51
|
Mohan M, Dihoum A, Mordi IR, Choy AM, Rena G, Lang CC. Left Ventricular Hypertrophy in Diabetic Cardiomyopathy: A Target for Intervention. Front Cardiovasc Med 2021; 8:746382. [PMID: 34660744 PMCID: PMC8513785 DOI: 10.3389/fcvm.2021.746382] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure is an important manifestation of diabetic heart disease. Before the development of symptomatic heart failure, as much as 50% of patients with type 2 diabetes mellitus (T2DM) develop asymptomatic left ventricular dysfunction including left ventricular hypertrophy (LVH). Left ventricular hypertrophy (LVH) is highly prevalent in patients with T2DM and is a strong predictor of adverse cardiovascular outcomes including heart failure. Importantly regression of LVH with antihypertensive treatment especially renin angiotensin system blockers reduces cardiovascular morbidity and mortality. However, this approach is only partially effective since LVH persists in 20% of patients with hypertension who attain target blood pressure, implicating the role of other potential mechanisms in the development of LVH. Moreover, the pathophysiology of LVH in T2DM remains unclear and is not fully explained by the hyperglycemia-associated cellular alterations. There is a growing body of evidence that supports the role of inflammation, oxidative stress, AMP-activated kinase (AMPK) and insulin resistance in mediating the development of LVH. The recognition of asymptomatic LVH may offer an opportune target for intervention with cardio-protective therapy in these at-risk patients. In this article, we provide a review of some of the key clinical studies that evaluated the effects of allopurinol, SGLT2 inhibitor and metformin in regressing LVH in patients with and without T2DM.
Collapse
Affiliation(s)
- Mohapradeep Mohan
- Division of Mental Health and Wellbeing, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Adel Dihoum
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Ify R Mordi
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Anna-Maria Choy
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Graham Rena
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom.,UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
52
|
Yang C, Wen K. Predictive value and regulatory mechanism of serum miR-499a-5p on myocardial dysfunction in sepsis. J Cardiothorac Surg 2021; 16:301. [PMID: 34654440 PMCID: PMC8518260 DOI: 10.1186/s13019-021-01679-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background This study sought to investigate the predictive value and regulatory mechanism of serum miR-499a-5p in sepsis-induced myocardial dysfunction (SIMD). Methods A total of 60 patients with sepsis and 60 healthy volunteers were enrolled in this study. The serum levels of miRNAs (miR-451, miR-378 and miR-499a-5p) were detected. Receiver operating characteristic curve and logistic regression analysis were used to evaluate the diagnostic and prognostic value of miR-499a-5p in SIMD patients. AC16 cells were used to establish SIMD model in vitro using lipopolysaccharide (LPS). An analysis was conducted for miR-499a-5p expression, cell viability, and the concentration of creatine kinase-MB isoform (CK-MB), brain natriuretic peptide (BNP), superoxide dismutase (SOD) and cytochrome C oxidase IV (COX IV). The downstream target of miR-499a-5p was verified. Results Our results revealed a poor expression of miR-499a-5p in the serum of SIMD patients, while no significant difference was evident for miR-451 and miR-378. The level of miR-499a-5p in the survival group was higher than the non-survival group. miR-499a-5p elicited good diagnostic and prognostic value for SIMD. Our findings revealed that miR-499a-5p was decreased significantly in LPS-treated cardiomyocytes. After overexpression of miR-499a-5p, the cell viability increased, and the concentrations of CK-MB and BNP were decreased, while the concentrations of SOD and COX IV were increased. EIF4E was validated as the target of miR-499a-5p. After overexpression of EIF4E, the cell viability was decreased and the concentrations of CK-MB and BNP were increased while the concentrations of SOD and COX IV were decreased. Conclusion The level of miR-499a-5p is weak in SIMD patients. miR-499a-5p has a good diagnostic and prognostic value for SIMD by inhibiting EIF4E transcription.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Critical Care Medicine, The Second Hospital of Shandong University, No. 247 Beiyuan Dajie Street, Jinan City, 250012, Shandong Province, China
| | - Kun Wen
- Department of Critical Care Medicine, The Second Hospital of Shandong University, No. 247 Beiyuan Dajie Street, Jinan City, 250012, Shandong Province, China.
| |
Collapse
|
53
|
Zeng J, Wang L, Zhao J, Zheng Z, Peng J, Zhang W, Wen T, Nie J, Ding L, Yi D. MiR-100-5p regulates cardiac hypertrophy through activation of autophagy by targeting mTOR. Hum Cell 2021; 34:1388-1397. [PMID: 34138410 DOI: 10.1007/s13577-021-00566-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 01/12/2023]
Abstract
Autophagy has been proved to play a vital role in cardiac hypertrophy. The present study was designed to investigate the relationship between miR-100-5p and autophagy in the development of cardiac hypertrophy. Here, miR-100-5p expression was detected in abdominal aortic coarctation (AAC)-induced cardiac hypertrophy rats and Angiotensin II (Ang II)-stimulated cardiomyocytes. In vitro and in vivo experiments were performed to explore the function of miR-100-5p on autophagy and cardiac hypertrophy. We also investigated the mechanism of miR-100-5p on autophagy with dual-luciferase reporter assays, RNA immunoprecipitation (RIP), quantitative real-time PCR (qRT-PCR), western blot, immunofluorescence, and transmission electron microscopy (TEM). The results showed that miR-100-5p was highly expressed in hypertrophic hearts and Ang II-induced cardiomyocytes. Overexpression of miR-100-5p promoted the expression of cardiac hypertrophy markers ANP, BNP and β-MHC and cell surface area, while those were suppressed by miR-100-5p inhibitor. Knockdown of miR-100-5p by antagomiR significantly improves cardiac function and attenuate cardiac hypertrophy in vivo. Mechanistic investigation has found that miR-100-5p promote autophagy by targeting mTOR. Inhibition of autophagy by 3-methyladenine (3-MA) or mTOR overexpression could reverse the function of miR-100-5p in cardiac hypertrophy. These results elucidate that miR-100-5p promoted the pathogenesis of cardiac hypertrophy through autophagy activation by targeting mTOR.
Collapse
Affiliation(s)
- Junyi Zeng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
- Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China.
| | - Liang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jianqing Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
- Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jingtian Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Wan Zhang
- Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Jungang Nie
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Lu Ding
- Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| | - Dasong Yi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
54
|
Role of metabolomics in identifying cardiac hypertrophy: an overview of the past 20 years of development and future perspective. Expert Rev Mol Med 2021; 23:e8. [PMID: 34376261 DOI: 10.1017/erm.2021.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy (CH) is an augmentation of either the right ventricular or the left ventricular mass in order to compensate for the increase of work load on the heart. Metabolic abnormalities lead to histological changes of cardiac myocytes and turn into CH. The molecular mechanisms that lead to initiate CH have been of widespread concern, hence the development of the new field of research, metabolomics: one 'omics' approach that can reveal comprehensive information of the paradigm shift of metabolic pathways network in contrast to individual enzymatic reaction-based metabolites, have attempted and until now only 19 studies have been conducted using experimental animal and human specimens. Nuclear magnetic resonance spectroscopy and mass spectrometry-based metabolomics studies have found that CH is a metabolic disease and is mainly linked to the harmonic imbalance of glycolysis, citric acid cycle, amino acids and lipid metabolism. The current review will summarise the main outcomes of the above mentioned 19 studies that have expanded our understanding of the molecular mechanisms that may lead to CH and eventually to heart failure.
Collapse
|
55
|
Tooley AS, Kazyken D, Bodur C, Gonzalez IE, Fingar DC. The innate immune kinase TBK1 directly increases mTORC2 activity and downstream signaling to Akt. J Biol Chem 2021; 297:100942. [PMID: 34245780 PMCID: PMC8342794 DOI: 10.1016/j.jbc.2021.100942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
TBK1 responds to microbes to initiate cellular responses critical for host innate immune defense. We found previously that TBK1 phosphorylates mTOR (mechanistic target of rapamycin) on S2159 to increase mTOR complex 1 (mTORC1) signaling in response to the growth factor EGF and the viral dsRNA mimetic poly(I:C). mTORC1 and the less well studied mTORC2 respond to diverse cues to control cellular metabolism, proliferation, and survival. Although TBK1 has been linked to Akt phosphorylation, a direct relationship between TBK1 and mTORC2, an Akt kinase, has not been described. By studying MEFs lacking TBK1, as well as MEFs, macrophages, and mice bearing an Mtor S2159A knock-in allele (MtorA/A) using in vitro kinase assays and cell-based approaches, we demonstrate here that TBK1 activates mTOR complex 2 (mTORC2) directly to increase Akt phosphorylation. We find that TBK1 and mTOR S2159 phosphorylation promotes mTOR-dependent phosphorylation of Akt in response to several growth factors and poly(I:C). Mechanistically, TBK1 coimmunoprecipitates with mTORC2 and phosphorylates mTOR S2159 within mTORC2 in cells. Kinase assays demonstrate that TBK1 and mTOR S2159 phosphorylation increase mTORC2 intrinsic catalytic activity. Growth factors failed to activate TBK1 or increase mTOR S2159 phosphorylation in MEFs. Thus, basal TBK1 activity cooperates with growth factors in parallel to increase mTORC2 (and mTORC1) signaling. Collectively, these results reveal cross talk between TBK1 and mTOR, key regulatory nodes within two major signaling networks. As TBK1 and mTOR contribute to tumorigenesis and metabolic disorders, these kinases may work together in a direct manner in a variety of physiological and pathological settings.
Collapse
Affiliation(s)
- Aaron Seth Tooley
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dubek Kazyken
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Cagri Bodur
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ian E Gonzalez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
56
|
Lemay SE, Awada C, Shimauchi T, Wu WH, Bonnet S, Provencher S, Boucherat O. Fetal Gene Reactivation in Pulmonary Arterial Hypertension: GOOD, BAD, or BOTH? Cells 2021; 10:1473. [PMID: 34208388 PMCID: PMC8231250 DOI: 10.3390/cells10061473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension is a debilitating chronic disorder marked by the progressive obliteration of the pre-capillary arterioles. This imposes a pressure overload on the right ventricle (RV) pushing the latter to undergo structural and mechanical adaptations that inexorably culminate in RV failure and death. Thanks to the advances in molecular biology, it has been proposed that some aspects of the RV and pulmonary vascular remodeling processes are orchestrated by a subversion of developmental regulatory mechanisms with an upregulation of a suite of genes responsible for the embryo's early growth and normally repressed in adults. In this review, we present relevant background regarding the close relationship between overactivation of fetal genes and cardiopulmonary remodeling, exploring whether the reawakening of developmental factors plays a causative role or constitutes a protective mechanism in the setting of PAH.
Collapse
Affiliation(s)
- Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Charifa Awada
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Wen-Hui Wu
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (S.-E.L.); (C.A.); (T.S.); (W.-H.W.); (S.B.); (S.P.)
| |
Collapse
|
57
|
Jianshu C, Qiongying W, Ying P, Ningyin L, Junchen H, Jing Y. Association of free androgen index and sex hormone-binding globulin and left ventricular hypertrophy in postmenopausal hypertensive women. J Clin Hypertens (Greenwich) 2021; 23:1413-1419. [PMID: 34105885 PMCID: PMC8678740 DOI: 10.1111/jch.14301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/04/2022]
Abstract
The aim of the present study was to explore the relationship between androgen and LVH in postmenopausal hypertensive women. Enrolled in this study were 378 postmenopausal hypertensive women who were admitted to the department of cardiology between December 2018 and December 2020. According to left ventricular mass index (LVMI) evaluated by echocardiography, the patients were divided into LVH group (n = 172) and non‐LVH group (n = 206). Their clinical characteristics were collected. Based on the result of propensity score matching analysis, 160 cases in each group were matched successfully. After correcting for confounding factors by various models, the results showed that free androgen index (FAI) and sex hormone–binding globulin (SHBG) were the influencing factors of LVH in postmenopausal women with hypertension. Patients with elevated SHBG were 5% less likely to develop LVH than those without elevated SHBG (OR: 0.950, 95% CI 0.922‐1.578). Postmenopausal hypertensive patients with elevated FAI were 16% more likely to have LVH than those without elevated FAI (OR: 1.608, 95% CI 0.807‐3.202). Multiple linear regression showed that LVMI increased by 61.82g/m2 for every 1 unit increase in FAI. In addition, SHBG decreased by 1 nmol/l, and LVMI increased by 0.177g/m2. Subgroup analysis showed that patients in the controlled BP group had a lower risk of LVH for every additional unit of SHBG compared with the uncontrolled BP group. The risk of LVH for each additional unit of FAI in the uncontrolled BP group was higher than that in the controlled BP group. The results of this present study showed that the occurrence of LVH was positively correlated with FAI and negatively correlated with SHBG in postmenopausal women with hypertension. The increase in FAI level and the decrease in SHBG level may be related to the occurrence and development of LVH in postmenopausal hypertension.
Collapse
Affiliation(s)
- Chen Jianshu
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Wang Qiongying
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Pei Ying
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Li Ningyin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Han Junchen
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yu Jing
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China.,Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
58
|
Gan S, Su C, Ma J, Liu M, Cui X, Xin L, Ren Y, Gao X, Ge L, Wei M, Yang J. Translation of Tudor-SN, a novel terminal oligo-pyrimidine (TOP) mRNA, is regulated by the mTORC1 pathway in cardiomyocytes. RNA Biol 2021; 18:900-913. [PMID: 33054526 PMCID: PMC8081040 DOI: 10.1080/15476286.2020.1827783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022] Open
Abstract
The mechanisms that regulate cell-cycle arrest of cardiomyocytes during heart development are largely unknown. We have previously identified Tudor staphylococcal nuclease (Tudor-SN) as a cell-cycle regulator and have shown that its expression level was closely related to cell-proliferation capacity. Herein, we found that Tudor-SN was highly expressed in neonatal mouse myocardia, but it was lowly expressed in that of adults. Using Data Base of Transcription Start Sites (DBTSS), we revealed that Tudor-SN was a terminal oligo-pyrimidine (TOP) mRNA. We further confirmed that the translational efficiency of Tudor-SN mRNA was controlled by the mammalian target of rapamycin complex 1 (mTORC1) pathway, as revealed via inhibition of activated mTORC1 in primary neonatal mouse cardiomyocytes and activation of silenced mTORC1 in adult mouse myocardia; additionally, this result was recapitulated in H9c2 cells. We also demonstrated that the downregulation of Tudor-SN in adult myocardia was due to inactivation of the mTORC1 pathway to ensure that heart growth was in proportion to that of the rest of the body. Moreover, we revealed that Tudor-SN participated in the mTORC1-mediated regulation of cardiomyocytic proliferation, which further elucidated the correlation between Tudor-SN and the mTORC1 pathway. Taken together, our findings suggest that the translational efficiency of Tudor-SN is regulated by the mTORC1 pathway in myocardia and that Tudor-SN is involved in mTORC1-mediated regulation of cardiomyocytic proliferation and cardiac development.
Collapse
Affiliation(s)
- Shihu Gan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Chao Su
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Jinzheng Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Mingxia Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xiaoteng Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Lingbiao Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Lin Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Minxin Wei
- Division of Cardiac Surgery, Cardiovascular Medical Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| |
Collapse
|
59
|
Lactate Dehydrogenase A Governs Cardiac Hypertrophic Growth in Response to Hemodynamic Stress. Cell Rep 2021; 32:108087. [PMID: 32877669 PMCID: PMC7520916 DOI: 10.1016/j.celrep.2020.108087] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023] Open
Abstract
The heart manifests hypertrophic growth in response to high blood pressure, which may decompensate and progress to heart failure under persistent stress. Metabolic remodeling is an early event in this process. However, its role remains to be fully characterized. Here, we show that lactate dehydrogenase A (LDHA), a critical glycolytic enzyme, is elevated in the heart in response to hemodynamic stress. Cardiomyocyte-restricted deletion of LDHA leads to defective cardiac hypertrophic growth and heart failure by pressure overload. Silencing of LDHA in cultured cardiomyocytes suppresses cell growth from pro-hypertrophic stimulation in vitro, while overexpression of LDHA is sufficient to drive cardiomyocyte growth. Furthermore, we find that lactate is capable of rescuing the growth defect from LDHA knockdown. Mechanistically, lactate stabilizes NDRG3 (N-myc downregulated gene family 3) and stimulates ERK (extracellular signal-regulated kinase). Our results together suggest that the LDHA/NDRG3 axis may play a critical role in adaptive cardiomyocyte growth in response to hemodynamic stress. Dai et al. find that LDHA is significantly increased in the heart under hemodynamic stress, and cardiomyocyte-specific deletion of LDHA leads to severe cardiac dysfunction in response to pressure overload. LDHA may govern adaptive growth through elevation of NDRG3 and activation of ERK.
Collapse
|
60
|
Packer M. Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy: implications for understanding the effects of current and future treatments for heart failure. Eur Heart J 2021; 41:3856-3861. [PMID: 32460327 PMCID: PMC7599035 DOI: 10.1093/eurheartj/ehaa360] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
The two primary molecular regulators of lifespan are sirtuin-1 (SIRT1) and mammalian target of rapamycin complex 1 (mTORC1). Each plays a central role in two highly interconnected pathways that modulate the balance between cellular growth and survival. The activation of SIRT1 [along with peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) and adenosine monophosphate-activated protein kinase (AMPK)] and the suppression of mTORC1 (along with its upstream regulator, Akt) act to prolong organismal longevity and retard cardiac ageing. Both activation of SIRT1/PGC-1α and inhibition of mTORC1 shifts the balance of cellular priorities so as to promote cardiomyocyte survival over growth, leading to cardioprotective effects in experimental models. These benefits may be related to direct actions to modulate oxidative stress, organellar function, proinflammatory pathways, and maladaptive hypertrophy. In addition, a primary shared benefit of both SIRT1/PGC-1α/AMPK activation and Akt/mTORC1 inhibition is the enhancement of autophagy, a lysosome-dependent degradative pathway, which clears the cytosol of dysfunctional organelles and misfolded proteins that drive the ageing process by increasing oxidative and endoplasmic reticulum stress. Autophagy underlies the ability of SIRT1/PGC-1α/AMPK activation and Akt/mTORC1 suppression to extend lifespan, mitigate cardiac ageing, alleviate cellular stress, and ameliorate the development and progression of cardiomyopathy; silencing of autophagy genes abolishes these benefits. Loss of SIRT1/PGC-1α/AMPK function or hyperactivation of Akt/mTORC1 is a consistent feature of experimental cardiomyopathy, and reversal of these abnormalities mitigates the development of heart failure. Interestingly, most treatments that have been shown to be clinically effective in the treatment of chronic heart failure with a reduced ejection fraction have been reported experimentally to exert favourable effects to activate SIRT1/PGC-1α/AMPK and/or suppress Akt/mTORC1, and thereby, to promote autophagic flux. Therefore, the impairment of autophagy resulting from derangements in longevity gene signalling is likely to represent a seminal event in the evolution and progression of cardiomyopathy. ![]()
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX 75226, USA.,Imperial College, London, UK
| |
Collapse
|
61
|
He Y, Huang W, Zhang C, Chen L, Xu R, Li N, Wang F, Han L, Yang M, Zhang D. Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B 2021; 11:1098-1116. [PMID: 34094822 PMCID: PMC8144890 DOI: 10.1016/j.apsb.2020.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a global public health problem with high morbidity and mortality. A large number of studies have shown that HF is caused by severe energy metabolism disorders, which result in an insufficient heart energy supply. This deficiency causes cardiac pump dysfunction and systemic energy metabolism failure, which determine the development of HF and recovery of heart. Current HF therapy acts by reducing heart rate and cardiac preload and afterload, treating the HF symptomatically or delaying development of the disease. Drugs aimed at cardiac energy metabolism have not yet been developed. In this review, we outline the main characteristics of cardiac energy metabolism in healthy hearts, changes in metabolism during HF, and related pathways and targets of energy metabolism. Finally, we discuss drugs that improve cardiac function via energy metabolism to provide new research ideas for the development and application of drugs for treating HF.
Collapse
|
62
|
Magadum A, Singh N, Kurian AA, Sharkar MTK, Sultana N, Chepurko E, Kaur K, Żak MM, Hadas Y, Lebeche D, Sahoo S, Hajjar R, Zangi L. Therapeutic Delivery of Pip4k2c-Modified mRNA Attenuates Cardiac Hypertrophy and Fibrosis in the Failing Heart. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004661. [PMID: 34026458 PMCID: PMC8132051 DOI: 10.1002/advs.202004661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Heart failure (HF) remains a major cause of morbidity and mortality worldwide. One of the risk factors for HF is cardiac hypertrophy (CH), which is frequently accompanied by cardiac fibrosis (CF). CH and CF are controlled by master regulators mTORC1 and TGF-β, respectively. Type-2-phosphatidylinositol-5-phosphate-4-kinase-gamma (Pip4k2c) is a known mTORC1 regulator. It is shown that Pip4k2c is significantly downregulated in the hearts of CH and HF patients as compared to non-injured hearts. The role of Pip4k2c in the heart during development and disease is unknown. It is shown that deleting Pip4k2c does not affect normal embryonic cardiac development; however, three weeks after TAC, adult Pip4k2c-/- mice has higher rates of CH, CF, and sudden death than wild-type mice. In a gain-of-function study using a TAC mouse model, Pip4k2c is transiently upregulated using a modified mRNA (modRNA) gene delivery platform, which significantly improve heart function, reverse CH and CF, and lead to increased survival. Mechanistically, it is shown that Pip4k2c inhibits TGFβ1 via its N-terminal motif, Pip5k1α, phospho-AKT 1/2/3, and phospho-Smad3. In sum, loss-and-gain-of-function studies in a TAC mouse model are used to identify Pip4k2c as a potential therapeutic target for CF, CH, and HF, for which modRNA is a highly translatable gene therapy approach.
Collapse
Affiliation(s)
- Ajit Magadum
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Neha Singh
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Ann Anu Kurian
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Nishat Sultana
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Elena Chepurko
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Keerat Kaur
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Magdalena M. Żak
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Yoav Hadas
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Djamel Lebeche
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Susmita Sahoo
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Roger Hajjar
- Phospholamban FoundationAmsterdamThe Netherlands
| | - Lior Zangi
- Cardiovascular Research CenterIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| |
Collapse
|
63
|
Hauck L, Dadson K, Chauhan S, Grothe D, Billia F. Inhibiting the Pkm2/b-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI. Cell Death Differ 2021; 28:1398-1417. [PMID: 33288902 PMCID: PMC8027412 DOI: 10.1038/s41418-020-00669-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Adult mammalian cardiomyocytes (CM) are postmitotic, differentiated cells that cannot re-enter the cell cycle after any appreciable injury. Therefore, understanding the factors required to induce CM proliferation for repair is of great clinical importance. While expression of muscle pyruvate kinase 2 (Pkm2), a cytosolic enzyme catalyzing the final step in glycolysis, is high in end-stage heart failure (HF), the loss of Pkm2 promotes proliferation in some cellular systems, in vivo. We hypothesized that in the adult heart CM proliferation may require low Pkm2 activity. Thus, we investigated the potential for Pkm2 to regulate CM proliferation in a mouse model of myocardial infarction (MI) employing inducible, cardiac-specific Pkm2 gene knockout (Pkm2KOi) mice. We found a lack of cardiac hypertrophy or expression of the fetal gene program in Pkm2KOi mice post MI, as compared to vehicle control animals (P < 0.01), correlating with smaller infarct size, improved mitochondrial (mt) function, enhanced angiogenesis, reduced degree of CM apoptosis, and reduced oxidative stress post MI. There was significantly higher numbers of dividing CM in the infarct zone between 3-9 days post MI (P < 0.001). Mechanistically, we determined that Pkm2 interacts with β-catenin (Ctnnb1) in the cytoplasm of CM, inhibiting Ctnnb1 phosphorylation at serine 552 and tyrosine 333, by Akt. In the absence of Pkm2, Ctnnb1 translocates to the nucleus leading to transcriptional activation of proliferation-associated target genes. All these effects are abrogated by genetic co-deletion of Pkm2 and Ctnnb1. Collectively, this work supports a novel antiproliferative function for Pkm2 in CM through the sequestration of Ctnnb1 in the cytoplasm of CM whereas loss of Pkm2 is essential for CM proliferation. Reducing cardiac Pkm2 expression may provide a useful strategy for cardiac repair after MI in patients.
Collapse
Affiliation(s)
- Ludger Hauck
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Keith Dadson
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Shelly Chauhan
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Daniela Grothe
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada
| | - Filio Billia
- Toronto General Research Institute, 100 College St., M5G 1L7, Toronto, ON, Canada.
- Division of Cardiology, University Health Network (UHN), 200 Elizabeth St., Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
64
|
Li X, Lu Q, Qiu Y, do Carmo JM, Wang Z, da Silva AA, Mouton A, Omoto ACM, Hall ME, Li J, Hall JE. Direct Cardiac Actions of the Sodium Glucose Co-Transporter 2 Inhibitor Empagliflozin Improve Myocardial Oxidative Phosphorylation and Attenuate Pressure-Overload Heart Failure. J Am Heart Assoc 2021; 10:e018298. [PMID: 33719499 PMCID: PMC8174202 DOI: 10.1161/jaha.120.018298] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background We determined if the sodium glucose co-transporter 2 inhibitor empagliflozin attenuates pressure overload-induced heart failure in non-diabetic mellitus mice by direct cardiac effects and the mechanisms involved. Methods and Results Male C57BL/6J mice (4-6 months of age) were subjected to sham surgeries or transverse aortic constriction to produce cardiac pressure overload. Two weeks after transverse aortic constriction, empagliflozin (10 mg/kg per day) or vehicle was administered daily for 4 weeks. Empagliflozin increased survival rate and significantly attenuated adverse left ventricle remodeling and cardiac fibrosis after transverse aortic constriction. Empagliflozin also attenuated left ventricular systolic and diastolic dysfunction, evaluated by echocardiography, and increased exercise endurance by 36% in mice with transverse aortic constriction-induced heart failure. Empagliflozin significantly increased glucose and fatty acid oxidation in failing hearts, while reducing glycolysis. These beneficial cardiac effects of empagliflozin occurred despite no significant changes in fasting blood glucose, body weight, or daily urine volume. In vitro experiments in isolated cardiomyocytes indicated that empagliflozin had direct effects to improve cardiomyocyte contractility and calcium transients. Importantly, molecular docking analysis and isolated perfused heart experiments indicated that empagliflozin can bind cardiac glucose transporters to reduce glycolysis, restore activation of adenosine monophosphate-activated protein kinase and inhibit activation of the mammalian target of rapamycin complex 1 pathway. Conclusions Our study demonstrates that empagliflozin may directly bind glucose transporters to reduce glycolysis, rebalance coupling between glycolysis and oxidative phosphorylation, and regulate the adenosine monophosphate-activated protein kinase mammalian target of rapamycin complex 1 pathway to attenuate adverse cardiac remodeling and progression of heart failure induced by pressure-overload in non-diabetic mellitus mice.
Collapse
Affiliation(s)
- Xuan Li
- Department of Physiology and Biophysics Mississippi Center for Obesity ResearchMississippi Center for Heart ResearchUniversity of Mississippi Medical Center Jackson MS
| | - Qingguo Lu
- Department of Physiology and Biophysics Mississippi Center for Obesity ResearchMississippi Center for Heart ResearchUniversity of Mississippi Medical Center Jackson MS.,Department of Endocrinology and Metabolism West China Hospital of Sichuan University Chengdu China
| | - Yunguang Qiu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai China
| | - Jussara M do Carmo
- Department of Physiology and Biophysics Mississippi Center for Obesity ResearchMississippi Center for Heart ResearchUniversity of Mississippi Medical Center Jackson MS
| | - Zhen Wang
- Department of Physiology and Biophysics Mississippi Center for Obesity ResearchMississippi Center for Heart ResearchUniversity of Mississippi Medical Center Jackson MS
| | - Alexandre A da Silva
- Department of Physiology and Biophysics Mississippi Center for Obesity ResearchMississippi Center for Heart ResearchUniversity of Mississippi Medical Center Jackson MS
| | - Alan Mouton
- Department of Physiology and Biophysics Mississippi Center for Obesity ResearchMississippi Center for Heart ResearchUniversity of Mississippi Medical Center Jackson MS
| | - Ana C M Omoto
- Department of Physiology and Biophysics Mississippi Center for Obesity ResearchMississippi Center for Heart ResearchUniversity of Mississippi Medical Center Jackson MS
| | - Michael E Hall
- Department of Physiology and Biophysics Mississippi Center for Obesity ResearchMississippi Center for Heart ResearchUniversity of Mississippi Medical Center Jackson MS
| | - Ji Li
- Department of Surgery University of South Florida Tampa FL
| | - John E Hall
- Department of Physiology and Biophysics Mississippi Center for Obesity ResearchMississippi Center for Heart ResearchUniversity of Mississippi Medical Center Jackson MS
| |
Collapse
|
65
|
Akkaya H. Kisspeptin-10 Administration Regulates
mTOR and AKT Activities and Oxidative Stress in Mouse Cardiac Tissue. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Shimada BK, Yorichika N, Higa JK, Baba Y, Kobayashi M, Aoyagi T, Suhara T, Matsui T. mTOR-mediated calcium transients affect cardiac function in ex vivo ischemia-reperfusion injury. Physiol Rep 2021; 9:e14807. [PMID: 33769701 PMCID: PMC7995667 DOI: 10.14814/phy2.14807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a key mediator of energy metabolism, cell growth, and survival. While previous studies using transgenic mice with cardiac-specific overexpression of mTOR (mTOR-Tg) demonstrated the protective effects of cardiac mTOR against ischemia-reperfusion (I/R) injury in both ex vivo and in vivo models, the mechanisms underlying the role of cardiac mTOR in cardiac function following I/R injury are not well-understood. Torin1, a pharmacological inhibitor of mTOR complex (mTORC) 1 and mTORC2, significantly decreased functional recovery of LV developed pressure in ex vivo I/R models (p < 0.05). To confirm the role of mTOR complexes in I/R injury, we generated cardiac-specific mTOR-knockout (CKO) mice. In contrast to the effects of Torin1, CKO hearts recovered better after I/R injury than control hearts (p < 0.05). Interestingly, the CKO hearts had exhibited irregular contractions during the reperfusion phase. Calcium is a major factor in Excitation-Contraction (EC) coupling via Sarcoplasmic Reticulum (SR) calcium release. Calcium is also key in opening the mitochondrial permeability transition pore (mPTP) and cell death following I/R injury. Caffeine-induced SR calcium release in isolated CMs showed that total SR calcium content was lower in CKO than in control CMs. Western blotting showed that a significant amount of mTOR localizes to the SR/mitochondria and that GSK3-β phosphorylation, a key factor in SR calcium mobilization, was decreased. These findings suggest that cardiac mTOR located to the SR/mitochondria plays a vital role in EC coupling and cell survival in I/R injury.
Collapse
Affiliation(s)
- Briana K. Shimada
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| | - Naaiko Yorichika
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| | - Jason K. Higa
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| | - Yuichi Baba
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
- Department of Cardiology and GeriatricsKochi Medical SchoolKochi UniversityKochiJapan
| | - Motoi Kobayashi
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| | - Toshinori Aoyagi
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| | - Tomohiro Suhara
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
- Department of AnesthesiologyKeio University School of MedicineTokyoJapan
| | - Takashi Matsui
- Department of Anatomy, Biochemistry, and PhysiologyCenter for Cardiovascular ResearchJohn A. Burns School of MedicineUniversity of Hawai‘i at ManoaHonoluluHawai‘iUSA
| |
Collapse
|
67
|
Tomin T, Schittmayer M, Sedej S, Bugger H, Gollmer J, Honeder S, Darnhofer B, Liesinger L, Zuckermann A, Rainer PP, Birner-Gruenberger R. Mass Spectrometry-Based Redox and Protein Profiling of Failing Human Hearts. Int J Mol Sci 2021; 22:1787. [PMID: 33670142 PMCID: PMC7916846 DOI: 10.3390/ijms22041787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress contributes to detrimental functional decline of the myocardium, leading to the impairment of the antioxidative defense, dysregulation of redox signaling, and protein damage. In order to precisely dissect the changes of the myocardial redox state correlated with oxidative stress and heart failure, we subjected left-ventricular tissue specimens collected from control or failing human hearts to comprehensive mass spectrometry-based redox and quantitative proteomics, as well as glutathione status analyses. As a result, we report that failing hearts have lower glutathione to glutathione disulfide ratios and increased oxidation of a number of different proteins, including constituents of the contractile machinery as well as glycolytic enzymes. Furthermore, quantitative proteomics of failing hearts revealed a higher abundance of proteins responsible for extracellular matrix remodeling and reduced abundance of several ion transporters, corroborating contractile impairment. Similar effects were recapitulated by an in vitro cell culture model under a controlled oxygen atmosphere. Together, this study provides to our knowledge the most comprehensive report integrating analyses of protein abundance and global and peptide-level redox state in end-stage failing human hearts as well as oxygen-dependent redox and global proteome profiles of cultured human cardiomyocytes.
Collapse
Affiliation(s)
- Tamara Tomin
- Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Vienna University of Technology-TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria;
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Matthias Schittmayer
- Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Vienna University of Technology-TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria;
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Simon Sedej
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
| | - Johannes Gollmer
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
| | - Sophie Honeder
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Laura Liesinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| | - Andreas Zuckermann
- Cardiac Transplantation, Department of Cardiac Surgery, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
| | - Peter P. Rainer
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
- Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; (H.B.); (J.G.)
| | - Ruth Birner-Gruenberger
- Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Vienna University of Technology-TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria;
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010 Graz, Austria; (S.H.); (B.D.); (L.L.)
- BiotechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria;
| |
Collapse
|
68
|
Protective Role of Polyphenols in Heart Failure: Molecular Targets and Cellular Mechanisms Underlying Their Therapeutic Potential. Int J Mol Sci 2021; 22:ijms22041668. [PMID: 33562294 PMCID: PMC7914665 DOI: 10.3390/ijms22041668] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is a leading cause of death in the United States, with a 5-year mortality rate of 50% despite modern pharmacological therapies. Plant-based diets are comprised of a diverse polyphenol profile, which lends to their association with reduced cardiovascular disease risk. Whether a polyphenol-rich diet can slow the progression of or reverse HF in humans is not known. To date, in vitro and in vivo studies have reported on the protective role of polyphenols in HF. In this review, we will discuss the major mechanisms by which polyphenols mitigate HF in vitro and in vivo, including (1) reduced cardiac inflammation and oxidative stress, (2) reduced mitochondrial dysfunction, (3) improved Ca2+ homeostasis, (4) increased survival signaling, and (5) increased sirtuin 1 activity.
Collapse
|
69
|
Rubio B, Mora C, Pintado C, Mazuecos L, Fernández A, López V, Andrés A, Gallardo N. The nutrient sensing pathways FoxO1/3 and mTOR in the heart are coordinately regulated by central leptin through PPARβ/δ. Implications in cardiac remodeling. Metabolism 2021; 115:154453. [PMID: 33249043 DOI: 10.1016/j.metabol.2020.154453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cardiovascular disease in obese individuals with type 2 diabetes is often associated with hyperleptinemia and leptin resistance, while other studies support that leptin has cardioprotective effects. Besides, the role of leptin in regulating cardiac atrophy or hypertrophy remains to be clearly defined. In fact, in rats with normal leptin sensitivity, the molecular underpinnings of the effects of central leptin regulating cardiac structural pathways remain poorly understood. OBJECTIVE Hence, we assessed the effects of intracerebroventricular (icv) leptin infusion on cardiac remodeling analyzing FOXO1/3 and mTORC1 pathways, focusing special attention to PPARβ/δ as mediator of central leptin's effects on cardiac metabolism. METHODS Male 3-months-old Wistar rats, infused with icv leptin (0.2 μg/day) for 7 days, were daily co-treated intraperitoneally with the specific PPARβ/δ antagonist GSK0660, at 1 mg/kg per day along leptin treatment. RESULTS Central leptin regulated dynamically, in an opposite manner, the network between FOXOs and mTORC1 and induced an atrophy-related gene program in cardiac tissue. Leptin activated the anti-hypertrophic kinase GSK3β and increased the protein levels of muscle-specific ubiquitin ligases, muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/Atrogin-1 involved in limiting cardiac hypertrophy. FOXO1 activity and the expression of their target genes, Sod2 and Lpl, were also increased in the heart upon central leptin infusion. Besides, Beclin-1 and LC3B-II, gene products of the autophagic pathway response, were upregulated, while the content and expression levels of phenotypic markers of cardiac hypertrophy as ANP and β-myosin heavy chain, gene product of Myh7 were significantly decreased. On the other hand, mTORC1 activity and OXPHOS protein levels were decreased suggesting a key role of central leptin preventing cardiac oxidative stress. In fact, the content of carbonylated proteins, TBARS and ROS/RSN were not increased in cardiac tissue in response to central leptin infusion. Finally, the pharmacological inhibition of PPARβ/δ, via in vivo administration of the selective antagonist GSK0660, blunted the induction of FOXO1/3, Atrogin-1, MuRF1 and GSK3β in the heart mediated by icv leptin infusion. CONCLUSIONS Our results demonstrate that, in lean rats with normal leptin sensitivity, central leptin regulates nutrient sensing pathways in heart contributing to balance cardiac remodeling through the anti- and pro-hypertrophic programs, and in this process is involved PPARβ/δ.
Collapse
Affiliation(s)
- Blanca Rubio
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cristina Mora
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Cristina Pintado
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, Avda. Carlos III s/n, 45071 Toledo, Spain
| | - Lorena Mazuecos
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Alejandro Fernández
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Virginia López
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Antonio Andrés
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain.
| | - Nilda Gallardo
- Universidad de Castilla-La Mancha, Regional Centre for Biomedical Research, Spain; Universidad de Castilla-La Mancha, Biochemistry Section, Faculty of Science and Chemical Technologies, Avda Camilo José Cela 10, 13071 Ciudad Real, Spain.
| |
Collapse
|
70
|
Sciarretta S, Forte M, Frati G, Sadoshima J. The complex network of mTOR signaling in the heart. Cardiovasc Res 2021; 118:424-439. [PMID: 33512477 DOI: 10.1093/cvr/cvab033] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) integrates several intracellular and extracellular signals involved in the regulation of anabolic and catabolic processes. mTOR assembles into two macromolecular complexes, named mTORC1 and mTORC2, which have different regulators, substrates and functions. Studies of gain- and loss-of-function animal models of mTOR signaling revealed that mTORC1/2 elicit both adaptive and maladaptive functions in the cardiovascular system. Both mTORC1 and mTORC2 are indispensable for driving cardiac development and cardiac adaption to stress, such as pressure overload. However, persistent and deregulated mTORC1 activation in the heart is detrimental during stress and contributes to the development and progression of cardiac remodeling and genetic and metabolic cardiomyopathies. In this review, we discuss the latest findings regarding the role of mTOR in the cardiovascular system, both under basal conditions and during stress, such as pressure overload, ischemia and metabolic stress. Current data suggest that mTOR modulation may represent a potential therapeutic strategy for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Giacomo Frati
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
71
|
TOR Signaling Pathway in Cardiac Aging and Heart Failure. Biomolecules 2021; 11:biom11020168. [PMID: 33513917 PMCID: PMC7911348 DOI: 10.3390/biom11020168] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanistic Target of Rapamycin (mTOR) signaling is a key regulator of cellular metabolism, integrating nutrient sensing with cell growth. Over the past two decades, studies on the mTOR pathway have revealed that mTOR complex 1 controls life span, health span, and aging by modulating key cellular processes such as protein synthesis, autophagy, and mitochondrial function, mainly through its downstream substrates. Thus, the mTOR pathway regulates both physiological and pathological processes in the heart from embryonic cardiovascular development to maintenance of cardiac homeostasis in postnatal life. In this regard, the dysregulation of mTOR signaling has been linked to many age-related pathologies, including heart failure and age-related cardiac dysfunction. In this review, we highlight recent advances of the impact of mTOR complex 1 pathway and its regulators on aging and, more specifically, cardiac aging and heart failure.
Collapse
|
72
|
Izzo C, Vitillo P, Di Pietro P, Visco V, Strianese A, Virtuoso N, Ciccarelli M, Galasso G, Carrizzo A, Vecchione C. The Role of Oxidative Stress in Cardiovascular Aging and Cardiovascular Diseases. Life (Basel) 2021; 11:60. [PMID: 33467601 PMCID: PMC7829951 DOI: 10.3390/life11010060] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Aging can be seen as process characterized by accumulation of oxidative stress induced damage. Oxidative stress derives from different endogenous and exogenous processes, all of which ultimately lead to progressive loss in tissue and organ structure and functions. The oxidative stress theory of aging expresses itself in age-related diseases. Aging is in fact a primary risk factor for many diseases and in particular for cardiovascular diseases and its derived morbidity and mortality. Here we highlight the role of oxidative stress in age-related cardiovascular aging and diseases. We take into consideration the molecular mechanisms, the structural and functional alterations, and the diseases accompanied to the cardiovascular aging process.
Collapse
Affiliation(s)
- Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paolo Vitillo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Andrea Strianese
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Nicola Virtuoso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.I.); (P.V.); (P.D.P.); (V.V.); (A.S.); (N.V.); (M.C.); (G.G.); (A.C.)
- Department of Angio-Cardio-Neurology, Vascular Physiopathology Unit, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| |
Collapse
|
73
|
Emerging role of VCP/p97 in cardiovascular diseases: novel insights and therapeutic opportunities. Biochem Soc Trans 2021; 49:485-494. [PMID: 33439255 PMCID: PMC7925001 DOI: 10.1042/bst20200981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Valosin-containing protein (VCP/p97) is a member of the conserved type II AAA+ (ATPases associated with diverse cellular activities) family of proteins with multiple biological functions, especially in protein homeostasis. Mutations in VCP/p97 are reportedly related to unique autosomal dominant diseases, which may worsen cardiac function. Although the structure of VCP/p97 has been clearly characterized, with reports of high abundance in the heart, research focusing on the molecular mechanisms underpinning the roles of VCP/p97 in the cardiovascular system has been recently undertaken over the past decades. Recent studies have shown that VCP/p97 deficiency affects myocardial fibers and induces heart failure, while overexpression of VCP/p97 eliminates ischemia/reperfusion injury and relieves pathological cardiac hypertrophy caused by cardiac pressure overload, which is related to changes in the mitochondria and calcium overload. However, certain studies have drawn opposing conclusions, including the mitigation of ischemia/reperfusion injury via inhibition of VCP/p97 ATPase activity. Nevertheless, these emerging studies shed light on the role of VCP/p97 and its therapeutic potential in cardiovascular diseases. In other words, VCP/p97 may be involved in the development of cardiovascular disease, and is anticipated to be a new therapeutic target. This review summarizes current findings regarding VCP/p97 in the cardiovascular system for the first time, and discusses the role of VCP/p97 in cardiovascular disease.
Collapse
|
74
|
Sidramagowda Patil S, Hernández-Cuervo H, Fukumoto J, Krishnamurthy S, Lin M, Alleyn M, Breitzig M, Narala VR, Soundararajan R, Lockey RF, Kolliputi N, Galam L. Alda-1 Attenuates Hyperoxia-Induced Acute Lung Injury in Mice. Front Pharmacol 2021; 11:597942. [PMID: 33597876 PMCID: PMC7883597 DOI: 10.3389/fphar.2020.597942] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
Acute lung injury (ALI), a milder form of acute respiratory distress syndrome (ARDS), is a leading cause of mortality in older adults with an increasing prevalence. Oxygen therapy, is a common treatment for ALI, involving exposure to a high concentration of oxygen. Unfortunately, hyperoxia induces the formation of reactive oxygen species which can cause an increase in 4-HNE (4-hydroxy 2 nonenal), a toxic byproduct of lipid peroxidation. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) serves as an endogenous shield against oxidative stress-mediated damage by clearing 4-HNE. Alda-1 [(N-(1, 3 benzodioxol-5-ylmethyl)-2, 6- dichloro-benzamide)], a small molecular activator of ALDH2, protects against reactive oxygen species-mediated oxidative stress by promoting ALDH2 activity. As a result, Alda-1 shields against ischemic reperfusion injury, heart failure, stroke, and myocardial infarction. However, the mechanisms of Alda-1 in hyperoxia-induced ALI remains unclear. C57BL/6 mice implanted with Alzet pumps received Alda-1 in a sustained fashion while being exposed to hyperoxia for 48 h. The mice displayed suppressed immune cell infiltration, decreased protein leakage and alveolar permeability compared to controls. Mechanistic analysis shows that mice pretreated with Alda-1 also experience decreased oxidative stress and enhanced levels of p-Akt and mTOR pathway associated proteins. These results show that continuous delivery of Alda-1 protects against hyperoxia-induced lung injury in mice.
Collapse
Affiliation(s)
- Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Helena Hernández-Cuervo
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sudarshan Krishnamurthy
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Muling Lin
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Matthew Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Brown School, Washington University, St. Louis, MO, United States
| | | | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
75
|
Hassanein EHM, Abd El-Ghafar OAM, Ahmed MA, Sayed AM, Gad-Elrab WM, Ajarem JS, Allam AA, Mahmoud AM. Edaravone and Acetovanillone Upregulate Nrf2 and PI3K/Akt/mTOR Signaling and Prevent Cyclophosphamide Cardiotoxicity in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5275-5288. [PMID: 33299300 PMCID: PMC7721127 DOI: 10.2147/dddt.s281854] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/11/2020] [Indexed: 01/17/2023]
Abstract
Introduction Cyclophosphamide (CP) causes redox imbalance and its use is associated with marked cardiotoxicity that limits its clinical applications. The present study investigated the protective effects of acetovanillone (AV) and edaravone (ED) against CP-induced oxidative stress and cardiac damage, emphasizing the role of PI3K/Akt/mTOR and Nrf2 signaling. Materials and Methods Rats received either AV (100 mg/kg) or ED (20 mg/kg) orally for 10 days and CP (200 mg/kg) on day 7. At day 11, the rats were sacrificed, and samples were collected for analysis. Results AV and ED ameliorated serum troponin I, CK-MB, LDH, AST and ALP, and prevented cardiac histological alterations in CP-intoxicated rats. Both treatments decreased cardiac lipid peroxidation and enhanced GSH, SOD and cytoglobin in CP-induced rats. AV and ED downregulated Keap1, whereas increased the expression of PI3K, Akt, mTOR and Nrf2 in the heart of rats received CP. Additionally, the binding modes of AV and ED to Keap1 were pinpointed in silico using molecular docking simulations. Conclusion AV and ED prevent CP cardiotoxicity by attenuating oxidative stress and tissue injury, and modulating cytoglobin, and PI3K/Akt/mTOR and Keap1/Nrf2 signaling. Therefore, AV and ED may represent promising agents that can prevent cardiac injury in patients receiving CP.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Wail M Gad-Elrab
- Human Anatomy & Embryology Department Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Jamaan S Ajarem
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman M Mahmoud
- Zoology Department Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.,Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
76
|
Gentile M, Ranieri C, Loconte DC, Ponzi E, Ficarella R, Volpe P, Scalzo G, Lepore Signorile M, Grossi V, Cordella A, Ventola GM, Susca FC, Turchiano A, Simone C, Resta N. Functional evidence of mTORβ splice variant involvement in the pathogenesis of congenital heart defects. Clin Genet 2020; 99:425-429. [PMID: 33236357 DOI: 10.1111/cge.13890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022]
Abstract
mTOR dysregulation has been described in pathological conditions, such as cardiovascular and overgrowth disorders. Here we report on the first case of a patient with a complex congenital heart disease and an interstitial duplication in the short arm of chromosome 1, encompassing part of the mTOR gene. Our results suggest that an intragenic mTOR microduplication might play a role in the pathogenesis of non-syndromic congenital heart defects (CHDs) due to an upregulation of mTOR/Rictor and consequently an increased phosphorylation of PI3K/AKT and MEK/ERK signaling pathways in patient-derived amniocytes. This is the first report which shows a causative role of intragenic mTOR microduplication in the etiology of an isolated complex CHD.
Collapse
Affiliation(s)
- Mattia Gentile
- Department of Human Reproductive Medicine, Medical Genetics Unit, ASL Bari, Bari, Italy
| | - Carlotta Ranieri
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Daria C Loconte
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Emanuela Ponzi
- Department of Human Reproductive Medicine, Medical Genetics Unit, ASL Bari, Bari, Italy
| | - Romina Ficarella
- Department of Human Reproductive Medicine, Medical Genetics Unit, ASL Bari, Bari, Italy
| | - Paolo Volpe
- Department of Human Reproductive Medicine, Fetal Medicine Unit, ASL Bari, Bari, Italy
| | - Gabriele Scalzo
- Department of Pediatric Sciences, Pediatric Cardiac Surgery Unit, Giovanni XXIII Pediatric Hospital, Bari, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | | | | | - Francesco C Susca
- Department of Human Reproductive Medicine, Medical Genetics Unit, ASL Bari, Bari, Italy
| | - Antonella Turchiano
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| | - Cristiano Simone
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy.,Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari, Italy
| | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
77
|
Chen H, Tran D, Yang HC, Nylander S, Birnbaum Y, Ye Y. Dapagliflozin and Ticagrelor Have Additive Effects on the Attenuation of the Activation of the NLRP3 Inflammasome and the Progression of Diabetic Cardiomyopathy: an AMPK-mTOR Interplay. Cardiovasc Drugs Ther 2020; 34:443-461. [PMID: 32335797 DOI: 10.1007/s10557-020-06978-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Ticagrelor, a P2Y12 receptor antagonist, and dapagliflozin, a sodium-glucose-cotransporter-2 inhibitor, suppress the activation of the NLRP3 inflammasome. The anti-inflammatory effects of dapagliflozin depend on AMPK activation. Also, ticagrelor can activate AMPK. We assessed whether dapagliflozin and ticagrelor have additive effects in attenuating the progression of diabetic cardiomyopathy in T2DM mice. METHODS Eight-week-old BTBR and wild-type mice received no drug, dapagliflozin (1.5 mg/kg/day), ticagrelor (100 mg/kg/day), or their combination for 12 weeks. Heart function was evaluated by echocardiography and heart tissue samples were assessed for fibrosis, apoptosis, qRT-PCR, and immunoblotting. RESULTS Both drugs attenuated the progression of diabetic cardiomyopathy as evident by improvements in left ventricular end-systolic and end-diastolic volumes and left ventricular ejection fraction, which were further improved by the combination. Both drugs attenuated the activation of the NOD-like receptor 3 (NLRP3) inflammasome and fibrosis. The effect of the combination was significantly greater than each drug alone on myocardial tissue necrotic factorα (TNFα) and interleukin-6 (IL-6) levels, suggesting additive effects. The combination had also a greater effect on ASC, collagen-1, and collagen-3 mRNA levels than each drug alone. While both drugs activated adenosine mono-phosphate kinase (AMPK), only dapagliflozin activated mTOR and increased RICTOR levels. Moreover, only dapagliflozin decreased myocardial BNP and Caspase-1 mRNA levels, and the effects of dapagliflozin on NLRP3 and collagen-3 mRNA levels were significantly greater than those of ticagrelor. CONCLUSIONS Both dapagliflozin and ticagrelor attenuated the progression of diabetic cardiomyopathy, the activation of the NLRP3 inflammasome, and fibrosis in BTBR mice with additive effects of the combination. While both dapagliflozin and ticagrelor activated AMPK, only dapagliflozin activated mTOR complex 2 (mTORC2) in hearts of BTBR mice.
Collapse
Affiliation(s)
- Huan Chen
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, BSB 648, Galveston, TX, 77555, USA
- Department of Acupuncture, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Da Tran
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Sven Nylander
- Biopharmaceutical R&D, AstraZeneca, Gothenburg, Sweden
| | - Yochai Birnbaum
- The Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, BSB 648, Galveston, TX, 77555, USA.
| |
Collapse
|
78
|
Tokumura K, Iwahashi S, Park G, Ochiai S, Okayama Y, Fusawa H, Fukasawa K, Iezaki T, Hinoi E. mTOR regulates skeletogenesis through canonical and noncanonical pathways. Biochem Biophys Res Commun 2020; 533:30-35. [PMID: 32917361 DOI: 10.1016/j.bbrc.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) regulates various cellular processes, in part through incorporation into distinct protein complexes. The mTOR complex 1 (mTORC1) contains the Raptor subunit, while mTORC2 specifically contains the Rictor subunit. Mouse genetic studies, including ours, have revealed a critical role for mTOR in skeletogenesis through its expression in undifferentiated mesenchymal cells. In addition, we have recently revealed that mTORC1 expression in chondrocytes is crucial for skeletogenesis. Recent work indicates that mTOR regulates cellular functions, depending on the context, through both complex-dependent (canonical pathway) and complex-independent roles (noncanonical pathway). Here, we determined that mTOR regulates skeletal development through the noncanonical pathway, as well as the canonical pathway, in a cell-type and context-specific manner. Inactivation of Mtor in undifferentiated mesenchymal cells or chondrocytes led to either severe hypoplasia in appendicular skeletons or a severe and generalized chondrodysplasia, respectively. Moreover, Rictor deletion in undifferentiated mesenchymal cells or chondrocytes led to mineralization defects in some skeletal components. Finally, we revealed that simultaneous deletion of Raptor and Rictor in undifferentiated mesenchymal cells recapitulated the appendicular skeletal phenotypes of Mtor deficiency, whereas chondrocyte-specific Raptor and Rictor double-mutants exhibited milder hypoplasia of appendicular and axial skeletons than those seen upon Mtor deletion. These findings indicate that mTOR regulates skeletal development mainly through the canonical pathway in undifferentiated mesenchymal cells, but at least in part through the noncanonical pathway in chondrocytes.
Collapse
Affiliation(s)
- Kazuya Tokumura
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Sayuki Iwahashi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Gyujin Park
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Ochiai
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Yasuka Okayama
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Fusawa
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuya Fukasawa
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Takashi Iezaki
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Eiichi Hinoi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
79
|
Microbial Imidazole Propionate Affects Responses to Metformin through p38γ-Dependent Inhibitory AMPK Phosphorylation. Cell Metab 2020; 32:643-653.e4. [PMID: 32783890 PMCID: PMC7546034 DOI: 10.1016/j.cmet.2020.07.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Metformin is the first-line therapy for type 2 diabetes, but there are large inter-individual variations in responses to this drug. Its mechanism of action is not fully understood, but activation of AMP-activated protein kinase (AMPK) and changes in the gut microbiota appear to be important. The inhibitory role of microbial metabolites on metformin action has not previously been investigated. Here, we show that concentrations of the microbial metabolite imidazole propionate are higher in subjects with type 2 diabetes taking metformin who have high blood glucose. We also show that metformin-induced glucose lowering is not observed in mice pretreated with imidazole propionate. Furthermore, we demonstrate that imidazole propionate inhibits AMPK activity by inducing inhibitory AMPK phosphorylation, which is dependent on imidazole propionate-induced basal Akt activation. Finally, we identify imidazole propionate-activated p38γ as a novel kinase for Akt and demonstrate that p38γ kinase activity mediates the inhibitory action of imidazole propionate on metformin.
Collapse
|
80
|
Abstract
Gene expression is needed for the maintenance of heart function under normal conditions and in response to stress. Each cell type of the heart has a specific program controlling transcription. Different types of stress induce modifications of these programs and, if prolonged, can lead to altered cardiac phenotype and, eventually, to heart failure. The transcriptional status of a gene is regulated by the epigenome, a complex network of DNA and histone modifications. Until a few years ago, our understanding of the role of the epigenome in heart disease was limited to that played by histone deacetylation. But over the last decade, the consequences for the maintenance of homeostasis in the heart and for the development of cardiac hypertrophy of a number of other modifications, including DNA methylation and hydroxymethylation, histone methylation and acetylation, and changes in chromatin architecture, have become better understood. Indeed, it is now clear that many levels of regulation contribute to defining the epigenetic landscape required for correct cardiomyocyte function, and that their perturbation is responsible for cardiac hypertrophy and fibrosis. Here, we review these aspects and draw a picture of what epigenetic modification may imply at the therapeutic level for heart failure.
Collapse
Affiliation(s)
- Roberto Papait
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Simone Serio
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Gianluigi Condorelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| |
Collapse
|
81
|
Liu T, Zhang G, Wang Y, Rao M, Zhang Y, Guo A, Wang M. Identification of Circular RNA-MicroRNA-Messenger RNA Regulatory Network in Atrial Fibrillation by Integrated Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8037273. [PMID: 33062700 PMCID: PMC7545447 DOI: 10.1155/2020/8037273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Circular RNA (circRNA) is a noncoding RNA that forms a closed-loop structure, and its abnormal expression may cause disease. We aimed to find potential network for circRNA-related competitive endogenous RNA (ceRNA) in atrial fibrillation (AF). METHODS The circRNA, miRNA, and mRNA expression profiles in the heart tissue from AF patients were retrieved from the Gene Expression Omnibus database and analyzed comprehensively. Differentially expressed circRNAs (DEcircRNAs), differentially expressed miRNAs (DEmiRNAs), and differentially expressed mRNAs (DEmRNAs) were identified, followed by the establishment of DEcircRNA-DEmiRNA-DEmRNA regulatory network. Functional annotation analysis of host gene of DEcircRNAs and DEmRNAs in ceRNA regulatory network was performed. In vitro experiment and electronic validation were used to validate the expression of DEcircRNAs, DEmiRNAs, and DEmRNAs. RESULTS A total of 1611 DEcircRNAs, 51 DEmiRNAs, and 1250 DEmRNAs were identified in AF. The DEcircRNA-DEmiRNA-DEmRNA network contained 62 circRNAs, 14 miRNAs, and 728 mRNAs. Among which, two ceRNA regulatory pairs of hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 were identified. In addition, six miRNA-mRNA regulatory pairs including hsa-miR-34c-5p-INMT, hsa-miR-1253-DDIT4L, hsa-miR-508-5p-SMOC2, hsa-miR-943-ACTA1, hsa-miR-338-3p-WIPI1, and hsa-miR-199a-3p-RAP1GAP2 were also obtained. MTOR was a significantly enriched signaling pathway of host gene of DEcircRNAs. In addition, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy were remarkably enriched signaling pathways of DEmRNAs in DEcircRNA-DEmiRNA-DEmRNA regulatory network. The expression validation of hsa-circRNA-402565, hsa-miR-34c-5p, hsa-miR-188-5p, SPON1, DDIT4L, SMOC2, and WIPI1 was consistent with the integrated analysis. CONCLUSION We speculated that hsa-circRNA-100053-hsa-miR-455-5p-TRPV1 and hsa-circRNA-005843-hsa-miR-188-5p-SPON1 interaction pairs may be involved in AF.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guoru Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yaling Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Mingyue Rao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yang Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Anjun Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Mei Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
82
|
Liu Y, Du X, Huang Z, Zheng Y, Quan N. Sestrin 2 controls the cardiovascular aging process via an integrated network of signaling pathways. Ageing Res Rev 2020; 62:101096. [PMID: 32544433 DOI: 10.1016/j.arr.2020.101096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
As an inevitable biological process, cardiovascular aging is the greatest risk factor for cardiovascular diseases (CVDs). Sestrin 2 (Sesn2), a stress-inducible and age-related protein associated with various stress conditions, plays a pivotal role in slowing this process. It acts as an anti-aging agent, mainly through its antioxidant enzymatic activity and regulation of antioxidant signaling pathways, as well as by activating adenosine monophosphate-activated protein kinase and inhibiting mammalian target of rapamycin complex 1. In this review, we first introduce the biochemical functions of Sesn2 in the cardiovascular aging process, and describe how Sesn2 expression is regulated under various stress conditions. Next, we emphasize the role of Sesn2 signal transduction in a series of age-related CVDs, including hypertension, myocardial ischemia and reperfusion, atherosclerosis, and heart failure, as well as provide potential mechanisms for the association of Sesn2 with CVDs. Finally, we present the potential therapeutic applications of Sesn2-directed therapy and future prospects.
Collapse
Affiliation(s)
- Yunxia Liu
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Du
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yang Zheng
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Nanhu Quan
- Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
83
|
Affiliation(s)
- Francesco Perone
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli (IS), Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli (IS), Italy.,Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
84
|
Oka SI, Chin A, Park JY, Ikeda S, Mizushima W, Ralda G, Zhai P, Tong M, Byun J, Tang F, Einaga Y, Huang CY, Kashihara T, Zhao M, Nah J, Tian B, Hirabayashi Y, Yodoi J, Sadoshima J. Thioredoxin-1 maintains mitochondrial function via mechanistic target of rapamycin signalling in the heart. Cardiovasc Res 2020; 116:1742-1755. [PMID: 31584633 PMCID: PMC7825501 DOI: 10.1093/cvr/cvz251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/29/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Thioredoxin 1 (Trx1) is an evolutionarily conserved oxidoreductase that cleaves disulphide bonds in oxidized substrate proteins such as mechanistic target of rapamycin (mTOR) and maintains nuclear-encoded mitochondrial gene expression. The cardioprotective effect of Trx1 has been demonstrated via cardiac-specific overexpression of Trx1 and dominant negative Trx1. However, the pathophysiological role of endogenous Trx1 has not been defined with a loss-of-function model. To address this, we have generated cardiac-specific Trx1 knockout (Trx1cKO) mice. METHODS AND RESULTS Trx1cKO mice were viable but died with a median survival age of 25.5 days. They developed heart failure, evidenced by contractile dysfunction, hypertrophy, and increased fibrosis and apoptotic cell death. Multiple markers consistently indicated increased oxidative stress and RNA-sequencing revealed downregulation of genes involved in energy production in Trx1cKO mice. Mitochondrial morphological abnormality was evident in these mice. Although heterozygous Trx1cKO mice did not show any significant baseline phenotype, pressure-overload-induced cardiac dysfunction, and downregulation of metabolic genes were exacerbated in these mice. mTOR was more oxidized and phosphorylation of mTOR substrates such as S6K and 4EBP1 was impaired in Trx1cKO mice. In cultured cardiomyocytes, Trx1 knockdown inhibited mitochondrial respiration and metabolic gene promoter activity, suggesting that Trx1 maintains mitochondrial function in a cell autonomous manner. Importantly, mTOR-C1483F, an oxidation-resistant mutation, prevented Trx1 knockdown-induced mTOR oxidation and inhibition and attenuated suppression of metabolic gene promoter activity. CONCLUSION Endogenous Trx1 is essential for maintaining cardiac function and metabolism, partly through mTOR regulation via Cys1483.
Collapse
Affiliation(s)
- Shin-Ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Adave Chin
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Ji Yeon Park
- Seoul National University Biomedical Informatics, Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shohei Ikeda
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Wataru Mizushima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Guersom Ralda
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Mingming Tong
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Jaemin Byun
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Fan Tang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Yudai Einaga
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Chun-Yang Huang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine National Yang-Ming University, Taipei, Taiwan
| | - Toshihide Kashihara
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Mengyuan Zhao
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Bin Tian
- Department of Biochemistry & Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| | - Yoko Hirabayashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Junji Yodoi
- Department of Biological Responses, Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| |
Collapse
|
85
|
Increased mTOR and suppressed autophagic flux in the heart of a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease. Cell Signal 2020; 74:109730. [PMID: 32730856 DOI: 10.1016/j.cellsig.2020.109730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/22/2023]
Abstract
Cardiac hypertrophy is common in autosomal dominant polycystic kidney disease (ADPKD) patients. We found increased heart weight in Pkd1RC/RC and Pkd2WS25/+ mouse models of ADPKD. As there is a link between increased heart weight and mammalian target of rapamycin (mTOR), the aim of the study was to determine mTOR complex 1 and 2 signaling proteins in the heart in the Pkd1RC/RC mouse model of PKD. In 70 day old Pkd1RC/RC hearts, on immunoblot analysis, there was a large increase in p-AMPKThr172, a known autophagy inducer, and an increase in p-AktSer473 and p-AktThr308, but no increase in other mTORC1/2 proteins (p-S6Ser240/244, p-mTORSer2448). In 150 day old Pkd1RC/RC hearts, there was an increase in mTORC1 (p-S6Ser240/244) and mTOR-related proteins (p-AktThr308, p-GSK3βSer9, p-AMPKThr172). As the mTOR pathway is the master regulator of autophagy, autophagy proteins were measured. There was an increase in p-Beclin-1 (BECN1), an autophagy regulator and activating molecule in Beclin-1-regulated autophagy (AMBRA1), a regulator of Beclin that play a role in autophagosome formation, an early stage of autophagy. There was a defect in the later stage of autophagy, the fusion of the autophagosome with the lysosome, known as autophagic flux, as evidenced by the lack of an increase in LC3-II, a marker of autophagosomes, with the lysosomal inhibitor bafilomycin, in both 70 day old and 150 day old hearts. To determine the role of autophagy in causing increased heart weight, Pkd1RC/RC were treated with 2-deoxyglucose (2-DG) or Tat-Beclin1 peptide, agents known to induce autophagy. 2-DG treatment from 150 to 350 days of age, a time period when increased heart weight developed, did not reduce the increased heart weight. Unexpectedly, Tat-Beclin 1 peptide treatment from 70 to 120 days of age resulted in increased heart weight. In summary, there is suppressed autophagic flux in the heart at an early age in Pkd1RC/RC mice. Increased mTOR signaling in older mice is associated suppressed autophagic flux. There was a large increase in p-AMPKThr172, a known autophagy inducer, in both young and old mice. 2-DG treatment did not impact increased heart weight and Tat-Beclin1 peptide increased heart weight.
Collapse
|
86
|
Translation Regulation by eIF2α Phosphorylation and mTORC1 Signaling Pathways in Non-Communicable Diseases (NCDs). Int J Mol Sci 2020; 21:ijms21155301. [PMID: 32722591 PMCID: PMC7432514 DOI: 10.3390/ijms21155301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Non-communicable diseases (NCDs) are medical conditions that, by definition, are non-infectious and non-transmissible among people. Much of current NCDs are generally due to genetic, behavioral, and metabolic risk factors that often include excessive alcohol consumption, smoking, obesity, and untreated elevated blood pressure, and share many common signal transduction pathways. Alterations in cell and physiological signaling and transcriptional control pathways have been well studied in several human NCDs, but these same pathways also regulate expression and function of the protein synthetic machinery and mRNA translation which have been less well investigated. Alterations in expression of specific translation factors, and disruption of canonical mRNA translational regulation, both contribute to the pathology of many NCDs. The two most common pathological alterations that contribute to NCDs discussed in this review will be the regulation of eukaryotic initiation factor 2 (eIF2) by the integrated stress response (ISR) and the mammalian target of rapamycin complex 1 (mTORC1) pathways. Both pathways integrally connect mRNA translation activity to external and internal physiological stimuli. Here, we review the role of ISR control of eIF2 activity and mTORC1 control of cap-mediated mRNA translation in some common NCDs, including Alzheimer’s disease, Parkinson’s disease, stroke, diabetes mellitus, liver cirrhosis, chronic obstructive pulmonary disease (COPD), and cardiac diseases. Our goal is to provide insights that further the understanding as to the important role of translational regulation in the pathogenesis of these diseases.
Collapse
|
87
|
Liberale L, Kraler S, Camici GG, Lüscher TF. Ageing and longevity genes in cardiovascular diseases. Basic Clin Pharmacol Toxicol 2020; 127:120-131. [DOI: 10.1111/bcpt.13426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology University of Zürich Schlieren Switzerland
- Department of Internal Medicine First Clinic of Internal Medicine University of Genoa Genoa Italy
| | - Simon Kraler
- Center for Molecular Cardiology University of Zürich Schlieren Switzerland
| | - Giovanni G. Camici
- Center for Molecular Cardiology University of Zürich Schlieren Switzerland
- Department of Cardiology University Heart Center University Hospital Zurich Zurich Switzerland
- Department of Research and Education University Hospital Zurich Zurich Switzerland
| | - Thomas F. Lüscher
- Center for Molecular Cardiology University of Zürich Schlieren Switzerland
- Heart Division Royal Brompton and Harefield Hospitals and National Heart and Lung Institute Imperial College London UK
| |
Collapse
|
88
|
Quan N, Li X, Zhang J, Han Y, Sun W, Ren D, Tong Q, Li J. Substrate metabolism regulated by Sestrin2-mTORC1 alleviates pressure overload-induced cardiac hypertrophy in aged heart. Redox Biol 2020; 36:101637. [PMID: 32863202 PMCID: PMC7363709 DOI: 10.1016/j.redox.2020.101637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 01/12/2023] Open
Abstract
Sestrin2 (Sesn2) is a stress sensor for the mammalian target of rapamycin complex 1 (mTORC1) pathway. Aging impairs cardiac mTORC1 activation, thereby sensitizing the heart to hypertrophy. C57BL/6 J young wild-type (young WT; 4-6 months), aged WT (24-26 months), and young Sestrin2 knockout mice (Y-Sesn2 KO; 4-6 months) underwent transverse aortic constriction (TAC) for pressure overload. Cardiac expression of Sesn2 decreased with age. At 4 weeks after TAC, aged WT and Y-Sesn2 KO exhibited larger hearts and impaired cardiac function, compared with young WT mice. Augmented phosphorylation of mTOR and downstream effectors; damaged mitochondria and elevated redox markers, as well as and impaired glucose and fatty acid oxidation were observed in aged WT and Y-Sesn2 KO hearts. A pressure overload-induced interaction between Sesn2 and GTPase-activating protein activity toward Rags 2 (GATOR2), which positively regulates mTORC1, was impaired in aged WT hearts. Adeno-associated virus 9-Sesn2 treatment rescued Sesn2 expression, attenuated mTORC1 activation, and increased pressure overload tolerance in aged WT and Y-Sesn2 KO hearts. These results indicated that cardiac Sesn2 acts as a pressure overload sensor for mTORC1. Furthermore, Sesn2 deficiency may cause increased sensitivity to hypertrophy in elderly individuals.
Collapse
Affiliation(s)
- Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China,Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA,Corresponding author. Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China. Tel.: +86 13844803504.
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Jingwen Zhang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Ying Han
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Weiju Sun
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Di Ren
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Qian Tong
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, 130021, China,Corresponding author. Tel.: +86 15804300981.
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| |
Collapse
|
89
|
Kubra KT, Akhter MS, Uddin MA, Barabutis N. Unfolded protein response in cardiovascular disease. Cell Signal 2020; 73:109699. [PMID: 32592779 DOI: 10.1016/j.cellsig.2020.109699] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is a highly conserved molecular machinery, which protects the cells against a diverse variety of stimuli. Activation of this element has been associated with both human health and disease. The purpose of the current manuscript is to provide the most updated information on the involvement of UPR towards the improvement; or deterioration of cardiovascular functions. Since UPR is consisted of three distinct elements, namely the activating transcription factor 6, the protein kinase RNA-like endoplasmic reticulum kinase; and the inositol-requiring enzyme-1α, a highly orchestrated manipulation of those molecular branches may provide new therapeutic possibilities against the severe outcomes of cardiovascular disease.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
90
|
Holditch SJ, Brown CN, Atwood DJ, Pokhrel D, Brown SE, Lombardi AM, Nguyen KN, Hill RC, Lanaspa M, Hopp K, Weiser-Evans MCM, Edelstein CL. The consequences of increased 4E-BP1 in polycystic kidney disease. Hum Mol Genet 2020; 28:4132-4147. [PMID: 31646342 DOI: 10.1093/hmg/ddz244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/28/2019] [Accepted: 09/25/2019] [Indexed: 01/02/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, characterized by cyst formation and growth. Hyperproliferation is a major contributor to cyst growth. At the nexus of regulating proliferation, is 4E-BP1. We demonstrate that ADPKD mouse and rat models, ADPKD patient renal biopsies and PKD1-/- cells exhibited hyperphosphorylated 4E-BP1, a biomarker of increased translation and proliferation. We hypothesized that expression of constitutively active 4E-BP1 constructs (4E-BP1F113A and 4E-BP1R13AF113A) would decrease proliferation and reduce cyst expansion. Utilizing the Pkd1RC/RC mouse, we determined the effect of 4E-BP1F113A on PKD. Unexpectedly, 4E-BP1F113A resulted in increased cyst burden and suppressed apoptosis markers, increased anti-apoptotic Bcl-2 protein and increased mitochondrial proteins. Exogenous 4E-BP1 enhanced proliferation, decreased apoptosis, increased anti-apoptotic Bcl-2 protein, impaired NADPH oxidoreductase activity, increased mitochondrial proteins and increased superoxide production in PKD patient-derived renal epithelial cells. Reduced 4E-BP1 expression suppressed proliferation, restored apoptosis and improved cellular metabolism. These findings provide insight into how cyst-lining cells respond to 4E-BP1.
Collapse
Affiliation(s)
- Sara J Holditch
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Denver, CO, USA
| | - Carolyn N Brown
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Denver, CO, USA
| | - Daniel J Atwood
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Denver, CO, USA
| | - Deepak Pokhrel
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Denver, CO, USA
| | - Sara E Brown
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Denver, CO, USA
| | - Andrew M Lombardi
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Denver, CO, USA
| | - Khoa N Nguyen
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Denver, CO, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Miguel Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Denver, CO, USA
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Denver, CO, USA
| | - Mary C M Weiser-Evans
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Denver, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Denver, CO, USA
| |
Collapse
|
91
|
CYLD exaggerates pressure overload-induced cardiomyopathy via suppressing autolysosome efflux in cardiomyocytes. J Mol Cell Cardiol 2020; 145:59-73. [PMID: 32553594 DOI: 10.1016/j.yjmcc.2020.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/20/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Deubiquitinating enzymes (DUBs) appear to be a new class of regulators of cardiac homeostasis and disease. However, DUB-mediated signaling in the heart is not well understood. Herein we report a novel mechanism by which cylindromatosis (CYLD), a DUB mediates cardiac pathological remodeling and dysfunction. Cardiomyocyte-restricted (CR) overexpression of CYLD (CR-CYLD) did not cause gross health issues and hardly affected cardiac function up to age of one year in both female and male mice at physiological conditions. However, CR-CYLD overexpression exacerbated pressure overload (PO)-induced cardiac dysfunction associated with suppressed cardiac hypertrophy and increased myocardial apoptosis in mice independent of the gender. At the molecular level, CR-CYLD overexpression enhanced PO-induced increases in poly-ubiquitinated proteins marked by lysine (K)48-linked ubiquitin chains and autophagic vacuoles containing undegraded contents while suppressing autophagic flux. Augmentation of cardiac autophagy via CR-ATG7 overexpression protected against PO-induced cardiac pathological remodeling and dysfunction in both female and male mice. Intriguingly, CR-CYLD overexpression switched the CR-ATG7 overexpression-dependent cardiac protection into myocardial damage and dysfunction associated with increased accumulation of autophagic vacuoles containing undegraded contents in the heart. Genetic manipulation of Cyld in combination with pharmacological modulation of autophagic functional status revealed that CYLD suppressed autolysosomal degradation and promoted cell death in cardiomyocytes. In addition, Cyld gene gain- and/or loss-of-function approaches in vitro and in vivo demonstrated that CYLD mediated cardiomyocyte death associated with impaired reactivation of mechanistic target of rapamycin complex 1 (mTORC1) and upregulated Ras genes from rat brain 7 (Rab7), two key components for autolysosomal degradation. These results demonstrate that CYLD serves as a novel mediator of cardiac pathological remodeling and dysfunction by suppressing autolysosome efflux in cardiomyocytes. Mechanistically, it is most likely that CYLD suppresses autolysosome efflux via impairing mTORC1 reactivation and interrupting Rab7 release from autolysosomes in cardiomyocytes.
Collapse
|
92
|
Liberale L, Camici GG. The Role of Vascular Aging in Atherosclerotic Plaque Development and Vulnerability. Curr Pharm Des 2020; 25:3098-3111. [PMID: 31470777 DOI: 10.2174/1381612825666190830175424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The ongoing demographical shift is leading to an unprecedented aging of the population. As a consequence, the prevalence of age-related diseases, such as atherosclerosis and its thrombotic complications is set to increase in the near future. Endothelial dysfunction and vascular stiffening characterize arterial aging and set the stage for the development of cardiovascular diseases. Atherosclerotic plaques evolve over time, the extent to which these changes might affect their stability and predispose to sudden complications remains to be determined. Recent advances in imaging technology will allow for longitudinal prospective studies following the progression of plaque burden aimed at better characterizing changes over time associated with plaque stability or rupture. Oxidative stress and inflammation, firmly established driving forces of age-related CV dysfunction, also play an important role in atherosclerotic plaque destabilization and rupture. Several genes involved in lifespan determination are known regulator of redox cellular balance and pre-clinical evidence underlines their pathophysiological roles in age-related cardiovascular dysfunction and atherosclerosis. OBJECTIVE The aim of this narrative review is to examine the impact of aging on arterial function and atherosclerotic plaque development. Furthermore, we report how molecular mechanisms of vascular aging might regulate age-related plaque modifications and how this may help to identify novel therapeutic targets to attenuate the increased risk of CV disease in elderly people.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland.,University Heart Center, University Hospital Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| |
Collapse
|
93
|
Lerchenmüller C, Rabolli CP, Yeri A, Kitchen R, Salvador AM, Liu LX, Ziegler O, Danielson K, Platt C, Shah R, Damilano F, Kundu P, Riechert E, Katus HA, Saffitz JE, Keshishian H, Carr SA, Bezzerides VJ, Das S, Rosenzweig A. CITED4 Protects Against Adverse Remodeling in Response to Physiological and Pathological Stress. Circ Res 2020; 127:631-646. [PMID: 32418505 DOI: 10.1161/circresaha.119.315881] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Cardiac CITED4 (CBP/p300-interacting transactivators with E [glutamic acid]/D [aspartic acid]-rich-carboxylterminal domain4) is induced by exercise and is sufficient to cause physiological hypertrophy and mitigate adverse ventricular remodeling after ischemic injury. However, the role of endogenous CITED4 in response to physiological or pathological stress is unknown. OBJECTIVE To investigate the role of CITED4 in murine models of exercise and pressure overload. METHODS AND RESULTS We generated cardiomyocyte-specific CITED4 knockout mice (C4KO) and subjected them to an intensive swim exercise protocol as well as transverse aortic constriction (TAC). Echocardiography, Western blotting, qPCR, immunohistochemistry, immunofluorescence, and transcriptional profiling for mRNA and miRNA (microRNA) expression were performed. Cellular crosstalk was investigated in vitro. CITED4 deletion in cardiomyocytes did not affect baseline cardiac size or function in young adult mice. C4KO mice developed modest cardiac dysfunction and dilation in response to exercise. After TAC, C4KOs developed severe heart failure with left ventricular dilation, impaired cardiomyocyte growth accompanied by reduced mTOR (mammalian target of rapamycin) activity and maladaptive cardiac remodeling with increased apoptosis, autophagy, and impaired mitochondrial signaling. Interstitial fibrosis was markedly increased in C4KO hearts after TAC. RNAseq revealed induction of a profibrotic miRNA network. miR30d was decreased in C4KO hearts after TAC and mediated crosstalk between cardiomyocytes and fibroblasts to modulate fibrosis. miR30d inhibition was sufficient to increase cardiac dysfunction and fibrosis after TAC. CONCLUSIONS CITED4 protects against pathological cardiac remodeling by regulating mTOR activity and a network of miRNAs mediating cardiomyocyte to fibroblast crosstalk. Our findings highlight the importance of CITED4 in response to both physiological and pathological stimuli.
Collapse
Affiliation(s)
- Carolin Lerchenmüller
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.).,Cardiology Department, University Hospital Heidelberg, Germany (C.L., E.R., H.A.K.).,German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Germany (C.L., E.R., H.A.K.)
| | - Charles P Rabolli
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Ashish Yeri
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Robert Kitchen
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Ane M Salvador
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Laura X Liu
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Olivia Ziegler
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Kirsty Danielson
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Colin Platt
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Ravi Shah
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Federico Damilano
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Piyusha Kundu
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Eva Riechert
- Cardiology Department, University Hospital Heidelberg, Germany (C.L., E.R., H.A.K.).,German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Germany (C.L., E.R., H.A.K.)
| | - Hugo A Katus
- Cardiology Department, University Hospital Heidelberg, Germany (C.L., E.R., H.A.K.).,German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Germany (C.L., E.R., H.A.K.)
| | - Jeffrey E Saffitz
- Pathology Department, Beth Israel Deaconess Medical Center, Boston, MA (J.E.S.)
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA (H.K., S.A.C.)
| | | | - Saumya Das
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Anthony Rosenzweig
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| |
Collapse
|
94
|
Brooks DL, Garza AE, Caliskan Guzelce E, Gholami SK, Treesaranuwattana T, Maris S, Ranjit S, Tay CS, Lee JM, Romero JR, Adler GK, Pojoga LH, Williams GH. mTORC1 Deficiency Modifies Volume Homeostatic Responses to Dietary Sodium in a Sex-Specific Manner. Endocrinology 2020; 161:5802448. [PMID: 32154868 PMCID: PMC7391217 DOI: 10.1210/endocr/bqaa041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
The mechanistic target of the rapamycin (mTOR) pathway plays a role in features common to both excess salt/aldosterone and cardiovascular/renal diseases. Dietary sodium can upregulate mTORC1 signaling in cardiac and renal tissue, and the inhibition of mTOR can prevent aldosterone-associated, salt-induced hypertension. The impact of sex and age on mTOR's role in volume homeostasis and the regulation of aldosterone secretion is largely unknown. We hypothesize that both age and sex modify mTOR's interaction with volume homeostatic mechanisms. The activity of 3 volume homeostatic mechanisms-cardiovascular, renal, and hormonal (aldosterone [sodium retaining] and brain natriuretic peptide [BNP; sodium losing])-were assessed in mTORC1 deficient (Raptor+/-) and wild-type male and female littermates at 2 different ages. The mice were volume stressed by being given a liberal salt (LibS) diet. Raptor+/-mice of both sexes when they aged: (1) reduced their blood pressure, (2) increased left ventricular internal diameter during diastole, (3) decreased renal blood flow, and (4) increased mineralocorticoid receptor expression. Aldosterone levels did not differ by sex in young Raptor+/- mice. However, as they aged, compared to their littermates, aldosterone decreased in males but increased in females. Finally, given the level of Na+ intake, BNP was inappropriately suppressed, but only in Raptor+/- males. These data indicate that Raptor+/- mice, when stressed with a LibS diet, display inappropriate volume homeostatic responses, particularly with aging, and the mechanisms altered, differing by sex.
Collapse
Affiliation(s)
- Danielle L Brooks
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Ezgi Caliskan Guzelce
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Shadi K Gholami
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | | | - Stephen Maris
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Sanjay Ranjit
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Chee Sin Tay
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Jessica M Lee
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA
- Correspondence: Gordon H. Williams, MD, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, 221 Longwood Avenue, Boston Massachusetts 02115. E-mail:
| |
Collapse
|
95
|
Zhu M, Wang XQ. Regulation of mTORC1 by Small GTPases in Response to Nutrients. J Nutr 2020; 150:1004-1011. [PMID: 31965176 DOI: 10.1093/jn/nxz301] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/07/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a highly evolutionarily conserved serine/threonine kinase that regulates cell growth and metabolism in response to multiple environmental cues, such as nutrients, hormones, energy, and stress. Deregulation of mTORC1 can lead to diseases such as diabetes, obesity, and cancer. A series of small GTPases, including Rag, Ras homolog enriched in brain (Rheb), adenosine diphosphate ribosylation factor 1 (Arf1), Ras-related protein Ral-A, Ras homolog (Rho), and Rab, are involved in regulating mTORC1 in response to nutrients, and mTORC1 is differentially regulated via these small GTPases according to specific conditions. Leucine and arginine sensing are considered to be well-confirmed amino acid-sensing signals, activating mTORC1 via a Rag GTPase-dependent mechanism as well as the Ragulator complex and vacuolar H+-adenosine triphosphatase (v-ATPase). Glutamine promotes mTORC1 activation via Arf1 independently of the Rag GTPase. In this review, we summarize current knowledge regarding the regulation of mTORC1 activity by small GTPases in response to nutrients, focusing on the function of small GTPases in mTORC1 activation and how small GTPases are regulated by nutrients.
Collapse
Affiliation(s)
- Min Zhu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| |
Collapse
|
96
|
Minocycline promotes cardiomyocyte mitochondrial autophagy and cardiomyocyte autophagy to prevent sepsis-induced cardiac dysfunction by Akt/mTOR signaling. Apoptosis 2020; 24:369-381. [PMID: 30756206 DOI: 10.1007/s10495-019-01521-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Myocardial damage is responsible for the high mortality of sepsis. However, the underlying mechanism is not well understood. Cardiomyocyte autophagy alleviates the cardiac injury caused by myocardial infarction. Enhanced cardiomyocyte autophagy also has protective effects against cardiomyocyte mitochondrial injury. Minocycline enhances autophagy in many types of cells under different types of pathological stress and can be easily taken up by cardiomyocytes. The present study investigated whether minocycline prevented myocardial injury caused by sepsis and whether cardiomyocyte autophagy participated in this process. The results indicated that minocycline enhanced cardiomyocyte mitochondrial autophagy and cardiomyocyte autophagy and improved myocardial mitochondrial and cardiac function. Minocycline upregulated protein kinase B (Akt) phosphorylation, inhibited mTORC1 expression and enhanced mTORC2 expression. In conclusion, minocycline enhanced cardiomyocyte mitochondrial autophagy and cardiomyocyte autophagy and improved cardiac function. The underlying mechanisms were associated with mTORC1 inhibition and mTORC2 activation. Thus, our findings suggest that minocycline may represent a potential approach for treating myocardial injury and provide novel insights into the underlying mechanisms of myocardial injury and dysfunction after sepsis.
Collapse
|
97
|
Ahmadi F, Ghanbar Zadeh M, Habibi A, Karimi F. Effect of resistance training with Spirulina platensis on PI3K/Akt/mTOR/p70S6k signaling pathway in cardiac muscle. Sci Sports 2020. [DOI: 10.1016/j.scispo.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
98
|
Translating Translation to Mechanisms of Cardiac Hypertrophy. J Cardiovasc Dev Dis 2020; 7:jcdd7010009. [PMID: 32164190 PMCID: PMC7151157 DOI: 10.3390/jcdd7010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiac hypertrophy in response to chronic pathological stress is a common feature occurring with many forms of heart disease. This pathological hypertrophic growth increases the risk for arrhythmias and subsequent heart failure. While several factors promoting cardiac hypertrophy are known, the molecular mechanisms governing the progression to heart failure are incompletely understood. Recent studies on altered translational regulation during pathological cardiac hypertrophy are contributing to our understanding of disease progression. In this brief review, we describe how the translational machinery is modulated for enhanced global and transcript selective protein synthesis, and how alternative modes of translation contribute to the disease state. Attempts at controlling translational output through targeting of mTOR and its regulatory components are detailed, as well as recently emerging targets for pre-clinical investigation.
Collapse
|
99
|
Chen JW, Lin YL, Chou CH, Wu YHS, Wang SY, Chen YC. Antiobesity and hypolipidemic effects of protease A-digested crude-chalaza hydrolysates in a high-fat diet. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
100
|
Simpson LJ, Reader JS, Tzima E. Mechanical Regulation of Protein Translation in the Cardiovascular System. Front Cell Dev Biol 2020; 8:34. [PMID: 32083081 PMCID: PMC7006472 DOI: 10.3389/fcell.2020.00034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The cardiovascular system can sense and adapt to changes in mechanical stimuli by remodeling the physical properties of the heart and blood vessels in order to maintain homeostasis. Imbalances in mechanical forces and/or impaired sensing are now not only implicated but are, in some cases, considered to be drivers for the development and progression of cardiovascular disease. There is now growing evidence to highlight the role of mechanical forces in the regulation of protein translation pathways. The canonical mechanism of protein synthesis typically involves transcription and translation. Protein translation occurs globally throughout the cell to maintain general function but localized protein synthesis allows for precise spatiotemporal control of protein translation. This Review will cover studies on the role of biomechanical stress -induced translational control in the heart (often in the context of physiological and pathological hypertrophy). We will also discuss the much less studied effects of mechanical forces in regulating protein translation in the vasculature. Understanding how the mechanical environment influences protein translational mechanisms in the cardiovascular system, will help to inform disease pathogenesis and potential areas of therapeutic intervention.
Collapse
Affiliation(s)
- Lisa J Simpson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - John S Reader
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ellie Tzima
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|