51
|
Valbuena GN, Apostolidou S, Roberts R, Barnes J, Alderton W, Harper L, Jacobs I, Menon U, Keun HC. The 14q32 maternally imprinted locus is a major source of longitudinally stable circulating microRNAs as measured by small RNA sequencing. Sci Rep 2019; 9:15787. [PMID: 31673048 PMCID: PMC6823392 DOI: 10.1038/s41598-019-51948-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Understanding the normal temporal variation of serum molecules is a critical factor for identifying useful candidate biomarkers for the diagnosis and prognosis of chronic disease. Using small RNA sequencing in a longitudinal study of 66 women with no history of cancer, we determined the distribution and dynamics (via intraclass correlation coefficients, ICCs) of the miRNA profile over 3 time points sampled across 2-5 years in the course of the screening trial, UKCTOCS. We were able to define a subset of longitudinally stable miRNAs (ICC >0.75) that were individually discriminating of women who had no cancer over the study period. These miRNAs were dominated by those originating from the C14MC cluster that is subject to maternal imprinting. This assessment was not significantly affected by common confounders such as age, BMI or time to centrifugation nor alternative methods to data normalisation. Our analysis provides important benchmark data supporting the development of miRNA biomarkers for the impact of life-course exposure as well as diagnosis and prognostication of chronic disease.
Collapse
Affiliation(s)
- Gabriel N Valbuena
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, W12 0NN, United Kingdom
| | - Sophia Apostolidou
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
| | - Rhiannon Roberts
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
| | - Julie Barnes
- Abcodia Ltd, PO Box 268, Royston, SG8 1EL, Hertfordshire, UK
| | - Wendy Alderton
- Abcodia Ltd, PO Box 268, Royston, SG8 1EL, Hertfordshire, UK
- Early Detection Programme, Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Lauren Harper
- Cancer Research UK, Angel Building, 407 St John Street, London, UK
| | - Ian Jacobs
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
- University of New South Wales, Sydney, New South Wales, Australia
| | - Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
| | - Hector C Keun
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, W12 0NN, United Kingdom.
| |
Collapse
|
52
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
53
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
54
|
Sultan M, Kanavarioti A. Nanopore device-based fingerprinting of RNA oligos and microRNAs enhanced with an Osmium tag. Sci Rep 2019; 9:14180. [PMID: 31578367 PMCID: PMC6775150 DOI: 10.1038/s41598-019-50459-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Protein and solid-state nanopores are used for DNA/RNA sequencing as well as for single molecule analysis. We proposed that selective labeling/tagging may improve base-to-base resolution of nucleic acids via nanopores. We have explored one specific tag, the Osmium tetroxide 2,2'-bipyridine (OsBp), which conjugates to pyrimidines and leaves purines intact. Earlier reports using OsBp-tagged oligodeoxyribonucleotides demonstrated proof-of-principle during unassisted voltage-driven translocation via either alpha-Hemolysin or a solid-state nanopore. Here we extend this work to RNA oligos and a third nanopore by employing the MinION, a commercially available device from Oxford Nanopore Technologies (ONT). Conductance measurements demonstrate that the MinION visibly discriminates oligoriboadenylates with sequence A15PyA15, where Py is an OsBp-tagged pyrimidine. Such resolution rivals traditional chromatography, suggesting that nanopore devices could be exploited for the characterization of RNA oligos and microRNAs enhanced by selective labeling. The data also reveal marked discrimination between a single pyrimidine and two consecutive pyrimidines in OsBp-tagged AnPyAn and AnPyPyAn. This observation leads to the conjecture that the MinION/OsBp platform senses a 2-nucleotide sequence, in contrast to the reported 5-nucleotide sequence with native nucleic acids. Such improvement in sensing, enabled by the presence of OsBp, may enhance base-calling accuracy in enzyme-assisted DNA/RNA sequencing.
Collapse
Affiliation(s)
- Madiha Sultan
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA, 95672, USA
| | - Anastassia Kanavarioti
- Yenos Analytical LLC, 4659 Golden Foothill Pkwy, Suite 101, El Dorado Hills, CA, 95672, USA.
| |
Collapse
|
55
|
Nowicka Z, Stawiski K, Tomasik B, Fendler W. Extracellular miRNAs as Biomarkers of Head and Neck Cancer Progression and Metastasis. Int J Mol Sci 2019; 20:E4799. [PMID: 31569614 PMCID: PMC6801477 DOI: 10.3390/ijms20194799] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) contribute to over 300,000 deaths every year worldwide. Although the survival rates have improved in some groups of patients, mostly due to new treatment options and the increasing percentage of human papillomavirus (HPV)-related cancers, local recurrences and second primary tumors remain a great challenge for the clinicians. Presently, there is no biomarker for patient surveillance that could help identify patients with HNSCC that are more likely to experience a relapse or early progression, potentially requiring closer follow-up or salvage treatment. MicoRNAs (miRNAs) are non-coding RNA molecules that posttranscriptionally modulate gene expression. They are highly stable and their level can be measured in biofluids including serum, plasma, and saliva, enabling quick results and allowing for repeated analysis during and after the completion of therapy. This has cemented the role of miRNAs as biomarkers with a huge potential in oncology. Since altered miRNA expression was described in HNSCC and many miRNAs play a role in radio- and chemotherapy resistance, cancer progression, and metastasis, they can be utilized as biomarkers of these phenomena. This review outlines recent discoveries in the field of extracellular miRNA-based biomarkers of HNSCC progression and metastasis, with a special focus on HPV-related cancers and radioresistance.
Collapse
Affiliation(s)
- Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland.
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
56
|
Ghasemi A, Hashemy SI, Azimi-Nezhad M, Dehghani A, Saeidi J, Mohtashami M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin Chim Acta 2019; 499:41-53. [PMID: 31476303 DOI: 10.1016/j.cca.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple studies have revealed a direct correlation between obesity and the development of multiple comorbidities, including metabolic diseases, cardiovascular disorders, chronic inflammatory disease, and cancers. However, the molecular mechanism underlying the link between obesity and the progression of these diseases is not completely understood. Adipokines are factors that are secreted by adipocytes and play a key role in whole body homeostasis. Collaboratively, miRNAs are suggested to have key functions in the development of obesity and obesity-related disorders. Based on recently emerging evidence, obesity leads to the dysregulation of both adipokines and obesity-related miRNAs. In the present study, we described the correlations between obesity and its related diseases that are mediated by the mutual regulatory effects of adipokines and miRNAs. METHODS We reviewed current knowledge of the modulatory effects of adipokines on miRNAs activity and their relevant functions in pathological conditions and vice versa. RESULTS Our research reveals the ability of adipokines and miRNAs to control the expression and activity of the other class of molecules, and their effects on obesity-related diseases. CONCLUSIONS This study may help researchers develop a roadmap for future investigations and provide opportunities to develop new therapeutic and diagnostic methods for treating obesity-related diseases.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Azimi-Nezhad
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment en Physiopathologie Cardiovascular Université de Lorraine, France
| | - Alireza Dehghani
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
57
|
Yin S, Yang M, Li X, Zhang K, Tian J, Luo C, Bai R, Lu Y, Wang M. Peripheral blood circulating microRNA-4636/-143 for the prognosis of cervical cancer. J Cell Biochem 2019; 121:596-608. [PMID: 31407404 DOI: 10.1002/jcb.29305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/27/2019] [Indexed: 01/29/2023]
Abstract
Cervical cancer is the third leading cause of female death in the world. Serum microRNAs (miRNAs) are currently considered to be valuable as noninvasive cancer biomarkers, but their role in the prognosis of cervical cancer has not been elucidated. We aimed to find serum miRNAs that can be used as prognostic factors for cervical cancer. A traumatic pathological biopsy is the only reliable method for determining the severity of cervical cancer currently. Thus, noninvasive diagnostic markers are needed. The serological expression of candidate miRNAs were measured in 90 participants, including 60 patients with cervical cancer and 50 patients with cervical intraepithelial neoplasia. Two patients with cervical cancer were excluded from the study because of lack of data. miRNAs were evaluated by quantitative reverse transcription polymerase chain reaction. miR-143/-4636 appeared specific for cervical cancer compared with cervical intraepithelial neoplasia (P < .001). The classification performance of validated miRNAs for cervical cancer [Area under the receiver operating characteristic curve (AUC) = 0.942] was better than that reached by squamous cell carcinoma antigen (SCC-Ag; AUC = 0.727). Poor-differentiation group has lower miR-143/-4636 levels in serum (P < .05). miR-4636 level was correlated gross tumor volume and the depth of invasion (P < .0001). In our study, we found a combination of miR-143 and miR-4636 that is independently and strongly associated with cervical cancer prognosis and can be used as a clinically prognostic factor.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Min Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Kan Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Jingjing Tian
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Can Luo
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Ruiyang Bai
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Yangfan Lu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
58
|
Hypoxia-Regulated miRNAs in Human Mesenchymal Stem Cells: Exploring the Regulatory Effects in Ischemic Disorders. Int J Mol Sci 2019; 20:ijms20061340. [PMID: 30884856 PMCID: PMC6471025 DOI: 10.3390/ijms20061340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/11/2022] Open
Abstract
Human mesenchymal/stromal stem cells (hMSC) are the most promising cell source for adult cell therapies in regenerative medicine. Many clinical trials have reported the use of autologous transplantation of hMSCs in several disorders, but with limited results. To exert their potential, hMSCs could exhibit efficient homing and migration toward lesion sites among other effects, but the underlying process is not clear enough. To further increase the knowledge, we studied the co-regulation between hypoxia-regulated genes and miRNAs. To this end, we investigated the miRNA expression profile of healthy hMSCs in low oxygen/nutrient conditions to mimic ischemia and compared with cells of patients suffering from critical limb ischemia (CLI). miRNAs are small, highly conserved, non-coding RNAs, skilled in the control of the target’s expression level in a fine-tuned way. After analyzing the miRNOme in CLI-derived hMSC cells and healthy controls, and intersecting the results with the mRNA expression dataset under hypoxic conditions, we identified two miRNAs potentially relevant to the disease: miR-29b as a pathological marker of the disease and miR-638 as a therapeutic target. This study yielded a deeper understanding of stem cell biology and ischemic disorders, opening new potential treatments in the future.
Collapse
|
59
|
Saliminejad K, Khorram Khorshid HR, Ghaffari SH. Why have microRNA biomarkers not been translated from bench to clinic? Future Oncol 2019; 15:801-803. [DOI: 10.2217/fon-2018-0812] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Kioomars Saliminejad
- Hematology, Oncology & Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Hamidollah Ghaffari
- Hematology, Oncology & Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
60
|
Cannataro R, Perri M, Gallelli L, Caroleo MC, De Sarro G, Cione E. Ketogenic Diet Acts on Body Remodeling and MicroRNAs Expression Profile. Microrna 2019; 8:116-126. [PMID: 30474543 DOI: 10.2174/2211536608666181126093903] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The Ketogenic Diet (KD) promotes metabolic changes and optimizes energy metabolism. It is unknown if microRNAs (miRs) are influenced by KD in obese subjects. The screening of circulating miRs was performed with the FDA approved platform n-counter flex and blood biochemical parameters were dosed by ADVIA 1800. OBJECTIVES The aim of this study was to evaluate mir profile under 6 weeks of biphasic KD in obese subjects. We enrolled 36 obese subjects (18 females and 18 males) in stage 1 of Edmonton Obesity Staging System (EOSS) parameter. RESULT Any correlation was found between biochemical parameter and three miRs, hsa-let-7b-5p, hsa-miR-143-3p and hsa-miR-504-5p influenced in an equal manner in both sexes. The KD resulted safe and ameliorate both biochemical and anthropometric factors in obese subjects re-collocating them into stage 0 of EOSS parameters. CONCLUSION The miRs herein identified under KD might be a useful tool to monitor low carbohydrate nutritional regimens which reflect indirectly the regulatory biochemical mechanisms and cell signaling that orchestrate metabolic and signaling pathways.
Collapse
Affiliation(s)
- Roberto Cannataro
- GalaScreen SRL, Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Mariarita Perri
- GalaScreen SRL, Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Luca Gallelli
- Department of Health Sciences, University of Magna Graecia, Via Venuta Germaneto, 88100 Catanzaro, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, Via Venuta Germaneto, 88100 Catanzaro, Italy
| | - Erika Cione
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Via Savinio, Edificio Polifunzionale, 87036 Rende (CS), Italy
| |
Collapse
|
61
|
López-Riera M, Conde I, Quintas G, Pedrola L, Zaragoza Á, Perez-Rojas J, Salcedo M, Benlloch S, Castell JV, Jover R. Non-invasive prediction of NAFLD severity: a comprehensive, independent validation of previously postulated serum microRNA biomarkers. Sci Rep 2018; 8:10606. [PMID: 30006517 PMCID: PMC6045608 DOI: 10.1038/s41598-018-28854-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
Liver biopsy is currently the only reliable method to establish nonalcoholic fatty liver disease (NAFLD) severity. However, this technique is invasive and occasionally associated with severe complications. Thus, non-invasive diagnostic markers for NAFLD are needed. Former studies have postulated 18 different serum microRNA biomarkers with altered levels in NAFLD patients. In the present study, we have re-examined the predictive value of these serum microRNAs and found that 9 of them (miR-34a, -192, -27b, -122, -22, -21, -197, -30c and -16) associated to NAFLD severity in our independent cohort. Moreover, miR-192, -27b, -22, -197 and -30c appeared specific for NAFLD, when compared with patients with drug-induced liver injury. Preliminary serum RNAseq analysis allowed identifying novel potential miRNA biomarkers for nonalcoholic steatohepatitis (NASH). The classification performance of validated miRNAs (and their ratios) for NASH was better than that reached by AST, whereas for advanced fibrosis prediction miRNAs did not perform better than the FIB-4 algorithm. Cross-validated models combining both clinical and miRNA variables showed enhanced predictivity. In conclusion, the circulating microRNAs validated demonstrate a better diagnostic potential than conventional serum markers to identify NASH patients and could complement and improve current fibrosis prediction algorithms. The research in this field is still open.
Collapse
Affiliation(s)
| | - Isabel Conde
- Hepatología Experimental, IIS Hospital La Fe, Valencia, Spain.,Medicina Digestiva, Sección Hepatología, Hospital La Fe, Valencia, Spain
| | - Guillermo Quintas
- Hepatología Experimental, IIS Hospital La Fe, Valencia, Spain.,Health and Biomedicine, Leitat Technological Center, Barcelona, Spain
| | - Laia Pedrola
- Unidad de Genómica, Servicio de Secuenciación, IIS Hospital La Fe, Valencia, Spain
| | - Ángela Zaragoza
- Medicina Digestiva, Sección Hepatología, Hospital La Fe, Valencia, Spain
| | - Judith Perez-Rojas
- Anatomía Patológica, Sección Hepatología, Hospital La Fe, Valencia, Spain
| | | | - Salvador Benlloch
- Medicina Digestiva, Sección Hepatología, Hospital La Fe, Valencia, Spain
| | - José V Castell
- Hepatología Experimental, IIS Hospital La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Ramiro Jover
- Hepatología Experimental, IIS Hospital La Fe, Valencia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
| |
Collapse
|
62
|
Liu J, Xiao Y, Wu X, Jiang L, Yang S, Ding Z, Fang Z, Hua H, Kirby MS, Shou J. A circulating microRNA signature as noninvasive diagnostic and prognostic biomarkers for nonalcoholic steatohepatitis. BMC Genomics 2018; 19:188. [PMID: 29523084 PMCID: PMC5845150 DOI: 10.1186/s12864-018-4575-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/02/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Noninvasive biomarkers are urgently needed for patients with nonalcoholic steatohepatitis (NASH) to assist in diagnosis, monitoring disease progression and assessing treatment response. Recently several exploratory studies showed that circulating level of microRNA is associated with NASH and correlated with disease severity. Although these data were encouraging, the application of circulating microRNA as biomarkers for patient screening and stratification need to be further assessed under well-controlled conditions. RESULTS The expression of circulating microRNAs were profiled in diet-induced NASH progression and regression models to assess the diagnostic and prognostic values and the translatability between preclinical mouse model and men. Since these mice had same genetic background and were housed in the same conditions, there were minimal confounding factors. Histopathological lesions were analyzed at distinct disease progression stages along with microRNA measurement which allows longitudinal assessment of microRNA as NASH biomarkers. Next, differentially expressed microRNAs were identified and validated in an independent cohorts of animals. Thirdly, these microRNAs were examined in a NASH regression model to assess whether they would respond to NASH treatment. MicroRNA profiling in two independent cohorts of animals validated the up-regulation of 6 microRNAs (miR-122, miR-192, miR-21, miR-29a, miR-34a and miR-505) in NASH mice, which was designated as the circulating microRNA signature for NASH. The microRNA signature could accurately distinguish NASH mice from lean mice, and it responded to chow diet treatment in a NASH regression model. To further improve the performance of microRNA-based biomarker, a new composite biomarker was proposed, which consists of miR-192, miR-21, miR-505 and ALT. The new composite biomarker outperformed the microRNA signature in predicting NASH mice which had NAS > 3, and deserves further validations in large scale studies. CONCLUSION The present study supported the translation of circulating microRNAs between preclinical models and humans in NASH pathogenesis and progression. The microRNA-based composite biomarker may be used for non-invasive diagnosis, clinical monitoring and assessing treatment response for NASH.
Collapse
Affiliation(s)
- Jie Liu
- Lilly China Research and Development Center, Shanghai, 201203 China
- Present Address: Fosun Kite Biotechnology, No. 222 Kangnan Road, Shanghai, 201210 China
| | - Yue Xiao
- Lilly China Research and Development Center, Shanghai, 201203 China
| | - Xikun Wu
- Lilly China Research and Development Center, Shanghai, 201203 China
| | - Lichun Jiang
- Lilly China Research and Development Center, Shanghai, 201203 China
| | - Shurong Yang
- Lilly China Research and Development Center, Shanghai, 201203 China
| | - Zhiming Ding
- Lilly China Research and Development Center, Shanghai, 201203 China
| | - Zhuo Fang
- Lilly China Research and Development Center, Shanghai, 201203 China
| | - Haiqing Hua
- Lilly China Research and Development Center, Shanghai, 201203 China
| | | | - Jianyong Shou
- Lilly China Research and Development Center, Shanghai, 201203 China
- Present Address: Shanghai Ennova Biopharmaceuticals, 781 Cailun Road, Shanghai, 201203 China
| |
Collapse
|
63
|
Comparison of miRNA quantitation by Nanostring in serum and plasma samples. PLoS One 2017; 12:e0189165. [PMID: 29211799 PMCID: PMC5718466 DOI: 10.1371/journal.pone.0189165] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Circulating microRNAs that are associated with specific diseases have garnered much attention for use in diagnostic assays. However, detection of disease-associated miRNA can be affected by several factors such as release of contaminating cellular miRNA during sample collection, variations due to amplification of transcript for detection, or controls used for normalization for accurate quantitation. We analyzed circulating miRNA in serum and plasma samples obtained concurrently from 28 patients, using a Nanostring quantitative assay platform. Total RNA concentration ranged from 32–125 μg/ml from serum and 30–220 μg/ml from plasma. Of 798 miRNAs, 371 miRNAs were not detected in either serum or plasma samples. 427 were detected in either serum or plasma but not both, whereas 151 miRNA were detected in both serum and plasma samples. The diversity of miRNA detected was greater in plasma than in serum samples. In serum samples, the number of detected miRNA ranged from 3 to 82 with a median of 17, whereas in plasma samples, the number of miRNA detected ranged from 25 to 221 with a median of 91. Several miRNA such as miR451a, miR 16-5p, miR-223-3p, and mir25-3p were highly abundant and differentially expressed between serum and plasma. The detection of endogenous and exogenous control miRNAs varied in serum and plasma, with higher levels observed in plasma. Gene expression stability identified candidate invariant microRNA that were highly stable across all samples, and could be used for normalization. In conclusion, there are significant differences in both the number of miRNA detected and the amount of miRNA detected between serum and plasma. Normalization using miRNA with constant expression is essential to minimize the impact of technical variations. Given the challenges involved, ideal candidates for blood based biomarkers would be those that are indifferent to type of body fluid, are detectable and can be reliably quantitated.
Collapse
|