controls. Strikingly, mice receiving only a single injection of ad-SAA, in which SAA was only briefly elevated, also had increased atherosclerosis compared with controls. Using in vitro studies, we demonstrate that SAA treatment leads to increased LDL retention, and that prevention of transforming growth factor beta (TGF-β) signaling prevents SAA-induced increases in LDL retention and SAA-induced increases in vascular biglycan content. We propose that SAA increases atherosclerosis development via induction of TGF-β, increased vascular biglycan content, and increased LDL retention. These data suggest that even short-term inflammation with concomitant increase in SAA may increase the risk of developing CVD.
Collapse
Affiliation(s)
- Joel C Thompson
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY Department of Pharmacology and Nutritional Sciences, Division of Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Colton Jayne
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Jennifer Thompson
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Patricia G Wilson
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Meghan H Yoder
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY
| | - Nancy Webb
- Department of Pharmacology and Nutritional Sciences, Division of Nutritional Sciences, University of Kentucky, Lexington, KY Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY
| | - Lisa R Tannock
- Department of Internal Medicine, Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY Department of Veterans Affairs, Lexington, KY
| |
Collapse
|
85
|
Immunological aspects of atherosclerosis. Semin Immunopathol 2013; 36:73-91. [DOI: 10.1007/s00281-013-0402-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
|
86
|
Brito V, Mellal K, Portelance SG, Pérez A, Soto Y, deBlois D, Ong H, Marleau S, Vázquez AM. Induction of anti-anti-idiotype antibodies against sulfated glycosaminoglycans reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2012; 32:2847-54. [PMID: 23087361 DOI: 10.1161/atvbaha.112.300444] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The pathogenesis of atherosclerosis is associated with the early retention of low-density lipoproteins that are trapped in the extracellular matrix of the arterial intima by interaction with glycosaminoglycan side chains of proteoglycans. Mutant mouse/human chimeric antibodies of the murine monoclonal antibody P3, which react with N-glycolyl-containing gangliosides and sulfated glycosaminoglycans, were tested for their potentially antiatherogenic properties through the induction of an idiotypic antibody network that may specifically interfere with the binding of low-density lipoproteins to proteoglycan side chains, low-density lipoprotein modification, and foam cell formation. METHODS AND RESULTS Apolipoprotein E-deficient mice fed a high-fat, high-cholesterol diet received 5 to 6 doses of chP3R99 or chP3S98 mutant antibodies, showing high and low reactivity, respectively, against their respective antigens. Both chimeric antibodies elicited an immunodominant anti-idiotypic response in the absence of adjuvant. A striking (40%-43%) reduction (P<0.01) in total lesion areas was observed in 18-week-old mice immunized with chP3R99, but not chP3S98, compared with PBS-treated mice. The antiatherosclerotic effect was associated with increased mice sera reactivity against heparin and sulfated glycosaminoglycans, including chondroitin and dermatan sulfate. In addition, purified IgG from chP3R99-immunized mice blocked the retention of apolipoprotein B-containing lipoproteins within the arterial wall of apolipoprotein E(-/-) mice. CONCLUSIONS The present study supports use of active immunization and the mounting of an idiotypic antibody network response against glycosaminoglycans as a novel approach to target atherosclerosis.
Collapse
Affiliation(s)
- Víctor Brito
- Division of Immunobiology, Center of Molecular Immunology, 216 St and 15th Ave, Siboney, Playa PO Box 16040, Havana 11600, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Sánchez-Quesada JL, Villegas S, Ordóñez-Llanos J. Electronegative low-density lipoprotein. A link between apolipoprotein B misfolding, lipoprotein aggregation and proteoglycan binding. Curr Opin Lipidol 2012; 23:479-86. [PMID: 22964994 DOI: 10.1097/mol.0b013e328357c933] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Subendothelial retention of lipoproteins is considered the first step in the development of atherosclerosis, but the molecular mechanisms involved are poorly understood. Recent findings on the atherogenic properties of a minor electronegative fraction of LDL (LDL(-)) could contribute to a better understanding of this process. RECENT FINDINGS Circular dichroism, Trp-fluorescence and two-dimensional nuclear magnetic resonance have shown that apolipoprotein B (apoB) in LDL(-) has an abnormal, misfolded conformation. Immunochemical analysis revealed a different conformation, mainly in the N-terminal and C-terminal extremes. These alterations contribute to the high susceptibility to aggregation of LDL(-). Moreover, LDL(-) can seed the aggregation of native LDL, suggesting an amyloidogenic character that has been attributed to the amphipathic helix cluster in the α2-domain. A phospholipase C (PLC)-like activity associated to LDL(-) seems to play a major role in the LDL(-)-induced aggregation. The aggregation of LDL(-) increases its binding to proteoglycans because of the abnormal conformation of the N-terminal extreme of apoB. SUMMARY LDL(-) could play a relevant role in atherogenesis by acting as a priming factor that stimulates lipoprotein aggregation. This process, which appears to be mediated by a PLC-like activity intrinsic to LDL(-), increases the binding of LDL to proteoglycans and could promote subendothelial retention of these lipoproteins.
Collapse
Affiliation(s)
- José L Sánchez-Quesada
- Biochemistry Department, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.
| | | | | |
Collapse
|
88
|
Lönn ME, Dennis JM, Stocker R. Actions of "antioxidants" in the protection against atherosclerosis. Free Radic Biol Med 2012; 53:863-84. [PMID: 22664312 DOI: 10.1016/j.freeradbiomed.2012.05.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/05/2012] [Accepted: 05/16/2012] [Indexed: 02/07/2023]
Abstract
This review addresses the role of oxidative processes in atherosclerosis and its resulting cardiovascular disease by focusing on the outcome of antioxidant interventions. Although there is unambiguous evidence for the presence of heightened oxidative stress and resulting damage in atherosclerosis, it remains to be established whether this represents a cause or a consequence of the disease. This critical question is complicated further by the increasing realization that oxidative processes, including those related to signaling, are part of normal cell function. Overall, the results from animal interventions suggest that antioxidants provide benefit neither generally nor consistently. Where benefit is observed, it appears to be achieved at least in part via modulation of biological processes such as increase in nitric oxide bioavailability and induction of protective enzymes such as heme oxygenase-1, rather than via inhibition of oxidative processes and lipid oxidation in the arterial wall. Exceptions to this may be situations of multiple/excessive stress, the relevance of which for humans is not clear. This interpretation is consistent with the overall disappointing outcome of antioxidant interventions in humans and can be rationalized by the spatial compartmentalization of cellular oxidative signaling and/or damage, complex roles of oxidant-producing enzymes, and the multifactorial nature of atherosclerosis.
Collapse
Affiliation(s)
- Maria E Lönn
- Centre for Vascular Research, School of Medical Sciences (Pathology), and Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
89
|
Olofsson SO, Borén J. Apolipoprotein B Secretory Regulation by Degradation. Arterioscler Thromb Vasc Biol 2012; 32:1334-8. [DOI: 10.1161/atvbaha.112.251116] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this short review, we discuss apolipoprotein B100 and the assembly of very low-density lipoproteins. In particular, we address the nature and importance of co- and posttranslational degradation of apolipoprotein B100 during the assembly process. We also provide a short historical background to the development of the current model for the degradation of apolipoprotein B100.
Collapse
Affiliation(s)
- Sven-Olof Olofsson
- From the Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- From the Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
90
|
Kanwar RK, Chaudhary R, Tsuzuki T, Kanwar JR. Emerging engineered magnetic nanoparticulate probes for molecular MRI of atherosclerosis: how far have we come? Nanomedicine (Lond) 2012; 7:899-916. [DOI: 10.2217/nnm.12.57] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic, progressive, immunoinflammatory disease of the large and medium-sized arteries, and a major cause of cardiovascular diseases. Atherosclerosis often progresses silently for decades until the occurrence of a major catastrophic clinical event such as myocardial infarction, cardiac arrest and stroke. The main challenge in the diagnosis and management of atherosclerosis is to develop a safe, noninvasive technique that is accurate and reproducible, which can detect the biologically active high-risk vulnerable plaques (with ongoing active inflammation, angiogenesis and apoptosis) before the occurrence of an acute clinical event. This article reviews the events involved in the pathogenesis of atherosclerosis in light of recently advanced understanding of the molecular pathogenesis of the disease. Next, we elaborate on the interesting developments in molecular MRI, by describing the recently engineered magnetic nanoparticulate probes targeting clinically promising molecular and cellular players/processes, involved in early atherosclerotic lesion formation to plaque rupture and erosion.
Collapse
Affiliation(s)
- Rupinder K Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Center for Biotechnology & Interdisciplinary Biosciences, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Rajneesh Chaudhary
- Nanomaterials, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Takuya Tsuzuki
- Nanomaterials, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Jagat R Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Center for Biotechnology & Interdisciplinary Biosciences, Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
91
|
Lipponen K, Liu Y, Stege PW, Öörni K, Kovanen PT, Riekkola ML. Capillary electrochromatography and quartz crystal microbalance, valuable techniques in the study of heparin–lipoprotein interactions. Anal Biochem 2012; 424:71-8. [DOI: 10.1016/j.ab.2012.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 11/16/2022]
|
92
|
Handa JT. How does the macula protect itself from oxidative stress? Mol Aspects Med 2012; 33:418-35. [PMID: 22503691 DOI: 10.1016/j.mam.2012.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been hypothesized to contribute to the development of age-related macular degeneration (AMD), the most common cause of blindness in the United States. At present, there is no treatment for early disease. Reactive oxygen species (ROS) play a physiological role in the retinal pigment epithelium (RPE), a key cell type in this disease, but with excessive ROS, oxidative damage or excessive innate immune system activation can result. The RPE has developed a robust antioxidant system driven by the transcription factor Nrf2. Impaired Nrf2 signaling can lead to oxidative damage or activate the innate immune response, both of which can lead to RPE apoptosis, a defining change in AMD. Several mouse models simulating environmental stressors or targeting specific antioxidant enzymes such as superoxide dismutase or Nrf2, have simulated some of the features of AMD. While ROS are short-lived, oxidatively damaged molecules termed oxidation specific epitopes (OSEs), can be long-lived and a source of chronic stress that activates the innate immune system through pattern recognition receptors (PRRs). The macula accumulates a number of OSEs including carboxyethylpyrrole, malondialdehyde, 4-hydroxynonenal, and advanced glycation endproducts, as well as their respective neutralizing PRRs. Excessive accumulation of OSEs results in pathologic immune activation. For example, mice immunized with the carboxyethylpyrrole develop cardinal features of AMD. Regulating ROS in the RPE by modulating antioxidant systems or neutralizing OSEs through an appropriate innate immune response are potential modalities to treat or prevent early AMD.
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
93
|
Motazacker MM, Pirruccello J, Huijgen R, Do R, Gabriel S, Peter J, Kuivenhoven JA, Defesche JC, Kastelein JJP, Hovingh GK, Zelcer N, Kathiresan S, Fouchier SW. Advances in genetics show the need for extending screening strategies for autosomal dominant hypercholesterolaemia. Eur Heart J 2012; 33:1360-6. [PMID: 22408029 DOI: 10.1093/eurheartj/ehs010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aims Autosomal dominant hypercholesterolaemia (ADH) is a major risk factor for coronary artery disease. This disorder is caused by mutations in the genes coding for the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase subtilisin/kexin 9 (PCSK9). However, in 41% of the cases, we cannot find mutations in these genes. In this study, new genetic approaches were used for the identification and validation of new variants that cause ADH. Methods and results Using exome sequencing, we unexpectedly identified a novel APOB mutation, p.R3059C, in a small-sized ADH family. Since this mutation was located outside the regularly screened APOB region, we extended our routine sequencing strategy and identified another novel APOB mutation (p.K3394N) in a second family. In vitro analyses show that both mutations attenuate binding to the LDLR significantly. Despite this, both mutations were not always associated with ADH in both families, which prompted us to validate causality through using a novel genetic approach. Conclusion This study shows that advances in genetics help increasing our understanding of the causes of ADH. We identified two novel functional APOB mutations located outside the routinely analysed APOB region, suggesting that screening for mutations causing ADH should encompass the entire APOB coding sequence involved in LDL binding to help identifying and treating patients at increased cardiovascular risk.
Collapse
Affiliation(s)
- Mohammad Mahdi Motazacker
- Department of Experimental Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Soto Y, Acosta E, Delgado L, Pérez A, Falcón V, Bécquer MA, Fraga Á, Brito V, Álvarez I, Griñán T, Fernández-Marrero Y, López-Requena A, Noa M, Fernández E, Vázquez AM. Antiatherosclerotic Effect of an Antibody That Binds to Extracellular Matrix Glycosaminoglycans. Arterioscler Thromb Vasc Biol 2012; 32:595-604. [DOI: 10.1161/atvbaha.111.238659] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Subendothelial retention of proatherogenic lipoproteins by proteoglycans is critical in atherosclerosis. The aim of this study was to characterize the recognition and antiatherogenic properties of a chimeric monoclonal antibody (mAb) that reacts with sulfated molecules.
Methods and Results—
chP3R99 mAb recognized sulfated glycosaminoglycans, mainly chondroitin sulfate (CS), by ELISA. This mAb blocked ≈70% of low-density lipoprotein (LDL)–CS association and ≈80% of LDL oxidation in vitro, and when intravenously injected to Sprague-Dawley rats (n=6, 1 mg/animal), it inhibited LDL (4 mg/kg intraperitoneally, 1 hour later) retention and oxidation in the artery wall. Moreover, subcutaneous immunization of New Zealand White rabbits (n=19) with chP3R99 mAb (100 μg, 3 doses at weekly intervals) prevented Lipofundin-induced atherosclerosis (2 mL/kg, 8 days) with a 22-fold reduction in the intima-media ratio (
P
<0.01). Histopathologic and ultrastructural studies showed no intimal alterations or slight thickening, with preserved junctions between endothelial cells and scarce collagen fibers and glycosaminoglycans. In addition, immunization with chP3R99 mAb suppressed macrophage infiltration in aorta and preserved redox status. The atheroprotective effect was associated with the induction of anti-CS antibodies in chP3R99-immunized rabbits, capable of blocking CS-LDL binding and LDL oxidation.
Conclusion—
These results support the use of anti-sulfated glycosaminoglycan antibody–based immunotherapy as a potential tool to prevent atherosclerosis.
Collapse
Affiliation(s)
- Yosdel Soto
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Emilio Acosta
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Livan Delgado
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Arlenis Pérez
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Viviana Falcón
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - María A. Bécquer
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Ángela Fraga
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Víctor Brito
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Irene Álvarez
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Tania Griñán
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Yuniel Fernández-Marrero
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Alejandro López-Requena
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Miriam Noa
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Eduardo Fernández
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| | - Ana María Vázquez
- From the Center of Molecular Immunology, Havana, Cuba (Y.S., A.P., V.B., T.G., Y.F.-M., A.L.-R., A.M.V.); Center of Studies for Research and Biological Studies, Pharmacy and Food Science College, University of Havana, Havana, Cuba (E.A., L.D., M.A.B., A.F., E.F.); Center for Genetic Engineering and Biotechnology, Havana, Cuba (V.F.); National Institute of Oncology and Radiobiology, Havana, Cuba (I.Á.); Center of National Products, National Center for Scientific Research, Havana, Cuba (M.N.)
| |
Collapse
|
95
|
Fogelstrand P, Borén J. Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis. Nutr Metab Cardiovasc Dis 2012; 22:1-7. [PMID: 22176921 DOI: 10.1016/j.numecd.2011.09.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/27/2011] [Indexed: 02/07/2023]
Abstract
AIMS In this review, we discuss the mechanisms behind the binding of low-density lipoproteins (LDL) to the arterial wall and how this interaction might be targeted to prevent atherosclerosis. DATA SYNTHESIS An increasing body of evidence shows that accumulation of LDL in the vessel wall is a critical step in the development of atherosclerosis. The retained lipoproteins subsequently provoke an inflammatory response that ultimately leads to atherosclerosis. In the arterial wall, LDL binds ionically to proteoglycans in the extracellular matrix. In particular, proteoglycans with elongated glycosaminoglycan (GAG) chains seem to play a crucial role in this process. CONCLUSIONS The LDL-proteoglycan interaction is a highly regulated process that might provide new therapeutic targets against cardiovascular disease.
Collapse
Affiliation(s)
- P Fogelstrand
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, 41345 Gothenburg, Sweden.
| | | |
Collapse
|
96
|
Walters MJ, Wrenn SP. Mechanistic roles of lipoprotein lipase and sphingomyelinase in low density lipoprotein aggregation. J Colloid Interface Sci 2011; 363:268-74. [PMID: 21839462 PMCID: PMC3175813 DOI: 10.1016/j.jcis.2011.07.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 02/02/2023]
Abstract
The initiation of atherosclerosis involves retention of colloidal atherogenic lipoproteins, primarily low density lipoprotein (LDL), in the arterial intima. This retention occurs when LDL binds to smooth muscle cell extracellular matrix (SMC ECM), and is enhanced by lipoprotein lipase (LpL) and sphingomyelinase (Smase). Here we use a fluorescence assay and dynamic light scattering to study the individual and combined effects of these two enzymes on LDL aggregation. Our results show: (1) LpL is self-sufficient to induce LDL aggregation with aggregate sizes up to ~400 nm; (2) Smase induces LDL aggregation due to generation of ceramide and subsequent hydrophobic interactions; (3) Smase hydrolysis of LpL-induced LDL aggregates does not cause further aggregation and results in a ~3-fold diminished production of ceramide, while LpL treatment of Smase-induced aggregates does enhance aggregation; (4) The simultaneous addition of LpL and Smase causes increased variability in aggregation with final sizes ranging from 50 to 110 nm. Our data suggest a new proatherogenic function for LpL, namely, bridging between LDL particles causing their aggregation and consequently enhanced retention by SMC ECM. The mechanism of LpL-and-Smase-mediated LDL aggregation and binding to SMC ECM provides specific points of intervention to design novel effective antiatherogenic therapeutics.
Collapse
Affiliation(s)
- Michael J Walters
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
97
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
98
|
Advanced glycation endproduct changes to Bruch's membrane promotes lipoprotein retention by lipoprotein lipase. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:850-9. [PMID: 21801873 DOI: 10.1016/j.ajpath.2011.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/14/2011] [Accepted: 04/02/2011] [Indexed: 02/02/2023]
Abstract
Lipoprotein particles accumulate in Bruch's membrane before the development of basal deposits and drusen, two histopathologic lesions that define age-related macular degeneration (AMD). We therefore, sought to determine which molecules could participate in lipoprotein retention. Wild-type or lipoprotein lipase-deficient mice were injected with low-dose D-galactose or PBS subcutaneously for 8 weeks to induce advanced glycation endproduct (AGE) formation. Some mice were also injected with the AGE breaker phenacylphiazolium bromide and D-galactose. Rhodamine-labeled low-density lipoproteins were injected into mice, and the fluorescence was measured up to 72 hours later. AGEs, proteoglycans, and other lipid-retaining molecules were evaluated by IHC. Lipoprotein lipase distribution was assessed in AMD samples by IHC. D-galactose-treated mice retained lipoproteins in the retinal pigment epithelial and Bruch's membrane to a greater extent than either PBS- or phenacylphiazolium bromide/D-galactose-treated mice at 24 and 72 hours after injection (P ≤ 0.04). Immunolabeling for carboxymethyllysine, biglycan, and lipoprotein lipase was found in D-galactose-treated mice only. Mice deficient for lipoprotein lipase treated with D-galactose did not retain lipoproteins to any measureable extent. Human AMD samples had lipoprotein lipase labeling within drusen, basal deposits, and the choroid. Mice treated with D-galactose to induce AGE formation in Bruch's membrane retain intravenously injected lipoproteins. Our results suggest that lipoprotein retention in Bruch's membrane is mediated by lipoprotein lipase.
Collapse
|
99
|
Chiba T, Chang MY, Wang S, Wight TN, McMillen TS, Oram JF, Vaisar T, Heinecke JW, De Beer FC, De Beer MC, Chait A. Serum amyloid A facilitates the binding of high-density lipoprotein from mice injected with lipopolysaccharide to vascular proteoglycans. Arterioscler Thromb Vasc Biol 2011; 31:1326-32. [PMID: 21474830 DOI: 10.1161/atvbaha.111.226159] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Levels of serum amyloid A (SAA), an acute-phase protein carried on high-density lipoprotein (HDL), increase in inflammatory states and are associated with increased risk of cardiovascular disease. HDL colocalizes with vascular proteoglycans in atherosclerotic lesions. However, its major apolipoprotein, apolipoprotein A-I, has no proteoglycan-binding domains. Therefore, we investigated whether SAA, which has proteoglycan-binding domains, plays a role in HDL retention by proteoglycans. METHODS AND RESULTS HDL from control mice and mice deficient in both SAA1.1 and SAA2.1 (SAA knockout mice) injected with bacterial lipopolysaccharide (LPS) was studied. SAA mRNA expression in the liver and plasma levels of SAA increased dramatically in C57BL/6 mice after LPS administration, although HDL cholesterol did not change. Fast protein liquid chromatography analysis showed most of the SAA to be in HDL. Mass spectrometric analysis indicated that HDL from LPS-injected control mice had high levels of SAA1.1/2.1 and reduced levels of apolipoprotein A-I. HDL from LPS-injected control mice demonstrated high-affinity binding to biglycan relative to normal mouse HDL. In contrast, HDL from LPS-injected SAA knockout mice showed very little binding to biglycan, consistent with SAA facilitating the binding of HDL to vascular proteoglycans. CONCLUSION SAA enrichment of HDL under inflammatory conditions plays an important role in the binding of HDL to vascular proteoglycans.
Collapse
Affiliation(s)
- Tsuyoshi Chiba
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Electronegative low-density lipoprotein: Origin and impact on health and disease. Atherosclerosis 2011; 215:257-65. [DOI: 10.1016/j.atherosclerosis.2010.12.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/25/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
|