51
|
Nazmi A, Hoek KL, Greer MJ, Piazuelo MB, Minato N, Olivares-Villagómez D. Innate CD8αα+ cells promote ILC1-like intraepithelial lymphocyte homeostasis and intestinal inflammation. PLoS One 2019; 14:e0215883. [PMID: 31291255 PMCID: PMC6619599 DOI: 10.1371/journal.pone.0215883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Innate CD8αα+ cells, also referred to as iCD8α cells, are TCR-negative intraepithelial lymphocytes (IEL) possessing cytokine and chemokine profiles and functions related to innate immune cells. iCD8α cells constitute an important source of osteopontin in the intestinal epithelium. Osteopontin is a pleiotropic cytokine with diverse roles in bone and tissue remodeling, but also has relevant functions in the homeostasis of immune cells. In this report, we present evidence for the role of iCD8α cells in the homeostasis of TCR-negative NKp46+NK1.1+ IEL (ILC1-like). We also show that the effect of iCD8α cells on ILC1-like IEL is enhanced in vitro by osteopontin. We show that in the absence of iCD8α cells, the number of NKp46+NK1.1+ IEL is significantly reduced. These ILC1-like cells are involved in intestinal pathogenesis in the anti-CD40 mouse model of intestinal inflammation. Reduced iCD8α cell numbers results in a milder form of intestinal inflammation in this disease model, whereas treatment with osteopontin increases disease severity. Collectively, our results suggest that iCD8α cells promote survival of NKp46+NK1.1+ IEL, which significantly impacts the development of intestinal inflammation.
Collapse
Affiliation(s)
- Ali Nazmi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kristen L. Hoek
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michael J. Greer
- Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Maria B. Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
52
|
Distinct phenotype and function of circulating Vδ1+ and Vδ2+ γδT-cells in acute and chronic hepatitis B. PLoS Pathog 2019; 15:e1007715. [PMID: 30998783 PMCID: PMC6490945 DOI: 10.1371/journal.ppat.1007715] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 04/30/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) persists with global and virus-specific T-cell dysfunction, without T-cell based correlates of outcomes. To determine if γδT-cells are altered in HBV infection relative to clinical status, we examined the frequency, phenotype and function of peripheral blood Vδ1+ and Vδ2+γδT-cells by multi-parameter cytometry in a clinically diverse North American cohort of chronic hepatitis B (CHB), acute hepatitis B (AHB) and uninfected control subjects. We show that circulating γδT-cells were comprised predominantly of CD3hiCD4- Vδ2+γδT-cells with frequencies that were 2–3 fold higher among Asian than non-Asian Americans and inversely correlated with age, but without differences between CHB, AHB and control subjects. However, compared to control subjects, CHB was associated with increased TbethiEomesdim phenotype in Vδ2+γδT-cells whereas AHB was associated with increased TbethiEomesdim phenotype in Vδ1+γδT-cells, with significant correlations between Tbet/Eomes expression in γδT-cells with their expression of NK and T-cell activation and regulatory markers. As for effector functions, IFNγ/TNF responses to phosphoantigens or PMA/Ionomycin in Vδ2+γδT-cells were weaker in AHB but preserved in CHB, without significant differences for Vδ1+γδT-cells. Furthermore, early IFNγ/TNF responses in Vδ2+ γδT-cells to brief PMA/Ionomycin stimulation correlated inversely with serum ALT but not HBV DNA. Accordingly, IFNγ/TNF responses in Vδ2+γδT-cells were weaker in patients with CHB with hepatitis flare compared to those without hepatitis flares, and this functional deficit persisted beyond clinical resolution of CHB flare. We conclude that circulating γδT-cells show distinct activation and differentiatiation in acute and chronic HBV infection as part of lymphoid stress surveillance with potential role in clinical outcomes. We examined circulating γδT-cells in a North American cohort with chronic hepatitis B (CHB) and acute hepatitis B (AHB) compared to uninfected control subjects. While frequencies and composition of circulating γδT-cells were preserved in AHB and CHB, γδT-cells showed distinct and innate phenotypes based on the expression of Tbet/Eomes in association with various NK/T-cell markers. Notably, IFNγ/TNF responses to phosphoantigens and PMA/Ionomycin were preserved in CHB, but weaker in AHB compared to uninfected control subjects, in association with NKG2A/CD94 but not PD1. Furthermore, early IFNγ/TNF responses in Vδ2+ γδT-cells to brief PMA/Ionomycin stimulation showed significant inverse correlations with serum alanine aminotransferase, a measure of hepatocellular injury, and were persistently deficient in CHB subjects with hepatitis flare compared to those without such flares. Finally, Vδ2+ γδT-cells were significantly enriched for TbethiEomesdim phenotype in associations with their expression of NK and T-cell activation and regulatory markers, suggesting a role for Tbet in γδT-cell differentiation and function. We conclude that circulating γδT-cells show distinct activation and differentiation in acute and chronic HBV infection as part of lymphoid stress surveillance with potential role in clinical outcomes.
Collapse
|
53
|
Van Kaer L, Olivares-Villagómez D. Development, Homeostasis, and Functions of Intestinal Intraepithelial Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 200:2235-2244. [PMID: 29555677 PMCID: PMC5863587 DOI: 10.4049/jimmunol.1701704] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
The intestine is continuously exposed to commensal microorganisms, food, and environmental agents and also serves as a major portal of entry for many pathogens. A critical defense mechanism against microbial invasion in the intestine is the single layer of epithelial cells that separates the gut lumen from the underlying tissues. The barrier function of the intestinal epithelium is supported by cells and soluble factors of the intestinal immune system. Chief among them are intestinal intraepithelial lymphocytes (iIELs), which are embedded in the intestinal epithelium and represent one of the single largest populations of lymphocytes in the body. Compared with lymphocytes in other parts of the body, iIELs exhibit unique phenotypic, developmental, and functional properties that reflect their key roles in maintaining the intestinal epithelial barrier. In this article, we review the biology of iIELs in supporting normal health and how their dysregulation can contribute to disease.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
54
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
55
|
Lutter L, Hoytema van Konijnenburg DP, Brand EC, Oldenburg B, van Wijk F. The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nat Rev Gastroenterol Hepatol 2018; 15:637-649. [PMID: 29973676 DOI: 10.1038/s41575-018-0039-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The epithelial barrier of the gastrointestinal tract is home to numerous intraepithelial T cells (IETs). IETs are functionally adapted to the mucosal environment and are among the first adaptive immune cells to encounter microbial and dietary antigens. They possess hallmark features of tissue-resident T cells: they are long-lived nonmigratory cells capable of rapidly responding to antigen challenges independent of T cell recruitment from the periphery. Gut-resident T cells have been implicated in the relapsing and remitting course and persisting low-grade inflammation of chronic gastrointestinal diseases, including IBD and coeliac disease. So far, most data IETs have been derived from experimental animal models; however, IETs and the environmental makeup differ between mice and humans. With advances in techniques, the number of human studies has grown exponentially in the past 5 years. Here, we review the literature on the involvement of human IETs in gut homeostasis and inflammation, and how these cells are influenced by the microbiota and dietary antigens. Finally, targeting of IETs in therapeutic interventions is discussed. Broad insight into the function and role of human IETs in gut homeostasis and inflammation is essential to identify future diagnostic, prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lisanne Lutter
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - David P Hoytema van Konijnenburg
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Eelco C Brand
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
56
|
Montalban-Arques A, Chaparro M, Gisbert JP, Bernardo D. The Innate Immune System in the Gastrointestinal Tract: Role of Intraepithelial Lymphocytes and Lamina Propria Innate Lymphoid Cells in Intestinal Inflammation. Inflamm Bowel Dis 2018; 24:1649-1659. [PMID: 29788271 DOI: 10.1093/ibd/izy177] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The gastrointestinal tract harbors the largest microbiota load in the human body, hence maintaining a delicate balance between immunity against invading pathogens and tolerance toward commensal. Such immune equilibrium, or intestinal homeostasis, is conducted by a tight regulation and cooperation of the different branches of the immune system, including the innate and the adaptive immune system. However, several factors affect this delicate equilibrium, ultimately leading to gastrointestinal disorders including inflammatory bowel disease. Therefore, here we decided to review the currently available information about innate immunity lymphocyte subsets playing a role in intestinal inflammation. RESULTS Intestinal innate lymphocytes are composed of intraepithelial lymphocytes (IELs) and lamina propria innate lymphoid cells (ILCs). While IELs can be divided into natural or induced, ILCs can be classified into type 1, 2, or 3, resembling, respectively, the properties of TH1, TH2, or TH17 adaptive lymphocytes. Noteworthy, the phenotype and function of both IELs and ILCs are disrupted under inflammatory conditions, where they help to exacerbate intestinal immune responses. CONCLUSIONS The modulation of both IELs and ILCs to control intestinal inflammatory responses represents a major challenge, as they provide tight regulation among the epithelium, the microbiota, and the adaptive immune system. An improved understanding of the innate immunity mechanisms involved in gastrointestinal inflammation would therefore aid in the diagnosis and further treatment of gastrointestinal inflammatory disorders.
Collapse
Affiliation(s)
- A Montalban-Arques
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - M Chaparro
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier P Gisbert
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - D Bernardo
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
57
|
Common ground: shared risk factors for type 1 diabetes and celiac disease. Nat Immunol 2018; 19:685-695. [DOI: 10.1038/s41590-018-0130-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
|
58
|
Chen B, Ni X, Sun R, Zeng B, Wei H, Tian Z, Wei H. Commensal Bacteria-Dependent CD8αβ + T Cells in the Intestinal Epithelium Produce Antimicrobial Peptides. Front Immunol 2018; 9:1065. [PMID: 29868024 PMCID: PMC5964211 DOI: 10.3389/fimmu.2018.01065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/27/2018] [Indexed: 12/30/2022] Open
Abstract
The epithelium of the intestine functions as the primary “frontline” physical barrier for protection from enteric microbiota. Intraepithelial lymphocytes (IELs) distributed along the intestinal epithelium are predominantly CD8+ T cells, among which CD8αβ+ IELs are a large population. In this investigation, the proportion and absolute number of CD8αβ+ IELs decreased significantly in antibiotic-treated and germ-free mice. Moreover, the number of CD8αβ+ IELs was correlated closely with the load of commensal microbes, and induced by specific members of commensal bacteria. Microarray analysis revealed that CD8αβ+ IELs expressed a series of genes encoding potent antimicrobial peptides (AMPs), whereas CD8αβ+ splenocytes did not. The antimicrobial activity of CD8αβ+ IELs was confirmed by an antimicrobial-activity assay. In conclusion, microbicidal CD8αβ+ IELs are regulated by commensal bacteria which, in turn, secrete AMPs that have a vital role in maintaining the homeostasis of the small intestine.
Collapse
Affiliation(s)
- Banru Chen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, Institute of Immunology, University of Science and Technology of China, Hefei City, Anhui, China
| | - Xiang Ni
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, Institute of Immunology, University of Science and Technology of China, Hefei City, Anhui, China
| | - Rui Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, Institute of Immunology, University of Science and Technology of China, Hefei City, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei City, Anhui, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Zhigang Tian
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, Institute of Immunology, University of Science and Technology of China, Hefei City, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei City, Anhui, China
| | - Haiming Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, Institute of Immunology, University of Science and Technology of China, Hefei City, Anhui, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei City, Anhui, China
| |
Collapse
|
59
|
McCarthy NE, Eberl M. Human γδ T-Cell Control of Mucosal Immunity and Inflammation. Front Immunol 2018; 9:985. [PMID: 29867962 PMCID: PMC5949325 DOI: 10.3389/fimmu.2018.00985] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 01/26/2023] Open
Abstract
Human γδ T-cells include some of the most common "antigen-specific" cell types in peripheral blood and are enriched yet further at mucosal barrier sites where microbial infection and tumors often originate. While the γδ T-cell compartment includes multiple subsets with highly flexible effector functions, human mucosal tissues are dominated by host stress-responsive Vδ1+ T-cells and microbe-responsive Vδ2+ T-cells. Widely recognized for their potent cytotoxicity, emerging data suggest that γδ T-cells also exert strong influences on downstream adaptive immunity to pathogens and tumors, in particular via activation of antigen-presenting cells and/or direct stimulation of other mucosal leukocytes. These unique functional attributes and lack of MHC restriction have prompted considerable interest in therapeutic targeting of γδ T-cells. Indeed, several drugs already in clinical use, including vedolizumab, infliximab, and azathioprine, likely owe their efficacy in part to modulation of γδ T-cell function. Recent clinical trials of Vδ2+ T-cell-selective treatments indicate a good safety profile in human patients, and efficacy is set to increase as more potent/targeted drugs continue to be developed. Key advances will include identifying methods of directing γδ T-cell recruitment to specific tissues to enhance host protection against invading pathogens, or alternatively, retaining these cells in the circulation to limit peripheral inflammation and/or improve responses to blood malignancies. Human γδ T-cell control of mucosal immunity is likely exerted via multiple mechanisms that induce diverse responses in other types of tissue-resident leukocytes. Understanding the microenvironmental signals that regulate these functions will be critical to the development of new γδ T-cell-based therapies.
Collapse
Affiliation(s)
- Neil E. McCarthy
- Centre for Immunobiology, Bart’s and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
60
|
Pistoia V, Tumino N, Vacca P, Veneziani I, Moretta A, Locatelli F, Moretta L. Human γδ T-Cells: From Surface Receptors to the Therapy of High-Risk Leukemias. Front Immunol 2018; 9:984. [PMID: 29867961 PMCID: PMC5949323 DOI: 10.3389/fimmu.2018.00984] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/20/2018] [Indexed: 01/13/2023] Open
Abstract
γδ T lymphocytes are potent effector cells, capable of efficiently killing tumor and leukemia cells. Their activation is mediated by γδ T-cell receptor (TCR) and by activating receptors shared with NK cells (e.g., NKG2D and DNAM-1). γδ T-cell triggering occurs upon interaction with specific ligands, including phosphoantigens (for Vγ9Vδ2 TCR), MICA-B and UL16 binding protein (for NKG2D), and PVR and Nectin-2 (for DNAM-1). They also respond to cytokines undergoing proliferation and release of cytokines/chemokines. Although at the genomic level γδ T-cells have the potential of an extraordinary TCR diversification, in tissues they display a restricted repertoire. Recent studies have identified various γδ TCR rearrangements following either hematopoietic stem cell transplantation (HSCT) or cytomegalovirus infection, accounting for their “adaptive” potential. In humans, peripheral blood γδ T-cells are primarily composed of Vγ9Vδ2 chains, while a minor proportion express Vδ1. They do not recognize antigens in the context of MHC molecules, thus bypassing tumor escape based on MHC class I downregulation. In view of their potent antileukemia activity and absence of any relevant graft-versus-host disease-inducing effect, γδ T-cells may play an important role in the successful clinical outcome of patients undergoing HLA-haploidentical HSCT depleted of TCR αβ T/CD19+ B lymphocytes to cure high-risk acute leukemias. In this setting, high numbers of both γδ T-cells (Vδ1 and Vδ2) and NK cells are infused together with CD34+ HSC and may contribute to rapid control of infections and leukemia relapse. Notably, zoledronic acid potentiates the cytolytic activity of γδ T-cells in vitro and its infusion in patients strongly promotes γδ T-cell differentiation and cytolytic activity; thus, treatment with this agent may contribute to further improve the patient clinical outcome after HLA-haploidentical HSCT depleted of TCR αβ T/CD19+ B lymphocytes.
Collapse
Affiliation(s)
- Vito Pistoia
- Immunology Area, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Nicola Tumino
- Immunology Area, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Paola Vacca
- Immunology Area, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Irene Veneziani
- Immunology Area, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale and Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genoa, Italy
| | - Franco Locatelli
- Department of Onco-Hematology and Cell and Gene Therapy, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy.,Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Lorenzo Moretta
- Immunology Area, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| |
Collapse
|
61
|
Wu Y, Jiang H, Zhu E, Li J, Wang Q, Zhou W, Qin T, Wu X, Wu B, Huang Y. Hericium erinaceus polysaccharide facilitates restoration of injured intestinal mucosal immunity in Muscovy duck reovirus-infected Muscovy ducklings. Int J Biol Macromol 2018; 107:1151-1161. [DOI: 10.1016/j.ijbiomac.2017.09.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
|
62
|
Antonangeli F, Soriani A, Cerboni C, Sciumè G, Santoni A. How Mucosal Epithelia Deal with Stress: Role of NKG2D/NKG2D Ligands during Inflammation. Front Immunol 2017; 8:1583. [PMID: 29209320 PMCID: PMC5701928 DOI: 10.3389/fimmu.2017.01583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/03/2017] [Indexed: 01/22/2023] Open
Abstract
Mucosal epithelia encounter both physicochemical and biological stress during their life and have evolved several mechanisms to deal with them, including regulation of immune cell functions. Stressed and damaged cells need to be cleared to control local inflammation and trigger tissue healing. Engagement of the activating NKG2D receptor is one of the most direct mechanisms involved in the recognition of stressed cells by the immune system. Indeed, injured cells promptly express NKG2D ligands that in turn mediate the activation of lymphocytes of both innate and adaptive arms of the immune system. This review focuses on different conditions that are able to modulate NKG2D ligand expression on the epithelia. Special attention is given to the mechanisms of immunosurveillance mediated by natural killer cells, which are finely tuned by NKG2D. Different types of stress, including viral and bacterial infections, chronic inflammation, and cigarette smoke exposure, are discussed as paradigmatic conditions for NKG2D ligand modulation, and the implications for tissue homeostasis are discussed.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,Neuromed I.R.C.C.S. - Istituto Neurologico Mediterraneo, Pozzilli, Italy
| |
Collapse
|
63
|
γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol 2017; 17:733-745. [PMID: 28920588 DOI: 10.1038/nri.2017.101] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.
Collapse
|
64
|
Balasubramanian P, Badhe BA, Ganesh RN, Panicker LC, Mohan P. Morphologic Spectrum of Duodenal Biopsies in Malabsorption: A Study from Southern India. J Clin Diagn Res 2017; 11:EC17-EC21. [PMID: 28892904 DOI: 10.7860/jcdr/2017/23871.10231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/17/2017] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Duodenal endoscopic biopsy is a common investigation for various non-neoplastic conditions. Malabsorption is a common indication for duodenal biopsy in our setting. AIM Our study was undertaken to study the morphologic spectrum of non-neoplastic conditions of duodenum emphasizing on Intraepithelial Lymphocytes (IELs) and to have a clinico-pathologic correlation. MATERIALS AND METHODS This was a prospective descriptive study. Duodenal biopsies from 101 patients with symptoms of malabsorption were studied according to inclusion and exclusion criteria. Informed written consent was taken. Clinical, laboratory, endoscopic, and serological parameters were collected wherever available. Histomorphological parameters were studied on Haematoxylin and Eosin (H&E) stained sections. Intraepithelial lymphocyte counts were done on CD3, CD4 and CD8 Immunohistochemical (IHC) stained sections and correlated. RESULTS We studied 101 duodenal biopsies. Our spectrum included 16 patients of celiac disease (CD) (15.8%), 15 autoimmune duodenitis (14%), 13 nutritional deficiency associated duodenitis (12.8%), five infectious duodenitis (5%) and 41 patients of non-specific duodenitis (40.6%) and 10.9% miscellaneous causes of duodenitis. Villous crypt architecture, IEL counts; villous tip IEL counts were statistically significant between CD and other disease groups. CONCLUSION A constellation of clinical, serological, endoscopic and histopathologic features is essential in diagnosing CD and autoimmune duodenitis. Biopsy is also a useful tool in diagnosing infectious duodenitis that are missed in other investigations.
Collapse
Affiliation(s)
| | | | | | - Lakshmi C Panicker
- Assistant Professor, Department of Medical Gastroenterology, JIPMER, Puducherry, India
| | - Pazhanivel Mohan
- Assistant Professor, Department of Medical Gastroenterology, JIPMER, Puducherry, India
| |
Collapse
|
65
|
Seo SH, Jang MS, Kim DJ, Kim SM, Oh SC, Jung CR, Park Y, Ha SJ, Jung H, Park YJ, Yoon SR, Choi I, Kim TD. MicroRNA-150 controls differentiation of intraepithelial lymphocytes through TGF-β receptor II regulation. J Allergy Clin Immunol 2017; 141:1382-1394.e14. [PMID: 28797734 DOI: 10.1016/j.jaci.2017.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intraepithelial lymphocytes (IELs) in the intestines play pivotal roles in maintaining the integrity of the mucosa, regulating immune cells, and protecting against pathogenic invasion. Although several extrinsic factors, such as TGF-β, have been identified to contribute to IEL generation, intrinsic regulatory factors have not been determined fully. OBJECTIVE Here we investigated the regulation of IEL differentiation and the underlying mechanisms in mice. METHODS We analyzed IELs and the expression of molecules associated with IEL differentiation in wild-type control and microRNA (miRNA)-150 knockout mice. Methotrexate was administered to mice lacking miR-150 and control mice. RESULTS miR-150 deficiency reduced the IEL population in the small intestine and increased susceptibility to methotrexate-induced mucositis. Evaluation of expression of IEL differentiation-associated molecules showed that miR-150-deficient IELs exhibited decreased expression of TGF-β receptor (TGF-βR) II, CD103, CD8αα, and Runt-related transcription factor 3 in all the IEL subpopulations. The reduced expression of TGF-βRII in miR-150-deficient IELs was caused by increased expression of c-Myb/miR-20a. Restoration of miR-150 or inhibition of miR-20a recovered the TGF-βRII expression. CONCLUSION miR-150 is an intrinsic regulator of IEL differentiation through TGF-βRII regulation. miR-150-mediated IEL generation is crucial for maintaining intestinal integrity against anticancer drug-induced mucositis.
Collapse
Affiliation(s)
- Sang-Hwan Seo
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Min Seong Jang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seok-Min Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Cho-Rok Jung
- the Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| |
Collapse
|
66
|
Laurikka P, Kaukinen K, Kurppa K. Unravelling the mechanisms behind the persistent gastrointestinal symptoms in celiac disease - how can they lead to better treatment outcomes? Expert Rev Gastroenterol Hepatol 2017; 11:605-607. [PMID: 28347161 DOI: 10.1080/17474124.2017.1312345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Pilvi Laurikka
- a Celiac Disease Research Centre , University of Tampere , Tampere , Finland
| | - Katri Kaukinen
- a Celiac Disease Research Centre , University of Tampere , Tampere , Finland.,b Department of Internal Medicine , Tampere University Hospital, University of Tampere , Tampere , Finland
| | - Kalle Kurppa
- c Centre for Child Health Research , University of Tampere , Tampere , Finland
| |
Collapse
|
67
|
Jansen MAE, van den Heuvel D, Jaddoe VWV, van Zelm MC, Moll HA. Abnormalities in CD57+ cytotoxic T cells and Vδ1+ γδT cells in subclinical celiac disease in childhood are affected by cytomegalovirus. The Generation R Study. Clin Immunol 2017; 183:233-239. [PMID: 28456719 DOI: 10.1016/j.clim.2017.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/26/2016] [Accepted: 04/26/2017] [Indexed: 02/06/2023]
Abstract
Celiac disease (CD) is a digestive and autoimmune disorder driven by an immune response to modified gluten peptides. Affected intestines show infiltrates of various T-cell and NK-cell subsets. It is currently unclear if individuals with subclinical CD have systemic abnormalities in immune cells. We here studied whether subclinical CD is associated with changes in blood CD57-expressing and Vδ1-expressing lymphocytes in children, and whether cytomegalovirus (CMV) infection modifies this association. Included were 1068 children from the Generation R Study. Serum Immunoglobulin G (IgG) levels against CMV were measured by ELISA; Tissue transglutaminase type 2 antibody (TG2A) levels with fluorescence enzyme immunoassay (FEIA). Duodenal biopsies, additional Human Leukocyte Antigen (HLA) DQ 2.2, 2.5 and 8 and endomysial antibody (EMA) typing were performed in TG2A positive children. Subclinical CD cases (n=12) had 1.8 fold (95% CI 1.06; 3.1) fewer Vδ1+ T cells which was predominantly observed in CMV seronegative children (p-interaction 0.02), and 2.7 fold (95% CI 1.25; 5.99) more CD57+ T cells than HLA DQ2/-DQ8 positive controls (n=339). Hence, children with subclinical CD have alterations in specific blood T cell subsets that are linked to viral pathology. The observed interaction effect between subclinical CD and CMV may contribute to the understanding of disease pathogenesis.
Collapse
Affiliation(s)
- M A E Jansen
- The Generation R Study Group, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Immunology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - D van den Heuvel
- Department of Immunology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - V W V Jaddoe
- The Generation R Study Group, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands
| | - M C van Zelm
- Department of Immunology, Erasmus University Medical Center (Erasmus MC), Rotterdam, The Netherlands; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - H A Moll
- Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, The Netherlands.
| |
Collapse
|
68
|
Carrasco A, Esteve M, Salas A, Pedrosa E, Rosinach M, Aceituno M, Zabana Y, Fernández-Bañares F. Immunological Differences between Lymphocytic and Collagenous Colitis. J Crohns Colitis 2016; 10:1055-66. [PMID: 26928959 DOI: 10.1093/ecco-jcc/jjw058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/23/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Lymphocytic (LC) and collagenous (CC) colitis are the two major forms of microscopic colitis (MC). The aim of this study was to identify similarities and differences in their mucosal immune characteristics. METHODS Colonic biopsies from 15 CC, 8 LC, and 10 healthy controls were collected. Mucosal lymphocytes were assessed by flow cytometry. Tissue gene expression and protein levels were determined by real-time PCR and ELISA, respectively. RESULTS LC patients had lower numbers of CD4(+) and double-positive CD4(+)CD8(+)mucosal T lymphocytes, and higher numbers of CD8(+) and CD4(+)TCRγδ(+) mucosal T cells, compared with controls and CC patients. Regulatory Treg (CD4(+)CD25(+)FOXP3(+)) and double-negative (CD3(+)CD4(-)CD8(-)) T cell percentages were higher in both CC and LC compared with controls, coupled with higher levels of the anti-inflammatory IL-10, both at mRNA and protein levels. By contrast, Th1 and Th17 cells were lower in both CC and LC, although gene expression of Th1/Th17 cytokines was higher in both. CONCLUSION CC and LC share some regulatory and effector mechanisms, but not others. Higher IL-10 levels and higher Treg and double-negative T cell percentages, found in both CC and LC, could be responsible for the lack of progression of structural damage and the blockade of proinflammatory cytokine production. However, CC and LC are revealed as separate, independent entities, as they show clearly different mucosal lymphocyte profiles, which could be caused by different luminal triggers of the two diseases. Hence, CC and LC are two closely related but independent intestinal disorders.
Collapse
Affiliation(s)
- Anna Carrasco
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Fundació Recerca Mútua Terrassa, Terrassa, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa, Barcelona, Spain
| | - Maria Esteve
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Fundació Recerca Mútua Terrassa, Terrassa, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa, Barcelona, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa, Barcelona, Spain Department of Pathology, Hospital Universitari MútuaTerrassa, Terrassa, Barcelona, Spain
| | - Elisabet Pedrosa
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Fundació Recerca Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Mercè Rosinach
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Fundació Recerca Mútua Terrassa, Terrassa, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa, Barcelona, Spain
| | - Montserrat Aceituno
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Fundació Recerca Mútua Terrassa, Terrassa, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa, Barcelona, Spain
| | - Yamile Zabana
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Fundació Recerca Mútua Terrassa, Terrassa, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa, Barcelona, Spain
| | - Fernando Fernández-Bañares
- Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Fundació Recerca Mútua Terrassa, Terrassa, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Terrassa, Barcelona, Spain
| |
Collapse
|
69
|
Serum transglutaminase 3 antibodies correlate with age at celiac disease diagnosis. Dig Liver Dis 2016; 48:632-7. [PMID: 27026081 DOI: 10.1016/j.dld.2016.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transglutaminase (TG)2 is the autoantigen in celiac disease, but also TG3 antibodies have been detected in the serum of celiac disease patients. AIMS To investigate the correlations between serum TG3 antibodies and clinical and histological manifestations of celiac disease and to assess gluten-dependency of TG3 antibodies. METHODS Correlations between serum TG3 antibody levels measured from 119 adults and children with untreated coeliac disease and the demographic data, clinical symptoms, celiac antibodies, histological data and results of laboratory tests and bone mineral densities were tested. TG3 antibodies were reinvestigated in 97 celiac disease patients after 12 months on a gluten-free diet (GFD). RESULTS TG3 antibody titers were shown to correlate with the age at celiac disease diagnosis. Further, negative correlation with TG3 antibodies and intestinal γδ+ cells at diagnosis and on GFD was detected. Correlations were not detected with the clinical manifestation of celiac disease, TG2 or endomysial autoantibodies, laboratory values, severity of mucosal villous atrophy, associated diseases or complications. TG3 antibody titers decreased on GFD in 56% of the TG3 antibody positive patients. CONCLUSION Serum TG3 antibody positivity in celiac disease increases as the diagnostic age rises. TG3 antibodies did not show similar gluten-dependency as TG2 antibodies.
Collapse
|
70
|
Clemente Ximenis A, Crespí Bestard C, Cambra Conejero A, Pallarés Ferreres L, Juan Mas A, Olea Vallejo JL, Julià Benique MR. In vitro evaluation of γδ T cells regulatory function in Behçet’s disease patients and healthy controls. Hum Immunol 2016; 77:20-28. [DOI: 10.1016/j.humimm.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/11/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
|
71
|
Zhao D, Xu A, Dai Z, Peng J, Zhu M, Shen J, Zheng Q, Ran Z. WNT5A transforms intestinal CD8αα⁺ IELs into an unconventional phenotype with pro-inflammatory features. BMC Gastroenterol 2015; 15:173. [PMID: 26652024 PMCID: PMC4676129 DOI: 10.1186/s12876-015-0402-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/27/2015] [Indexed: 01/22/2023] Open
Abstract
Background Intestinal intraepithelial lymphocytes that reside within the epithelium of the intestine form one of the main branches of the immune system. A majority of IELs express CD8α homodimer together with other molecules associated with immune regulation. Growing evidence points to the WNT signaling pathway as a pivotal piece in the immune balance and focuses on its direct regulation in intestinal epithelium. Therefore we decided to investigate its role in IELs’ immune status determination. Method DSS colitis was induced in male C57BL mice. IELs were isolated from colon samples using mechanical dissociation followed by percoll gradient purification and Magnetic-activated cell sorting. Phenotype and cytokine production and condition with Wnts were analyzed by flow cytometry, real-time PCR or ELISA. Proliferation of lymphocytes were evaluated using CFSE dilution. Cell responses after WNT pathway interference were also evaluated. Results Non-canonical WNT pathway elements represented by FZD5, WNT5A and NFATc1 were remarkably elevated in colitis IELs. The non-canonical WNT5A skewed them into a pro-inflammatory category as measured by inhibitory cell surface marker LAG3, LY49E, NKG2A and activated marker CD69 and FASL. Gaining of a pro-inflammatory marker was correlated with increased IFN-γ production but not TNF whilst decreased TGF-β and IL-10. Both interrupting WNT5A/PKC pathway and adding canonical WNT stimulants could curtail its immune-activating effect. Conclusion Canonical and non-canonical WNT signals act in opposing manners concerning determining CD8αα+ IELs immune status. Targeting non-canonical WNT pathway may be promising in tackling inflammatory bowel disease.
Collapse
Affiliation(s)
- Di Zhao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Antao Xu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhanghan Dai
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jiangchen Peng
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Mingming Zhu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qing Zheng
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
72
|
Increased Intraepithelial Vα24 Invariant NKT Cells in the Celiac Duodenum. Nutrients 2015; 7:8960-76. [PMID: 26529008 PMCID: PMC4663572 DOI: 10.3390/nu7115444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022] Open
Abstract
Celiac Disease (CD) is an interferon (IFN)γ-mediated duodenal hypersensitivity to wheat gluten occurring in genetically predisposed individuals. Gluten-free diet (GFD) leads to a complete remission of the disease. Vα24-restricted invariant NKT (iNKT) cells are important to maintain immune homeostasis in the gut mucosa because of their unique capacity to rapidly produce large quantities of both T-helper (Th)1 and Th2 cytokines upon stimulation. We studied the presence of these cells in the CD duodenum. Duodenal biopsies were obtained from 45 untreated-CD patients (uCD), 15 Gluten Free Diet-CD patients (GFD-CD), 44 non-inflamed non-CD controls (C-controls) and 15 inflamed non-CD controls (I-controls). Two populations from Spain and Argentina were recruited. Messenger RNA (mRNA) expression of Vα24-Jα18 (invariant TCRα chain of human iNKT cells), IFNγ and intracellular transcription factor Forkhead Box P3 (Foxp3), and flow cytometry intraepithelial lymphocyte (IEL) profile were determined. Both uCD and GFD-CD patients had higher Vα24-Jα18 mRNA levels than non-CD controls (I and C-controls). The expression of Vα24-Jα18 correlated with Marsh score for the severity of mucosal lesion and also with increased mRNA IFNγ levels. uCD and GFD-CD patients had decreased mRNA expression of FoxP3 but increased expression of Vα24-Jα18, which revealed a CD-like molecular profile. Increased numbers of iNKT cells were confirmed by flow cytometry within the intraepithelial lymphocyte compartment of uCD and GFD-CD patients and correlated with Vα24-Jα18 mRNA expression. In conclusion, we have found an increased number of iNKT cells in the duodenum from both uCD and GFD-CD patients, irrespective of the mucosal status. A CD-like molecular profile, defined by an increased mRNA expression of Vα24-Jα18 together with a decreased expression of FoxP3, may represent a pro-inflammatory signature of the CD duodenum.
Collapse
|
73
|
Turner GD, Dunne MR, Ryan AW. Celiac Disease: Background and Historical Context. Methods Mol Biol 2015; 1326:3-14. [PMID: 26498607 DOI: 10.1007/978-1-4939-2839-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Medical descriptions of celiac disease date to the first century BC, and the first modern description was published in 1888. Further insights were gained throughout the 1900s, culminating in the identification of the dietary component, the major genetic determinant, and the autoantigen by the turn of the century. Understanding of the age of onset, population prevalence, and the extent of subclinical celiac disease developed in tandem. Thanks to advances in genomics, currently established loci account for over 50 % of the genetic risk. Nonetheless, much remains to be discovered. Advances in high-throughput genomic, biochemical, and cell analyses, as well as the bioinformatics needed to process the data, promise to deepen our understanding further. Here we present a primer of celiac disease, viewing the condition in turn from the historical, epidemiological, immunological, molecular, and genetic points of view. Research into any ailment has specific requirements: study subjects must be identified and relevant tissue samples collected and stored with the appropriate timing and conditions. These requirements are summarized. To conclude, a short discussion of future prospects is presented.
Collapse
Affiliation(s)
- Graham D Turner
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland.,Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland
| | - Margaret R Dunne
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland.,Department of Immunology, Institute of Molecular Medicine, St James's Hospital, Trinity College Dublin, Dublin, 8, Ireland.,Department of Surgery, Trinity Centre for Health Sciences, St James's Hospital, Dublin, 8, Ireland
| | - Anthony W Ryan
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland. .,Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland.
| |
Collapse
|
74
|
Galipeau HJ, McCarville JL, Huebener S, Litwin O, Meisel M, Jabri B, Sanz Y, Murray JA, Jordana M, Alaedini A, Chirdo FG, Verdu EF. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2969-82. [PMID: 26456581 DOI: 10.1016/j.ajpath.2015.07.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/09/2015] [Indexed: 01/16/2023]
Abstract
Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota. We investigated whether specific microbiota compositions influence immune responses to gluten in mice expressing the human DQ8 gene, which confers moderate CD genetic susceptibility. Germ-free mice, clean specific-pathogen-free (SPF) mice colonized with a microbiota devoid of opportunistic pathogens and Proteobacteria, and conventional SPF mice that harbor a complex microbiota that includes opportunistic pathogens were used. Clean SPF mice had attenuated responses to gluten compared to germ-free and conventional SPF mice. Germ-free mice developed increased intraepithelial lymphocytes, markers of intraepithelial lymphocyte cytotoxicity, gliadin-specific antibodies, and a proinflammatory gliadin-specific T-cell response. Antibiotic treatment, leading to Proteobacteria expansion, further enhanced gluten-induced immunopathology in conventional SPF mice. Protection against gluten-induced immunopathology in clean SPF mice was reversed after supplementation with a member of the Proteobacteria phylum, an enteroadherent Escherichia coli isolated from a CD patient. The intestinal microbiota can both positively and negatively modulate gluten-induced immunopathology in mice. In subjects with moderate genetic susceptibility, intestinal microbiota changes may be a factor that increases CD risk.
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Justin L McCarville
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Sina Huebener
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Owen Litwin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marlies Meisel
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Group, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Manel Jordana
- Departments of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Fernando G Chirdo
- Institute of Immunological and Pathophysiological Studies, Department of Biological Sciences, Faculty of Sciences, National University of La Plata, La Plata, Argentina
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
75
|
Nata T, Basheer A, Cocchi F, van Besien R, Massoud R, Jacobson S, Azimi N, Tagaya Y. Targeting the binding interface on a shared receptor subunit of a cytokine family enables the inhibition of multiple member cytokines with selectable target spectrum. J Biol Chem 2015; 290:22338-51. [PMID: 26183780 DOI: 10.1074/jbc.m115.661074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 02/04/2023] Open
Abstract
The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases.
Collapse
Affiliation(s)
- Toshie Nata
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | - Fiorenza Cocchi
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard van Besien
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Raya Massoud
- the Section of Neuroimmunology, NINDS, National Institutes of Health, Bethesda, Maryland 20890
| | - Steven Jacobson
- the Section of Neuroimmunology, NINDS, National Institutes of Health, Bethesda, Maryland 20890
| | | | - Yutaka Tagaya
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201,
| |
Collapse
|
76
|
Frossard CP, Asigbetse KE, Burger D, Eigenmann PA. Gut T cell receptor-γδ(+) intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin Exp Immunol 2015; 180:118-30. [PMID: 25430688 DOI: 10.1111/cei.12561] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 01/13/2023] Open
Abstract
The gut immune system is usually tolerant to harmless foreign antigens such as food proteins. However, tolerance breakdown may occur and lead to food allergy. To study mechanisms underlying food allergy, animal models have been developed in mice by using cholera toxin (CT) to break tolerance. In this study, we identify T cell receptor (TCR)-γδ(+) intraepithelial lymphocytes (IELs) as major targets of CT to break tolerance to food allergens. TCR-γδ(+) IEL-enriched cell populations isolated from mice fed with CT and transferred to naive mice hamper tolerization to the food allergen β-lactoglobulin (BLG) in recipient mice which produce anti-BLG immunoglobulin (Ig)G1 antibodies. Furthermore, adoptive transfer of TCR-γδ(+) cells from CT-fed mice triggers the production of anti-CT IgG1 antibodies in recipient mice that were never exposed to CT, suggesting antigen-presenting cell (APC)-like functions of TCR-γδ(+) IELs. In contrast to TCR-αβ(+) cells, TCR-γδ(+) IELs bind and internalize CT both in vitro and in vivo. CT-activated TCR-γδ(+) IELs express major histocompatibility complex (MHC) class II molecules, CD80 and CD86 demonstrating an APC phenotype. CT-activated TCR-γδ(+) IELs migrate to the lamina propria, where they produce interleukin (IL)-10 and IL-17. These results provide in-vivo evidence for a major role of TCR-γδ(+) IELs in the modulation of oral tolerance in the pathogenesis of food allergy.
Collapse
Affiliation(s)
- C P Frossard
- Inflammation and Allergy Research Group, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
77
|
Conroy MJ, Mac Nicholas R, Taylor M, O'Dea S, Mulcahy F, Norris S, Doherty DG. Increased Frequencies of Circulating IFN-γ-Producing Vδ1+and Vδ2+γδ T Cells in Patients with Asymptomatic Persistent Hepatitis B Virus Infection. Viral Immunol 2015; 28:201-8. [DOI: 10.1089/vim.2014.0133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Melissa J. Conroy
- Department of Immunology, School of Medicine, Trinity College, Dublin, Ireland
- Department of Surgery, School of Medicine, Trinity College, Dublin, Ireland
- Institute of Immunology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | - Siobhan O'Dea
- Genitourinary and Infectious Diseases Clinic, St. James's Hospital, Dublin, Ireland
| | - Fiona Mulcahy
- Genitourinary and Infectious Diseases Clinic, St. James's Hospital, Dublin, Ireland
| | - Suzanne Norris
- Hepatology Centre, St. James's Hospital, Dublin, Ireland
| | - Derek G. Doherty
- Department of Immunology, School of Medicine, Trinity College, Dublin, Ireland
- Department of Surgery, School of Medicine, Trinity College, Dublin, Ireland
| |
Collapse
|
78
|
Leibelt S, Friede ME, Rohe C, Gütle D, Rutkowski E, Weigert A, Kveberg L, Vaage JT, Hornef MW, Steinle A. Dedicated immunosensing of the mouse intestinal epithelium facilitated by a pair of genetically coupled lectin-like receptors. Mucosal Immunol 2015; 8:232-42. [PMID: 24985083 DOI: 10.1038/mi.2014.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/03/2014] [Indexed: 02/04/2023]
Abstract
The integrity of the intestinal epithelium is constantly surveyed by a peculiar subset of innate-like T lymphocytes embedded in the epithelial cell layer, hence called intestinal intraepithelial lymphocytes (IELs). IELs are thought to act as "first-line" sentinels sensing the state of adjacent epithelial cells via both T-cell receptors and auxiliary receptors. Auxiliary receptors modulating IEL activity include C-type lectin-like receptors encoded in the natural killer gene complex such as NKG2D. Here, we report that the CTLR Nkrp1g is expressed by a subpopulation of mouse CD103(+) IELs allowing immunosensing of the intestinal epithelium through ligation of the genetically coupled CTLR Clr-f that is almost exclusively expressed on differentiated intestinal epithelial cells (IECs). Most of these Nkrp1g-expressing IELs exhibit a γδTCR(bright)Nkg2a(-) phenotype and are intimately associated with the intestinal epithelium. As Clr-f expression strongly inhibits effector functions of Nkrp1g-expressing cells and is upregulated upon poly(I:C) challenge, Clr-f molecules may quench reactivity of these IELs towards the epithelial barrier that is constantly provoked by microbial and antigenic stimuli. Altogether, we here newly characterize a genetically linked C-type lectin-like receptor/ligand pair with a highly restricted tissue expression that apparently evolved to allow for a dedicated immunosurveillance of the mouse intestinal epithelium.
Collapse
Affiliation(s)
- S Leibelt
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - M E Friede
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - C Rohe
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - D Gütle
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - E Rutkowski
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - A Weigert
- Institute for Biochemistry I, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - L Kveberg
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - J T Vaage
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - M W Hornef
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - A Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
79
|
Tyler CJ, Doherty DG, Moser B, Eberl M. Human Vγ9/Vδ2 T cells: Innate adaptors of the immune system. Cell Immunol 2015; 296:10-21. [PMID: 25659480 DOI: 10.1016/j.cellimm.2015.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/25/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Unconventional T cells are gaining center stage as important effector and regulatory cells that orchestrate innate and adaptive immune responses. Human Vγ9/Vδ2 T cells are amongst the best understood unconventional T cells, as they are easily accessible in peripheral blood, can readily be expanded and manipulated in vitro, respond to microbial infections in vivo and can be exploited for novel tumor immunotherapies. We here review findings that suggest that Vγ9/Vδ2 T cells, and possibly other unconventional human T cells, play an important role in bridging innate and adaptive immunity by promoting the activation and differentiation of various types of antigen-presenting cells (APCs) and even turning into APCs themselves, and thereby pave the way for antigen-specific effector responses and long-term immunological memory. Although the direct physiological relevance for most of these mechanisms still needs to be demonstrated in vivo, these findings may have implications for novel therapies, diagnostic tests and vaccines.
Collapse
Affiliation(s)
- Christopher J Tyler
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Bernhard Moser
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
80
|
Couzi L, Pitard V, Moreau JF, Merville P, Déchanet-Merville J. Direct and Indirect Effects of Cytomegalovirus-Induced γδ T Cells after Kidney Transplantation. Front Immunol 2015; 6:3. [PMID: 25653652 PMCID: PMC4301015 DOI: 10.3389/fimmu.2015.00003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/04/2015] [Indexed: 01/30/2023] Open
Abstract
Despite effective anti-viral therapies, cytomegalovirus (CMV) is still associated with direct (CMV disease) and indirect effects (rejection and poor graft survival) in kidney transplant recipients. Recently, an unconventional T cell population (collectively designated as Vδ2neg γδ T cells) has been characterized during the anti-CMV immune response in all solid-organ and bone-marrow transplant recipients, neonates, and healthy people. These CMV-induced Vδ2neg γδ T cells undergo a dramatic and stable expansion after CMV infection, in a conventional “adaptive” manner. Similarly, as CMV-specific CD8+ αβ T cells, they exhibit an effector/memory TEMRA phenotype and cytotoxic effector functions. Activation of Vδ2neg γδ T cells by CMV-infected cells involves the γδ T cell receptor (TCR) and still ill-defined co-stimulatory molecules such as LFA-1. A multiple of Vδ2neg γδ TCR ligands are apparently recognized on CMV-infected cells, the first one identified being the major histocompatibility complex-related molecule endothelial protein C receptor. A singularity of CMV-induced Vδ2neg γδ T cells is to acquire CD16 expression and to exert an antibody-dependent cell-mediated inhibition on CMV replication, which is controlled by a specific cytokine microenvironment. Beyond the well-demonstrated direct anti-CMV effect of Vδ2neg γδ T cells, unexpected indirect effects of these cells have been also observed in the context of kidney transplantation. CMV-induced Vδ2neg γδ T cells have been involved in surveillance of malignancy subsequent to long-term immunosuppression. Moreover, CMV-induced CD16+ γδ T cells are cell effectors of antibody-mediated rejection of kidney transplants, and represent a new physiopathological contribution to the well-known association between CMV infection and poor graft survival. All these basic and clinical studies paved the road to the development of a future γδ T cell-based immunotherapy. In the meantime, γδ T cell monitoring should prove a valuable immunological biomarker in the management of CMV infection.
Collapse
Affiliation(s)
- Lionel Couzi
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Service de Néphrologie, Transplantation, Dialyse, Centre Hospitalier Universitaire de Bordeaux , Bordeaux , France
| | - Vincent Pitard
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France
| | - Jean-François Moreau
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Centre Hospitalier Universitaire de Bordeaux, Laboratoire d'immunologie , Bordeaux , France
| | - Pierre Merville
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France ; Service de Néphrologie, Transplantation, Dialyse, Centre Hospitalier Universitaire de Bordeaux , Bordeaux , France
| | - Julie Déchanet-Merville
- Université de Bordeaux , Bordeaux , France ; UMR 5164, Centre National de la Recherche Scientifique , Bordeaux , France
| |
Collapse
|
81
|
Abadie V, Jabri B. Immunopathology of Celiac Disease. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
82
|
Scheper W, Sebestyen Z, Kuball J. Cancer Immunotherapy Using γδT Cells: Dealing with Diversity. Front Immunol 2014; 5:601. [PMID: 25477886 PMCID: PMC4238375 DOI: 10.3389/fimmu.2014.00601] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022] Open
Abstract
The broad and potent tumor-reactivity of innate-like γδT cells makes them valuable additions to current cancer immunotherapeutic concepts based on adaptive immunity, such as monoclonal antibodies and αβT cells. However, clinical success using γδT cells to treat cancer has so far fallen short. Efforts of recent years have revealed a striking diversity in γδT cell functions and immunobiology, putting these cells forward as true “swiss army knives” of immunity. At the same time, however, this heterogeneity poses new challenges to the design of γδT cell-based therapeutic concepts and could explain their rather limited clinical efficacy in cancer patients. This review outlines the recent new insights into the different levels of γδT cell diversity, including the myriad of γδT cell-mediated immune functions, the diversity of specificities and affinities within the γδT cell repertoire, and the multitude of complex molecular requirements for γδT cell activation. A careful consideration of the diversity of antibodies and αβT cells has delivered great progress to their clinical success; addressing also the extraordinary diversity in γδT cells will therefore hold the key to more effective immunotherapeutic strategies with γδT cells as additional and valuable tools to battle cancer.
Collapse
Affiliation(s)
- Wouter Scheper
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Zsolt Sebestyen
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
83
|
Wesch D, Peters C, Siegers GM. Human gamma delta T regulatory cells in cancer: fact or fiction? Front Immunol 2014; 5:598. [PMID: 25477885 PMCID: PMC4238407 DOI: 10.3389/fimmu.2014.00598] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/07/2014] [Indexed: 11/13/2022] Open
Abstract
While gamma delta T cell (γδTc) anticancer immunotherapies are being developed, recent reports suggest a regulatory role for γδTc tumor-infiltrating lymphocytes. This mini-review surveys available evidence, determines strengths and weaknesses thereof and suggest directions for further exploration. We focus on human γδTc, as mouse and human γδTc repertoires differ. Regulatory γδTc are defined and compared to conventional Tregs and their roles in health and disease (focusing in on cancer) are discussed. We contrast the suggested regulatory roles for γδTc in breast and colorectal cancer with their cytotoxic capabilities in other malignancies, emphasizing the context dependence of γδTc functional plasticity. Since γδTc can be induced to exhibit regulatory properties (in some cases reversible), we carefully scrutinize experimental procedures in published reports. As γδTc garner increasing interest for their therapeutic potential, it is critical that we appreciate the full extent of their role(s) and interactions with other cell types in both the circulation and the tumor microenvironment. A comprehensive understanding will enable manipulation of γδTc to improve anti-tumor efficacy and patient outcomes.
Collapse
Affiliation(s)
- Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel , Kiel , Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel , Kiel , Germany
| | | |
Collapse
|
84
|
Abstract
Immediately following birth, the gastrointestinal tract is colonized with a complex community of bacteria, which helps shape the immune system. Under conditions of health, the immune system is able to differentiate between innocuous antigens, including food protein and commensals, and harmful antigens such as pathogens. However, patients with celiac disease (CD) develop an intolerance to gluten proteins which results in a pro-inflammatory T-cell mediated immune response with production of anti-gluten and anti-tissue transglutaminase antibodies. This adaptive immune response, in conjunction with activation of innate inflammatory cells, lead to destruction of the small intestinal mucosa. Overall 30% of the global population has genetic risk to develop CD. However, only a small proportion develop CD, suggesting that additional environmental factors must play a role in disease pathogenesis. Alterations in small intestinal microbial composition have recently been associated with active CD, indicating a possible role for the microbiota in CD. However, studies demonstrating causality are lacking. This review will highlight the recent data on the potential role of the microbiota in CD pathogenesis, the potential mechanisms, and discuss future research directions.
Collapse
Key Words
- CD, celiac disease
- CTL, cytotoxic T lymphocytes
- DC, dendritic cell
- EC, epithelial cell.
- FISH, fluorescence in situ hybridization
- GALT, gut associated lymphoid tissue
- GFD, gluten-free diet
- GRD, gluten related disorders
- IBD, inflammatory bowel disease
- IEL, intraepithelial lymphocyte
- MLN, mesenteric lymph node
- PBMC, peripheral blood mononuclear cell
- SCFA, short chain fatty acids
- SFB, segmented filamentous bacteria
- TG2, tissue transglutaminase
- Tregs, regulatory T cells
- WT, wild-type
- celiac disease
- gluten related disorders
- immune homeostasis
- microbiota
- oral tolerance
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute; McMaster
University; Hamilton, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute; McMaster
University; Hamilton, Canada,Correspondence to: Elena F
Verdu;
| |
Collapse
|
85
|
Weitkamp JH, Rosen MJ, Zhao Z, Koyama T, Geem D, Denning TL, Rock MT, Moore DJ, Halpern MD, Matta P, Denning PW. Small intestinal intraepithelial TCRγδ+ T lymphocytes are present in the premature intestine but selectively reduced in surgical necrotizing enterocolitis. PLoS One 2014; 9:e99042. [PMID: 24905458 PMCID: PMC4048281 DOI: 10.1371/journal.pone.0099042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/09/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastrointestinal barrier immaturity predisposes preterm infants to necrotizing enterocolitis (NEC). Intraepithelial lymphocytes (IEL) bearing the unconventional T cell receptor (TCR) γδ (γδ IEL) maintain intestinal integrity and prevent bacterial translocation in part through production of interleukin (IL) 17. OBJECTIVE We sought to study the development of γδ IEL in the ileum of human infants and examine their role in NEC pathogenesis. We defined the ontogeny of γδ IEL proportions in murine and human intestine and subjected tcrδ-/- mice to experimental gut injury. In addition, we used polychromatic flow cytometry to calculate percentages of viable IEL (defined as CD3+ CD8+ CD103+ lymphocytes) and the fraction of γδ IEL in surgically resected tissue from infants with NEC and gestational age matched non-NEC surgical controls. RESULTS In human preterm infants, the proportion of IEL was reduced by 66% in 11 NEC ileum resections compared to 30 non-NEC controls (p<0.001). While γδ IEL dominated over conventional αβ IEL early in gestation in mice and in humans, γδ IEL were preferential decreased in the ileum of surgical NEC patients compared to non-NEC controls (50% reduction, p<0.05). Loss of IEL in human NEC was associated with downregulation of the Th17 transcription factor retinoic acid-related orphan nuclear hormone receptor C (RORC, p<0.001). TCRδ-deficient mice showed increased severity of experimental gut injury (p<0.05) with higher TNFα expression but downregulation of IL17A. CONCLUSION Complimentary mouse and human data suggest a role of γδ IEL in IL17 production and intestinal barrier production early in life. Specific loss of the γδ IEL fraction may contribute to NEC pathogenesis. Nutritional or pharmacological interventions to support γδ IEL maintenance in the developing small intestine could serve as novel strategies for NEC prevention.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Enterocolitis, Necrotizing/genetics
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/pathology
- Enterocolitis, Necrotizing/surgery
- Female
- Gene Expression Regulation
- Humans
- Infant, Newborn
- Infant, Premature/growth & development
- Infant, Premature/immunology
- Interleukin-17/genetics
- Interleukin-17/immunology
- Intestine, Small/growth & development
- Intestine, Small/immunology
- Intestine, Small/pathology
- Intestine, Small/surgery
- Male
- Mice
- Mice, Inbred C57BL
- Occludin/genetics
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Jörn-Hendrik Weitkamp
- Department of Pediatrics, Vanderbilt University School of Medicine and Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, United States of America
- * E-mail: (JHW); (PWD)
| | - Michael J. Rosen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Zhiguo Zhao
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Tatsuki Koyama
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Duke Geem
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Timothy L. Denning
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Michael T. Rock
- Department of Pediatrics, Vanderbilt University School of Medicine and Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, United States of America
| | - Daniel J. Moore
- Department of Pediatrics, Vanderbilt University School of Medicine and Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, United States of America
| | - Melissa D. Halpern
- Department of Pediatrics and Steele Children's Research Center, University of Arizona, Tucson, Arizona, United States of America
| | - Pranathi Matta
- Department of Pediatrics, Vanderbilt University School of Medicine and Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee, United States of America
| | - Patricia W. Denning
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (JHW); (PWD)
| |
Collapse
|
86
|
Qiu Y, Yang Y, Yang H. The unique surface molecules on intestinal intraepithelial lymphocytes: from tethering to recognizing. Dig Dis Sci 2014; 59:520-9. [PMID: 24248415 DOI: 10.1007/s10620-013-2933-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/23/2013] [Indexed: 12/12/2022]
Abstract
Interspersed among epithelial cells (ECs), intraepithelial lymphocytes (IELs) might be important constituents of the physiological and immunological barriers of the intestinal epithelial layer. IELs are composed of memory-effector T cell subtypes bearing the T cell receptor-γδ (TCRγδ) and TCRαβ. The intimate cell adhesion molecules- and tight junction proteins-mediated biological interactions between IELs and ECs ensure that IELs can reside within the intraepithelial compartment and survey large areas of the villus epithelium. As sentinels in this critical interface, IELs express TCRs that recognize antigenic peptides presented by conventional major histocompatibility complex (MHC) molecules or by non-classical MHC molecules. Moreover, IELs monitor for stressed or damaged ECs to mediate pathological responses and maintain intestinal homeostasis. In this review, we address how IELs reside within the epithelium and exert their sentinel functions.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Chongqing, 400037, China,
| | | | | |
Collapse
|
87
|
TCRγδ(+)CD4(-)CD8(-) T cells suppress the CD8(+) T-cell response to hepatitis B virus peptides, and are associated with viral control in chronic hepatitis B. PLoS One 2014; 9:e88475. [PMID: 24551107 PMCID: PMC3925121 DOI: 10.1371/journal.pone.0088475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022] Open
Abstract
The immune mechanisms underlying failure to achieve hepatitis B e antigen (HBeAg) seroconversion associated with viral control in chronic hepatitis B (CHB) remain unclear. Here we investigated the role of CD4(-)CD8(-) T (double-negative T; DNT) cells including TCRαβ(+) DNT (αβ DNT) and TCRγδ(+) DNT (γδ DNT) cells. Frequencies of circulating DNT cell subsets were measured by flow cytometry in a retrospective cohort of 51 telbivudine-treated HBeAg-positive CHB patients, 25 immune tolerant carriers (IT), 33 inactive carriers (IC), and 37 healthy controls (HC). We found that γδ DNT cell frequencies did not significantly change during treatment, being lower at baseline (P = 0.019) in patients with HBeAg seroconversion after 52 weeks of antiviral therapy (n = 20) than in those without (n = 31), and higher in the total CHB and IT than IC and HC groups (P<0.001). αβ DNT cell frequencies were similar for all groups. In vitro, γδ DNT cells suppressed HBV core peptide-stimulated interferon-γ and tumor necrosis factor-α production in TCRαβ(+)CD8(+) T cells, which may require cell-cell contact, and could be partially reversed by anti-NKG2A. These findings suggest that γδ DNT cells limit CD8(+) T cell response to HBV, and may impede HBeAg seroconversion in CHB.
Collapse
|
88
|
Verbeek WHM, Schreurs MWJ, Visser OJ, von Blomberg BME, Al-Toma A, Mulder CJJ. Novel approaches in the management of refractory celiac disease. Expert Rev Clin Immunol 2014; 4:205-19. [PMID: 20477051 DOI: 10.1586/1744666x.4.2.205] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wieke H M Verbeek
- VU University Medical Center, Department of Gastroenterology and Hepatology, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
89
|
The role of transforming growth factor (TGF)-β in modulating the immune response and fibrogenesis in the gut. Cytokine Growth Factor Rev 2013; 25:45-55. [PMID: 24332927 DOI: 10.1016/j.cytogfr.2013.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023]
Abstract
Transforming growth factor (TGF)-β, a pleiotropic cytokine released by both immune and non-immune cells in the gut, exerts an important tolerogenic action by promoting regulatory T cell differentiation. TGF-β also enhances enterocyte migration and regulates extracellular matrix turnover, thereby playing a crucial role in tissue remodeling in the gut. In this review we describe the mechanisms by which abnormal TGF-β signaling impairs intestinal immune tolerance and tissue repair, thus predisposing to the onset of immune-mediated bowel disorders, such as inflammatory bowel disease and celiac disease. Additionally, we will discuss potential therapeutic strategies aiming at restoring physiologic TGF-β signaling in chronic intestinal diseases.
Collapse
|
90
|
|
91
|
Persistent changes in circulating and intestinal γδ T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS One 2013; 8:e76008. [PMID: 24124528 PMCID: PMC3790827 DOI: 10.1371/journal.pone.0076008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022] Open
Abstract
Coeliac disease is a chronic small intestinal immune-mediated enteropathy precipitated by exposure to dietary gluten in genetically predisposed individuals. The only current therapy is a lifelong gluten free diet. While much work has focused on the gliadin-specific adaptive immune response in coeliac disease, little is understood about the involvement of the innate immune system. Here we used multi-colour flow cytometry to determine the number and frequency of γδ T cells (Vδ1, Vδ2 and Vδ3 subsets), natural killer cells, CD56+ T cells, invariant NKT cells, and mucosal associated invariant T cells, in blood and duodenum from adults and children with coeliac disease and healthy matched controls. All circulating innate lymphocyte populations were significantly decreased in adult, but not paediatric coeliac donors, when compared with healthy controls. Within the normal small intestine, we noted that Vδ3 cells were the most abundant γδ T cell type in the adult epithelium and lamina propria, and in the paediatric lamina propria. In contrast, patients with coeliac disease showed skewing toward a predominant Vδ1 profile, observed for both adult and paediatric coeliac disease cohorts, particularly within the gut epithelium. This was concurrent with decreases in all other gut lymphocyte subsets, suggesting a specific involvement of Vδ1 cells in coeliac disease pathogenesis. Further analysis showed that γδ T cells isolated from the coeliac gut display an activated, effector memory phenotype, and retain the ability to rapidly respond to in vitro stimulation. A profound loss of CD56 expression in all lymphocyte populations was noted in the coeliac gut. These findings demonstrate a sustained aberrant innate lymphocyte profile in coeliac disease patients of all ages, persisting even after elimination of gluten from the diet. This may lead to impaired immunity, and could potentially account for the increased incidence of autoimmune co-morbidity.
Collapse
|
92
|
Dietary gluten triggers concomitant activation of CD4+ and CD8+ αβ T cells and γδ T cells in celiac disease. Proc Natl Acad Sci U S A 2013; 110:13073-8. [PMID: 23878218 DOI: 10.1073/pnas.1311861110] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Celiac disease is an intestinal autoimmune disease driven by dietary gluten and gluten-specific CD4(+) T-cell responses. In celiac patients on a gluten-free diet, exposure to gluten induces the appearance of gluten-specific CD4(+) T cells with gut-homing potential in the peripheral blood. Here we show that gluten exposure also induces the appearance of activated, gut-homing CD8(+) αβ and γδ T cells in the peripheral blood. Single-cell T-cell receptor sequence analysis indicates that both of these cell populations have highly focused T-cell receptor repertoires, indicating that their induction is antigen-driven. These results reveal a previously unappreciated role of antigen in the induction of CD8(+) αβ and γδ T cells in celiac disease and demonstrate a coordinated response by all three of the major types of T cells. More broadly, these responses may parallel adaptive immune responses to viral pathogens and other systemic autoimmune diseases.
Collapse
|
93
|
Malhotra N, Kang J. SMAD regulatory networks construct a balanced immune system. Immunology 2013; 139:1-10. [PMID: 23347175 DOI: 10.1111/imm.12076] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/17/2022] Open
Abstract
A balanced immune response requires combating infectious assaults while striving to maintain quiescence towards the self. One of the central players in this process is the pleiotropic cytokine transforming growth factor-β (TGF-β), whose deficiency results in spontaneous systemic autoimmunity in mice. The dominant function of TGF-β is to regulate the peripheral immune homeostasis, particularly in the microbe-rich and antigen-rich environment of the gut. To maintain intestinal integrity, the epithelial cells, myeloid cells and lymphocytes that inhabit the gut secrete TGF-β, which acts in both paracrine and autocrine fashions to activate its signal transducers, the SMAD transcription factors. The SMAD pathway regulates the production of IgA by B cells, maintains the protective mucosal barrier and promotes the balanced differentiation of CD4(+) T cells into inflammatory T helper type 17 cells and suppressive FOXP3(+) T regulatory cells. While encounters with pathogenic microbes activate SMAD proteins to evoke a protective inflammatory immune response, SMAD activation and synergism with immunoregulatory factors such as the vitamin A metabolite retinoic acid enforce immunosuppression toward commensal microbes and innocuous food antigens. Such complementary context-dependent functions of TGF-β are achieved by the co-operation of SMAD proteins with distinct dominant transcription activators and accessory chromatin modifiers. This review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in the gut that are dictacted by fluid orchestrations of SMADs and their myriad partners.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
94
|
Abstract
A balanced immune response requires combating infectious assaults while striving to maintain quiescence towards the self. One of the central players in this process is the pleiotropic cytokine transforming growth factor-β (TGF-β), whose deficiency results in spontaneous systemic autoimmunity in mice. The dominant function of TGF-β is to regulate the peripheral immune homeostasis, particularly in the microbe-rich and antigen-rich environment of the gut. To maintain intestinal integrity, the epithelial cells, myeloid cells and lymphocytes that inhabit the gut secrete TGF-β, which acts in both paracrine and autocrine fashions to activate its signal transducers, the SMAD transcription factors. The SMAD pathway regulates the production of IgA by B cells, maintains the protective mucosal barrier and promotes the balanced differentiation of CD4(+) T cells into inflammatory T helper type 17 cells and suppressive FOXP3(+) T regulatory cells. While encounters with pathogenic microbes activate SMAD proteins to evoke a protective inflammatory immune response, SMAD activation and synergism with immunoregulatory factors such as the vitamin A metabolite retinoic acid enforce immunosuppression toward commensal microbes and innocuous food antigens. Such complementary context-dependent functions of TGF-β are achieved by the co-operation of SMAD proteins with distinct dominant transcription activators and accessory chromatin modifiers. This review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in the gut that are dictacted by fluid orchestrations of SMADs and their myriad partners.
Collapse
Affiliation(s)
- Nidhi Malhotra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
95
|
Abstract
Celiac disease (CD)-associated inflammation is characterized by high interleukin- 21 (IL-21), but the mechanisms that control IL-21 production are not fully understood. Here we analyzed IL-21 cell sources and examined how IL-21 production is regulated in CD. Intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs), isolated from CD patients and non-CD controls, were analyzed for cell markers, cytokines, and transcription factors by flow cytometry. IL-21 was highly produced by CD4+ and CD4+/CD8+ IELs and LPLs in active CD. IL-21-producing cells coexpressed interferon-γ (IFN-γ) and to a lesser extent T helper type 17 (Th17) cytokines. Treatment of control LPLs with IL-15, a cytokine overproduced in CD, activated Akt and STAT3 (signal transducer and activator of transcription 3), thus enhancing IL-21 synthesis. Active CD biopsies contained elevated levels of Akt, and blockade of IL-15 in those samples reduced IL-21. Similarly, neutralization of IL-15 in biopsies of inactive CD patients inhibited peptic-tryptic digest of gliadin-induced IL-21 expression. These findings indicate that in CD, IL-15 positively regulates IL-21 production.
Collapse
|
96
|
Abstract
γδ T cells account for approximately 5% of peripheral blood T cells but are more abundant in mucosal tissue. Based on the recognized ligands and their general lack of MHC restriction, γδ T cells are considered as unconventional T cells that link innate and adaptive immunity. γδ T cells produce a diverse range of cytokines, exert cytotoxic effector function, can act as antigen-presenting cells, and display regulatory activity. Here we review the current knowledge on the regulatory functions of murine and human γδ T cells. Some γδ T cells produce inhibitory cytokines such as transforming growth factor-β but γδ T cells can utilize additional regulatory mechanisms. By subverting regulatory T cells (Treg) through induction of Treg apoptosis or cytokine-dependent reversal of Treg activity, however, γδ T cells can also enhance effector T cell activity and thereby contribute to autoimmunity. A more precise understanding of the plasticity of regulatory γδ T cells is required to specifically identify strategies for intentional modulation of their beneficial or detrimental regulatory activity.
Collapse
|
97
|
Abstract
γδ T cells are a unique and conserved population of lymphocytes that have been the subject of a recent explosion of interest owing to their essential contributions to many types of immune response and immunopathology. But what does the integration of recent and long-established studies really tell us about these cells and their place in immunology? The time is ripe to consider the evidence for their unique and crucial functions. We conclude that whereas B cells and αβ T cells are commonly thought to contribute primarily to the antigen-specific effector and memory phases of immunity, γδ T cells are distinct in that they combine conventional adaptive features (inherent in their T cell receptors and pleiotropic effector functions) with rapid, innate-like responses that can place them in the initiation phase of immune reactions. This underpins a revised perspective on lymphocyte biology and the regulation of immunogenicity.
Collapse
|
98
|
Stepanova K, Sinkora M. Porcine γδ T Lymphocytes Can Be Categorized into Two Functionally and Developmentally Distinct Subsets according to Expression of CD2 and Level of TCR. THE JOURNAL OF IMMUNOLOGY 2013; 190:2111-20. [DOI: 10.4049/jimmunol.1202890] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
99
|
Ye J, Ma C, Hsueh EC, Eickhoff CS, Zhang Y, Varvares MA, Hoft DF, Peng G. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. THE JOURNAL OF IMMUNOLOGY 2013; 190:2403-14. [PMID: 23355732 DOI: 10.4049/jimmunol.1202369] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fundamentally understanding the suppressive mechanisms used by different subsets of tumor-infiltrating regulatory T (Treg) cells is critical for the development of effective strategies for antitumor immunotherapy. γδ Treg cells have recently been identified in human diseases including cancer. However, the suppressive mechanisms and functional regulations of this new subset of unconventional Treg cells are largely unknown. In the current studies, we explored the suppressive mechanism(s) used by breast tumor-derived γδ Treg cells on innate and adaptive immunity. We found that γδ Treg cells induced immunosenescence in the targeted naive and effector T cells, as well as dendritic cells (DCs). Furthermore, senescent T cells and DCs induced by γδ Treg cells had altered phenotypes and impaired functions and developed potent suppressive activities, further amplifying the immunosuppression mediated by γδ Treg cells. In addition, we demonstrated that manipulation of TLR8 signaling in γδ Treg cells can block γδ Treg-induced conversion of T cells and DCs into senescent cells in vitro and in vivo. Our studies identify the novel suppressive mechanism mediated by tumor-derived γδ Treg cells on innate and adaptive immunity, which should be critical for the development of strong and innovative approaches to reverse the tumor-suppressive microenvironment and improve effects of immunotherapy.
Collapse
Affiliation(s)
- Jian Ye
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Kabelitz D, He W. The multifunctionality of human Vγ9Vδ2 γδ T cells: clonal plasticity or distinct subsets? Scand J Immunol 2012; 76:213-22. [PMID: 22670577 DOI: 10.1111/j.1365-3083.2012.02727.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dominant subset of γδ T cells in human peripheral blood expresses Vγ9 paired with Vδ2 as variable TCR elements. Vγ9Vδ2 T cells recognize pyrophosphates derived from the microbial non-mevalonate isoprenoid biosynthesis pathway at pico- to nanomolar concentrations. Structurally related pyrophosphates are generated in eukaryotic cells through the mevalonate pathway involved in protein prenylation and cholesterol synthesis. However, micromolar concentrations of endogenous pyrophosphates are required to be recognized by Vγ9Vδ2 T cells. Such concentrations are not produced by normal cells but can accumulate upon cellular stress and transformation. Therefore, many tumour cells are susceptible to γδ T cell-mediated lysis owing to the overproduction of endogenous pyrophosphates. This explains why Vγ9Vδ2 T cells contribute to both anti-infective and anti-tumour immunity. Ex vivo analysed Vγ9Vδ2 T cells can be subdivided on the basis of additional surface markers, including chemokine receptors and markers for naïve and memory T cells. At the functional level, Vγ9Vδ2 T cells produce a broad range of cytokines, display potent cytotoxic activity, regulate αβ T cell responses, and - quite surprisingly - can act as professional antigen-presenting cells. Thus, an exceptional range of effector functions has been assigned to a population of T cells, which all recognize invariant exogenous or endogenous pyrophosphates that are not seen by any other immune cell. Here, we discuss whether this plethora of effector functions reflects the plasticity of individual Vγ9Vδ2 T cells or can be assigned to distinct subsets.
Collapse
Affiliation(s)
- D Kabelitz
- Institute of Immunology, University of Kiel, Kiel, Germany.
| | | |
Collapse
|