51
|
Davie A, Sanchez JA, Vera LM, Sanchez-Vazquez J, Migaud H. Ontogeny of the Circadian System During Embryogenesis in Rainbow Trout (Oncorhynchus mykyss) and the Effect of Prolonged Exposure to Continuous Illumination on Daily Rhythms ofper1, clock, andaanat2Expression. Chronobiol Int 2011; 28:177-86. [DOI: 10.3109/07420528.2010.550407] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
52
|
Löhr H, Hammerschmidt M. Zebrafish in Endocrine Systems: Recent Advances and Implications for Human Disease. Annu Rev Physiol 2011; 73:183-211. [DOI: 10.1146/annurev-physiol-012110-142320] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heiko Löhr
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CEDAD), University of Cologne, D-50923 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50923 Cologne, Germany;
| |
Collapse
|
53
|
Colwill RM, Creton R. Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav Processes 2011; 86:222-9. [PMID: 21147203 PMCID: PMC3063417 DOI: 10.1016/j.beproc.2010.12.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/29/2010] [Accepted: 12/04/2010] [Indexed: 01/30/2023]
Abstract
Locomotor behaviors were examined in two experiments using zebrafish (Danio rerio) larvae at 4, 5, 6 and 7 days post fertilization (dpf). Larvae were observed in individual wells of a 12-well plate for 1 h a day. In Experiment 1, the same larvae were observed for four consecutive days beginning on post-fertilization day 4; in Experiment 2, different groups of larvae from the same egg collection were observed at 4, 5, 6 and 7 dpf. Automated images collected every 6 s were analyzed for information about larval location, orientation and general activity. In both experiments, 4 dpf larvae rested significantly more, used a smaller area of the well more frequently, and were generally less active than older larvae. All larvae exhibited a preference for facing away from the center of the well and for the edge of the well. However, prolonged exposure to the well influenced overall activity, orientation, and preference for the edge region. The implications of these results for understanding the development of larval behavior and for the design of procedures to measure the effects of experience in zebrafish larvae are discussed.
Collapse
Affiliation(s)
- Ruth M Colwill
- Department of Psychology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA. Ruth
| | | |
Collapse
|
54
|
Sánchez-Vázquez FJ, Terry MI, Felizardo VO, Vera LM. Daily Rhythms of Toxicity and Effectiveness of Anesthetics (MS222 and Eugenol) in Zebrafish (Danio Rerio). Chronobiol Int 2011; 28:109-17. [DOI: 10.3109/07420528.2010.538105] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
55
|
|
56
|
Huang H, Huang C, Wang L, Ye X, Bai C, Simonich MT, Tanguay RL, Dong Q. Toxicity, uptake kinetics and behavior assessment in zebrafish embryos following exposure to perfluorooctanesulphonicacid (PFOS). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 98:139-47. [PMID: 20171748 PMCID: PMC4028132 DOI: 10.1016/j.aquatox.2010.02.003] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/24/2010] [Accepted: 02/01/2010] [Indexed: 05/03/2023]
Abstract
Perfluorooctanesulphonicacid (PFOS), a persistent organic contaminant, has been widely detected in the environment, wildlife and humans, but few studies have assessed its effect on aquatic organisms. The present study evaluated the effect of PFOS on zebrafish embryos. Zebrafish embryos exhibited developmental toxicity of bent spine, uninflated swim bladder, decreased heart rate and affected spontaneous movement after exposure to various PFOS concentrations (0-8mg/L) from 6 to 120h post-fertilization (hpf). The LC(50) at 120hpf was 2.20mg/L and the EC(50) at 120hpf was 1.12mg/L. Continuous exposure to PFOS from 1 to 121hpf resulted in a steady accumulation with no evidence of elimination. PFOS induced cell death at 24hpf was consistently found in the brain, eye, and tail region of embryos. PFOS exposure induced lesions in the muscle fibers with histological examination. Behavior assessment of PFOS in zebrafish embryos elevated the basal rate of swimming after 4 days of exposure, and larvae exposed to PFOS (0.25-4mg/L) for only 1h at 6dpf swam faster with increasing PFOS concentration. Embryos/larvae exposed to 8mg/L PFOS for 24h periods from 1 to 121hpf showed the highest incidence of malformations in the 97-121hpf window. This is the first study to define uptake kinetics and to focus on behavioral consequences following PFOS exposure in zebrafish. Our results further the understanding of the toxicity of PFOS to aquatic organisms and suggest the need for additional research to identify the mode of PFOS toxicity.
Collapse
Affiliation(s)
- Haihua Huang
- Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, P.R. China
| | - Changjiang Huang
- Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, P.R. China
- Corresponding authors: Tel/Fax: 86-577-86699135, or
| | - Lijun Wang
- Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, P.R. China
| | - Xiaowei Ye
- Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, P.R. China
| | - Chenglian Bai
- Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, P.R. China
| | - Michael T. Simonich
- Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, USA
| | - Robert L. Tanguay
- Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, P.R. China
- Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, USA
| | - Qiaoxiang Dong
- Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou 325035, P.R. China
- Corresponding authors: Tel/Fax: 86-577-86699135, or
| |
Collapse
|
57
|
Abstract
Darkness serves as a stimulus for vertebrate photoreceptors; they are actively depolarized in the dark and hyperpolarize in the light. Here, we show that larval zebrafish essentially turn off their visual system at night when they are not active. Electroretinograms recorded from larval zebrafish show large differences between day and night; the responses are normal in amplitude throughout the day but are almost absent after several hours of darkness at night. Behavioral testing also shows that larval zebrafish become unresponsive to visual stimuli at night. This phenomenon is largely circadian driven as fish show similar dramatic changes in visual responsiveness when maintained in continuous darkness, although light exposure at night partially restores the responses. Visual responsiveness is decreased at night by at least two mechanisms: photoreceptor outer segment activity decreases and synaptic ribbons in cone pedicles disassemble.
Collapse
|
58
|
|
59
|
López‐Olmeda JF, Sánchez‐Vázquez FJ. Zebrafish Temperature Selection and Synchronization of Locomotor Activity Circadian Rhythm to Ahemeral Cycles of Light and Temperature. Chronobiol Int 2009; 26:200-18. [DOI: 10.1080/07420520902765928] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
60
|
Ziv L, Gothilf Y. Period2Expression Pattern and its Role in the Development of the Pineal Circadian Clock in Zebrafish. Chronobiol Int 2009; 23:101-12. [PMID: 16687284 DOI: 10.1080/07420520500464551] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In zebrafish, pineal arylalkylamine-N-acetyltransferase (zfaanat2) mRNA expression begins at 22 h post-fertilization (hpf), and the clock-controlled rhythm of its transcript begins on the third day of development. Here we describe the role of light and of the clock gene, period2 (zper2) in the development of this rhythm. In 1-day-old zebrafish embryos, zper2 expression is transiently up-regulated by light in the pineal gland and, to a lesser extent, in other areas of the brain. Expression of zper2 that was not affected by light occurred in the olfactory placode and lactotroph cells of the pituitary primordium. Circadian analysis of pineal zfaanat2 mRNA expression indicated that light exposure is required for proper development of the circadian clock-controlled rhythmic expression of this gene. Knockdown of zPER2 using antisense technology abolished the effect of light on development of the zfaanat2 rhythm in the pineal gland, corroborating the role of zper2 in light entrainment of the circadian oscillator in zebrafish. Further analysis of zper2 expression at earlier stages of development revealed that light exposure at the blastula to mid-segmentation stages also caused a transient increase in zper2 expression. At mid-segmentation, before pineal differentiation, light-induced zper2 expression was enhanced in pineal progenitor cells. Thus, a possible role for early photoreception and light-induced zper2 expression in the development of clock-controlled rhythms remains to be investigated.
Collapse
Affiliation(s)
- Limor Ziv
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
61
|
Anglès‐Pujolràs M, Díez‐Noguera A, Cambras T. Exposure to T‐Cycles of 22 and 23 h during Lactation Modifies the Later Dissociation of Motor Activity and Temperature Circadian Rhythms in Rats. Chronobiol Int 2009; 24:1049-64. [DOI: 10.1080/07420520701800645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
62
|
Ramteke AK, Poddar P, Pati AK. Circadian rhythms of locomotor activity in Indian walking catfish,Clarias batrachus. BIOL RHYTHM RES 2009. [DOI: 10.1080/09291010802069169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
63
|
Burgess HA, Granato M. The neurogenetic frontier--lessons from misbehaving zebrafish. BRIEFINGS IN FUNCTIONAL GENOMICS & PROTEOMICS 2008; 7:474-82. [PMID: 18836206 PMCID: PMC2722256 DOI: 10.1093/bfgp/eln039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.
Collapse
Affiliation(s)
- Harold A Burgess
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA.
| | | |
Collapse
|
64
|
Dekens MPS, Whitmore D. Autonomous onset of the circadian clock in the zebrafish embryo. EMBO J 2008; 27:2757-65. [PMID: 18800057 DOI: 10.1038/emboj.2008.183] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 08/14/2008] [Indexed: 11/09/2022] Open
Abstract
On the first day of development a circadian clock becomes functional in the zebrafish embryo. How this oscillator is set in motion remains unclear. We demonstrate that zygotic period1 transcription begins independent of light exposure. Pooled embryos maintained in darkness and under constant temperature show elevated non-oscillating levels of period1 expression. Consequently, there is no maternal effect or developmental event that sets the phase of the circadian clock. Analysis of period1 transcription, at the cellular level in the absence of environmental stimuli, reveals oscillations in cells that are asynchronous within the embryo. Demonstrating an autonomous onset to rhythmic period1 expression. Transcription of clock1 and bmal1 is rhythmic in the adult, but constant during development in light-entrained embryos. Transient expression of dominant-negative DeltaCLOCK blocks period1 transcription, thus showing that endogenous CLOCK is essential for the transcriptional regulation of period1 in the embryo. We demonstrate a default mechanism in the embryo that initiates the autonomous onset of the circadian clock. This embryonic clock is differentially regulated from that in the adult, the transition coinciding with the appearance of several clock output processes.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | |
Collapse
|
65
|
Zimmerman JE, Naidoo N, Raizen DM, Pack AI. Conservation of sleep: insights from non-mammalian model systems. Trends Neurosci 2008; 31:371-6. [PMID: 18538867 DOI: 10.1016/j.tins.2008.05.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/28/2008] [Accepted: 05/01/2008] [Indexed: 01/16/2023]
Abstract
The past 10 years have seen new approaches to elucidating genetic pathways regulating sleep. The emerging theme is that sleep-like states are conserved in evolution, with similar signaling pathways playing a role in animals as distantly related as flies and humans. We review the evidence for the presence of sleep states in non-mammalian species including zebrafish (Danio rerio), fruitflies (Drosophila melanogaster) and roundworms (Caenorhabditis elegans). We describe conserved sleep-regulatory molecular pathways with a focus on cAMP and epidermal growth factor signaling; neurotransmitters with conserved effects on sleep and wake regulation, including dopamine and GABA; and a conserved molecular response to sleep deprivation involving the chaperone protein BiP/GRP78.
Collapse
Affiliation(s)
- John E Zimmerman
- Center for Sleep and Respiratory Neurobiology, Department of Medicine, University of Pennsylvania School of Medicine, 125 South 31st Street, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
66
|
Vallone D, Lahiri K, Dickmeis T, Foulkes NS. Zebrafish cell clocks feel the heat and see the light! Zebrafish 2008; 2:171-87. [PMID: 18248192 DOI: 10.1089/zeb.2005.2.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The zebrafish has rapidly become established as one of the most valuable vertebrate models for studying circadian clock function. A major initial attraction was its utility in large-scale genetic screens. It subsequently emerged that most zebrafish cells possess circadian clocks that can be entrained directly by exposure to temperature or light dark cycles, a property shared by several zebrafish cell lines. This is not the case for mammals, where the retina is the primary source of light input to the clock. Furthermore, mammalian cell culture clocks can only be entrained by acute culture treatments such as serum shocks. Thus, the zebrafish is proving invaluable to study light and temperature input to the vertebrate clock. In addition, the accessibility of its early developmental stages has placed the zebrafish at the forefront of studies aimed at understanding how the circadian clock is established during embryogenesis.
Collapse
Affiliation(s)
- Daniela Vallone
- Max-Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
67
|
Burgess HA, Granato M. Modulation of locomotor activity in larval zebrafish during light adaptation. ACTA ACUST UNITED AC 2007; 210:2526-39. [PMID: 17601957 DOI: 10.1242/jeb.003939] [Citation(s) in RCA: 348] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural basis of behavioral choice in vertebrates remains largely unknown. Zebrafish larvae have a defined locomotor repertoire as well as a simple nervous system and are therefore an attractive vertebrate system in which to study this process. Here we describe a high-throughput system for quantifying the kinematics of motor events in zebrafish larvae in order to measure the initiation frequency of different maneuvers. We use this system to analyze responses to photic stimuli and find that larvae respond to changes in illumination with both acute responses and extended behavioral programs. Reductions in illumination elicit large angle turns, distinct from startle responses, which orient larvae toward the source of light. In continuing darkness, larvae are transiently hyperactive before adopting a quiescent state. Indeed, locomotor activity is controlled by the state of light or dark adaptation similar to masking phenomena in higher vertebrates where light directly regulates motor activity. We propose that regulation of motor activity by photic stimuli in zebrafish larvae serves a behavioral goal of maximizing exposure to well lit environments optimal for feeding.
Collapse
Affiliation(s)
- Harold A Burgess
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | |
Collapse
|
68
|
Shang EH, Zhdanova IV. The circadian system is a target and modulator of prenatal cocaine effects. PLoS One 2007; 2:e587. [PMID: 17622340 PMCID: PMC1899232 DOI: 10.1371/journal.pone.0000587] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 06/05/2007] [Indexed: 11/18/2022] Open
Abstract
Background Prenatal exposure to cocaine can be deleterious to embryonic brain development, but the results in humans remain controversial, the mechanisms involved are not well understood and effective therapies are yet to be designed. We hypothesize that some of the prenatal effects of cocaine might be related to dysregulation of physiological rhythms due to alterations in the integrating circadian clock function. Methodology and Principle Findings Here we introduce a new high-throughput genetically well-characterized diurnal vertebrate model for studying the mechanisms of prenatal cocaine effects by demonstrating reduced viability and alterations in the pattern of neuronal development following repeated cocaine exposure in zebrafish embryos. This effect is associated with acute cocaine-induced changes in the expression of genes affecting growth (growth hormone, zGH) and neurotransmission (dopamine transporter, zDAT). Analysis of circadian gene expression, using quantitative real-time RT-PCR (QPCR), demonstrates that cocaine acutely and dose-dependently changes the expression of the circadian genes (zPer-3, zBmal-1) and genes encoding melatonin receptors (zMelR) that mediate the circadian message to the entire organism. Moreover, the effects of prenatal cocaine depend on the time of treatment, being more robust during the day, independent of whether the embryos are raised under the light-dark cycle or in constant light. The latter suggests involvement of the inherited circadian factors. The principal circadian hormone, melatonin, counteracts the effects of cocaine on neuronal development and gene expression, acting via specific melatonin receptors. Conclusions/Significance These findings demonstrate that, in a diurnal vertebrate, prenatal cocaine can acutely dysregulate the expression of circadian genes and those affecting melatonin signaling, growth and neurotransmission, while repeated cocaine exposure can alter neuronal development. Daily variation in these effects of cocaine and their attenuation by melatonin suggest a potential prophylactic or therapeutic role for circadian factors in prenatal cocaine exposure.
Collapse
Affiliation(s)
- Eva H Shang
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | |
Collapse
|
69
|
Renier C, Faraco JH, Bourgin P, Motley T, Bonaventure P, Rosa F, Mignot E. Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet Genomics 2007; 17:237-53. [PMID: 17496723 DOI: 10.1097/fpc.0b013e3280119d62] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The zebrafish is an ideally suited vertebrate animal model for large-scale genetic screens and is emerging as a model organism in pharmacological and behavioral research. We investigated the effects of sedative hypnotics commonly used in humans on zebrafish locomotor activity and identified the corresponding genomic and receptor binding targets. METHODS We studied radioreceptor binding and behavioral responses to compounds with known sedative hypnotic properties representing multiple pharmacological classes. These included GABAergic hypnotics such as benzodiazepines, barbiturates, and baclofen; alpha-2 adrenergic agonists; and histaminergic H1 antagonists. An automated system was used to quantify behavioral effects. Zebrafish homologs of histamine receptor H1, gamma-amino-n-butyric acid type A (alpha-subunit), and gamma-amino-n-butyric acid type B (1 and 2) receptor genes were identified through translating queries of the zebrafish Zv4 database with human receptor protein sequences. A pilot screen of 154 N-ethyl-N-nitroso-urea-mutagenized F2 families was conducted with pentobarbital, flurazepam and mepyramine. RESULTS Radioreceptor binding studies revealed high affinity binding sites for known gamma-amino-n-butyric acid type A, gamma-amino-n-butyric acid type B, and histaminergic ligands. Drug immersion of 5-7-day-old larvae reduced mobility and, in some cases, produced a complete state of unresponsive immobility similar to anesthesia. These effects were dose-dependent and rapidly reversible in water. As established in mammals, (R)-baclofen was more active behaviorally and had higher affinity in binding studies when compared with (S)-baclofen. In this model, (S)-baclofen only partially reduced activity at high dose and blocked (R)-baclofen behavioral hypnotic effects. Genomic sequences with high similarity to the corresponding pharmacological targets were identified, but no mutants were found in the pilot screen. CONCLUSIONS These results demonstrate conservation of gene, protein and function for many established sedative hypnotic pathways. The results indicate feasibility of conducting large-scale pharmacogenomic screens to isolate novel proteins modulating susceptibility to hypnotic compounds in a vertebrate system.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Baclofen/chemistry
- Baclofen/pharmacology
- Behavior, Animal/drug effects
- Binding Sites/genetics
- Conserved Sequence
- Humans
- Hypnotics and Sedatives/chemistry
- Hypnotics and Sedatives/pharmacology
- Larva/drug effects
- Larva/metabolism
- Larva/physiology
- Molecular Sequence Data
- Motor Activity/drug effects
- Motor Activity/genetics
- Pharmacogenetics
- Phylogeny
- Radioligand Assay
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, GABA-B/drug effects
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Receptors, Histamine H1/drug effects
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Sequence Homology, Amino Acid
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish/physiology
Collapse
Affiliation(s)
- Corinne Renier
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
A method is described for measurement of the circadian activity rhythms of up to 150 larval zebrafish simultaneously with a single video image analysis system. Most of the required equipment and software are commercially available, although some components are custom-built.
Collapse
Affiliation(s)
- Gregory M Cahill
- Department of Biology and Biochemistry, University of Houston, TX, USA
| |
Collapse
|
71
|
Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 2007; 26:13400-10. [PMID: 17182791 PMCID: PMC6675014 DOI: 10.1523/jneurosci.4332-06.2006] [Citation(s) in RCA: 337] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As many as 10% of humans suffer chronic sleep disturbances, yet the genetic mechanisms that regulate sleep remain essentially unknown. It is therefore crucial to develop simple and cost-effective vertebrate models to study the genetic regulation of sleep. The best characterized mammalian sleep/wake regulator is hypocretin/orexin (Hcrt), whose loss results in the sleep disorder narcolepsy and that has also been implicated in feeding behavior, energy homeostasis, thermoregulation, reward seeking, addiction, and maternal behavior. Here we report that the expression pattern and axonal projections of embryonic and larval zebrafish Hcrt neurons are strikingly similar to those in mammals. We show that zebrafish larvae exhibit robust locomotive sleep/wake behaviors as early as the fifth day of development and that Hcrt overexpression promotes and consolidates wakefulness and inhibits rest. Similar to humans with insomnia, Hcrt-overexpressing larvae are hyperaroused and have dramatically reduced abilities to initiate and maintain rest at night. Remarkably, Hcrt function is modulated by but does not require normal circadian oscillations in locomotor activity. Our zebrafish model of Hcrt overexpression indicates that the ancestral function of Hcrt is to promote locomotion and inhibit rest and will facilitate the discovery of neural circuits, genes, and drugs that regulate Hcrt function and sleep.
Collapse
Affiliation(s)
| | - Jason Rihel
- Department of Molecular and Cellular Biology
| | | | | | - Alexander F. Schier
- Department of Molecular and Cellular Biology
- Division of Sleep Medicine
- Center for Brain Science
- Harvard Stem Cell Institute, and
- Broad Institute, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
72
|
López-Olmeda JF, Madrid JA, Sánchez-Vázquez FJ. Light and temperature cycles as zeitgebers of zebrafish (Danio rerio) circadian activity rhythms. Chronobiol Int 2006; 23:537-50. [PMID: 16753940 DOI: 10.1080/07420520600651065] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Light and temperature cycles are the most important synchronizers of biological rhythms in nature. However, the relative importance of each, especially when they are not in phase, has been poorly studied. The aim of this study was to analyze the entrainment of daily locomotor activity to light and/or temperature cycles in zebrafish. Under two constant temperatures (20 degrees C and 26 degrees C) and 12:12 light-dark (LD) cycles, zebrafish were most active during the day (light) time and showed higher total activity at the warmer temperature, while diurnalism was higher at 20 degrees C than at 26 degrees C (87% and 77%, respectively). Under thermocycles (12:12 LD, 26:20 degrees C thermophase:chryophase or TC), zebrafish daily activity synchronized to the light phase, both when the thermophase and light phase were in phase (LD/TC) or in antiphase (LD/CT). Under constant dim light (3 lux), nearly all zebrafish synchronized to thermocycles (tau=24 h), although activity rhythms (60% to 67% of activity occurred during the thermophase) were not as marked as those observed under the LD cycle. Under constant dim light of 3 lux and constant temperature (22.5 degrees C), 4 of 6 groups of zebrafish previously entrained to thermocycles displayed free-running rhythms (tau=22.9 to 23.6 h). These results indicate that temperature cycles alone can also entrain zebrafish locomotor activity.
Collapse
Affiliation(s)
- José F López-Olmeda
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain.
| | | | | |
Collapse
|
73
|
Vuilleumier R, Besseau L, Boeuf G, Piparelli A, Gothilf Y, Gehring WG, Klein DC, Falcón J. Starting the zebrafish pineal circadian clock with a single photic transition. Endocrinology 2006; 147:2273-9. [PMID: 16497800 DOI: 10.1210/en.2005-1565] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The issue of what starts the circadian clock ticking was addressed by studying the developmental appearance of the daily rhythm in the expression of two genes in the zebrafish pineal gland that are part of the circadian clock system. One encodes the photopigment exorhodopsin and the other the melatonin synthesizing enzyme arylalkylamine N-acetyltransferase (AANAT2). Significant daily rhythms in AANAT2 mRNA abundance were detectable for several days after fertilization in animals maintained in a normal or reversed lighting cycle providing 12 h of light and 12 h of dark. In contrast, these rhythms do not develop if animals are maintained in constant lighting or constant darkness from fertilization. In contrast to exorhodopsin, rhythmicity of AANAT2 can be initiated by a pulse of light against a background of constant darkness, by a pulse of darkness against a background of constant lighting, or by single light-to-dark or dark-to-light transitions. Accordingly, these studies indicate that circadian clock function in the zebrafish pineal gland can be initiated by minimal photic cues, and that single photic transitions can be used as an experimental tool to dissect the mechanism that starts the circadian clock in the pineal gland.
Collapse
Affiliation(s)
- Robin Vuilleumier
- Laboratoire Aragó, Observatoire Océanologique de Banyuls, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7628, Université de Paris VI, Banyuls/Mer, France
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
The zebrafish pineal gland is a photoreceptive organ containing an intrinsic central circadian oscillator, which drives daily rhythms of gene expression and the melatonin hormonal signal. Here we investigated the effect of light, given at early developmental stages before pineal gland formation, on the pineal circadian oscillator. Embryos that were exposed to light at 0-6, 10-13, or 10-16 h after fertilization exhibited clock-controlled rhythms of arylalkylamine-N-acetyltransferase (zfaanat2) mRNA in the pineal gland during the third and fourth day of development. This rhythm was absent in embryos that were placed in continuous dark within 2 h after fertilization (before blastula stage). Differences in the phases of these rhythms indicate that they are determined by the time of illumination. Light treatments at these stages also caused a transient increase in period2 mRNA levels, and the development of zfaanat2 mRNA rhythm was abolished by PERIOD2 knock-down. These results indicate that light exposure at early developmental stages, and light-induced expression of period2, are both required for setting the phase of the circadian clock. The 24-h rhythm is then maintained throughout rapid proliferation and, remarkably, differentiation.
Collapse
Affiliation(s)
| | - Yoav Gothilf
- Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
75
|
Vallone D, Lahiri K, Dickmeis T, Foulkes NS. Start the clock! Circadian rhythms and development. Dev Dyn 2006; 236:142-55. [PMID: 17075872 DOI: 10.1002/dvdy.20998] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The contribution of timing cues from the environment to the coordination of early developmental processes is poorly understood. The day-night cycle represents one of the most important, regular environmental changes that animals are exposed to. A key adaptation that allows animals to anticipate daily environmental changes is the circadian clock. In this review, we aim to address when a light-regulated circadian clock first emerges during development and what its functions are at this early stage. In particular, do circadian clocks regulate early developmental processes? We will focus on results obtained with Drosophila and vertebrates, where both circadian clock and developmental control mechanisms have been intensively studied.
Collapse
Affiliation(s)
- Daniela Vallone
- Independent Research Group, Max Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
76
|
Alvarez JD, Sehgal A. The thymus is similar to the testis in its pattern of circadian clock gene expression. J Biol Rhythms 2005; 20:111-21. [PMID: 15834108 DOI: 10.1177/0748730404274078] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The molecular basis for the circadian clock in mammals consists of a number of genes and proteins that form transcription-translation feedback loops. These loops result in a 24-h rhythm in the expression of mRNA and protein levels. Although the anatomical site of the central circadian clock is the SCN of the hypothalamus, all of the circadian clock genes are expressed in tissues other than the brain. Moreover, cyclic gene and protein expression occurs in most of these tissues. The best known exception to this rule is the testis, which shows constant rather than cyclic expression of circadian clock genes. Indeed, the testis of multiple animal species displays constant circadian clock gene expression. In recent work, the authors showed that the thymus is similar to the testis in that expression of circadian clock genes is either constant over a 24-h period or cycles with a dampened amplitude, depending on which gene is examined. In the current study, they extend and confirm their findings regarding noncyclic circadian clock gene and protein expression in the testis and the thymus. More important, they also show that expression of these genes in both testis and thymus does not depend on the transcriptional activator, CLOCK, which is necessary for cyclic gene expression in the SCN and in other tissues. These results extend the molecular similarities between the thymus and the testis and suggest that similar mechanisms are at work for regulating expression of circadian clock genes in both tissues. One commonality between these 2 organs is that they are composed primarily of differentiating cells. The authors hypothesize that the circadian clock is not operational in immature, differentiating cells. Possibly, the clock starts in mature cells upon receipt of an initiating signal.
Collapse
Affiliation(s)
- J D Alvarez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
77
|
McElligott MB, O'malley DM. Prey tracking by larval zebrafish: axial kinematics and visual control. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:177-96. [PMID: 16088102 DOI: 10.1159/000087158] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 12/13/2004] [Indexed: 11/19/2022]
Abstract
High-speed imaging was used to record the prey-tracking behavior of larval zebrafish as they fed upon paramecium. Prey tracking is comprised of a variable set of discrete locomotor movements that together align the larva with the paramecium and bring it into close proximity, usually within one body length. These tracking behaviors are followed by a brief capture swim bout that was previously described [Borla et al., 2002]. Tracking movements were classified as either swimming or turning bouts. The swimming bouts were similar to a previously characterized larval slow swim [Budick and O'Malley, 2000], but the turning movements consisted of unique J-shaped bends which appear to minimize forward hydrodynamic disturbance when approaching the paramecium. Such J-turn tracking bouts consisted of multiple unilateral contractions to one side of the body. J-turns slowly and moderately alter the orientation of the larva - this is in contrast to previously described escape and routine turns. Tracking behaviors appear to be entirely visually guided. Infra-red (IR) imaging of locomotor behaviors in a dark environment revealed a complete absence of tracking behaviors, even though the normal repertoire of other locomotive behaviors was recorded. Concomitantly, such larvae were greatly impaired in consuming paramecia. The tracking behavior is of interest because it indicates the presence of sophisticated locomotor control circuitry in this relatively simple model organism. Such locomotor strategies may be conserved and elaborated upon by other larval and adult fishes.
Collapse
|
78
|
Ziv L, Levkovitz S, Toyama R, Falcon J, Gothilf Y. Functional development of the zebrafish pineal gland: light-induced expression of period2 is required for onset of the circadian clock. J Neuroendocrinol 2005; 17:314-20. [PMID: 15869567 DOI: 10.1111/j.1365-2826.2005.01315.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In zebrafish, the pineal gland is a photoreceptive organ that contains an intrinsic circadian oscillator and exhibits rhythmic arylalkylamine-N-acetyltransferase (zfaanat2) mRNA expression. In the present study, we investigated the role of light and of a clock gene, zperiod2 (zper2), in the development of this rhythm. Analysis of zfaanat2 mRNA expression in the pineal gland of 3-day-old zebrafish embryos after exposure to different photoperiodic regimes indicated that light is required for proper development of the circadian clock-controlled rhythmic expression of zfaanat2, and that a 1-h light pulse is sufficient to initiate this rhythm. Analysis of zper2 mRNA expression in zebrafish embryos exposed to different photoperiodic regimes indicated that zper2 expression is transiently up-regulated by light but is not regulated by the circadian oscillator. To establish the association between light-induced zper2 expression and light-induced clock-controlled zfaanat2 rhythm, zPer2 knock-down experiments were performed. The zfaanat2 mRNA rhythm, induced by a 1-h light pulse, was abolished in zPer2 knock-down embryos. These experiments indicated that light-induced zper2 expression is crucial for establishment of the clock-controlled zfaanat2 rhythm in the zebrafish pineal gland.
Collapse
Affiliation(s)
- L Ziv
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
79
|
Kaneko M, Cahill GM. Light-dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol 2005; 3:e34. [PMID: 15685291 PMCID: PMC546037 DOI: 10.1371/journal.pbio.0030034] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 11/19/2004] [Indexed: 11/25/2022] Open
Abstract
The roles of environmental stimuli in initiation and synchronization of circadian oscillation during development appear to vary among different rhythmic processes. In zebrafish, a variety of rhythms emerge in larvae only after exposure to light-dark (LD) cycles, whereas zebrafish period3 (per3) mRNA has been reported to be rhythmic from day 1 of development in constant conditions. We generated transgenic zebrafish in which expression of the firefly luciferase (luc) gene is driven by the zebrafish per3 promoter. Live larvae from these lines are rhythmically bioluminescent, providing the first vertebrate system for high-throughput measurement of circadian gene expression in vivo. Circadian rhythmicity in constant conditions was observed only after 5-6 d of development, and only if the fish were exposed to LD signals after day 4. Regardless of light exposure, a novel developmental profile was observed, with low expression during the first few days and a rapid increase when active swimming begins. Ambient temperature affected the developmental profile and overall levels of per3 and luc mRNA, as well as the critical days in which LD cycles were needed for robust bioluminescence rhythms. In summary, per3-luc zebrafish has revealed complex interactions among developmental events, light, and temperature in the expression of a clock gene.
Collapse
Affiliation(s)
- Maki Kaneko
- 1Department of Biology and Biochemistry, University of HoustonTexasUnited States of America
| | - Gregory M Cahill
- 1Department of Biology and Biochemistry, University of HoustonTexasUnited States of America
| |
Collapse
|
80
|
Hirayama J, Kaneko M, Cardone L, Cahill G, Sassone-Corsi P. Analysis of Circadian Rhythms in Zebrafish. Methods Enzymol 2005; 393:186-204. [PMID: 15817288 DOI: 10.1016/s0076-6879(05)93005-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The zebrafish probably constitutes the best animal system to study the complexity of the circadian clock machinery and the influence that light has on it. The possibilities of producing transgenic fishes, to establish light-responsive cultured cells, and to directly explore light phototransduction on single clock cells are all remarkable features of this circadian system. This article describes some of the most useful methodologies to analyze the behavioral, cellular, and molecular aspects of the zebrafish circadian clock system.
Collapse
Affiliation(s)
- Jun Hirayama
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch-Strasbourg, France
| | | | | | | | | |
Collapse
|
81
|
|
82
|
Dekens MPS, Santoriello C, Vallone D, Grassi G, Whitmore D, Foulkes NS. Light Regulates the Cell Cycle in Zebrafish. Curr Biol 2003; 13:2051-7. [PMID: 14653994 DOI: 10.1016/j.cub.2003.10.022] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The timing of cell proliferation is a key factor contributing to the regulation of normal growth. Daily rhythms of cell cycle progression have been documented in a wide range of organisms. However, little is known about how environmental, humoral, and cell-autonomous factors contribute to these rhythms. Here, we demonstrate that light plays a key role in cell cycle regulation in the zebrafish. Exposure of larvae to light-dark (LD) cycles causes a range of different cell types to enter S phase predominantly at the end of the day. When larvae are raised in constant darkness (DD), a low level of arrhythmic S phase is observed. In addition, light-entrained cell cycle rhythms persist for several days after transfer to DD, both observations pointing to the involvement of the circadian clock. We show that the number of LD cycles experienced is essential for establishing this rhythm during larval development. Furthermore, we reveal that the same phenomenon exists in a zebrafish cell line. This represents the first example of a vertebrate cell culture system where circadian rhythms of the cell cycle are observed. Thus, we implicate the cell-autonomous circadian clock in the regulation of the vertebrate cell cycle by light.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max-Planck Institut für Entwicklungsbiologie, Spemannstrasse 35-39, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Delaunay F, Thisse C, Thisse B, Laudet V. Differential regulation of Period 2 and Period 3 expression during development of the zebrafish circadian clock. Gene Expr Patterns 2003; 3:319-24. [PMID: 12799078 DOI: 10.1016/s1567-133x(03)00050-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circadian ( approximately 24h) clocks are endogenous time-keeping systems that drive the daily biological rhythms observed in most living organisms. The oscillation is generated by a transcriptional/translational autoregulatory feedback loop that is reset by external time cues such as the light/dark cycle and which in turn controls rhythms in physiology and behavior through downstream clock-controlled genes (Nature 417 (2002) 329). Genetic and biochemical analysis of Drosophila and mammalian clock genes has provided a comprehensive model for the molecular oscillator that generates these rhythms, but the ontogeny of this oscillator remains poorly understood. A circadian oscillator involving the clock genes Per3 and Rev-erb alpha was identified during early development in zebrafish (Science 289 (2000) 297). Here, we report the isolation of zebrafish Per2 and show the presence of a Per2 maternal mRNA in early embryos as for Per3. However, Per2 rhythmic expression occurs late during embryogenesis as compared to that of Per3. Furthermore, our data indicate that Per2 is not required during embryogenesis for the rhythmicity of physiological outputs such as melatonin synthesis. In addition, Per2 but not Per3 is constitutively expressed in the developing olfactory bulb and pituitary. This differential spatio-temporal expression patterns suggest specific roles for Per2 and Per3 in the establishment of the embryonic circadian system.
Collapse
Affiliation(s)
- Franck Delaunay
- Université de Nice-Sophia Antipolis, CNRS UMR 6078, 284 chemin du Lazaret, 06230 cedex, Villefranche/mer, France
| | | | | | | |
Collapse
|