51
|
Surface Modification of 316L SS Implants by Applying Bioglass/Gelatin/Polycaprolactone Composite Coatings for Biomedical Applications. COATINGS 2020. [DOI: 10.3390/coatings10121220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, various composites of bioglass/gelatin/polycaprolactone (BG/GE/PCL) were produced and coated on the surface of 316L stainless steel (SS) to improve its bioactivity. X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were utilized to characterize the specimens. The results showed that bioglass particles were distributed uniformly in the coating. By increasing the wt.% of bioglass in the nanocomposite coatings, the surface roughness and adhesion strength increased. The corrosion behavior of GE/PCL (PCL-10 wt.% gelatin coated on 316L SS) and 3BG/GE/PCL (GE/PCL including 3 wt.% bioglass coated on 316L SS) samples were studied in PBS solution. The results demonstrated that 3BG/GE/PCL sample improved the corrosion resistance drastically compared to the GE/PCL specimen. In vitro bioactivity of samples was examined after soaking the specimens for 7, 14 and 28 days in simulated body fluid (SBF). The results showed a significant apatite formation on the surface of 3BG/GE/PCL samples. The cell viability evaluation was performed using 3- (4, 5-dimethylthiazol-2-yl)-2,5 diphenyltetrazoliumbromide (MTT) tests which confirmed the enhanced cell viability on the surface of 3BG/GE/PCL samples. The in vivo behavior of specimens illustrated no toxicity and inflammatory response and was in a good agreement with the results obtained from the in vitro test.
Collapse
|
52
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
53
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
54
|
Rizwan M, Genasan K, Murali MR, Balaji Raghavendran HR, Alias R, Cheok YY, Wong WF, Mansor A, Hamdi M, Basirun WJ, Kamarul T. In vitro evaluation of novel low-pressure spark plasma sintered HA-BG composite scaffolds for bone tissue engineering. RSC Adv 2020; 10:23813-23828. [PMID: 35517330 PMCID: PMC9054734 DOI: 10.1039/d0ra04227g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022] Open
Abstract
The low-pressure spark plasma sintering (SPS) technique is adopted to fabricate hydroxyapatite-bioglass (HA-BG) scaffolds while maintaining the physical properties of both components, including their bulk and relative density and hardness. However, prior to their orthopaedic and dental applications, these scaffolds must be validated via pre-clinical assessments. In the present study, scaffolds with different ratios of HA : BG, namely, 100 : 0 (HB 0 S), 90 : 10 (HB 10 S), 80 : 20 (HB 20 S) and 70 : 30 (HB 30 S) were fabricated. These scaffolds were characterized by investigating their physicochemical properties (X-ray diffraction (XRD) and surface wettability), bioactivity in a simulated body fluid (SBF) (field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR) and calcium dissolution), antimicrobial properties, biocompatibility and osteoinduction of human bone marrow-derived mesenchymal stromal cells (hBMSCs) and human monocyte immune cell response. The XRD and surface wettability results confirmed no formation of undesirable phases and the enhanced surface hydrophilicity of the scaffolds, respectively. The bioactivity in SBF indicated the formation of bone-like apatite on the surface of the scaffolds, corresponding to an increase in BG%, which was confirmed through FTIR spectra and the increasing trend of calcium release in SBF. The scaffolds showed inhibition properties against Staphylococcus aureus and Staphylococcus epidermidis. The scanning electron microscopy (SEM) micrographs and Alamar Blue proliferation assay indicated the good attachment and significant proliferation, respectively, of hBMSCs on the scaffolds. Alizarin Red S staining confirmed that the scaffolds supported the mineralisation of hBMSCs. The osteogenic protein secretion (bone morphogenetic protein-2 (BMP2), type-I collagen (COL1) and osterix (OSX)) was significant on the HB 30 S-seeded hBMSCs when compared with that of HB 0 S. The monocyte migration was significantly halted in response to HA-BG-conditioned media when compared with the positive control (monocyte chemoattractant protein-1: MCP-1). In conclusion, the HB 30 S composite scaffold has a greater potential to substitute bone grafts in orthopaedic and dental applications.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Metallurgical Engineering, Faculty of Chemical and Process Engineering, NED University of Engineering and Technology 75270 Karachi Pakistan
- Centre of Advanced Manufacturing and Material Processing, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Krishnamurithy Genasan
- National Orthopaedic Centre of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Malliga Raman Murali
- National Orthopaedic Centre of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Hanumantha Rao Balaji Raghavendran
- National Orthopaedic Centre of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Rodianah Alias
- Department of Manufacturing Technology, Faculty of Innovative Design & Technology, University Sultan Zainal Abidin 21030 Kuala Terengganu Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Azura Mansor
- National Orthopaedic Centre of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| | - M Hamdi
- Chancellery Office, The National University of Malaysia 43600 Bangi Selangor Malaysia
- Centre of Advanced Manufacturing and Material Processing, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Wan Jeffrey Basirun
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
55
|
Zhao J, Chen G, Pang X, Zhang P, Hou X, Chen P, Xie YW, He CY, Wang Z, Chen ZY. Calcium phosphate nanoneedle based gene delivery system for cancer genetic immunotherapy. Biomaterials 2020; 250:120072. [PMID: 32361307 DOI: 10.1016/j.biomaterials.2020.120072] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023]
Abstract
Ovarian cancer has become one of the most common gynecological cancers with a high mortality. However, conventional surgery together with combination chemotherapy is difficult to achieve ideal therapeutic effect. Although genetic immunotherapy is applied to active immune responses against cancer, the absence of efficient in vivo gene delivery technique is still an obstacle in clinical application. To overcome these problems, a minicircle DNA vector encoding humanized anti-EpCAM/CD3 bispecific antibody (BsAbEPH) has been constructed. Moreover, different shapes of calcium phosphate (CaPO) biomaterials were prepared. Specifically, the CaPO-nanoneedle-mediated "cell perforation" transfection technology achieves high levels of gene expression in peritoneal cavity. In an intraperitoneal xenograft model with human ovarian cancer cell line SKOV3, the CaPO-nanoneedle/minicircle DNA system expressed BsAbEPH resulted in significant retardation of cancer growth and extension of mouse life-span with limited toxicity. And this system can be made as off-the-shelf and easy-to-use products. Therefore, CaPO-nanoneedle based non-viral gene delivery technology will have great potential in clinical application.
Collapse
Affiliation(s)
- Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 18107, PR China; Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Guochuang Chen
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Xiaojuan Pang
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Peifa Zhang
- Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Xiaohu Hou
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Ping Chen
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Yi-Wu Xie
- Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Cheng-Yi He
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China
| | - Zhiyong Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 18107, PR China; School of Materials Science and Engineering, Center for Functional Biomaterials, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhi-Ying Chen
- Laboratory for Gene and Cell Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Syno Minicircle Biotechnology Co. Ltd., Shenzhen, 518055, PR China.
| |
Collapse
|
56
|
Wang C, Liu J, Liu Y, Qin B, He D. Study on osteogenesis of zinc-loaded carbon nanotubes/chitosan composite biomaterials in rat skull defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:15. [PMID: 31965348 DOI: 10.1007/s10856-019-6338-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Chitosan with hydroxyapatite composition, a natural polymer, may be a biomaterial of importance for bone regeneration. Carbon nanotube, a nanoscale material, has been another focus for bone restoration. Zinc, an essential trace element, contributes to the development and growth of skeletal system. The purpose of the current research was to investigate the effects of Zinc-loaded Carbon Nanotubes/Chitosan composite biomaterials in the restoration of rat skull defects, and to verify the hypothesis that these zinc ions of appropriate concentration would strengthen the osteogenesis of rat defects. Four different groups of composite biomaterials were fabricated from no Zinc Carbon nanotubes/Chitosan (GN), 0.2% Zinc-Carbon nanotubes/Chitosan (GL), 1% Zinc-Carbon nanotubes/Chitosan (GM) and 2% Zinc-Carbon nanotubes/Chitosan (GH). After characterizations, these composite biomaterials were then transplanted into rat skull defects. The experimental animals were executed at 12 weeks after transplanted surgeries, and the rat skull defects were removed for related analyses. The results of characterizations suggested the Zinc-loaded composite biomaterials possessed good mechanical and osteoinductive properties. An important finding was that the optimal osteogenic effect appeared in rat skull defects transplanted with 1% Zinc-Carbon nanotubes/Chitosan. Overall, these composite biomaterials revealed satisfactory osteogenesis, nevertheless, there was a requirement to further perfect the zinc ion concentrations to achieve the better bone regeneration.
Collapse
Affiliation(s)
- Chenbing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, China
| | - Jinlong Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, China
| | - Yanbo Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, China
| | - Boheng Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, China
| | - Dongning He
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
57
|
Xu F, Ren H, Zheng M, Shao X, Dai T, Wu Y, Tian L, Liu Y, Liu B, Gunster J, Liu Y, Liu Y. Development of biodegradable bioactive glass ceramics by DLP printed containing EPCs/BMSCs for bone tissue engineering of rabbit mandible defects. J Mech Behav Biomed Mater 2019; 103:103532. [PMID: 31756563 DOI: 10.1016/j.jmbbm.2019.103532] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023]
Abstract
Bioactive glass ceramics have excellent biocompatibility and osteoconductivity; and can form direct chemical bonds with human bones; thus, these ceramic are considered as "Smart" materials. In this study, we develop a new type of bioactive glass ceramic (AP40mod) as a scaffold containing Endothelial progenitor cells (EPCs) and Mesenchymal stem cells (BMSCs) to repair critical-sized bone defects in rabbit mandibles. For in vitro experiments: AP40mod was prepared by Dgital light processing (DLP) system and the optimal ratio of EPCs/BMSCs was screened by analyzing cell proliferation and ALP activity, as well as the influence of genes related to osteogenesis and angiogenesis by direct inoculation into scaffolds. The scaffold showed suitable mechanical properties, with a Bending strength 52.7 MPa and a good biological activity. Additionally, when EPCs/BMSCs ratio were combined at a ratio of 2:1 with AP40mod, the ALP activity, osteogenesis and angiogenesis were significantly increased. For in vivo experiments: application of AP40mod/EPCs/BMSCs (after 7 days of in vitro spin culture) to repair and reconstruct critical-sized mandible defect in rabbit showed that all scaffolds were successfully accurately implanted into the defect area. As revealed by macroscopically and CT at the end of 9 months, defects in the AP40mod/EPCs/BMSCs group were nearly completely covered by normal bone and the degradation rate was 29.9% compared to 20.1% in the AP40mod group by the 3D reconstruction. As revealed by HE and Masson staining analyses, newly formed blood vessels, bone marrow and collagen maturity were significantly increased in the AP40mod/EPCs/BMSCs group compared to those in the AP40mod group. We directly inoculated cells on the novel material to screen for the best inoculation ratio. It is concluded that the AP40mod combination of EPCs/BMSCs is a promising approach for repairing and reconstructing large load bearing bone defect.
Collapse
Affiliation(s)
- Fangfang Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Hui Ren
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengjie Zheng
- Department of Oral and Maxillofacial Surgery,General Hospital of Northern Theater Command, Shen'yang, 110016, PR China
| | - Xiaoxi Shao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yanlong Wu
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lei Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Bin Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Laboratory Animal Center, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Jens Gunster
- Division of Ceramic Processing and Biomaterials, BAM Federal Institute for Materials and Research and Testing, Unter Den Eichen 44-46, 12203, Berlin, Germany
| | - Yaxiong Liu
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yanpu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases &Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China.
| |
Collapse
|
58
|
Ferreira FV, Souza LP, Martins TMM, Lopes JH, Mattos BD, Mariano M, Pinheiro IF, Valverde TM, Livi S, Camilli JA, Goes AM, Gouveia RF, Lona LMF, Rojas OJ. Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. NANOSCALE 2019; 11:19842-19849. [PMID: 31441919 DOI: 10.1039/c9nr05383b] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A major challenge exists in the preparation of scaffolds for bone regeneration, namely, achieving simultaneously bioactivity, biocompatibility, mechanical performance and simple manufacturing. Here, cellulose nanofibrils (CNF) are introduced for the preparation of scaffolds taking advantage of their biocompatibility and ability to form strong 3D porous networks from aqueous suspensions. CNF are made bioactive for bone formation through a simple and scalable strategy that achieves highly interconnected 3D networks. The resultant materials optimally combine morphological and mechanical features and facilitate hydroxyapatite formation while releasing essential ions for in vivo bone repair. The porosity and roughness of the scaffolds favor several cell functions while the ions act in the expression of genes associated with cell differentiation. Ion release is found critical to enhance the production of the bone morphogenetic protein 2 (BMP-2) from cells within the fractured area, thus accelerating the in vivo bone repair. Systemic biocompatibility indicates no negative effects on vital organs such as the liver and kidneys. The results pave the way towards a facile preparation of advanced, high performance CNF-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Filipe V Ferreira
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil. and Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil and Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland. and Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223, INSA Lyon, F-69621 Villeurbanne, France
| | - Lucas P Souza
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas-SP, Brazil
| | - Thais M M Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - João H Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), 12228-900, Sao Jose dos Campos-SP, Brazil
| | - Bruno D Mattos
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland.
| | - Marcos Mariano
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Ivanei F Pinheiro
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil. and Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Thalita M Valverde
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - Sébastien Livi
- Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223, INSA Lyon, F-69621 Villeurbanne, France
| | - José A Camilli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas-SP, Brazil
| | - Alfredo M Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), 31270-901, Belo Horizonte-MG, Brazil
| | - Rubia F Gouveia
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas-SP, Brazil
| | - Liliane M F Lona
- School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970, Campinas-SP, Brazil.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, P.O. Box 16300, 00076, Aalto University, Finland.
| |
Collapse
|
59
|
Cichoń E, Ślósarczyk A, Zima A. Influence of Selected Surfactants on Physicochemical Properties of Calcium Phosphate Bone Cements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13656-13662. [PMID: 31553615 DOI: 10.1021/acs.langmuir.9b02415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The influence of the three nonionic surface active agents such as Tween 20, Tween 80, and Tetronic 90R4 on hydrolysis, setting reaction, microstructure, and mechanical properties of alpha tricalcium phosphate (α-TCP) based materials was determined. The study revealed that the addition of any of the surfactants mentioned above slightly prolonged the setting time of the tested cements (up to 5 min). On the other hand, it was found that surfactants influence the long-term hydrolysis reaction. The addition of surfactants also affected the microstructure of the final materials, especially after incubation in a simulated body fluid. Surface active agents also had an impact on mechanical behavior of the obtained cements. Sorbitan esters, Tween 20 and Tween 80, decreased compressive strength in comparison to the reference material (6.56 ± 1.59 MPa) to 3.54 ± 1.18 and 3.68 ± 1.03 MPa, respectively. Interestingly, Tetronic 90R4, never used before as an additive to calcium phosphate bone cements (CPCs) caused a 2-fold increase of this value (up to 13.28 ± 1.59 MPa). All the developed materials exhibited bioactivity in vitro. The obtained results shed new light on surfactants as CPCs additives. They should not only be considered as foaming agent or binders, but also they deserve more attention as modifiers affecting the physicochemical properties of α-TCP based materials.
Collapse
Affiliation(s)
- Ewelina Cichoń
- Faculty of Material Science and Ceramics , AGH University of Science and Technology , Al. Mickiewicza 30 , 30-059 Krakow , Poland
| | - Anna Ślósarczyk
- Faculty of Material Science and Ceramics , AGH University of Science and Technology , Al. Mickiewicza 30 , 30-059 Krakow , Poland
| | - Aneta Zima
- Faculty of Material Science and Ceramics , AGH University of Science and Technology , Al. Mickiewicza 30 , 30-059 Krakow , Poland
| |
Collapse
|
60
|
Foroutan F, McGuire J, Gupta P, Nikolaou A, Kyffin BA, Kelly NL, Hanna JV, Gutierrez-Merino J, Knowles JC, Baek SY, Velliou E, Carta D. Antibacterial Copper-Doped Calcium Phosphate Glasses for Bone Tissue Regeneration. ACS Biomater Sci Eng 2019; 5:6054-6062. [DOI: 10.1021/acsbiomaterials.9b01291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | | | | | | | | | - Nicole L. Kelly
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - John V. Hanna
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - Jonathan C. Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, United Kingdom
- The Discoveries Centre for Regenerative and Precision Medicine, University College London, London WC1E 6BT, United Kingdom
| | - Song-Yi Baek
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, United Kingdom
| | | | | |
Collapse
|
61
|
Orshesh Z, Borhan S, Kafashan H. Physical, mechanical and in vitro biological evaluation of synthesized biosurfactant-modified silanated-gelatin/sodium alginate/45S5 bioglass bone tissue engineering scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:93-109. [DOI: 10.1080/09205063.2019.1675226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ziba Orshesh
- Department of Materials Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Shokoufeh Borhan
- Materials and Chemical Engineering Faculty, Buein Zahra Technical University, Qazvin, Iran
| | - Hosein Kafashan
- Department of Materials Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| |
Collapse
|
62
|
Mesoporous bioactive glasses for bone healing and biomolecules delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110180. [PMID: 31753410 DOI: 10.1016/j.msec.2019.110180] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 01/17/2023]
Abstract
Impact of bone diseases and injury is increasing at an enormous rate during the past decades due to increase in road traffic accidents and other injuries. Bioactive glasses have excellent biocompatibility and osteoconductivity that makes it suitable for bone regeneration. Researches and studies conducted on several bioactive glasses gives an insight on the need of multi-disciplinary approaches involving various scientific fields to attain its full potential. Of late, a next generation bioactive glass called as mesoporous bioactive glass (MBG) has been developed with higher specific surface area and control over mesoporous structure that presents a new material for bone regeneration. A brief discussion and overview on the potential use of MBG as a suitable material for bone tissue regeneration and biomolecule delivery is included. Additionally, possible control of the structural and functional property based on composition and fabrication techniques are also covered. According to recent researches, MBG-implant interaction with bone forming cells for cellular growth and differentiation as well as its effect on delivery of growth factor, both in vitro and in vivo, are optimistic; yet, the complete efficacy of this material is still to be explored. Hence, in this article we will review the current development and its applications for bone tissue engineering (TE).
Collapse
|
63
|
Kim JW, Lee JB, Koh YH, Kim HE. Digital Light Processing of Freeze-cast Ceramic Layers for Macroporous Calcium Phosphate Scaffolds with Tailored Microporous Frameworks. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2893. [PMID: 31500244 PMCID: PMC6766207 DOI: 10.3390/ma12182893] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/30/2022]
Abstract
The objective of the present study is to demonstrate the versatility of the digital light processing (DLP) technique particularly when using a freeze-cast ceramic layer as the feedstock, which can manufacture porous calcium phosphate (CaP) scaffolds with arbitrarily designed macroporous structures with tailored microporous frameworks specially designed for bone scaffold applications. For this goal, we employed camphene-camphor as the freezing vehicle and porogen for the preparation of photocurable CaP suspensions containing diurethane dimethacrylate (UDMA) monomers. After freeze-casting, the CaP suspensions could be solidified at controlled temperatures (~33-38 °C) and then be photopolymerized by DLP. All produced CaP scaffolds fairly resembled the designed macroporous structures (the gyroid structure with two interpenetrating macropore networks). In addition, numerous micropores were created in the CaP filaments, while the microporosity increased with increasing the camphene-camphor amount from 40 vol % to 60 vol %. As a consequence, compressive strength and modulus of hierarchically porous CaP scaffolds decreased due to an increase in overall porosity. However, reasonable mechanical properties could be obtained at high porosities owing to the CaP frameworks constructed in a periodic manner. In addition, excellent water penetration capability, biocompatibility, and apatite-forming ability were obtained, which were attributed to the microporous CaP frameworks with good pore interconnectivity and large surface area.
Collapse
Affiliation(s)
- Jong-Woo Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Jung-Bin Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Young-Hag Koh
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
64
|
Díaz E, Puerto I, Sandonis I, Ribeiro S, Lanceros‐Mendez S. Hydrolytic degradation and cytotoxicity of poly(lactic‐
co
‐glycolic acid)/multiwalled carbon nanotubes for bone regeneration. J Appl Polym Sci 2019. [DOI: 10.1002/app.48439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Esperanza Díaz
- Escuela de Ingeniería de Bilbao, Departamento de Ingeniería Minera, Metalúrgica y Ciencia de MaterialesUniversidad del País Vasco (UPV/EHU) 48920 Portugalete Spain
- BCMaterials, Basque Centre for Materials, Applications and NanostructuresUPV/EHU Science Park 48940 Leioa Spain
| | - Igor Puerto
- Escuela de Ingeniería de Bilbao, Departamento de Ingeniería Minera, Metalúrgica y Ciencia de MaterialesUniversidad del País Vasco (UPV/EHU) 48920 Portugalete Spain
| | - Iban Sandonis
- Escuela de Ingeniería de Bilbao, Departamento de Ingeniería Minera, Metalúrgica y Ciencia de MaterialesUniversidad del País Vasco (UPV/EHU) 48920 Portugalete Spain
| | - Sylvie Ribeiro
- Centro/Departamento de FísicaUniversidade do Minho 4710‐057 Braga Portugal
- Centre of Molecular and Environmental Biology (CBMA)Universidade do Minho, Campus de Gualtar 4710‐057 Braga Portugal
| | - Senentxu Lanceros‐Mendez
- BCMaterials, Basque Centre for Materials, Applications and NanostructuresUPV/EHU Science Park 48940 Leioa Spain
- IKERBASQUE, Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
65
|
Ye H, Zhu J, Deng D, Jin S, Li J, Man Y. Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1505-1522. [PMID: 31322979 DOI: 10.1080/09205063.2019.1646628] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Membranes play pivotal role in guided bone regeneration (GBR) technique for reconstruction alveolar bone. GBR membrane that is able to stimulate both osteogenic and angiogenic differentiation of cells may be more effective in clinic practice. Herein, we fabricated the Sr-doped calcium phosphate/polycaprolactone/chitosan (Sr-CaP/PCL/CS) nanohybrid fibrous membrane by incorporating 20 wt% bioactive Sr-CaP nanoparticles into PCL/CS matrix via one-step electrospinning method, in order to endow the membrane with stimulation of osteogenesis and angiogenesis. The physicochemical properties, mechanical properties, Sr2+ release behavior, and the membrane stimulate bone mesenchymal stem cell (BMSCs) differentiation were evaluated in comparison with PCL/CS and CaP/PCL/CS membranes. The SEM images revealed that the nanocomposite membrane mimicked the extracellular matrix structure. The release curve presented a 28-day long continuous release of Sr2+ and concentration which was certified in an optimal range for positive biological effects at each timepoint. The in vitro cell culture experiments certified that the Sr-CaP/PCL/CS membrane enjoyed excellent biocompatibility and remarkably promoted rat bone mesenchymal stem cell (BMSCs) adhesion and proliferation. In terms of osteogenic differentiation, BMSCs seeded on the Sr-CaP/PCL/CS membrane showed a higher ALP activity level and a better matrix mineralization. What's more, the synergism of the Sr2+ and CaP from the Sr-CaP/PCL/CS membrane enhanced BMSCs angiogenic differentiation, herein resulting in the largest VEGF secretion amount. Consequently, the Sr-CaP/PCL/CS nanohybrid electrospun membrane has promising applications in GBR.
Collapse
Affiliation(s)
- Huilin Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu , China
| | - Junjin Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu , China
| | - Dan Deng
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University , Chengdu , China
| | - Shue Jin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University , Chengdu , China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University , Chengdu , China
| | - Yi Man
- Department of Implantology, State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University , Chengdu , China
| |
Collapse
|
66
|
Islam MT, Sharmin N, Rance GA, Titman JJ, Parsons AJ, Hossain KMZ, Ahmed I. The effect of MgO/TiO
2
on structural and crystallization behavior of near invert phosphate‐based glasses. J Biomed Mater Res B Appl Biomater 2019; 108:674-686. [DOI: 10.1002/jbm.b.34421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Md Towhidul Islam
- Advanced Materials Research Group, Faculty of EngineeringUniversity of Nottingham Nottingham UK
| | - Nusrat Sharmin
- Department of Chemical and Environmental Engineering, Faculty of Science and EngineeringUniversity of Nottingham Ningbo China Ningbo China
| | - Graham A. Rance
- Nanoscale and Microscale Research Centre (nmRC), Cripps SouthUniversity Park, University of Nottingham Nottingham UK
| | - Jeremy J. Titman
- School of ChemistryUniversity of Nottingham, University Park Nottingham UK
| | - Andrew J. Parsons
- Advanced Materials Research Group, Faculty of EngineeringUniversity of Nottingham Nottingham UK
| | - Kazi M. Zakir Hossain
- Advanced Materials Research Group, Faculty of EngineeringUniversity of Nottingham Nottingham UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of EngineeringUniversity of Nottingham Nottingham UK
| |
Collapse
|
67
|
Sopcak T, Medvecky L, Giretova M, Stulajterova R, Molcanova Z, Podobova M, Girman V. Physical, mechanical and in vitro evaluation of a novel cement based on akermantite and dicalcium phosphate dihydrate phase. ACTA ACUST UNITED AC 2019; 14:045011. [PMID: 31134897 DOI: 10.1088/1748-605x/ab216d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Magnesium containing calcium silicates have recently shown that they are promising materials for various biomedical application with potential use in the form of bulk ceramic, composite scaffold or coatings on metallic substrates. A novel akermanite (AK; Ca2MgSi2O7)/dicalcium phosphate dihydrate (DCPD, CaHPO4. H2O) cement mixture was tested in this work in order to produce an alternative AK/DCPD biocement for orthopedic applications. For comparison, we have prepared two cements mixed with 2.5 wt% NaH2PO4 solution (labeled as NaH2PO4 cement) and with the solution composed of organic 2.5 wt% citric acid a 2.5 wt% trisodium citrate (citrate cement) respectively. The results demonstrated only a partial dissolution of AK, regardless of the type of liquid used. On the other hand, the DCPD was completely hydrolyzed much faster in the citrate cement. The final hydration product was an amorhous quarternary phase of CaO-MgO-SiO2-P2O5 composition with the remaining unreacted akermanite embeded in the cement matrix. The highest early compressive strength was observed in the citrate cement (33 MPa), but much lower value was measured in NaH2PO4 cement (7 MPa) after 1 d setting. Different cell responses have been observed when the cells were cultured on the surfaces of cement substrates. While the NaH2PO4 cement demonstrated high proliferation activity of osteoblast, the citrate cement showed strong cytotoxic cell response, probably as a result of higher concentration of citrates on the cement surface, which can negatively affect the attachment and proliferation of osteoblastic cells.
Collapse
Affiliation(s)
- T Sopcak
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia
| | | | | | | | | | | | | |
Collapse
|
68
|
Hsu PY, Kuo HC, Tuan WH, Shih SJ, Naito M, Lai PL. Manipulation of the degradation behavior of calcium sulfate by the addition of bioglass. Prog Biomater 2019; 8:115-125. [PMID: 31127540 PMCID: PMC6556162 DOI: 10.1007/s40204-019-0116-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022] Open
Abstract
A bioactive calcium sulfate/glass composite was prepared using a sintering technique, and Ca–P–Si glass particles were prepared by spray pyrolysis. The glass exhibited bioactivity in terms of its ability to form apatite in a simulated body fluid. The glass was transformed into two crystallized phases, i.e., calcium phosphate and calcium silicate, respectively, during the heating stage. The presence of the crystallized phases retarded the densification of calcium sulfate. A high sintering temperature of 1200 °C was needed to prepare the composite. The increased addition of glass enhanced the strength and decreases the degradation rate of calcium sulfate. The new composite is not only degradable but also bioactive.
Collapse
Affiliation(s)
- Pei-Yi Hsu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 107, Taiwan
| | - Hsiao-Chun Kuo
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 107, Taiwan
| | - Wei-Hsing Tuan
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 107, Taiwan.
| | - Shao-Ju Shih
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 107, Taiwan
| | - Makio Naito
- Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Po-Liang Lai
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| |
Collapse
|
69
|
Kargozar S, Hamzehlou S, Baino F. Can bioactive glasses be useful to accelerate the healing of epithelial tissues? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:1009-1020. [DOI: 10.1016/j.msec.2019.01.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 12/27/2018] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
|
70
|
Kim KI, Kim DA, Patel KD, Shin US, Kim HW, Lee JH, Lee HH. Carbon nanotube incorporation in PMMA to prevent microbial adhesion. Sci Rep 2019; 9:4921. [PMID: 30894673 PMCID: PMC6427005 DOI: 10.1038/s41598-019-41381-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/07/2019] [Indexed: 12/23/2022] Open
Abstract
Although PMMA-based biomaterials are widely used in clinics, a major hurdle, namely, their poor antimicrobial (i.e., adhesion) properties, remains and can accelerate infections. In this study, carboxylated multiwalled carbon nanotubes (CNTs) were incorporated into poly(methyl methacrylate) (PMMA) to achieve drug-free antimicrobial adhesion properties. After characterizing the mechanical/surface properties, the anti-adhesive effects against 3 different oral microbial species (Staphylococcus aureus, Streptococcus mutans, and Candida albicans) were determined for roughened and highly polished surfaces using metabolic activity assays and staining for recognizing adherent cells. Carboxylated multiwalled CNTs were fabricated and incorporated into PMMA. Total fracture work was enhanced for composites containing 1 and 2% CNTs, while other mechanical properties were gradually compromised with the increase in the amount of CNTs incorporated. However, the surface roughness and water contact angle increased with increasing CNT incorporation. Significant anti-adhesive effects (35~95%) against 3 different oral microbial species without cytotoxicity to oral keratinocytes were observed for the 1% CNT group compared to the PMMA control group, which was confirmed by microorganism staining. The anti-adhesive mechanism was revealed as a disconnection of sequential microbe chains. The drug-free antimicrobial adhesion properties observed in the CNT-PMMA composite suggest the potential utility of CNT composites as future antimicrobial biomaterials for preventing microbial-induced complications in clinical settings (i.e., Candidiasis).
Collapse
Affiliation(s)
- Kyoung-Im Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea
| | - Dong-Ae Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Department of Dental Hygiene, Kyungwoon University, Gumi-si, South Korea
| | - Kapil D Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, South Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ueon Sang Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, South Korea
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, South Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea. .,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea. .,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, South Korea. .,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, South Korea. .,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea. .,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
71
|
Abstract
Two dense biphasic ceramics, with a hypereutectic composition of 30 wt % CaSiO3–70 wt % Ca3(PO4)2, were synthesized by a solid-state reaction of homogeneous pressed combinations of previously synthesized synthetic CaSiO3 and Ca3(PO4)2 powders. The objective was to produce a dense structure to generate large enough in situ pores for the ceramic to be used in tissue engineering. To develop such a structure, two grain sizes of CaSiO3 were used (63–100 µm and 100–150 μm) and some of their properties were studied in vitro, as they are relevant for tissue engineering. X-ray diffraction analysis, μ-Raman spectroscopy, diametrical compression test, and scanning electron microscopy with elemental mapping showed a coarse-grained homogeneous microstructure for the materials, which consisted of wollastonite (α-CaSiO3) and tricalcium phosphate (α-Ca3(PO4)2), with adequate mechanical properties for implantation. In vitro bioactivity was evaluated in simulated body fluid (SBF) by exploring a hydroxyapatite (HA)-like formation. The results showed that tricalcium phosphate grains dissolved more preferentially than those of wollastonite, but not fast enough to leave a pore before the surface was coated with an HA-like layer after soaking only for three days. Biocompatibility was evaluated by in vitro cell experiments, which showed cell proliferation, adhesion, and spreading on the ceramic surface. This ceramic is expected to be used as a bone graft substitute.
Collapse
|
72
|
Jang YS, Moon SH, Nguyen TDT, Lee MH, Oh TJ, Han AL, Bae TS. In vivo bone regeneration by differently designed titanium membrane with or without surface treatment: a study in rat calvarial defects. J Tissue Eng 2019; 10:2041731419831466. [PMID: 30834101 PMCID: PMC6396043 DOI: 10.1177/2041731419831466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/25/2019] [Indexed: 12/24/2022] Open
Abstract
The current objective was to evaluate six groups of titanium membranes in a rat calvarial defect model, regarding the surface treatment with or without calcium-phosphate coating and surface topography with no, small, or large holes. Critical size defects (Ф = 8 mm, n = 42) were surgically created in rat calvaria, and then were treated by one of the six groups. Biopsies were obtained at 4 weeks (n = 5 per group) for micro-computed tomography and histomorphometric analyses. Fluorochrome bone markers were injected in two rats each group at 1 (Alizarin red), 3 (Calcein green) and 5 weeks (Oxytetracyclin yellow), followed by histological examination at 7 weeks to assess bone regeneration dynamic. At 4 weeks, the highest bone volume was observed in no-hole groups independent of surface treatment (p < 0.05). Treated groups with no-hole and large-hole membranes showed increased bone mineral density than with respective non-treated groups (p < 0.05). Histology exhibited an intimate bone formation onto the treated membranes, whereas non-treated ones demonstrated interposition of connective tissue, which was confirmed through bone contact percentages. The results suggest that occlusive membranes showed more bone formation than other perforated ones, and calcium-phosphate treatment induces intimate bone formation toward the membrane.
Collapse
Affiliation(s)
- Yong-Seok Jang
- Department of Dental Biomaterials, Institute of Oral Bioscience and Institute of Biodegradable Material, BK21 Plus Project, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - So-Hee Moon
- Department of Periodontology, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Thuy-Duong Thi Nguyen
- Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Min-Ho Lee
- Department of Dental Biomaterials, Institute of Oral Bioscience and Institute of Biodegradable Material, BK21 Plus Project, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Tae-Ju Oh
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - A-Lum Han
- Department of Family Medicine, College of Medicine, Wonkwang University, Iksan, South Korea
| | - Tae-Sung Bae
- Department of Dental Biomaterials, Institute of Oral Bioscience and Institute of Biodegradable Material, BK21 Plus Project, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
73
|
Jiang YY, Zhou ZF, Zhu YJ, Chen FF, Lu BQ, Cao WT, Zhang YG, Cai ZD, Chen F. Enzymatic Reaction Generates Biomimic Nanominerals with Superior Bioactivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1804321. [PMID: 30417599 DOI: 10.1002/smll.201804321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 05/22/2023]
Abstract
In vivo mineralization is a multistep process involving mineral-protein complexes and various metastable compounds in vertebrates. In this complex process, the minerals produced in the mitochondrial matrix play a critical role in initiating extracellular mineralization. However, the functional mechanisms of the mitochondrial minerals are still a mystery. Herein, an in vitro enzymatic reaction strategy is reported for the generation of biomimic amorphous calcium phosphate (EACP) nanominerals by an alkaline phosphatase (ALP)-catalyzed hydrolysis of adenosine triphosphate (ATP) in a weakly alkalescent aqueous condition (pH 8.0-8.5), which is partially similar to the mitochondrial environment. Significantly, the EACP nanomineral obviously promotes autophagy and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by activating an AMPK related pathway, and displays a high performance in promoting bone regeneration. These results provide in vitro evidence for the effect of ATP on the formation and stabilization of the mineral in the mineralization process, demonstrating a potential strategy for the preparation of the biomimic mineral for treating bone related diseases.
Collapse
Affiliation(s)
- Ying-Ying Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Zi-Fei Zhou
- Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Fei-Fei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Bing-Qiang Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Wen-Tao Cao
- Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Zheng-Dong Cai
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Department of Orthopedics, Spinal Pain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| |
Collapse
|
74
|
Combining Calcium Phosphates with Polysaccharides: A Bone-Inspired Material Modulating Monocyte/Macrophage Early Inflammatory Response. Int J Mol Sci 2018; 19:ijms19113458. [PMID: 30400326 PMCID: PMC6274876 DOI: 10.3390/ijms19113458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022] Open
Abstract
The use of inorganic calcium/phosphate supplemented with biopolymers has drawn lots of attention in bone regenerative medicine. While inflammation is required for bone healing, its exacerbation alters tissue regeneration/implants integration. Inspired by bone composition, a friendly automated spray-assisted system was used to build bioactive and osteoinductive calcium phosphate/chitosan/hyaluronic acid substrate (CaP-CHI-HA). Exposing monocytes to CaP-CHI-HA resulted in a secretion of pro-healing VEGF and TGF-β growth factors, TNF-α, MCP-1, IL-6 and IL-8 pro-inflammatory mediators but also IL-10 anti-inflammatory cytokine along with an inflammatory index below 1.5 (versus 2.5 and 7.5 following CaP and LPS stimulation, respectively). Although CD44 hyaluronic acid receptor seems not to be involved in the inflammatory regulation, results suggest a potential role of chemical composition and calcium release from build-up substrates, in affecting the intracellular expression of a calcium-sensing receptor. Herein, our findings indicate a great potential of CaP-CHI-HA in providing required inflammation-healing balance, favorable for bone healing/regeneration.
Collapse
|
75
|
Lee JH, Lee MY, Lim Y, Knowles J, Kim HW. Auditory disorders and future therapies with delivery systems. J Tissue Eng 2018; 9:2041731418808455. [PMID: 30397431 PMCID: PMC6207966 DOI: 10.1177/2041731418808455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022] Open
Abstract
Auditory function takes a major part in human life. While sensorineural hearing loss is related with many factors including genetic disorders, age and noise, the clear causes are not well understood. Even more, the currently available treatments with drugs cause side effects, which thus are considered suboptimal. Here, we communicate the delivery systems with biomaterials that can be possible therapeutic options to restore hearing and vestibular functions. We introduce briefly the various pathological factors related with hearing loss and the limitation of current therapies, detail the recent studies on delivery systems including nanoparticles and hydrogels and discuss future clinical availability.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman - Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea
| | - Min Young Lee
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yohan Lim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Jonathan Knowles
- UCL Eastman - Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Biomaterials and Tissue Engineering Research Department, UCL Eastman Dental Institute, London, UK.,The Discoveries Centre for Regenerative and Precision Medicine, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman - Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
76
|
Farano V, Cresswell M, Gritsch K, Jackson P, Attik N, Grosgogeat B, Maurin JC. Bioactivity evaluation of collagen-based scaffolds containing a series of Sr-doped melt-quench derived phosphate-based glasses. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:101. [PMID: 29946949 DOI: 10.1007/s10856-018-6110-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Phosphate-based glasses have been attracting attention due to their possible medical applications arising from unique dissolution characteristics in the human body leading to the possibility of new tissue regeneration. In this study, the leaching kinetics of a series of melt-quenched Sr-doped phosphate glasses are presented. Regardless of the presence of Sr, all the glasses have an initial linear and sustained release of the ions followed by a plateau. To guarantee proper nutritional support to the growing tissue during regeneration and to mimic the 3-dimensional architecture of tissues, organic scaffold systems have been developed. However, their poor mechanical strength has limited their application. To overcome this problem, cross-linkers can be used although this then limits the solubility of the materials. To succeed in dealing with such a limitation, in this paper, by freeze-drying, the aforementioned soluble melt-quenched phosphate glasses were combined as powders with collagen fibres from bovine achilles tendon to make degradable scaffolds. The scaffolds were characterized by SEM, EDX and BET. Changes to the dissolution behaviour of the glasses arising from the presence of collagen interacting with the ions leached were reported. Furthermore, the ability of the scaffolds to induce hydroxyapatite (HA) formation was evaluated: one the elaborated scaffold could grow an HA-like layer after a week in SBF. Based on the results obtained, a possible application in restorative dentistry is proposed for one or more materials.
Collapse
Affiliation(s)
- Vincenzo Farano
- Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, Université Lyon, Villeurbanne, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Mark Cresswell
- Lucideon Limited, Queens Road, Penkhull, Stoke-on-Trent, Staffordshire, ST4 7LQ, UK
| | - Kerstin Gritsch
- Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, Université Lyon, Villeurbanne, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Phil Jackson
- Lucideon Limited, Queens Road, Penkhull, Stoke-on-Trent, Staffordshire, ST4 7LQ, UK
| | - Nina Attik
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
| | - Brigitte Grosgogeat
- Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, Université Lyon, Villeurbanne, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Maurin
- Université Claude Bernard Lyon 1, CNRS, Laboratoire des Multimatériaux et Interfaces, Université Lyon, Villeurbanne, France.
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France.
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
77
|
Abstract
Calcium phosphates have long been used as synthetic bone grafts. Recent studies have shown that the modulation of composition and textural properties, such as nano-, micro- and macro-porosity, is a powerful strategy to control and synchronize material resorption and bone formation.Biomimetic calcium phosphates, which closely mimic the composition and structure of bone mineral, can be produced using low-temperature processing routes, and offer the possibility to modulate the material properties to a larger extent than conventional high temperature sintering processes.Advanced technologies open up new possibilities in the design of bioceramics for bone regeneration; 3D-printing technologies, in combination with the development of hybrid materials with enhanced mechanical properties, supported by finite element modelling tools, are expected to enable the design and fabrication of mechanically competent patient-specific bone grafts.The association of ions, drugs and cells allows leveraging of the osteogenic potential of bioceramic scaffolds in compromised clinical situations, where the intrinsic bone regeneration potential is impaired. Cite this article: EFORT Open Rev 2018;3 DOI: 10.1302/2058-5241.3.170056.
Collapse
Affiliation(s)
- Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Spain
| | - Yassine Maazouz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), Spain
- Mimetis Biomaterials, Spain
| | | | | |
Collapse
|
78
|
Moon HJ, Lee JH, Kim JH, Knowles JC, Cho YB, Shin DH, Lee HH, Kim HW. Reformulated mineral trioxide aggregate components and the assessments for use as future dental regenerative cements. J Tissue Eng 2018; 9:2041731418807396. [PMID: 30397430 PMCID: PMC6207958 DOI: 10.1177/2041731418807396] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022] Open
Abstract
Mineral trioxide aggregate, which comprises three major inorganic components, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A), is promising regenerative cement for dentistry. While mineral trioxide aggregate has been successfully applied in retrograde filling, the exact role of each component in the mineral trioxide aggregate system is largely unexplored. In this study, we individually synthesized the three components, namely, C3S, C2A, and C3A, and then mixed them to achieve various compositions (a total of 14 compositions including those similar to mineral trioxide aggregate). All powders were fabricated to obtain high purity. The setting reaction of all cement compositions was within 40 min, which is shorter than for commercial mineral trioxide aggregate (~150 min). Over time, the pH of the composed cements initially showed an abrupt increase and then plateaued (pH 10-12), which is a typical behavior of mineral trioxide aggregate. The compression and tensile strength of the composed cements increased (2-4 times the initial values) with time for up to 21 days in an aqueous medium, the degree to which largely depended on the composition. The cell viability test with rat mesenchymal stem cells revealed no toxicity for any composition except C3A, which contained aluminum. To confirm the in vivo biological response, cement was retro-filled into an extracted rat tooth and the complex was re-implanted. Four weeks post-operation, histological assessments revealed that C3A caused significant tissue toxicity, while good tissue compatibility was observed with the other compositions. Taken together, these results reveal that of the three major constituents of mineral trioxide aggregate, C3A generated significant toxicity in vitro and in vivo, although it accelerated setting time. This study highlights the need for careful consideration with regard to the composition of mineral trioxide aggregate, and if possible (when other properties are satisfactory), the C3A component should be avoided, which can be achieved by the mixture of individual components.
Collapse
Affiliation(s)
- Ho-Jin Moon
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Joong-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Jonathan C Knowles
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
- The Discoveries Centre for Regenerative and Precision Medicine, Eastman Dental Institute, University College London, London, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yong-Bum Cho
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Dong-Hoon Shin
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|