51
|
Cucco F, Sarogni P, Rossato S, Alpa M, Patimo A, Latorre A, Magnani C, Puisac B, Ramos FJ, Pié J, Musio A. Pathogenic variants in EP300 and ANKRD11 in patients with phenotypes overlapping Cornelia de Lange syndrome. Am J Med Genet A 2020; 182:1690-1696. [PMID: 32476269 DOI: 10.1002/ajmg.a.61611] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Cornelia de Lange syndrome (CdLS), Rubinstein-Taybi syndrome (RSTS), and KBG syndrome are three distinct developmental human disorders. Variants in seven genes belonging to the cohesin pathway, NIPBL, SMC1A, SMC3, HDAC8, RAD21, ANKRD11, and BRD4, were identified in about 80% of patients with CdLS, suggesting that additional causative genes remain to be discovered. Two genes, CREBBP and EP300, have been associated with RSTS, whereas KBG results from variants in ANKRD11. By exome sequencing, a genetic cause was elucidated in two patients with clinical diagnosis of CdLS but without variants in known CdLS genes. In particular, genetic variants in EP300 and ANKRD11 were identified in the two patients with CdLS. EP300 and ANKRD11 pathogenic variants caused the reduction of the respective proteins suggesting that their low levels contribute to CdLS-like phenotype. These findings highlight the clinical overlap between CdLS, RSTS, and KBG and support the notion that these rare disorders are linked to abnormal chromatin remodeling, which in turn affects the transcriptional machinery.
Collapse
Affiliation(s)
- Francesco Cucco
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Patrizia Sarogni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Sara Rossato
- U.O.C. Pediatria, Ospedale San Bortolo, Vicenza, Italy
| | - Mirella Alpa
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, Turin, Italy
| | - Alessandra Patimo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Ana Latorre
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Cinzia Magnani
- Neonatology and Neonatal Intensive Care Unit, Maternal and Child Department, University of Parma, Parma, Italy
| | - Beatriz Puisac
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Feliciano J Ramos
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Juan Pié
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
52
|
Parenti I, Diab F, Gil SR, Mulugeta E, Casa V, Berutti R, Brouwer RWW, Dupé V, Eckhold J, Graf E, Puisac B, Ramos F, Schwarzmayr T, Gines MM, van Staveren T, van IJcken WFJ, Strom TM, Pié J, Watrin E, Kaiser FJ, Wendt KS. MAU2 and NIPBL Variants Impair the Heterodimerization of the Cohesin Loader Subunits and Cause Cornelia de Lange Syndrome. Cell Rep 2020; 31:107647. [PMID: 32433956 DOI: 10.1016/j.celrep.2020.107647] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/30/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022] Open
Abstract
The NIPBL/MAU2 heterodimer loads cohesin onto chromatin. Mutations in NIPBL account for most cases of the rare developmental disorder Cornelia de Lange syndrome (CdLS). Here we report a MAU2 variant causing CdLS, a deletion of seven amino acids that impairs the interaction between MAU2 and the NIPBL N terminus. Investigating this interaction, we discovered that MAU2 and the NIPBL N terminus are largely dispensable for normal cohesin and NIPBL function in cells with a NIPBL early truncating mutation. Despite a predicted fatal outcome of an out-of-frame single nucleotide duplication in NIPBL, engineered in two different cell lines, alternative translation initiation yields a form of NIPBL missing N-terminal residues. This form cannot interact with MAU2, but binds DNA and mediates cohesin loading. Altogether, our work reveals that cohesin loading can occur independently of functional NIPBL/MAU2 complexes and highlights a novel mechanism protective against out-of-frame mutations that is potentially relevant for other genetic conditions.
Collapse
Affiliation(s)
- Ilaria Parenti
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany; Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Farah Diab
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France; Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Sara Ruiz Gil
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany
| | | | - Valentina Casa
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Riccardo Berutti
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rutger W W Brouwer
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Center for Biomics, the Netherlands
| | - Valerie Dupé
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France; Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Juliane Eckhold
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany; Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, 50009 Zaragoza, Spain
| | - Feliciano Ramos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, 50009 Zaragoza, Spain
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | - Wilfred F J van IJcken
- Erasmus MC, University Medical Center Rotterdam, Department of Cell Biology, Center for Biomics, the Netherlands
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Juan Pié
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, 50009 Zaragoza, Spain
| | - Erwan Watrin
- Centre National de la Recherche Scientifique, UMR6290, Rennes, France; Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Frank J Kaiser
- Sektion für Funktionelle Genetik am Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany; Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany; DZHK e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
53
|
Sarogni P, Pallotta MM, Musio A. Cornelia de Lange syndrome: from molecular diagnosis to therapeutic approach. J Med Genet 2020; 57:289-295. [PMID: 31704779 PMCID: PMC7231464 DOI: 10.1136/jmedgenet-2019-106277] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/08/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a severe genetic disorder characterised by multisystemic malformations. CdLS is due to pathogenetic variants in NIPBL, SMC1A, SMC3, RAD21 and HDAC8 genes which belong to the cohesin pathway. Cohesin plays a pivotal role in chromatid cohesion, gene expression, and DNA repair. In this review, we will discuss how perturbations in those biological processes contribute to CdLS phenotype and will emphasise the state-of-art of CdLS therapeutic approaches.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Maria M Pallotta
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
54
|
Cuadrado A, Losada A. Specialized functions of cohesins STAG1 and STAG2 in 3D genome architecture. Curr Opin Genet Dev 2020; 61:9-16. [PMID: 32294612 DOI: 10.1016/j.gde.2020.02.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022]
Abstract
Cohesin is a complex conserved in evolution that entraps DNA. Originally identified for its role in sister chromatid cohesion, it is currently considered a key player in 3D genome organization. In vertebrates, two paralog genes encode two versions of the SA/STAG subunit of cohesin, STAG1 and STAG2. While the existence of two variant complexes has been largely ignored in many cohesin studies, the high frequency of STAG2 mutations in cancer has stirred up the interest in dissecting the unique properties that the STAG proteins confer on cohesin. In this review, we summarize recent progress in our understanding of the functional specificity of cohesin-STAG1 and cohesin-STAG2 with particular emphasis on their contributions to genome organization and gene regulation.
Collapse
Affiliation(s)
- Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
55
|
Plesser Duvdevani M, Pettersson M, Eisfeldt J, Avraham O, Dagan J, Frumkin A, Lupski JR, Lindstrand A, Harel T. Whole-genome sequencing reveals complex chromosome rearrangement disrupting NIPBL in infant with Cornelia de Lange syndrome. Am J Med Genet A 2020; 182:1143-1151. [PMID: 32125084 DOI: 10.1002/ajmg.a.61539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 02/05/2023]
Abstract
Clinical laboratory diagnostic evaluation of the genomes of children with suspected genetic disorders, including chromosomal microarray and exome sequencing, cannot detect copy number neutral genomic rearrangements such as inversions, balanced translocations, and complex chromosomal rearrangements (CCRs). We describe an infant with a clinical diagnosis of Cornelia de Lange syndrome (CdLS) in whom chromosome analysis revealed a de novo complex balanced translocation, 46,XY,t(5;7;6)(q11.2;q32;q13)dn. Subsequent molecular characterization by whole-genome sequencing (WGS) identified 23 breakpoints, delineating segments derived from four chromosomes (5;6;7;21) in ancestral or inverted orientation. One of the breakpoints disrupted a known CdLS gene, NIPBL. Further investigation revealed paternal origin of the CCR allele, clustering of the breakpoint junctions, and molecular repair signatures suggestive of a single catastrophic event. Notably, very short DNA segments (25 and 41 bp) were included in the reassembled chromosomes, lending additional support that the DNA repair machinery can detect and repair such segments. Interestingly, there was an independent paternally derived miniscule complex rearrangement, possibly predisposing to subsequent genomic instability. In conclusion, we report a CCR causing a monogenic Mendelian disorder, urging WGS analysis of similar unsolved cases with suspected Mendelian disorders. Breakpoint analysis allowed for identification of the underlying molecular diagnosis and implicated chromoanagenesis in CCR formation.
Collapse
Affiliation(s)
- Morasha Plesser Duvdevani
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Ortal Avraham
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Judith Dagan
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayala Frumkin
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
56
|
Guevara-Aguirre J, Guevara C, Guevara A, Gavilanes AA. Branding of subjects affected with genetic syndromes of severe short stature in developing countries. BMJ Case Rep 2020; 13:e231737. [PMID: 32041755 PMCID: PMC7021096 DOI: 10.1136/bcr-2019-231737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 01/10/2023] Open
Abstract
In Ecuador, a developing South American country, subjects affected with genetic syndromes of severe short stature are commonly referred to as dwarfs or midgets. Furthermore, and because in earlier studies some patients had evidenced mental retardation, such abnormality is assumed to exist in all affected subjects. Herein, we present two discrete instances in which this type of branding occurs. The first is that of individuals with Laron syndrome who are still called 'dwarfs' and considered as having a degree of mental retardation despite evidence showing otherwise. A similar problem, that of a girl affected with a genetic syndrome of short stature, which might include mental retardation, is also discussed. Considering that stigmatising is a form of discrimination, it concerns us all. Hence, the use of derogatory terms such as midget, dwarf or cretin, that might unintentionally occur even when delivering the best and most devoted medical care, must be eliminated.
Collapse
Affiliation(s)
- Jaime Guevara-Aguirre
- College of Medicine, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
- Department of Pediatrics, Maastricht University, Maastricht, Limburg, The Netherlands
- Instituto de Endocrinologia y Metabolismo, IEMYR, Quito, Pichincha, Ecuador
| | - Carolina Guevara
- Instituto de Endocrinologia y Metabolismo, IEMYR, Quito, Pichincha, Ecuador
| | - Alexandra Guevara
- Instituto de Endocrinologia y Metabolismo, IEMYR, Quito, Pichincha, Ecuador
| | - Antonio Awd Gavilanes
- Department of Pediatrics, Maastricht University, Maastricht, Limburg, The Netherlands
| |
Collapse
|
57
|
Tuc E, Bengur FB, Aykut A, Sahin O, Alanay Y. The third family with TAF6-related phenotype: Alazami-Yuan syndrome. Clin Genet 2020; 97:795-796. [PMID: 32030742 DOI: 10.1111/cge.13711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Ecenur Tuc
- Department of Pediatrics, Pediatric Genetics Unit, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Fuat Baris Bengur
- Department of Pediatrics, Pediatric Genetics Unit, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Aslan Aykut
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ozlem Sahin
- Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Turkey
| | - Yasemin Alanay
- Department of Pediatrics, Pediatric Genetics Unit, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| |
Collapse
|
58
|
Avagliano L, Parenti I, Grazioli P, Di Fede E, Parodi C, Mariani M, Kaiser FJ, Selicorni A, Gervasini C, Massa V. Chromatinopathies: A focus on Cornelia de Lange syndrome. Clin Genet 2020; 97:3-11. [PMID: 31721174 DOI: 10.1111/cge.13674] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023]
Abstract
In recent years, many genes have been associated with chromatinopathies classified as "Cornelia de Lange Syndrome-like." It is known that the phenotype of these patients becomes less recognizable, overlapping to features characteristic of other syndromes caused by genetic variants affecting different regulators of chromatin structure and function. Therefore, Cornelia de Lange syndrome diagnosis might be arduous due to the seldom discordance between unexpected molecular diagnosis and clinical evaluation. Here, we review the molecular features of Cornelia de Lange syndrome, supporting the hypothesis that "CdLS-like syndromes" are part of a larger "rare disease family" sharing multiple clinical features and common disrupted molecular pathways.
Collapse
Affiliation(s)
- Laura Avagliano
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Parenti
- Section for Functional Genetics, Institute of Human Genetics, University of Lübeck, Lübeck, Germany
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Paolo Grazioli
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Elisabetta Di Fede
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Frank J Kaiser
- Section for Functional Genetics, Institute of Human Genetics, University of Lübeck, Lübeck, Germany
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | | | - Cristina Gervasini
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Valentina Massa
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
59
|
Pisani FM. Spotlight on Warsaw Breakage Syndrome. APPLICATION OF CLINICAL GENETICS 2019; 12:239-248. [PMID: 31824187 PMCID: PMC6901054 DOI: 10.2147/tacg.s186476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Warsaw breakage syndrome (WABS) is a very rare recessive hereditary disease caused by mutations in the gene coding for the DNA helicase DDX11, involved in genome stability maintenance and sister cohesion establishment. Typical clinical features observed in WABS patients include growth retardation, facial dysmorphia, microcephaly, hearing loss due to cochlear malformations and, at cytological level, sister chromatid cohesion defects. Molecular bases of WABS have not yet been elucidated, due to lack of disease animal model systems and limited knowledge of the DDX11 physiological functions. However, WABS is considered to belong to the group of cohesinopathies, genetic disorders due to mutations of subunits or regulators of cohesin, the protein complex responsible for tethering sister chromatids from the time of their synthesis till they separate in mitosis. Recent evidences suggest that cohesin and its regulators have additional key roles in chromatin organization by promoting the formation of chromatin loops. This “non-canonical” function of cohesin is expected to impact gene transcription during cell differentiation and embryonic development and its dis-regulation, caused by mutation/loss of genes encoding cohesin subunits or regulators, could originate the developmental defects observed in cohesinopathies. Ethiopathogenesis of WABS is discussed in line with these recent findings and evidence of a possible role of DDX11 as a cohesin regulator.
Collapse
Affiliation(s)
- Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples 80131, Italy
| |
Collapse
|
60
|
Vitriolo A, Gabriele M, Testa G. From enhanceropathies to the epigenetic manifold underlying human cognition. Hum Mol Genet 2019; 28:R226-R234. [PMID: 31411680 PMCID: PMC6990140 DOI: 10.1093/hmg/ddz196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
A vast portion of intellectual disability and autism spectrum disorders is genetically caused by mutations in chromatin modulators. These proteins play key roles in development and are also highly expressed in the adult brain. Specifically, the pivotal role of chromatin regulation in transcription has placed enhancers at the core of neurodevelopmental disorders (NDDs) studies, ushering in the coining of the term enhanceropathies. The convergence of these disorders is multilayered, spanning from molecular causes to pathophysiological traits, including extensive overlaps between enhanceropathies and neurocristopathies. The reconstruction of epigenetic circuitries wiring development and underlying cognitive functions has gone hand in hand with the development of tools that increase the sensitivity of identifying regulatory regions and linking enhancers to their target genes. The available models, including loop extrusion and phase separation, have been bringing into relief complementary aspects to interpret gene regulation datasets, reinforcing the idea that enhancers are not all the same and that regulatory regions possess shades of enhancer-ness and promoter-ness. The current limits in enhancer definition, within the emerging broader understanding of chromatin dynamics in time and space, are now on the verge of being transformed by the possibility to interrogate developmentally relevant three-dimensional cellular models at single-cell resolution. Here we discuss the contours of how these technological advances, as well as the epistemic limitations they are set to overcome, may well usher in a change of paradigm for NDDs, moving the quest for convergence from enhancers to the four-dimensional (4D) genome.
Collapse
Affiliation(s)
- Alessandro Vitriolo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
61
|
Cheng H, Capponi S, Wakeling E, Marchi E, Li Q, Zhao M, Weng C, Piatek SG, Ahlfors H, Kleyner R, Rope A, Lumaka A, Lukusa P, Devriendt K, Vermeesch J, Posey JE, Palmer EE, Murray L, Leon E, Diaz J, Worgan L, Mallawaarachchi A, Vogt J, de Munnik SA, Dreyer L, Baynam G, Ewans L, Stark Z, Lunke S, Gonçalves AR, Soares G, Oliveira J, Fassi E, Willing M, Waugh JL, Faivre L, Riviere JB, Moutton S, Mohammed S, Payne K, Walsh L, Begtrup A, Sacoto MJG, Douglas G, Alexander N, Buckley MF, Mark PR, Adès LC, Sandaradura SA, Lupski JR, Roscioli T, Agrawal PB, Kline AD, Wang K, Timmers HTM, Lyon GJ. Missense variants in TAF1 and developmental phenotypes: challenges of determining pathogenicity. Hum Mutat 2019; 41:10.1002/humu.23936. [PMID: 31646703 PMCID: PMC7187541 DOI: 10.1002/humu.23936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022]
Abstract
We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hanyin Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Simona Capponi
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Urology, Medical Faculty-University of Freiburg, Freiburg, Germany
| | - Emma Wakeling
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Harrow, UK
| | - Elaine Marchi
- Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mengge Zhao
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Medical Center, New York, New York
| | - Stefan G. Piatek
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, UK
| | - Helena Ahlfors
- North East Thames Regional Genetics Laboratory, Great Ormond Street Hospital, London, UK
| | - Robert Kleyner
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Alan Rope
- Kaiser Permanente Center for Health Research, Portland, Oregon
- Genome Medical, South San Francisco, California
| | - Aimé Lumaka
- Department of Biomedical and Preclinical Sciences, GIGA-R, Laboratory of Human Genetics, University of Liège, Liège, Belgium
- Institut National de Recherche Biomédicale, Kinshasa, DR Congo
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR Congo
| | - Prosper Lukusa
- Institut National de Recherche Biomédicale, Kinshasa, DR Congo
- Centre for Human Genetics, Faculty of Medicine, University of Kinshasa, Kinshasa, DR Congo
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Koenraad Devriendt
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Joris Vermeesch
- Centre for Human Genetics, University Hospital, University of Leuven, Leuven, Belgium
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Elizabeth E. Palmer
- Genetics of Learning Disability Service, Newcastle, New South Wales, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, New South Wales, Australia
| | - Lucinda Murray
- Genetics of Learning Disability Service, Newcastle, New South Wales, Australia
| | - Eyby Leon
- Rare Disease Institute, Children’s National Health System, Washington, District of Columbia
| | - Jullianne Diaz
- Rare Disease Institute, Children’s National Health System, Washington, District of Columbia
| | - Lisa Worgan
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Amali Mallawaarachchi
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Julie Vogt
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham, UK
| | - Sonja A. de Munnik
- Department of Human Genetics, Institute for Genetic and Metabolic Disease, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lauren Dreyer
- Genetic Services of Western Australia, Undiagnosed Diseases Program, Perth, Western Australia, Australia
| | - Gareth Baynam
- Genetic Services of Western Australia, Undiagnosed Diseases Program, Perth, Western Australia, Australia
- Western Australian Register of Developmental Anomalies, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Telethon Kids Institute, Perth, Western Australia, Australia
- Division of Paediatrics, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Lisa Ewans
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Australian Genomics Health Alliance, Melbourne, Victoria, Australia
| | - Ana R. Gonçalves
- Center for Medical Genetics Dr. Jacinto de Magalhāes, Hospital and University Center of Porto, Porto, Portugal
| | - Gabriela Soares
- Center for Medical Genetics Dr. Jacinto de Magalhāes, Hospital and University Center of Porto, Porto, Portugal
| | - Jorge Oliveira
- Center for Medical Genetics Dr. Jacinto de Magalhāes, Hospital and University Center of Porto, Porto, Portugal
- unIGENe, and Center for Predictive and Preventive Genetics (CGPP), Institute for Molecular and Cell Biology (IBMC), Institute of Health Research and Innovation (i3S), University of Porto, Porto, Portugal
| | - Emily Fassi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Michigan
| | - Marcia Willing
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Michigan
| | - Jeff L. Waugh
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pediatrics, Division of Pediatric Neurology, University of Texas Southwestern, Dallas, Texas
| | - Laurence Faivre
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, Dijon, France
| | | | - Sebastien Moutton
- INSERM U1231, LNC UMR1231 GAD, Burgundy University, Dijon, France
- Department of Medical Genetics, Reference Center for Developmental Anomalies, Bordeaux University Hospital, Bordeaux, France
| | | | - Katelyn Payne
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Laurence Walsh
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | - Michael F. Buckley
- New South Wales Health Pathology Genomic Laboratory, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Paul R. Mark
- Spectrum Health Division of Medical and Molecular Genetics, Grand Rapids, Michigan
| | - Lesley C. Adès
- Department of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Genetics, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sarah A. Sandaradura
- Department of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Genetics, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Texas Children’s Hospital, Houston, Texas
| | - Tony Roscioli
- New South Wales Health Pathology Genomic Laboratory, Prince of Wales Hospital, Randwick, New South Wales, Australia
- Centre for Clinical Genetics, Sydney Children’s Hospital, Randwick, New South Wales, Australia
- Neuroscience Research Australia, University of New South Wales, Sydney, New South Wales, Australia
| | - Pankaj B. Agrawal
- Divisions of Newborn Medicine and Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, Maryland
| | - Antonie D. Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, Maryland
| | | | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - H. T. Marc Timmers
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Urology, Medical Faculty-University of Freiburg, Freiburg, Germany
| | - Gholson J. Lyon
- Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- The Graduate Center, The City University of New York, New York, New York
| |
Collapse
|
62
|
Chronic myelomonocytic leukemia with ETV6-ABL1 rearrangement and SMC1A mutation. Cancer Genet 2019; 238:31-36. [DOI: 10.1016/j.cancergen.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/18/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022]
|
63
|
Kruszka P, Berger SI, Casa V, Dekker MR, Gaesser J, Weiss K, Martinez AF, Murdock DR, Louie RJ, Prijoles EJ, Lichty AW, Brouwer OF, Zonneveld-Huijssoon E, Stephan MJ, Hogue J, Hu P, Tanima-Nagai M, Everson JL, Prasad C, Cereda A, Iascone M, Schreiber A, Zurcher V, Corsten-Janssen N, Escobar L, Clegg NJ, Delgado MR, Hajirnis O, Balasubramanian M, Kayserili H, Deardorff M, Poot RA, Wendt KS, Lipinski RJ, Muenke M. Cohesin complex-associated holoprosencephaly. Brain 2019; 142:2631-2643. [PMID: 31334757 PMCID: PMC7245359 DOI: 10.1093/brain/awz210] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Marked by incomplete division of the embryonic forebrain, holoprosencephaly is one of the most common human developmental disorders. Despite decades of phenotype-driven research, 80-90% of aneuploidy-negative holoprosencephaly individuals with a probable genetic aetiology do not have a genetic diagnosis. Here we report holoprosencephaly associated with variants in the two X-linked cohesin complex genes, STAG2 and SMC1A, with loss-of-function variants in 10 individuals and a missense variant in one. Additionally, we report four individuals with variants in the cohesin complex genes that are not X-linked, SMC3 and RAD21. Using whole mount in situ hybridization, we show that STAG2 and SMC1A are expressed in the prosencephalic neural folds during primary neurulation in the mouse, consistent with forebrain morphogenesis and holoprosencephaly pathogenesis. Finally, we found that shRNA knockdown of STAG2 and SMC1A causes aberrant expression of HPE-associated genes ZIC2, GLI2, SMAD3 and FGFR1 in human neural stem cells. These findings show the cohesin complex as an important regulator of median forebrain development and X-linked inheritance patterns in holoprosencephaly.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seth I Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valentina Casa
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Jenna Gaesser
- Department of Pediatrics, Division of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karin Weiss
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R Murdock
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raymond J Louie
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Eloise J Prijoles
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Angie W Lichty
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Oebele F Brouwer
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark J Stephan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jacob Hogue
- Division of Clinical Genetics, Department of Pediatrics, Madigan Army Hospital, Tacoma, WA, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Momoko Tanima-Nagai
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Chitra Prasad
- Children’s Health Research Institute, London, ON, Canada
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Vickie Zurcher
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luis Escobar
- Peyton Manning Children’s Hospital at St. Vincent, Medical Genetics and Neurodevelopment Center, Indianapolis, IN, USA
| | - Nancy J Clegg
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Mauricio R Delgado
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics UT Southwestern Medical Center Dallas, TX, USA
| | - Omkar Hajirnis
- Pediatric Neurology, Synapses Child Neurology and Development Centre, Thane, Maharashtra, India
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children’s, NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, University of Sheffield, Sheffield, UK
| | - Hülya Kayserili
- Medical Genetics, Medical Faculty, Koç University, Istanbul, Turkey
| | - Matthew Deardorff
- The Division of Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
64
|
Poot M. Mutations in Mediator Complex Genes CDK8, MED12, MED13, and MEDL13 Mediate Overlapping Developmental Syndromes. Mol Syndromol 2019; 10:239-242. [PMID: 32021594 DOI: 10.1159/000502346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
|
65
|
Aoi H, Mizuguchi T, Ceroni JR, Kim VEH, Furquim I, Honjo RS, Iwaki T, Suzuki T, Sekiguchi F, Uchiyama Y, Azuma Y, Hamanaka K, Koshimizu E, Miyatake S, Mitsuhashi S, Takata A, Miyake N, Takeda S, Itakura A, Bertola DR, Kim CA, Matsumoto N. Comprehensive genetic analysis of 57 families with clinically suspected Cornelia de Lange syndrome. J Hum Genet 2019; 64:967-978. [PMID: 31337854 DOI: 10.1038/s10038-019-0643-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a rare multisystem disorder with specific dysmorphic features. Pathogenic genetic variants encoding cohesion complex subunits and interacting proteins (e.g., NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major causes of CdLS. However, there are many clinically diagnosed cases of CdLS without pathogenic variants in these genes. To identify further genetic causes of CdLS, we performed whole-exome sequencing in 57 CdLS families, systematically evaluating both single nucleotides variants (SNVs) and copy number variations (CNVs). We identified pathogenic genetic changes in 36 out of 57 (63.2 %) families, including 32 SNVs and four CNVs. Two known CdLS genes, NIPBL and SMC1A, were mutated in 23 and two cases, respectively. Among the remaining 32 individuals, four genes (ANKRD11, EP300, KMT2A, and SETD5) each harbored a pathogenic variant in a single individual. These variants are known to be involved in CdLS-like. Furthermore, pathogenic CNVs were detected in NIPBL, MED13L, and EHMT1, along with pathogenic SNVs in ZMYND11, MED13L, and PHIP. These three latter genes were involved in diseases other than CdLS and CdLS-like. Systematic clinical evaluation of all patients using a recently proposed clinical scoring system showed that ZMYND11, MED13L, and PHIP abnormality may cause CdLS or CdLS-like.
Collapse
Affiliation(s)
- Hiromi Aoi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - José Ricard Ceroni
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Veronica Eun Hue Kim
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Isabel Furquim
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Rachel S Honjo
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Takuma Iwaki
- Department of Pediatrics, University Hospital, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toshifumi Suzuki
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Futoshi Sekiguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Oncology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Takata
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Débora R Bertola
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Chong Ae Kim
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
66
|
Xing PR, Pan JY, Zhang HR. [Expression and significance of Shh and Wnt5a genes in Cornelia de Lange syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:485-490. [PMID: 31104668 PMCID: PMC7389413 DOI: 10.7499/j.issn.1008-8830.2019.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To study the expression of Shh and Wnt5a genes in the limb buds of NIPBL+/- fetal rats and the association of these two genes with Cornelia de Lange syndrome (CdLS). METHODS A total of 72 NIPBL+/- fetal rats were divided into an experimental group and a control group, with 36 rats in each group. The limb buds were collected from 12 fetal rats each on embryonic days 10, 11 and 12 (E10, E11 and E12) respectively. Real-time PCR and Western blot were used to measure the mRNA and protein expression of Shh and Wnt5a. RESULTS The mRNA and protein expression of Shh and Wnt5a was detected in the limb buds on E10, E11 and E12, and the experimental group had significantly lower expression than the control group (P<0.01). The mRNA and protein expression of Shh and Wnt5a in limb buds was at a low level on E10, followed by an increase on E11 and a reduction on E12, and the expression on E12 was still lower than that on E10 (P<0.01). CONCLUSIONS The mRNA and protein expression of Shh and Wnt5a are consistent. The pathogenesis of CdLS may be associated with the low mRNA and protein expression of Shh and Wnt5a inhibited by the low expression of NIPBL gene.
Collapse
Affiliation(s)
- Peng-Rui Xing
- First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang 832000, China.
| | | | | |
Collapse
|
67
|
Mondal G, Stevers M, Goode B, Ashworth A, Solomon DA. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers. Nat Commun 2019; 10:1686. [PMID: 30975996 PMCID: PMC6459917 DOI: 10.1038/s41467-019-09659-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Cohesin is a multiprotein ring that is responsible for cohesion of sister chromatids and formation of DNA loops to regulate gene expression. Genomic analyses have identified that the cohesin subunit STAG2 is frequently inactivated by mutations in cancer. However, the reason STAG2 mutations are selected during tumorigenesis and strategies for therapeutically targeting mutant cancer cells are largely unknown. Here we show that STAG2 is essential for DNA replication fork progression, whereby STAG2 inactivation in non-transformed cells leads to replication fork stalling and collapse with disruption of interaction between the cohesin ring and the replication machinery as well as failure to establish SMC3 acetylation. As a consequence, STAG2 mutation confers synthetic lethality with DNA double-strand break repair genes and increased sensitivity to select cytotoxic chemotherapeutic agents and PARP or ATR inhibitors. These studies identify a critical role for STAG2 in replication fork procession and elucidate a potential therapeutic strategy for cohesin-mutant cancers.
Collapse
Affiliation(s)
- Gourish Mondal
- Department of Pathology, University of California, San Francisco, CA, 94143, USA
| | - Meredith Stevers
- Department of Pathology, University of California, San Francisco, CA, 94143, USA
| | - Benjamin Goode
- Department of Pathology, University of California, San Francisco, CA, 94143, USA
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - David A Solomon
- Department of Pathology, University of California, San Francisco, CA, 94143, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA.
| |
Collapse
|
68
|
Neves A, Eisenman RN. Distinct gene-selective roles for a network of core promoter factors in Drosophila neural stem cell identity. Biol Open 2019; 8:8/4/bio042168. [PMID: 30948355 PMCID: PMC6504003 DOI: 10.1242/bio.042168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transcriptional mechanisms that allow neural stem cells (NSC) to balance self-renewal with differentiation are not well understood. Employing an in vivo RNAi screen we identify here NSC-TAFs, a subset of nine TATA-binding protein associated factors (TAFs), as NSC identity genes in Drosophila We found that depletion of NSC-TAFs results in decreased NSC clone size, reduced proliferation, defective cell polarity and increased hypersensitivity to cell cycle perturbation, without affecting NSC survival. Integrated gene expression and genomic binding analyses revealed that NSC-TAFs function with both TBP and TRF2, and that NSC-TAF-TBP and NSC-TAF-TRF2 shared target genes encode different subsets of transcription factors and RNA-binding proteins with established or emerging roles in NSC identity and brain development. Taken together, our results demonstrate that core promoter factors are selectively required for NSC identity in vivo by promoting cell cycle progression and NSC cell polarity. Because pathogenic variants in a subset of TAFs have all been linked to human neurological disorders, this work may stimulate and inform future animal models of TAF-linked neurological disorders.
Collapse
Affiliation(s)
- Alexandre Neves
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| |
Collapse
|
69
|
Posey JE, O'Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, Buyske S, Pehlivan D, Carvalho CMB, Baxter S, Sobreira N, Liu P, Wu N, Rosenfeld JA, Kumar S, Avramopoulos D, White JJ, Doheny KF, Witmer PD, Boehm C, Sutton VR, Muzny DM, Boerwinkle E, Günel M, Nickerson DA, Mane S, MacArthur DG, Gibbs RA, Hamosh A, Lifton RP, Matise TC, Rehm HL, Gerstein M, Bamshad MJ, Valle D, Lupski JR. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med 2019; 21:798-812. [PMID: 30655598 PMCID: PMC6691975 DOI: 10.1038/s41436-018-0408-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Identifying genes and variants contributing to rare disease phenotypes and Mendelian conditions informs biology and medicine, yet potential phenotypic consequences for variation of >75% of the ~20,000 annotated genes in the human genome are lacking. Technical advances to assess rare variation genome-wide, particularly exome sequencing (ES), enabled establishment in the United States of the National Institutes of Health (NIH)-supported Centers for Mendelian Genomics (CMGs) and have facilitated collaborative studies resulting in novel "disease gene" discoveries. Pedigree-based genomic studies and rare variant analyses in families with suspected Mendelian conditions have led to the elucidation of hundreds of novel disease genes and highlighted the impact of de novo mutational events, somatic variation underlying nononcologic traits, incompletely penetrant alleles, phenotypes with high locus heterogeneity, and multilocus pathogenic variation. Herein, we highlight CMG collaborative discoveries that have contributed to understanding both rare and common diseases and discuss opportunities for future discovery in single-locus Mendelian disorder genomics. Phenotypic annotation of all human genes; development of bioinformatic tools and analytic methods; exploration of non-Mendelian modes of inheritance including reduced penetrance, multilocus variation, and oligogenic inheritance; construction of allelic series at a locus; enhanced data sharing worldwide; and integration with clinical genomics are explored. Realizing the full contribution of rare disease research to functional annotation of the human genome, and further illuminating human biology and health, will lay the foundation for the Precision Medicine Initiative.
Collapse
Affiliation(s)
- Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Anne H O'Donnell-Luria
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shalini N Jhangiani
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Steven Buyske
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Department of Statistics, Rutgers University, Piscataway, NJ, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| | - Nan Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sushant Kumar
- Computational Biology and Bioinformatics Program, Yale University Medical School, New Haven, CT, USA
| | - Dimitri Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Janson J White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kimberly F Doheny
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Dane Witmer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Corinne Boehm
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Donna M Muzny
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Eric Boerwinkle
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center, Houston, TX, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Shrikant Mane
- Yale Center for Genome Analysis, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Richard P Lifton
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Tara C Matise
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Heidi L Rehm
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Gerstein
- Computational Biology and Bioinformatics Program, Yale University Medical School, New Haven, CT, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
70
|
Ramirez-Montaño D, Pachajoa H. Wiedemann-Steiner syndrome with a novel pathogenic variant in KMT2A: a case report. Colomb Med (Cali) 2019; 50:40-45. [PMID: 31168168 PMCID: PMC6536042 DOI: 10.25100/cm.v50i1.3555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Case Description: We report the case of a one-year-old girl who was diagnosed with Wiedemann-Steiner Syndrome based on the identification of a novel de novo frameshift mutation in the KMT2A gene by whole exome sequencing and supported by her clinical features. Clinical Findings: KMT2A mutations cause Wiedemann-Steiner Syndrome, a very rare genetic disorder characterized by congenital hypertrichosis, short stature, intellectual disability, and distinct facial features. Treatment and Outcome: Whole exome sequencing identified a novel frameshift variant: c. 4177dupA (p.Ile1393Asnfs * 14) in KMT2A; this change generates an alteration of the specific binding to non-methylated CpG motifs of the DNA to the protein. The genotype and phenotype of the patient were compared with those of earlier reported patients in the literature. Clinical Relevance: In diseases with low frequency, it is necessary to establish a genotype-phenotype correlation that allows the establishment of therapeutic and follow-up goals. The phenotype comparation with other reported cases did not show differences attributable to sex or age among patients with Wiedemann-Steiner Syndrome. Whole exome sequencing allows identifying causality in conditions with high clinical and genetic heterogeneity like hypertrichosis.
Collapse
Affiliation(s)
- Diana Ramirez-Montaño
- Universidad Icesi, Facultad de Ciencias de la Salud. Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER). Cali, Colombia
| | - Harry Pachajoa
- Universidad Icesi, Facultad de Ciencias de la Salud. Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER). Cali, Colombia.,Fundación Clínica Valle del Lili. Cali, Colombia
| |
Collapse
|
71
|
Yuan B, Neira J, Pehlivan D, Santiago-Sim T, Song X, Rosenfeld J, Posey JE, Patel V, Jin W, Adam MP, Baple EL, Dean J, Fong CT, Hickey SE, Hudgins L, Leon E, Madan-Khetarpal S, Rawlins L, Rustad CF, Stray-Pedersen A, Tveten K, Wenger O, Diaz J, Jenkins L, Martin L, McGuire M, Pietryga M, Ramsdell L, Slattery L, Abid F, Bertuch AA, Grange D, Immken L, Schaaf CP, Van Esch H, Bi W, Cheung SW, Breman AM, Smith JL, Shaw C, Crosby AH, Eng C, Yang Y, Lupski JR, Xiao R, Liu P. Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of cohesinopathies. Genet Med 2019; 21:663-675. [PMID: 30158690 PMCID: PMC6395558 DOI: 10.1038/s41436-018-0085-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Defects in the cohesin pathway are associated with cohesinopathies, notably Cornelia de Lange syndrome (CdLS). We aimed to delineate pathogenic variants in known and candidate cohesinopathy genes from a clinical exome perspective. METHODS We retrospectively studied patients referred for clinical exome sequencing (CES, N = 10,698). Patients with causative variants in novel or recently described cohesinopathy genes were enrolled for phenotypic characterization. RESULTS Pathogenic or likely pathogenic single-nucleotide and insertion/deletion variants (SNVs/indels) were identified in established disease genes including NIPBL (N = 5), SMC1A (N = 14), SMC3 (N = 4), RAD21 (N = 2), and HDAC8 (N = 8). The phenotypes in this genetically defined cohort skew towards the mild end of CdLS spectrum as compared with phenotype-driven cohorts. Candidate or recently reported cohesinopathy genes were supported by de novo SNVs/indels in STAG1 (N = 3), STAG2 (N = 5), PDS5A (N = 1), and WAPL (N = 1), and one inherited SNV in PDS5A. We also identified copy-number deletions affecting STAG1 (two de novo, one of unknown inheritance) and STAG2 (one of unknown inheritance). Patients with STAG1 and STAG2 variants presented with overlapping features yet without characteristic facial features of CdLS. CONCLUSION CES effectively identified disease-causing alleles at the mild end of the cohensinopathy spectrum and enabled characterization of candidate disease genes.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - Juanita Neira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children's Hospital, Houston, Texas, 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Section of Child Neurology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Teresa Santiago-Sim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | - Margaret P Adam
- Seattle Children's Hospital, Seattle, Washington, 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, 98105, USA
| | - Emma L Baple
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital, Gladstone Road, Exeter, EX1 2ED, UK
| | - John Dean
- Clinical Genetics Service, NHS Grampian, Aberdeen, AB25 2ZA, Scotland
| | - Chin-To Fong
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14642, USA
| | - Scott E Hickey
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, Ohio, 43205, USA
| | - Louanne Hudgins
- Division of Medical Genetics, Stanford University, Stanford, California, 94305, USA
| | - Eyby Leon
- Rare Disease Institute, Children's National Health System, Washington, DC, 20010, USA
| | | | - Lettie Rawlins
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital, Gladstone Road, Exeter, EX1 2ED, UK
| | - Cecilie F Rustad
- Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710, Skien, Norway
| | - Olivia Wenger
- New Leaf Center, Clinic for Special Children, Mt. Eaton, Ohio, 44659, USA
| | - Jullianne Diaz
- Rare Disease Institute, Children's National Health System, Washington, DC, 20010, USA
| | - Laura Jenkins
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, 15224, USA
| | - Laura Martin
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, 14642, USA
| | - Marianne McGuire
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - Marguerite Pietryga
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Linda Ramsdell
- Seattle Children's Hospital, Seattle, Washington, 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, 98105, USA
| | - Leah Slattery
- Division of Medical Genetics, Stanford University, Stanford, California, 94305, USA
| | - Farida Abid
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children's Hospital, Houston, Texas, 77030, USA
- Department of Pediatrics, Section of Child Neurology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Alison A Bertuch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children's Hospital, Houston, Texas, 77030, USA
| | - Dorothy Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - LaDonna Immken
- Dell Children's Medical Center of Central Texas, Austin, Texas, 78723, USA
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children's Hospital, Houston, Texas, 77030, USA
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Center for Rare Diseases, University Hospital Cologne, Cologne, Germany
| | - Hilde Van Esch
- Center for Human Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - Janice L Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - Chad Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - Andrew H Crosby
- University of Exeter Medical School, RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Christine Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children's Hospital, Houston, Texas, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Rui Xiao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Baylor Genetics, Houston, Texas, 77021, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA.
- Baylor Genetics, Houston, Texas, 77021, USA.
| |
Collapse
|
72
|
Exploring by whole exome sequencing patients with initial diagnosis of Rubinstein-Taybi syndrome: the interconnections of epigenetic machinery disorders. Hum Genet 2019; 138:257-269. [PMID: 30806792 DOI: 10.1007/s00439-019-01985-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/17/2019] [Indexed: 12/29/2022]
Abstract
Rubinstein-Taybi syndrome (RSTS) is an autosomal-dominant neurodevelopmental disease affecting 1:125,000 newborns characterized by intellectual disability, growth retardation, facial dysmorphisms and skeletal abnormalities. RSTS is caused by mutations in genes encoding for writers of the epigenetic machinery: CREBBP (~ 60%) or its homologous EP300 (~ 10%). No causative mutation is identified in up to 30% of patients. We performed whole-exome sequencing (WES) on eight RSTS-like individuals who had normal high-resolution array CGH testing and were CREBBP- and EP300-mutation -negative, to identify the molecular cause. In four cases, we identified putatively causal variants in three genes (ASXL1, KMT2D and KMT2A) encoding members of the epigenetic machinery known to be associated with the Bohring-Opitz, Kabuki and Wiedemann-Steiner syndromes. Each variant is novel, de novo, fulfills the ACMG criteria and is predicted to result in loss-of-function leading to haploinsufficiency of the epi-gene. In two of the remaining cases, homozygous/compound heterozygous variants in XYLT2 and PLCB4 genes, respectively, associated with spondyloocular and auriculocondylar 2 syndromes and in the latter an additional candidate variant in XRN2, a gene yet unrelated to any disease, were detected, but their pathogenicity remains uncertain. These results underscore the broad clinical spectrum of Mendelian disorders of the epigenetic apparatus and the high rate of WES disclosure of the genetic basis in cases which may pose a challenge for phenotype encompassing distinct syndromes. The overlapping features of distinct intellectual disability syndromes reflect common pathogenic molecular mechanisms affecting the complex regulation of balance between open and closed chromatin.
Collapse
|
73
|
Tang H, Guo J, Linpeng S, Wu L. Next generation sequencing identified two novel mutations in NIPBL and a frame shift mutation in CREBBP in three Chinese children. Orphanet J Rare Dis 2019; 14:45. [PMID: 30770747 PMCID: PMC6377774 DOI: 10.1186/s13023-019-1022-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/04/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cornelia de Lange syndrome (CdLS) and Rubinstein-Taybi syndrome (RSTS) are both rare congenital multiple malformation disorders caused by genes associated with transcription. They share a number of similar features clinically. In addition, it is difficult to make a molecular diagnosis rapidly and detect the mosaic mutation when only sanger sequencing is taken. This study aims to report three novel mutations in three Chinese children identified by next generation sequencing. RESULTS We describe patient 1 and patient 2 presenting with characteristics of CdLS with mutations in NIPBL and patient 3 with a frame shift mutation in CREBBP who can be diagnosed as RSTS clinically and also have similar symptoms with CdLS to some extent. The splicing site c.4321-1G > A transversion in NIPBL is a mosaic mutation and produces an abnormal transcript bearing the loss of exon 20. The nonsense mutation c.218C > A in NIPBL and the frame shift c.1715delC mutation in CREBBP generate stop codon and yield the premature termination of proteins. CONCLUSIONS In general, we detect three novel heterozygous mutations including a splicing mutation and a nonsense mutation in NIPBL and a frame shift in CREBBP. And several similar features observed in patients indicate the clinical complexity and clinically overlapping of CdLS and RSTS termed "transcriptomopathies", suggest the underlying molecular mechanism and emphasize the utilization of next generation sequencing technologies.
Collapse
Affiliation(s)
- Hui Tang
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Jing Guo
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Siyuan Linpeng
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| | - Lingqian Wu
- Center for Medical Genetics, School of life sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 People’s Republic of China
| |
Collapse
|
74
|
Abstract
Condensins and cohesins are highly conserved complexes that tether together DNA loci within a single DNA molecule to produce DNA loops. Condensin and cohesin structures, however, are different, and the DNA loops produced by each underlie distinct cell processes. Condensin rods compact chromosomes during mitosis, with condensin I and II complexes producing spatially defined and nested looping in metazoan cells. Structurally adaptive cohesin rings produce loops, which organize the genome during interphase. Cohesin-mediated loops, termed topologically associating domains or TADs, antagonize the formation of epigenetically defined but untethered DNA volumes, termed compartments. While condensin complexes formed through cis-interactions must maintain chromatin compaction throughout mitosis, cohesins remain highly dynamic during interphase to allow for transcription-mediated responses to external cues and the execution of developmental programs. Here, I review differences in condensin and cohesin structures, and highlight recent advances regarding the intramolecular or cis-based tetherings through which condensins compact DNA during mitosis and cohesins organize the genome during interphase.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, 111 Research Drive, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
75
|
Carapito R, Ivanova EL, Morlon A, Meng L, Molitor A, Erdmann E, Kieffer B, Pichot A, Naegely L, Kolmer A, Paul N, Hanauer A, Tran Mau-Them F, Jean-Marçais N, Hiatt SM, Cooper GM, Tvrdik T, Muir AM, Dimartino C, Chopra M, Amiel J, Gordon CT, Dutreux F, Garde A, Thauvin-Robinet C, Wang X, Leduc MS, Phillips M, Crawford HP, Kukolich MK, Hunt D, Harrison V, Kharbanda M, Smigiel R, Gold N, Hung CY, Viskochil DH, Dugan SL, Bayrak-Toydemir P, Joly-Helas G, Guerrot AM, Schluth-Bolard C, Rio M, Wentzensen IM, McWalter K, Schnur RE, Lewis AM, Lalani SR, Mensah-Bonsu N, Céraline J, Sun Z, Ploski R, Bacino CA, Mefford HC, Faivre L, Bodamer O, Chelly J, Isidor B, Bahram S, Isidor B, Bahram S. ZMIZ1 Variants Cause a Syndromic Neurodevelopmental Disorder. Am J Hum Genet 2019; 104:319-330. [PMID: 30639322 DOI: 10.1016/j.ajhg.2018.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/10/2018] [Indexed: 12/01/2022] Open
Abstract
ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutations that affect key protein regions, including a SUMO acceptor site, a central disordered alanine-rich motif, a proline-rich domain, and a transactivation domain. All identified variants were absent from all available exome and genome databases. In vitro, ZMIZ1 showed impaired coactivation of the androgen receptor. In vivo, overexpression of ZMIZ1 mutant alleles in developing mouse brains using in utero electroporation resulted in abnormal pyramidal neuron morphology, polarization, and positioning, underscoring the importance of ZMIZ1 in neural development and supporting mutations in ZMIZ1 as the cause of a rare neurodevelopmental syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bertrand Isidor
- Service de Génétique Médicale, Hôpital Hôtel-Dieu, CHU de Nantes, 44093 Nantes, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg, France; Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091 Strasbourg, France.
| |
Collapse
|
76
|
Krawczynska N, Wierzba J, Jasiecki J, Wasag B. Molecular characterization of two novel intronic variants of NIPBL gene detected in unrelated Cornelia de Lange syndrome patients. BMC MEDICAL GENETICS 2019; 20:1. [PMID: 30606125 PMCID: PMC6318863 DOI: 10.1186/s12881-018-0738-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 12/21/2018] [Indexed: 11/17/2022]
Abstract
Background Cornelia de Lange syndrome (CdLS), a rare, multisystemic disorder, has been linked to genetic alterations in NIPBL, SMC1A, SMC3, HDAC8, and RAD21 genes. Approximately 60% of CdLS patients harbor various NIPBL variants. Genetic changes predicted to affect NIPBL gene splicing represent 15% of all NIPBL genetic abnormalities. Yet, only a few studies have investigated the molecular consequences of such variants. Case presentation This study reports two novel, intronic NIPBL genetic variants in unrelated CdLS patients with the characteristic phenotype. A c.6954 + 3A > C substitution and a c.5862 + 1delG deletion were identified, one of each, in a 6 year-old boy and 39 month-old girl. Further studies confirmed that both variants introduce premature termination codons, resulting in the formation of truncated proteins p.(Ser2255LeufsTer20) and p.(Leu1955Ter), respectively. Conclusion Single nucleotide alterations located within the conserved splice-donor site of intronic regions of the NIPBL gene can give rise to a premature termination of the translation and cause significant changes in the sequence of mRNA transcripts and NIPBL protein structure and function. The latter underline development of Cornelia de Lange syndrome phenotype. Electronic supplementary material The online version of this article (10.1186/s12881-018-0738-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Krawczynska
- Department of Biology and Medical Genetics, Medical University of Gdansk, 1 Debinki Street, 80-211, Gdansk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdansk, Poland
| | - Jolanta Wierzba
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland.,Department of General Nursery, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Jasiecki
- Department of Pharmaceutical Microbiology, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Wasag
- Department of Biology and Medical Genetics, Medical University of Gdansk, 1 Debinki Street, 80-211, Gdansk, Poland. .,Laboratory of Clinical Genetics, University Clinical Centre, Gdansk, Poland.
| |
Collapse
|
77
|
Krawczynska N, Wierzba J, Wasag B. Genetic Mosaicism in a Group of Patients With Cornelia de Lange Syndrome. Front Pediatr 2019; 7:203. [PMID: 31157197 PMCID: PMC6530423 DOI: 10.3389/fped.2019.00203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Cornelia de Lange Syndrome (CdLS) is a heterogeneous disorder. Diverse expression of clinical symptoms can be caused by a variety of pathogenic variants located within the sequence of different genes correlated with the cohesin complex. Methods: Sixty-nine patients with confirmed clinical diagnosis of CdLS were enrolled in the study. Blood and buccal swab samples were collected for molecular studies. Mutational analysis was performed using the Next Generation (deep) Sequencing (NGS) covering 24 genes. In addition, the MLPA technique was applied to detect large rearrangements of NIPBL. Results: MLPA and NGS analysis were performed in 66 (95,7%) and 67 (97,1%) patients, respectively. Large rearrangements of NIPBL were not identified in the studied group. Germline pathogenic variants were detected in 18 (26,1%) patients. Fourteen variants (20,3%) were identified in NIPBL, two (2,9%) in SMC1A, and two (2,9%) in HDAC8. In total, 13 (18,8%) buccal swabs were suitable for deep sequencing. Mosaic variants were found in four (30,8%; 4/13) patients negative for germline alterations. Three mosaic substitutions were detected in NIPBL while one in KMT2A gene. Conclusions: Comprehensive and sensitive molecular techniques allow detecting novel pathogenic variants responsible for the molecular basis of CdLS. In addition, molecular testing of different tissues should be applied since such an approach allows detect mosaic variants specific for a subgroup of CdLS patients. Finally, to test possible pathogenicity of intronic variants, RNA analysis should be conducted.
Collapse
Affiliation(s)
- Natalia Krawczynska
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| | - Jolanta Wierzba
- Department of General Nursery, Medical University of Gdańsk, Gdańsk, Poland
| | - Bartosz Wasag
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| |
Collapse
|
78
|
Feldman HR, Dlouhy SR, Lah MD, Payne KK, Weaver DD. The progression of Wiedemann-Steiner syndrome in adulthood and two novel variants in the KMT2A gene. Am J Med Genet A 2018; 179:300-305. [PMID: 30549396 DOI: 10.1002/ajmg.a.60698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Wiedemann-Steiner syndrome is a genetic condition associated with dysmorphic facies, hypertrichosis, short stature, developmental delay, and intellectual disability. Congenital malformations of the cerebral, cardiac, renal, and optic structures have also been reported. Because the majority of reported individuals with this condition have been under age 20, the long-term prognosis is not well defined. Here we report on two further unrelated individuals diagnosed with Wiedemann-Steiner syndrome, one of whom is in her third decade of life. In addition, both individuals have novel KMT2A mutations. The information provided below about the outcome in Wiedemann-Steiner syndrome is important for families of affected individuals.
Collapse
Affiliation(s)
- Hailey R Feldman
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephen R Dlouhy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa D Lah
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katelyn K Payne
- Section of Child Neurology, Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
79
|
Cocciadiferro D, Augello B, De Nittis P, Zhang J, Mandriani B, Malerba N, Squeo GM, Romano A, Piccinni B, Verri T, Micale L, Pasqualucci L, Merla G. Dissecting KMT2D missense mutations in Kabuki syndrome patients. Hum Mol Genet 2018; 27:3651-3668. [PMID: 30107592 PMCID: PMC6488975 DOI: 10.1093/hmg/ddy241] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023] Open
Abstract
Kabuki syndrome is a rare autosomal dominant condition characterized by facial features, various organs malformations, postnatal growth deficiency and intellectual disability. The discovery of frequent germline mutations in the histone methyltransferase KMT2D and the demethylase KDM6A revealed a causative role for histone modifiers in this disease. However, the role of missense mutations has remained unexplored. Here, we expanded the mutation spectrum of KMT2D and KDM6A in KS by identifying 37 new KMT2D sequence variants. Moreover, we functionally dissected 14 KMT2D missense variants, by investigating their impact on the protein enzymatic activity and the binding to members of the WRAD complex. We demonstrate impaired H3K4 methyltransferase activity in 9 of the 14 mutant alleles and show that this reduced activity is due in part to disruption of protein complex formation. These findings have relevant implications for diagnostic and counseling purposes in this disease.
Collapse
Affiliation(s)
- Dario Cocciadiferro
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
- PhD Program in Experimental and Regenerative Medicine, Faculty of Medicine, University of Foggia, Italy
| | - Bartolomeo Augello
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | | | - Jiyuan Zhang
- Department of Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Barbara Mandriani
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy
| | - Natascia Malerba
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
- PhD Program in Experimental and Regenerative Medicine, Faculty of Medicine, University of Foggia, Italy
| | - Gabriella M Squeo
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Alessandro Romano
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Piccinni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Lucia Micale
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Laura Pasqualucci
- Department of Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| |
Collapse
|
80
|
Li N, Wang Y, Yang Y, Wang P, Huang H, Xiong S, Sun L, Cheng M, Song C, Cheng X, Ding Y, Chang G, Chen Y, Xu Y, Yu T, Yao RE, Shen Y, Wang X, Wang J. Description of the molecular and phenotypic spectrum of Wiedemann-Steiner syndrome in Chinese patients. Orphanet J Rare Dis 2018; 13:178. [PMID: 30305169 PMCID: PMC6180513 DOI: 10.1186/s13023-018-0909-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 09/12/2018] [Indexed: 01/16/2023] Open
Abstract
Background Wiedemann–Steiner syndrome (WDSTS) is a rare genetic disorder characterized by facial gestalt, neurodevelopmental delay, skeletal anomalies and growth retardation, which is caused by variation of KMT2A gene. To date, only 2 Chinese WDSTS patients have been reported. Here, we report the phenotypes and KMT2A gene variations in 14 unrelated Chinese WDSTS patients and investigate the phenotypic differences between the Chinese and French cohorts. Methods Next generation sequencing was performed for each patient, and the variants in the KMT2A gene were validated by Sanger sequencing. The phenotypes of 16 Chinese WDSTS patients were summarized and compared to 33 French patients. Results Genetic sequencing identified 13 deleterious de novo KMT2A variants in 14 patients, including 10 truncating, 2 missenses and 1 splicing variants. Of the 13 variants, 11 are novel and two have been reported previously. One of the patients is mosaic in the KMT2A gene. The variation spectra and phenotypic profiles of the Chinese WDSTS patients showed no difference with patients of other ethnicities; however, differ in the frequencies of several clinical features. We demonstrated that variations in the KMT2A gene can lead to both advanced and delayed bone age. We identified 6 novel phenotypes, which include microcephaly, deep palmar crease, external ear deformity, carpal epiphyseal growth retardation, dyslipidemia, and glossoptosis. In addition, patients harbored missense variants in the CXXC zinc finger domain of KMT2A showed more severe neurophenotypes. Conclusion Our study consists of the largest cohort of Chinese WDSTS patients that continues to expand the WDSTS phenotypic and variation spectrum. Our results support the notion that the CXXC zinc finger domain of KMT2A gene is a hotspot for missense variants associated with more severe neurophenotypes. Electronic supplementary material The online version of this article (10.1186/s13023-018-0909-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yu Yang
- Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital, Nanchang, 330029, Jiangxi, China
| | | | - Hui Huang
- Central laboratory, Jiangxi Provincial Children's Hospital, Nanchang, 330029, Jiangxi, China
| | - Shiyi Xiong
- Fetal Medicine Unit & Prenatal diagnosis center, Shanghai First Maternity and Infant hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Luming Sun
- Fetal Medicine Unit & Prenatal diagnosis center, Shanghai First Maternity and Infant hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Min Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Cui Song
- Department of Endocrinology and Genetic Metabolic Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders. Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xinran Cheng
- Department of Endocrinology and Metabolism, Chengdu Women's and Children's Central Hospital, Sichuan Province, Chengdu, 610091, China
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ru-En Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China. .,Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China. .,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
81
|
Kline AD, Moss JF, Selicorni A, Bisgaard AM, Deardorff MA, Gillett PM, Ishman SL, Kerr LM, Levin AV, Mulder PA, Ramos FJ, Wierzba J, Ajmone PF, Axtell D, Blagowidow N, Cereda A, Costantino A, Cormier-Daire V, FitzPatrick D, Grados M, Groves L, Guthrie W, Huisman S, Kaiser FJ, Koekkoek G, Levis M, Mariani M, McCleery JP, Menke LA, Metrena A, O'Connor J, Oliver C, Pie J, Piening S, Potter CJ, Quaglio AL, Redeker E, Richman D, Rigamonti C, Shi A, Tümer Z, Van Balkom IDC, Hennekam RC. Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement. Nat Rev Genet 2018; 19:649-666. [PMID: 29995837 PMCID: PMC7136165 DOI: 10.1038/s41576-018-0031-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning.
Collapse
Affiliation(s)
- Antonie D Kline
- Harvey Institute of Human Genetics, Greater Baltimore Medical Centre, Baltimore, MD, USA
| | - Joanna F Moss
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Angelo Selicorni
- Department of Paediatrics, Presidio S. Femro, ASST Lariana, Como, Italy
| | - Anne-Marie Bisgaard
- Kennedy Centre, Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Glostrup, Denmark
| | - Matthew A Deardorff
- Division of Human Genetics, Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter M Gillett
- GI Department, Royal Hospital for Sick Children, Edinburgh, Scotland, UK
| | - Stacey L Ishman
- Departments of Otolaryngology and Pulmonary Medicine, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Lynne M Kerr
- Division of Pediatric Neurology, Department of Paediatrics, University of Utah Medical Centre, Salt Lake City, UT, USA
| | - Alex V Levin
- Paediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paul A Mulder
- Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, Netherlands
| | - Feliciano J Ramos
- Unit of Clinical Genetics, Paediatrics, University Clinic Hospital 'Lozano Blesa' CIBERER-GCV02 and ISS-Aragón, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Jolanta Wierzba
- Department of Paediatrics, Haematology and Oncology, Department of General Nursery, Medical University of Gdansk, Gdansk, Poland
| | - Paola Francesca Ajmone
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - David Axtell
- CdLS Foundation UK and Ireland, The Tower, North Stifford, Grays, Essex, UK
| | - Natalie Blagowidow
- Harvey Institute of Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Anna Cereda
- Department of Paediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Antonella Costantino
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valerie Cormier-Daire
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - David FitzPatrick
- Human Genetics Unit, Medical and Developmental Genetics, University of Edinburgh Western General Hospital, Edinburgh, Scotland, UK
| | - Marco Grados
- Division of Child and Adolescent Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Groves
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Whitney Guthrie
- Centre for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sylvia Huisman
- Department of Paediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Frank J Kaiser
- Section for Functional Genetics, Institute for Human Genetics, University of Lübeck, Lübeck, Germany
| | | | - Mary Levis
- Wicomico County Board of Education, Salisbury, MD, USA
| | - Milena Mariani
- Clinical Paediatric Genetics Unit, Paediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italy
| | - Joseph P McCleery
- Centre for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leonie A Menke
- Department of Paediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Julia O'Connor
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chris Oliver
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Juan Pie
- Unit of Clinical Genetics, Paediatrics, University Clinic Hospital 'Lozano Blesa' CIBERER-GCV02 and ISS-Aragón, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Sigrid Piening
- Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, Netherlands
| | - Carol J Potter
- Department of Gastroenterology, Nationwide Children's, Columbus, OH, USA
| | - Ana L Quaglio
- Genética Médica, Hospital del Este, Eva Perón, Tucumán, Argentina
| | - Egbert Redeker
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - David Richman
- Department of Educational Psychology and Leadership, Texas Tech University, Lubbock, TX, USA
| | - Claudia Rigamonti
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angell Shi
- The Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Zeynep Tümer
- Kennedy Centre, Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Glostrup, Denmark
| | - Ingrid D C Van Balkom
- Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, Netherlands
- Rob Giel Research Centre, Department of Psychiatry, University Medical Centre Groningen, Groningen, Netherlands
| | - Raoul C Hennekam
- Department of Paediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
82
|
Decimi V, Parma B, Panceri R, Fossati C, Mariani M, Russo S, Gervasini CC, Cheli M, Cereda A, Selicorni A. Use of nutritional devices in Cornelia de Lange syndrome: Data from a large Italian cohort. Am J Med Genet A 2018; 176:1865-1871. [DOI: 10.1002/ajmg.a.40372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 01/21/2023]
Affiliation(s)
| | - Barbara Parma
- Department of Pediatrics. ASST‐Lariana. Sant'Anna Hospital San Fermo della Battaglia (Como) Italy
| | - Roberto Panceri
- Department of PediatricsUniversità Milano Bicocca Monza Italy
| | - Chiara Fossati
- Department of PediatricsUniversità Milano Bicocca Monza Italy
| | - Milena Mariani
- School of Specialization in Medical GeneticsUniversity of Milan Milan Italy
| | - Silvia Russo
- Laboratory of Molecular GeneticsIstituto Auxologico Italiano Milano Italy
| | - Cristina C. Gervasini
- Medical Genetics, Department of Health SciencesUniversità degli Studi di Milano Milano Italy
| | - Maurizio Cheli
- Department of Pediatric SurgeryASST Papa Giovanni XXIII Bergamo Italy
| | - Anna Cereda
- Department of PediatricsASST Papa Giovanni XXIII Bergamo Italy
| | - Angelo Selicorni
- Department of Pediatrics. ASST‐Lariana. Sant'Anna Hospital San Fermo della Battaglia (Como) Italy
| |
Collapse
|
83
|
El-Saafin F, Curry C, Ye T, Garnier JM, Kolb-Cheynel I, Stierle M, Downer NL, Dixon MP, Negroni L, Berger I, Thomas T, Voss AK, Dobyns W, Devys D, Tora L. Homozygous TAF8 mutation in a patient with intellectual disability results in undetectable TAF8 protein, but preserved RNA polymerase II transcription. Hum Mol Genet 2018; 27:2171-2186. [PMID: 29648665 PMCID: PMC5985725 DOI: 10.1093/hmg/ddy126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/21/2023] Open
Abstract
The human general transcription factor TFIID is composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). In eukaryotic cells, TFIID is thought to nucleate RNA polymerase II (Pol II) preinitiation complex formation on all protein coding gene promoters and thus, be crucial for Pol II transcription. In a child with intellectual disability, mild microcephaly, corpus callosum agenesis and poor growth, we identified a homozygous splice-site mutation in TAF8 (NM_138572.2: c.781-1G > A). Our data indicate that the patient's mutation generates a frame shift and an unstable TAF8 mutant protein with an unrelated C-terminus. The mutant TAF8 protein could not be detected in extracts from the patient's fibroblasts, indicating a loss of TAF8 function and that the mutation is most likely causative. Moreover, our immunoprecipitation and proteomic analyses show that in patient cells only partial TAF complexes exist and that the formation of the canonical TFIID is impaired. In contrast, loss of TAF8 in mouse embryonic stem cells and blastocysts leads to cell death and to a global decrease in Pol II transcription. Astonishingly however, in human TAF8 patient cells, we could not detect any cellular phenotype, significant changes in genome-wide Pol II occupancy and pre-mRNA transcription. Thus, the disorganization of the essential holo-TFIID complex did not affect global Pol II transcription in the patient's fibroblasts. Our observations further suggest that partial TAF complexes, and/or an altered TFIID containing a mutated TAF8, could support human development and thus, the absence of holo-TFIID is less deleterious for transcription than originally predicted.
Collapse
Affiliation(s)
- Farrah El-Saafin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Cynthia Curry
- University of California, San Francisco, San Francisco, CA, USA
- Genetic Medicine, University Pediatric Specialists, Fresno, CA 93701, USA
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Isabelle Kolb-Cheynel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Matthieu Stierle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Natalie L Downer
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Mathew P Dixon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Imre Berger
- School of Biochemistry and Bristol Research Centre for Synthetic Biology BrisSynBio, University of Bristol, Bristol BS8 1TD, UK
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - William Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, WA 98101, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
84
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|
85
|
Larizza L, Finelli P. Developmental disorders with intellectual disability driven by chromatin dysregulation: Clinical overlaps and molecular mechanisms. Clin Genet 2018; 95:231-240. [DOI: 10.1111/cge.13365] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/28/2018] [Accepted: 04/14/2018] [Indexed: 12/30/2022]
Affiliation(s)
- L. Larizza
- Laboratory of Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
| | - P. Finelli
- Laboratory of Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan Italy
- Department of Medical Biotechnology and Translational Medicine; Università degli Studi di Milano; Milan Italy
| |
Collapse
|
86
|
Baer S, Afenjar A, Smol T, Piton A, Gérard B, Alembik Y, Bienvenu T, Boursier G, Boute O, Colson C, Cordier MP, Cormier-Daire V, Delobel B, Doco-Fenzy M, Duban-Bedu B, Fradin M, Geneviève D, Goldenberg A, Grelet M, Haye D, Heron D, Isidor B, Keren B, Lacombe D, Lèbre AS, Lesca G, Masurel A, Mathieu-Dramard M, Nava C, Pasquier L, Petit A, Philip N, Piard J, Rondeau S, Saugier-Veber P, Sukno S, Thevenon J, Van-Gils J, Vincent-Delorme C, Willems M, Schaefer E, Morin G. Wiedemann-Steiner syndrome as a major cause of syndromic intellectual disability: A study of 33 French cases. Clin Genet 2018; 94:141-152. [PMID: 29574747 DOI: 10.1111/cge.13254] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Wiedemann-Steiner syndrome (WSS) is a rare syndromic condition in which intellectual disability (ID) is associated with hypertrichosis cubiti, short stature, and characteristic facies. Following the identification of the causative gene (KMT2A) in 2012, only 31 cases of WSS have been described precisely in the literature. We report on 33 French individuals with a KMT2A mutation confirmed by targeted gene sequencing, high-throughput sequencing or exome sequencing. Patients' molecular and clinical features were recorded and compared with the literature data. On the molecular level, we found 29 novel mutations. We observed autosomal dominant transmission of WSS in 3 families and mosaicism in one family. Clinically, we observed a broad phenotypic spectrum with regard to ID (mild to severe), the facies (typical or not of WSS) and associated malformations (bone, cerebral, renal, cardiac and ophthalmological anomalies). Hypertrichosis cubiti that was supposed to be pathognomonic in the literature was found only in 61% of our cases. This is the largest series of WSS cases yet described to date. A majority of patients exhibited suggestive features, but others were less characteristic, only identified by molecular diagnosis. The prevalence of WSS was higher than expected in patients with ID, suggesting than KMT2A is a major gene in ID.
Collapse
Affiliation(s)
- S Baer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut Génétique Médicale d'Alsace, Strasbourg, France.,Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - A Afenjar
- Unité de Génétique, Hôpital Armand Trousseau-La Roche-Guyon, AP-HP, Paris, France
| | - T Smol
- Institut de Génétique Médicale, Hôpital Jeanne de Flandre, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - A Piton
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - B Gérard
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Y Alembik
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut Génétique Médicale d'Alsace, Strasbourg, France
| | - T Bienvenu
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - G Boursier
- Département Génétique Médicale, Laboratoire génétique moléculaire maladies auto inflammatoires et maladies rares, CHRU de Montpellier, Montpellier, France
| | - O Boute
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - C Colson
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - M-P Cordier
- Service de Génétique Médicale, Hospices Civils de Lyon, Lyon, France
| | - V Cormier-Daire
- Département de Génétique, INSERM UMR1163, Institut Imagine, Hôpital Necker-Enfants-Malades, Université Paris Descartes, Sorbonne Paris Cité, AP-HP, Paris, France
| | - B Delobel
- Centre de Génétique Chromosomique, Groupe Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - M Doco-Fenzy
- Service de Génétique, CHU de Reims, Reims, France
| | - B Duban-Bedu
- Centre de Génétique Chromosomique, Groupe Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - M Fradin
- Service de Génétique Clinique, CHU Rennes, Rennes, France
| | - D Geneviève
- Département de Génétique Médicale, CHRU Montpellier, Faculté de Médecine de Montpellier-Nîmes, INSERM U1183, Montpellier, France
| | - A Goldenberg
- Service de Génétique Médicale, CHU de Rouen, Rouen, France
| | - M Grelet
- Département de Génétique Médicale, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - D Haye
- Service de Génétique Clinique, Unité Fonctionnelle de Génétique Médicale, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - D Heron
- Service de Génétique Clinique, Unité Fonctionnelle de Génétique Médicale, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - B Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - B Keren
- Unité Fonctionnelle de Génomique du Développement, Centre de Génétique Moléculaire et Chromosomique, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - D Lacombe
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - A-S Lèbre
- Laboratoire de Génétique, Service de Génétique et Biologie de la Reproduction, CHU de Reims, Reims, France
| | - G Lesca
- Service de Génétique Médicale, Hospices Civils de Lyon, Lyon, France
| | - A Masurel
- Centre de Génétique, CHU Dijon, Hôpital d'Enfants, Dijon, France
| | | | - C Nava
- Unité Fonctionnelle de Génomique du Développement, Centre de Génétique Moléculaire et Chromosomique, CHU Paris-GH La Pitié Salpêtrière-Charles Foix, Paris, France
| | - L Pasquier
- Service de Génétique Clinique, CHU Rennes, Rennes, France
| | - A Petit
- Service de Génétique Clinique, CHU Amiens Picardie, Amiens, France
| | - N Philip
- Département de Génétique Médicale, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - J Piard
- Centre de Génétique Humaine, Université de Franche-Comté, CHU Besançon, Besançon, France
| | - S Rondeau
- Département de Génétique, INSERM UMR1163, Institut Imagine, Hôpital Necker-Enfants-Malades, Université Paris Descartes, Sorbonne Paris Cité, AP-HP, Paris, France
| | - P Saugier-Veber
- Département de Génétique, CHU Rouen, Inserm U1079, Institut pour la recherche et l'innovation en Biomédecine, Université de Rouen, Rouen, France
| | - S Sukno
- Service de Neuropédiatrie, Hôpital Saint Vincent de Paul, Groupe Hospitalier de l'Institut Catholique Lillois, Faculté Libre de Médecine, Lille, France
| | - J Thevenon
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
| | - J Van-Gils
- Département de Génétique Médicale, CHU Bordeaux, Bordeaux, France
| | - C Vincent-Delorme
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - M Willems
- Département de Génétique Médicale, CHRU Montpellier, Faculté de Médecine de Montpellier-Nîmes, INSERM U1183, Montpellier, France
| | - E Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut Génétique Médicale d'Alsace, Strasbourg, France
| | - G Morin
- Service de Génétique Clinique, CHU Amiens Picardie, Amiens, France
| |
Collapse
|
87
|
Dahiya R, Natarajan K. Mutational analysis of TAF6 revealed the essential requirement of the histone-fold domain and the HEAT repeat domain for transcriptional activation. FEBS J 2018; 285:1491-1510. [PMID: 29485702 DOI: 10.1111/febs.14423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 11/30/2017] [Accepted: 02/21/2018] [Indexed: 12/31/2022]
Abstract
TAF6, bearing the histone H4-like histone-fold domain (HFD), is a subunit of the core TAF module in TFIID and SAGA transcriptional regulatory complexes. We isolated and characterized several yeast TAF6 mutants bearing amino acid substitutions in the HFD, the middle region or the HEAT repeat domain. The TAF6 mutants were highly defective for transcriptional activation by the Gcn4 and Gal4 activators. CHIP assays showed that the TAF6-HFD and the TAF6-HEAT domain mutations independently abrogated the promoter occupancy of TFIID and SAGA complex in vivo. We employed genetic and biochemical assays to identify the relative contributions of the TAF6 HFD and HEAT domains. First, the temperature-sensitive phenotype of the HEAT domain mutant was suppressed by overexpression of the core TAF subunits TAF9 and TAF12, as well as TBP. The HFD mutant defect, however, was suppressed by TAF5 but not by TAF9, TAF12 or TBP. Second, the HEAT mutant but not the HFD mutant was defective for growth in the presence of transcription elongation inhibitors. Third, coimmunoprecipitation assays using yeast cell extracts indicated that the specific TAF6 HEAT domain residues are critical for the interaction of core TAF subunits with the SAGA complex but not with TFIID. The specific HFD residues in TAF6, although required for heterodimerization between TAF6 and TAF9 recombinant proteins, were dispensable for association of the core TAF subunits with TFIID and SAGA in yeast cell extracts. Taken together, the results of our studies have uncovered the non-overlapping requirement of the evolutionarily conserved HEAT domain and the HFD in TAF6 for transcriptional activation.
Collapse
Affiliation(s)
- Rashmi Dahiya
- Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Krishnamurthy Natarajan
- Laboratory of Eukaryotic Gene Regulation, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
88
|
Bettini LR, Graziola F, Fazio G, Grazioli P, Scagliotti V, Pasquini M, Cazzaniga G, Biondi A, Larizza L, Selicorni A, Gaston-Massuet C, Massa V. Rings and Bricks: Expression of Cohesin Components is Dynamic during Development and Adult Life. Int J Mol Sci 2018; 19:E438. [PMID: 29389897 PMCID: PMC5855660 DOI: 10.3390/ijms19020438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 02/07/2023] Open
Abstract
Cohesin complex components exert fundamental roles in animal cells, both canonical in cell cycle and non-canonical in gene expression regulation. Germline mutations in genes coding for cohesins result in developmental disorders named cohesinopaties, of which Cornelia de Lange syndrome (CdLS) is the best-known entity. However, a basic description of mammalian expression pattern of cohesins in a physiologic condition is still needed. Hence, we report a detailed analysis of expression in murine and human tissues of cohesin genes defective in CdLS. Using both quantitative and qualitative methods in fetal and adult tissues, cohesin genes were found to be ubiquitously and differentially expressed in human tissues. In particular, abundant expression was observed in hematopoietic and central nervous system organs. Findings of the present study indicate tissues which should be particularly sensitive to mutations, germline and/or somatic, in cohesin genes. Hence, this expression analysis in physiological conditions may represent a first core reference for cohesinopathies.
Collapse
Affiliation(s)
- Laura Rachele Bettini
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
- Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Federica Graziola
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Grazia Fazio
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Paolo Grazioli
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Mariavittoria Pasquini
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
| | - Giovanni Cazzaniga
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Andrea Biondi
- Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Lidia Larizza
- Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, 20154 Milan, Italy.
| | | | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Valentina Massa
- Dipartimento di Scienze Della Salute, San Paolo Hospital Medical School, Università degli Studi di Milano, 20142 Milan, Italy.
| |
Collapse
|
89
|
BRD4 interacts with NIPBL and BRD4 is mutated in a Cornelia de Lange-like syndrome. Nat Genet 2018; 50:329-332. [PMID: 29379197 DOI: 10.1038/s41588-018-0042-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 12/29/2017] [Indexed: 11/08/2022]
Abstract
We found that the clinical phenotype associated with BRD4 haploinsufficiency overlapped with that of Cornelia de Lange syndrome (CdLS), which is most often caused by mutation of NIPBL. More typical CdLS was observed with a de novo BRD4 missense variant, which retained the ability to coimmunoprecipitate with NIPBL, but bound poorly to acetylated histones. BRD4 and NIPBL displayed correlated binding at super-enhancers and appeared to co-regulate developmental gene expression.
Collapse
|
90
|
BIM and NOXA are mitochondrial effectors of TAF6δ-driven apoptosis. Cell Death Dis 2018; 9:70. [PMID: 29358700 PMCID: PMC5833734 DOI: 10.1038/s41419-017-0115-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/04/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022]
Abstract
TAF6δ is a pro-apoptotic splice variant of the RNA polymerase II general transcription factor, TAF6, that can dictate life vs. death decisions in animal cells. TAF6δ stands out from classical pro-apoptotic proteins because it is encoded by a gene that is essential at the cellular level, and because it functions as a component of the basal transcription machinery. TAF6δ has been shown to modulate the transcriptome landscape, but it is not known if changes in gene expression trigger apoptosis nor which TAF6δ-regulated genes contribute to cell death. Here we used microarrays to interrogate the genome-wide impact of TAF6δ on transcriptome dynamics at temporal resolution. The results revealed changes in pro-apoptotic BH3-only mitochondrial genes that correlate tightly with the onset of cell death. These results prompted us to test and validate a role for the mitochondrial pathway by showing that TAF6δ expression causes cytochrome c release into the cytoplasm. To further dissect the mechanism by which TAF6δ drives apoptosis, we pinpointed BIM and NOXA as candidate effectors. siRNA experiments showed that both BIM and NOXA contribute to TAF6δ-dependent cell death. Our results identify mitochondrial effectors of TAF6δ-driven apoptosis, thereby providing the first of mechanistic framework underlying the atypical TAF6δ apoptotic pathway's capacity to intersect with the classically defined apoptotic machinery to trigger cell death.
Collapse
|
91
|
Banerji R, Skibbens RV, Iovine MK. Cohesin mediates Esco2-dependent transcriptional regulation in a zebrafish regenerating fin model of Roberts Syndrome. Biol Open 2017; 6:1802-1813. [PMID: 29084713 PMCID: PMC5769645 DOI: 10.1242/bio.026013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Robert syndrome (RBS) and Cornelia de Lange syndrome (CdLS) are human developmental disorders characterized by craniofacial deformities, limb malformation and mental retardation. These birth defects are collectively termed cohesinopathies as both arise from mutations in cohesion genes. CdLS arises due to autosomal dominant mutations or haploinsufficiencies in cohesin subunits (SMC1A, SMC3 and RAD21) or cohesin auxiliary factors (NIPBL and HDAC8) that result in transcriptional dysregulation of developmental programs. RBS arises due to autosomal recessive mutations in cohesin auxiliary factor ESCO2, the gene that encodes an N-acetyltransferase which targets the SMC3 subunit of the cohesin complex. The mechanism that underlies RBS, however, remains unknown. A popular model states that RBS arises due to mitotic failure and loss of progenitor stem cells through apoptosis. Previous findings in the zebrafish regenerating fin, however, suggest that Esco2-knockdown results in transcription dysregulation, independent of apoptosis, similar to that observed in CdLS patients. Previously, we used the clinically relevant CX43 to demonstrate a transcriptional role for Esco2. CX43 is a gap junction gene conserved among all vertebrates that is required for direct cell-cell communication between adjacent cells such that cx43 mutations result in oculodentodigital dysplasia. Here, we show that morpholino-mediated knockdown of smc3 reduces cx43 expression and perturbs zebrafish bone and tissue regeneration similar to those previously reported for esco2 knockdown. Also similar to Esco2-dependent phenotypes, Smc3-dependent bone and tissue regeneration defects are rescued by transgenic Cx43 overexpression, suggesting that Smc3 and Esco2 cooperatively act to regulate cx43 transcription. In support of this model, chromatin immunoprecipitation assays reveal that Smc3 binds to a discrete region of the cx43 promoter, suggesting that Esco2 exerts transcriptional regulation of cx43 through modification of Smc3 bound to the cx43 promoter. These findings have the potential to unify RBS and CdLS as transcription-based mechanisms.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
92
|
de Graaf M, Kant SG, Wit JM, Redeker EJW, Santen GWE, Verkerk AJMH, Uitterlinden AG, Losekoot M, Oostdijk W. Successful Growth Hormone Therapy in Cornelia de Lange Syndrome. J Clin Res Pediatr Endocrinol 2017; 9:366-370. [PMID: 28588001 PMCID: PMC5785645 DOI: 10.4274/jcrpe.4349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a both clinically and genetically heterogeneous syndrome. In its classical form, it is characterised by distinctive facial features, intra-uterine growth retardation, short stature, developmental delay, and anomalies in multiple organ systems. NIPBL, SMC1A, SMC3, RAD21 and HDAC8, all involved in the cohesin pathway, have been identified to cause CdLS. Growth hormone (GH) secretion has been reported as normal, and to our knowledge, there are no reports on the effect of recombinant human GH treatment in CdLS patients. We present a patient born small for gestational age with persistent severe growth retardation [height -3.4 standard deviation score (SDS)] and mild dysmorphic features, who was treated with GH from 4.3 years of age onward and was diagnosed 6 years later with CdLS using whole-exome sequencing. Treatment led to a height gain of 1.6 SDS over 8 years. Treatment was interrupted shortly due to high serum insulin-like growth factor-1 serum values. In conclusion, GH therapy may be effective and safe for short children with CdLS.
Collapse
Affiliation(s)
- Michael de Graaf
- Leiden University Medical Center, Department of Pediatrics, Leiden, The Netherlands
,* Address for Correspondence: Leiden University Medical Center, Department of Pediatrics, Leiden, The Netherlands Phone: +31 71 526 28 24 E-mail:
| | - Sarina G Kant
- Leiden University Medical Center, Department of Clinical Genetics, Leiden, The Netherlands
| | - Jan Maarten Wit
- Leiden University Medical Center, Department of Pediatrics, Leiden, The Netherlands
| | | | | | | | | | - Monique Losekoot
- Leiden University Medical Center, Department of Clinical Genetics, Leiden, The Netherlands
| | - Wilma Oostdijk
- Leiden University Medical Center, Department of Pediatrics, Leiden, The Netherlands
| |
Collapse
|
93
|
Pozojevic J, Parenti I, Graul-Neumann L, Ruiz Gil S, Watrin E, Wendt KS, Werner R, Strom TM, Gillessen-Kaesbach G, Kaiser FJ. Novel mosaic variants in two patients with Cornelia de Lange syndrome. Eur J Med Genet 2017; 61:680-684. [PMID: 29155047 DOI: 10.1016/j.ejmg.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/11/2017] [Accepted: 11/12/2017] [Indexed: 02/05/2023]
Abstract
Cornelia de Lange syndrome (CdLS) is a dominantly inherited developmental disorder caused by mutations in genes that encode for either structural (SMC1A, SMC3, RAD21) or regulatory (NIPBL, HDAC8) subunits of the cohesin complex. NIPBL represents the major gene of the syndrome and heterozygous mutations can be identified in more than 65% of patients. Interestingly, large portions of these variants were described as somatic mosaicism and often escape standard molecular diagnostics using lymphocyte DNA. Here we discuss the role of somatic mosaicism in CdLS and describe two additional patients with NIPBL mosaicism detected by targeted gene panel or exome sequencing. In order to verify the next generation sequencing data, Sanger sequencing or pyrosequencing on DNA extracted from different tissues were applied. None of the pathogenic variants was originally detected by Sanger sequencing on blood DNA. Patient 1 displays an unusual combination of clinical features: he is cognitively only mildly affected, but shows severe limb reduction defects. Patient 2 presents with a moderate phenotype. Interestingly, Sanger sequencing analysis on fibroblast DNA of this patient did not detect the disease-causing variant previously observed on the same DNA sample by exome sequencing. Subsequent analyses could confirm the variants by Sanger sequencing on buccal mucosa DNA. Notably, this is the first report of a higher mutational load in buccal mucosa than in fibroblast cells of a CdLS patient. Detection of low-level mosaicism is of utmost importance for an accurate molecular diagnosis and a proper genetic counseling of patients with a clinical diagnosis of CdLS. Next-generation sequencing technologies greatly facilitate the detection of low-level mosaicism, which might otherwise remain undetected by conventional sequencing approaches.
Collapse
Affiliation(s)
- Jelena Pozojevic
- Section for Functional Genetics, Institute of Human Genetics, Lübeck, Germany
| | - Ilaria Parenti
- Section for Functional Genetics, Institute of Human Genetics, Lübeck, Germany
| | - Luitgard Graul-Neumann
- Ambulantes Gesundheitszentrum Humangenetik, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Ruiz Gil
- Section for Functional Genetics, Institute of Human Genetics, Lübeck, Germany
| | - Erwan Watrin
- Faculté de Médecine, Institut de Génétique et Développement de Rennes, Rennes, France
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Ralf Werner
- Division of Experimental Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | | | - Frank J Kaiser
- Section for Functional Genetics, Institute of Human Genetics, Lübeck, Germany.
| |
Collapse
|
94
|
Patients with a Kabuki syndrome phenotype demonstrate DNA methylation abnormalities. Eur J Hum Genet 2017; 25:1335-1344. [PMID: 29255178 DOI: 10.1038/s41431-017-0023-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/05/2023] Open
Abstract
Kabuki syndrome is a monogenic disorder caused by loss of function variants in either of two genes encoding histone-modifying enzymes. We performed targeted sequencing in a cohort of 27 probands with a clinical diagnosis of Kabuki syndrome. Of these, 12 had causative variants in the two known Kabuki syndrome genes. In 2, we identified presumptive loss of function de novo variants in KMT2A (missense and splice site variants), a gene that encodes another histone modifying enzyme previously exclusively associated with Wiedermann-Steiner syndrome. Although Kabuki syndrome is a disorder of histone modification, we also find alterations in DNA methylation among individuals with a Kabuki syndrome diagnosis relative to matched normal controls, regardless of whether they carry a variant in KMT2A or KMT2D or not. Furthermore, we observed characteristic global abnormalities of DNA methylation that distinguished patients with a loss of function variant in KMT2D or missense or splice site variants in either KMT2D or KMT2A from normal controls. Our results provide new insights into the relationship of genotype to epigenotype and phenotype and indicate cross-talk between histone and DNA methylation machineries exposed by inborn errors of the epigenetic apparatus.
Collapse
|
95
|
Banerji R, Skibbens RV, Iovine MK. How many roads lead to cohesinopathies? Dev Dyn 2017; 246:881-888. [PMID: 28422453 DOI: 10.1002/dvdy.24510] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 12/16/2023] Open
Abstract
Genetic mapping studies reveal that mutations in cohesion pathways are responsible for multispectrum developmental abnormalities termed cohesinopathies. These include Roberts syndrome (RBS), Cornelia de Lange Syndrome (CdLS), and Warsaw Breakage Syndrome (WABS). The cohesinopathies are characterized by overlapping phenotypes ranging from craniofacial deformities, limb defects, and mental retardation. Though these syndromes share a similar suite of phenotypes and arise due to mutations in a common cohesion pathway, the underlying mechanisms are currently believed to be distinct. Defects in mitotic failure and apoptosis i.e. trans DNA tethering events are believed to be the underlying cause of RBS, whereas the underlying cause of CdLS is largely modeled as occurring through defects in transcriptional processes i.e. cis DNA tethering events. Here, we review recent findings described primarily in zebrafish, paired with additional studies in other model systems, including human patient cells, which challenge the notion that cohesinopathies represent separate syndromes. We highlight numerous studies that illustrate the utility of zebrafish to provide novel insights into the phenotypes, genes affected and the possible mechanisms underlying cohesinopathies. We propose that transcriptional deregulation is the predominant mechanism through which cohesinopathies arise. Developmental Dynamics 246:881-888, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
96
|
WDR26 Haploinsufficiency Causes a Recognizable Syndrome of Intellectual Disability, Seizures, Abnormal Gait, and Distinctive Facial Features. Am J Hum Genet 2017; 101:139-148. [PMID: 28686853 DOI: 10.1016/j.ajhg.2017.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/30/2017] [Indexed: 11/21/2022] Open
Abstract
We report 15 individuals with de novo pathogenic variants in WDR26. Eleven of the individuals carry loss-of-function mutations, and four harbor missense substitutions. These 15 individuals comprise ten females and five males, and all have intellectual disability with delayed speech, a history of febrile and/or non-febrile seizures, and a wide-based, spastic, and/or stiff-legged gait. These subjects share a set of common facial features that include a prominent maxilla and upper lip that readily reveal the upper gingiva, widely spaced teeth, and a broad nasal tip. Together, these features comprise a recognizable facial phenotype. We compared these features with those of chromosome 1q41q42 microdeletion syndrome, which typically contains WDR26, and noted that clinical features are consistent between the two subsets, suggesting that haploinsufficiency of WDR26 contributes to the pathology of 1q41q42 microdeletion syndrome. Consistent with this, WDR26 loss-of-function single-nucleotide mutations identified in these subjects lead to nonsense-mediated decay with subsequent reduction of RNA expression and protein levels. We derived a structural model of WDR26 and note that missense variants identified in these individuals localize to highly conserved residues of this WD-40-repeat-containing protein. Given that WDR26 mutations have been identified in ∼1 in 2,000 of subjects in our clinical cohorts and that WDR26 might be poorly annotated in exome variant-interpretation pipelines, we would anticipate that this disorder could be more common than currently appreciated.
Collapse
|
97
|
Connected Gene Communities Underlie Transcriptional Changes in Cornelia de Lange Syndrome. Genetics 2017; 207:139-151. [PMID: 28679547 DOI: 10.1534/genetics.117.202291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a complex multisystem developmental disorder caused by mutations in cohesin subunits and regulators. While its precise molecular mechanisms are not well defined, they point toward a global deregulation of the transcriptional gene expression program. Cohesin is associated with the boundaries of chromosome domains and with enhancer and promoter regions connecting the three-dimensional genome organization with transcriptional regulation. Here, we show that connected gene communities, structures emerging from the interactions of noncoding regulatory elements and genes in the three-dimensional chromosomal space, provide a molecular explanation for the pathoetiology of CdLS associated with mutations in the cohesin-loading factor NIPBL and the cohesin subunit SMC1A NIPBL and cohesin are important constituents of connected gene communities that are centrally positioned at noncoding regulatory elements. Accordingly, genes deregulated in CdLS are positioned within reach of NIPBL- and cohesin-occupied regions through promoter-promoter interactions. Our findings suggest a dynamic model where NIPBL loads cohesin to connect genes in communities, offering an explanation for the gene expression deregulation in the CdLS.
Collapse
|
98
|
Huisman S, Mulder PA, Redeker E, Bader I, Bisgaard AM, Brooks A, Cereda A, Cinca C, Clark D, Cormier-Daire V, Deardorff MA, Diderich K, Elting M, van Essen A, FitzPatrick D, Gervasini C, Gillessen-Kaesbach G, Girisha KM, Hilhorst-Hofstee Y, Hopman S, Horn D, Isrie M, Jansen S, Jespersgaard C, Kaiser FJ, Kaur M, Kleefstra T, Krantz ID, Lakeman P, Landlust A, Lessel D, Michot C, Moss J, Noon SE, Oliver C, Parenti I, Pie J, Ramos FJ, Rieubland C, Russo S, Selicorni A, Tümer Z, Vorstenbosch R, Wenger TL, van Balkom I, Piening S, Wierzba J, Hennekam RC. Phenotypes and genotypes in individuals with SMC1A variants. Am J Med Genet A 2017; 173:2108-2125. [PMID: 28548707 DOI: 10.1002/ajmg.a.38279] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 11/05/2022]
Abstract
SMC1A encodes one of the proteins of the cohesin complex. SMC1A variants are known to cause a phenotype resembling Cornelia de Lange syndrome (CdLS). Exome sequencing has allowed recognizing SMC1A variants in individuals with encephalopathy with epilepsy who do not resemble CdLS. We performed an international, interdisciplinary study on 51 individuals with SMC1A variants for physical and behavioral characteristics, and compare results to those in 67 individuals with NIPBL variants. For the Netherlands all known individuals with SMC1A variants were studied, both with and without CdLS phenotype. Individuals with SMC1A variants can resemble CdLS, but manifestations are less marked compared to individuals with NIPBL variants: growth is less disturbed, facial signs are less marked (except for periocular signs and thin upper vermillion), there are no major limb anomalies, and they have a higher level of cognitive and adaptive functioning. Self-injurious behavior is more frequent and more severe in the NIPBL group. In the Dutch group 5 of 13 individuals (all females) had a phenotype that shows a remarkable resemblance to Rett syndrome: epileptic encephalopathy, severe or profound intellectual disability, stereotypic movements, and (in some) regression. Their missense, nonsense, and frameshift mutations are evenly spread over the gene. We conclude that SMC1A variants can result in a phenotype resembling CdLS and a phenotype resembling Rett syndrome. Resemblances between the SMC1A group and the NIPBL group suggest that a disturbed cohesin function contributes to the phenotype, but differences between these groups may also be explained by other underlying mechanisms such as moonlighting of the cohesin genes.
Collapse
Affiliation(s)
- Sylvia Huisman
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Prinsenstichting Institute, Purmerend, the Netherlands
| | - Paul A Mulder
- Autism Team Northern-Netherlands, Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, the Netherlands
| | - Egbert Redeker
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ingrid Bader
- Division of Clinical Genetics, Department of Pediatrics, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Anne-Marie Bisgaard
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Constanza Cinca
- División Genetica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dinah Clark
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Valerie Cormier-Daire
- Department of Medical Genetics, Reference Center for Skeletal Dysplasia, INSERM UMR 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Paris Descartes-Sorbonne Paris Cité University, AP-HP, Institut Imagine, and Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Matthew A Deardorff
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karin Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mariet Elting
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | | | - David FitzPatrick
- MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh, United Kingdom
| | - Cristina Gervasini
- Department of Health Sciences, Medical Genetics, University of Milan, Milan, Italy
| | | | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, India
| | | | - Saskia Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Denise Horn
- Institut für Medizinische Genetik und Humangenetik, Berlin, Germany
| | - Mala Isrie
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Sandra Jansen
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cathrine Jespersgaard
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Frank J Kaiser
- Section for Functional Genetics, Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Maninder Kaur
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ian D Krantz
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Phillis Lakeman
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemiek Landlust
- Autism Team Northern-Netherlands, Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, the Netherlands
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Caroline Michot
- Department of Medical Genetics, Reference Center for Skeletal Dysplasia, INSERM UMR 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Paris Descartes-Sorbonne Paris Cité University, AP-HP, Institut Imagine, and Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Jo Moss
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Sarah E Noon
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Chris Oliver
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Ilaria Parenti
- Institut für Humangenetik Lübeck, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany.,Section for Functional Genetics, Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Juan Pie
- Laboratorio de Genética Clínica y Genómica Funcional, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Feliciano J Ramos
- Unidad de Genética Clínica, Servicio de Pediatría, Hospital Clínico Universitario "Lozano Blesa" CIBERER-GCV02 and Departamento de Pediatría, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Claudine Rieubland
- Division of Human Genetics, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Silvia Russo
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | | | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | | | - Tara L Wenger
- Division of Craniofacial Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Ingrid van Balkom
- Autism Team Northern-Netherlands, Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, the Netherlands
| | - Sigrid Piening
- Autism Team Northern-Netherlands, Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, the Netherlands
| | - Jolanta Wierzba
- Departments of Pediatrics, Hematology, Oncology and Department of General Nursery, Medical University of Gdansk, Gdansk, Poland
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
99
|
Aggarwal A, Rodriguez-Buritica DF, Northrup H. Wiedemann-Steiner syndrome: Novel pathogenic variant and review of literature. Eur J Med Genet 2017; 60:285-288. [PMID: 28359930 DOI: 10.1016/j.ejmg.2017.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/30/2017] [Accepted: 03/15/2017] [Indexed: 01/28/2023]
Abstract
Wiedemann-Steiner syndrome (WDSTS) is a very rare genetic disorder characterized by short stature, intellectual disability and distinctive facial appearance. We present a five-year-old boy who was diagnosed with WDSTS based on identification of a novel de novo pathogenic variant in the KMT2A gene (OMIM: 159555) by Whole Exome Sequencing and supported by some characteristic clinical features. Genotype and phenotype of the patient is compared with the earlier reported patients in the literature, in an attempt to broaden our knowledge of this rare syndrome.
Collapse
Affiliation(s)
- Anjali Aggarwal
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, United States.
| | - David F Rodriguez-Buritica
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, United States
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, United States
| |
Collapse
|
100
|
Tawamie H, Martianov I, Wohlfahrt N, Buchert R, Mengus G, Uebe S, Janiri L, Hirsch FW, Schumacher J, Ferrazzi F, Sticht H, Reis A, Davidson I, Colombo R, Abou Jamra R. Hypomorphic Pathogenic Variants in TAF13 Are Associated with Autosomal-Recessive Intellectual Disability and Microcephaly. Am J Hum Genet 2017; 100:555-561. [PMID: 28257693 DOI: 10.1016/j.ajhg.2017.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/25/2017] [Indexed: 10/20/2022] Open
Abstract
In two independent consanguineous families each with two children affected by mild intellectual disability and microcephaly, we identified two homozygous missense variants (c.119T>A [p.Met40Lys] and c.92T>A [p.Leu31His]) in TATA-box-binding-protein-associated factor 13 (TAF13). Molecular modeling suggested a pathogenic effect of both variants through disruption of the interaction between TAF13 and TAF11. These two proteins form a histone-like heterodimer that is essential for their recruitment into the general RNA polymerase II transcription factor IID (TFIID) complex. Co-immunoprecipitation in HeLa cells transfected with plasmids encoding TAF11 and TAF13 revealed that both variants indeed impaired formation of the TAF13-TAF11 heterodimer, thus confirming the protein modeling analysis. To further understand the functional role of TAF13, we performed RNA sequencing of neuroblastoma cell lines upon TAF13 knockdown. The transcriptional profile showed significant deregulation of gene expression patterns with an emphasis on genes related to neuronal and skeletal functions and those containing E-box motives in their promoters. Here, we expand the spectrum of TAF-associated phenotypes and highlight the importance of TAF13 in neuronal functions.
Collapse
|