51
|
Wu YHA, Chiu YC, Lin YH, Ho CC, Shie MY, Chen YW. 3D-Printed Bioactive Calcium Silicate/Poly-ε-Caprolactone Bioscaffolds Modified with Biomimetic Extracellular Matrices for Bone Regeneration. Int J Mol Sci 2019; 20:E942. [PMID: 30795573 PMCID: PMC6413038 DOI: 10.3390/ijms20040942] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022] Open
Abstract
Currently, clinically available orthopedic implants are extremely biocompatible but they lack specific biological characteristics that allow for further interaction with surrounding tissues. The extracellular matrix (ECM)-coated scaffolds have received considerable interest for bone regeneration due to their ability in upregulating regenerative cellular behaviors. This study delves into the designing and fabrication of three-dimensional (3D)-printed scaffolds that were made out of calcium silicate (CS), polycaprolactone (PCL), and decellularized ECM (dECM) from MG63 cells, generating a promising bone tissue engineering strategy that revolves around the concept of enhancing osteogenesis by creating an osteoinductive microenvironment with osteogenesis-promoting dECM. We cultured MG63 on scaffolds to obtain a dECM-coated CS/PCL scaffold and further studied the biological performance of the dECM hybrid scaffolds. The results indicated that the dECM-coated CS/PCL scaffolds exhibited excellent biocompatibility and effectively enhanced cellular adhesion, proliferation, and differentiation of human Wharton's Jelly mesenchymal stem cells by increasing the expression of osteogenic-related genes. They also presented anti-inflammatory characteristics by showing a decrease in the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1). Histological analysis of in vivo experiments presented excellent bone regenerative capabilities of the dECM-coated scaffold. Overall, our work presented a promising technique for producing bioscaffolds that can augment bone tissue regeneration in numerous aspects.
Collapse
Affiliation(s)
- Yuan-Haw Andrew Wu
- School of Medicine, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Yung-Cheng Chiu
- School of Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Orthopedics, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Yen-Hong Lin
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- The Ph.D. Program for Medical Engineering and Rehabilitation Science, China Medical University, Taichung 40447, Taiwan.
| | - Chia-Che Ho
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Ming-You Shie
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Dentistry, China Medical University, Taichung 40447, Taiwan.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 40447, Taiwan.
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan.
- 3D Printing Medical Research Institute, Asia University, Taichung 40447, Taiwan.
| |
Collapse
|
52
|
Fabrication and Characterization of Scaffolds of Poly( ε-caprolactone)/Biosilicate® Biocomposites Prepared by Generative Manufacturing Process. Int J Biomater 2019; 2019:2131467. [PMID: 30853989 PMCID: PMC6377975 DOI: 10.1155/2019/2131467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/14/2019] [Indexed: 11/18/2022] Open
Abstract
Scaffolds of poly(ε-caprolactone) (PCL) and their biocomposites with 0, 1, 3, and 5 wt.% Biosilicate® were fabricated by the generative manufacturing process coupled with a vertical miniscrew extrusion head to application for restoration of bone tissue. Their morphological characterization indicated the designed 0°/90° architecture range of pore sizes and their interconnectivity is feasible for tissue engineering applications. Mechanical compression tests revealed an up to 57% increase in the stiffness of the scaffold structures with the addition of 1 to 5 wt.% Biosilicate® to the biocomposite. No toxicity was detected in the scaffolds tested by in vitro cell viability with MC3T3-E1 preosteoblast cell line. The results highlighted the potential application of scaffolds fabricated with poly(ε-caprolactone)/Biosilicate® to tissue engineering.
Collapse
|
53
|
Lanzotti A, Martorelli M, Maietta S, Gerbino S, Penta F, Gloria A. A comparison between mechanical properties of specimens 3D printed with virgin and recycled PLA. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.procir.2019.02.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
54
|
Rotbaum Y, Puiu C, Rittel D, Domingos M. Quasi-static and dynamic in vitro mechanical response of 3D printed scaffolds with tailored pore size and architectures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:176-182. [PMID: 30606523 DOI: 10.1016/j.msec.2018.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/22/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Scaffold-based Tissue Engineering represents the most promising approach for the regeneration of load bearing skeletal tissues, in particular bone and cartilage. Scaffolds play major role in this process by providing a physical template for cells to adhere and proliferate whilst ensuring an adequate biomechanical support at the defect site. Whereas the quasi static mechanical properties of porous polymeric scaffolds are well documented, the response of these constructs under high strain compressive rates remain poorly understood. Therefore, this study investigates, for the first time, the influence of pore size and geometry on the mechanical behaviour of Polycaprolactone (PCL) scaffolds under quasi static and dynamic conditions. 3D printed scaffolds with varied pore sizes and geometries were obtained using different filament distances (FD) and lay-down patterns, respectively. In particular, by fixing the lay-down pattern at 0/90° and varying the FD between 480 and 980 μm it was possible to generate scaffolds with square pores with dimensions in the range of 150-650 μm and porosities of 59-79%. On the other hand, quadrangular, hexagonal, triangular and complex pore geometries with constant porosity (approx. 70%) were obtained at a fixed FD of 680 μm and imposing four different lay-down patterns of 0/90, 0/60/120, 0/45/90/135 and 0/30/60/90/120/150°, respectively. The mechanical response of printed scaffolds was assessed under two different compression loading regimes spanning five distinct strain rates, from 10-2 to 2000 s-1, using two different apparatus: a conventional screw-driven testing machine (Instron 4483) and a Split Hopkinson pressure bar (SHPB) equipped with a set of A201 Flexi-force™ (FF) force sensors and a pulse shaper. Our results show that the mechanical properties of PCL scaffolds are not strain rate sensitive between 1300 and 2000 s-1 and these strongly depend on the pore size (porosity) rather than pore geometry. Those findings are extremely relevant for the engineering of bone tissue scaffolds with enhanced mechanical stability by providing new data describing the mechanical response of these constructs at high strain rates as well as the at the transition between quasi static and dynamic regimes.
Collapse
Affiliation(s)
- Y Rotbaum
- Faculty of Mechanical Engineering, Technion, 32000 Haifa, Israel
| | - C Puiu
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK
| | - D Rittel
- Faculty of Mechanical Engineering, Technion, 32000 Haifa, Israel
| | - M Domingos
- School of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK.
| |
Collapse
|
55
|
Sattary M, Rafienia M, Khorasani MT, Salehi H. The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nano-hydroxyapatite electrospun scaffold. J Biomed Mater Res B Appl Biomater 2018; 107:933-950. [PMID: 30199600 DOI: 10.1002/jbm.b.34188] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/22/2018] [Accepted: 06/12/2018] [Indexed: 11/09/2022]
Abstract
Electrospinning is considered a powerful method for the production of fibers in the nanoscale size. Small pore size results in poor cell infiltration, cell migration inhibition into scaffold pores and low oxygen diffusion. Electrospun polycaprolactone/gelatin/nano-hydroxyapatite (PCL/Gel/nHA) scaffolds were deposited into two types of fiber collectors (novel rotating disc and plate) to study fiber morphology, chemical, mechanical, hydrophilic, and biodegradation properties between each other. The proliferation and differentiation of MG-63 cells into the bone phenotype were determined using MTT method, alizarin red staining and alkaline phosphatase (ALP) activity. The rates for disc rotation were 50 and 100 rpm. The pore size measurement results indicated that the fibers produced by the disc rotation collector with speed rate 50 rpm have larger pores as compared to fibers produced by disc rotation at 100 rpm and flat plate collectors. A randomly structure with controlled pore size (38.65 ±0.33 μm) and lower fiber density, as compared to fibers collected by disc rotation with speed rate 100 rpm and flat plate collectors, was obtained. Fibers collected on the rotating disc with speed rate 50 rpm, were more hydrophilic due to larger pore size and therefore, faster infiltration of water into the scaffold and the rate of degradation was higher. These results demonstrate that PCL/Gel/nHA scaffolds made through a rotating disc collector at 50 rpm are more feasible to be used in bone tissue engineering applications due to appropriate pore size and increased adhesion and proliferation of cells, ALP activity and mineral deposits. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 933-950, 2019.
Collapse
Affiliation(s)
- Mansoureh Sattary
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, 81744*176, Isfahan, Iran
| | - Mohammad Taghi Khorasani
- Department of Biomaterial, Iran Polymer and Petrochemical Institute, PO Box 14965, 159, Tehran, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, 81744*176, Isfahan, Iran
| |
Collapse
|
56
|
Hafidh A, Touati F, Hamzaoui AH. Synthesis of new silica xerogels based on bi-functional 1,3,4-thiadiazole and 1,2,4-triazole adducts. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1499742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Afifa Hafidh
- Department of Chemistry, Materials and Environment Laboratory, University of Tunis, Preparatory Institute for Engineering Studies of Tunis, Tunis, Tunisia
| | - Fathi Touati
- Laboratory of Materials Treatment and Analysis, National Institute for Physico-Chemical Research and Analysis, Tunis, Tunisia
| | - Ahmed Hichem Hamzaoui
- Useful Material Valorization Laboratory, National Center for Research in Materials Sciences, CNRSM, Soliman, Tunisia
| |
Collapse
|
57
|
3D Bioprinted Artificial Trachea with Epithelial Cells and Chondrogenic-Differentiated Bone Marrow-Derived Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19061624. [PMID: 29857483 PMCID: PMC6032277 DOI: 10.3390/ijms19061624] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Tracheal resection has limited applicability. Although various tracheal replacement strategies were performed using artificial prosthesis, synthetic stents and tissue transplantation, the best method in tracheal reconstruction remains to be identified. Recent advances in tissue engineering enabled 3D bioprinting using various biocompatible materials including living cells, thereby making the product clinically applicable. Moreover, clinical interest in mesenchymal stem cell has dramatically increased. Here, rabbit bone marrow-derived mesenchymal stem cells (bMSC) and rabbit respiratory epithelial cells were cultured. The chondrogenic differentiation level of bMSC cultured in regular media (MSC) and that in chondrogenic media (d-MSC) were compared. Dual cell-containing artificial trachea were manufactured using a 3D bioprinting method with epithelial cells and undifferentiated bMSC (MSC group, n = 6) or with epithelial cells and chondrogenic-differentiated bMSC (d-MSC group, n = 6). d-MSC showed a relatively higher level of glycosaminoglycan (GAG) accumulation and chondrogenic marker gene expression than MSC in vitro. Neo-epithelialization and neo-vascularization were observed in all groups in vivo but neo-cartilage formation was only noted in d-MSC. The epithelial cells in the 3D bioprinted artificial trachea were effective in respiratory epithelium regeneration. Chondrogenic-differentiated bMSC had more neo-cartilage formation potential in a short period. Nevertheless, the cartilage formation was observed only in a localized area.
Collapse
|
58
|
Maietta S, De Santis R, Catauro M, Martorelli M, Gloria A. Theoretical Design of Multilayer Dental Posts Using CAD-Based Approach and Sol-Gel Chemistry. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E738. [PMID: 29735896 PMCID: PMC5978115 DOI: 10.3390/ma11050738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/23/2018] [Accepted: 05/04/2018] [Indexed: 11/17/2022]
Abstract
A computer-aided design (CAD)-based approach and sol-gel chemistry were used to design a multilayer dental post with a compositional gradient and a Young’s modulus varying from 12.4 to 2.3 GPa in the coronal-apical direction. Specifically, we propose a theoretical multilayer post design, consisting of titanium dioxide (TiO₂) and TiO₂/poly(ε-caprolactone) (PCL) hybrid materials containing PCL up to 24% by weight obtained using the sol-gel method. The current study aimed to analyze the effect of the designed multilayer dental post in endodontically treated anterior teeth. Stress distribution was investigated along and between the post and the surrounding structures. In comparison to a metal post, the most uniform distributions with lower stress values and no significant stress concentration were found when using the multilayer post.
Collapse
Affiliation(s)
- Saverio Maietta
- Department of Industrial Engineering, Fraunhofer JL IDEAS-University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
| | - Michelina Catauro
- Department of Industrial and Information Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
| | - Massimo Martorelli
- Department of Industrial Engineering, Fraunhofer JL IDEAS-University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
| |
Collapse
|
59
|
Maietta S, Russo T, Santis RD, Ronca D, Riccardi F, Catauro M, Martorelli M, Gloria A. Further Theoretical Insight into the Mechanical Properties of Polycaprolactone Loaded with Organic-Inorganic Hybrid Fillers. MATERIALS 2018; 11:ma11020312. [PMID: 29466299 PMCID: PMC5849009 DOI: 10.3390/ma11020312] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/14/2018] [Accepted: 02/17/2018] [Indexed: 01/14/2023]
Abstract
Experimental/theoretical analyses have already been performed on poly(ε-caprolactone) (PCL) loaded with organic-inorganic fillers (PCL/TiO₂ and PCL/ZrO₂) to find a correlation between the results from the small punch test and Young's modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO₂ = 88 wt %) and Zr2 (PCL = 12, ZrO₂ = 88 wt %) hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol-gel-synthesized organic-inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young's modulus of the materials were newly correlated. The obtained values of Young's modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2) were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2). This correlation will be an important step for the evaluation of Young's modulus, starting from the small punch test data.
Collapse
Affiliation(s)
- Saverio Maietta
- Department of Industrial Engineering, Fraunhofer JL IDEAS-University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
| | - Dante Ronca
- Institute of Orthopaedics and Traumathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 2-4, 80138 Naples, Italy.
| | - Filomena Riccardi
- Institute of Orthopaedics and Traumathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, 2-4, 80138 Naples, Italy.
| | - Michelina Catauro
- Department of Industrial and Information Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
| | - Massimo Martorelli
- Department of Industrial Engineering, Fraunhofer JL IDEAS-University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials-National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
| |
Collapse
|
60
|
Russo T, Gloria A, De Santis R, D'Amora U, Balato G, Vollaro A, Oliviero O, Improta G, Triassi M, Ambrosio L. Preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. Bioact Mater 2017; 2:156-161. [PMID: 29744425 PMCID: PMC5935175 DOI: 10.1016/j.bioactmat.2017.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
In total knee arthroplasty (TKA) and total hip replacement (THR) the restoration of the normal joint function represents a fundamental feature. A prosthetic joint must be able to provide motions and to transmit functional loads. As reported in the literature, the stress distribution may be altered in bones after the implantation of a total joint prosthesis. Some scientific works have also correlated uncemented TKA to a progressive decrease of bone density below the tibial component. Antibiotic-loaded bone cements are commonly employed in conjunction with systemic antibiotics to treat infections. Furthermore, nanoparticles with antimicrobial activity have been widely analysed. Accordingly, the current research was focused on a preliminary analysis of the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. The obtained results demonstrated that nanocomposite cements with a specific concentration of gold nanoparticles improved the punching performance and antibacterial activity. However, critical aspects were found in the optimization of the nanocomposite bone cement. Evaluation of the in vitro effects of bacterial adhesion and proliferation on modified bone cement samples. Assessment of anti-bacterial and anti-biofilm activities of the nanocomposite bone cement. Analysis of the effect of the inclusion of gold nanoparticles on mechanical performances of a PMMA-based bone cement.
Collapse
Affiliation(s)
- T Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - A Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - R De Santis
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - U D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| | - G Balato
- Department of Public Health, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - A Vollaro
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - O Oliviero
- Department of Public Health, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - G Improta
- Department of Public Health, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - M Triassi
- Department of Public Health, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - L Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
| |
Collapse
|