51
|
Calderone V, Gallego J, Fernandez-Miranda G, Garcia-Pras E, Maillo C, Berzigotti A, Mejias M, Bava FA, Angulo-Urarte A, Graupera M, Navarro P, Bosch J, Fernandez M, Mendez R. Sequential Functions of CPEB1 and CPEB4 Regulate Pathologic Expression of Vascular Endothelial Growth Factor and Angiogenesis in Chronic Liver Disease. Gastroenterology 2016; 150:982-97.e30. [PMID: 26627607 DOI: 10.1053/j.gastro.2015.11.038] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/04/2015] [Accepted: 11/18/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Vascular endothelial growth factor (VEGF) regulates angiogenesis, yet therapeutic strategies to disrupt VEGF signaling can interfere with physiologic angiogenesis. In a search for ways to inhibit pathologic production or activities of VEGF without affecting its normal production or functions, we investigated the post-transcriptional regulation of VEGF by the cytoplasmic polyadenylation element-binding proteins CPEB1 and CPEB4 during development of portal hypertension and liver disease. METHODS We obtained transjugular liver biopsies from patients with hepatitis C virus-associated cirrhosis or liver tissues removed during transplantation; healthy human liver tissue was obtained from a commercial source (control). We also performed experiments with male Sprague-Dawley rats and CPEB-deficient mice (C57BL6 or mixed C57BL6/129 background) and their wild-type littermates. Secondary biliary cirrhosis was induced in rats by bile duct ligation, and portal hypertension was induced by partial portal vein ligation. Liver and mesenteric tissues were collected and analyzed in angiogenesis, reverse transcription polymerase chain reaction, polyA tail, 3' rapid amplification of complementary DNA ends, Southern blot, immunoblot, histologic, immunohistochemical, immunofluorescence, and confocal microscopy assays. CPEB was knocked down with small interfering RNAs in H5V endothelial cells, and translation of luciferase reporters constructs was assessed. RESULTS Activation of CPEB1 promoted alternative nuclear processing within noncoding 3'-untranslated regions of VEGF and CPEB4 messenger RNAs in H5V cells, resulting in deletion of translation repressor elements. The subsequent overexpression of CPEB4 promoted cytoplasmic polyadenylation of VEGF messenger RNA, increasing its translation; the high levels of VEGF produced by these cells led to their formation of tubular structures in Matrigel assays. We observed increased levels of CPEB1 and CPEB4 in cirrhotic liver tissues from patients, compared with control tissue, as well as in livers and mesenteries of rats and mice with cirrhosis or/and portal hypertension. Mice with knockdown of CPEB1 or CPEB4 did not overexpress VEGF or have signs of mesenteric neovascularization, and developed less-severe forms of portal hypertension after portal vein ligation. CONCLUSIONS We identified a mechanism of VEGF overexpression in liver and mesentery that promotes pathologic, but not physiologic, angiogenesis, via sequential and nonredundant functions of CPEB1 and CPEB4. Regulation of CPEB4 by CPEB1 and the CPEB4 autoamplification loop induces pathologic angiogenesis. Strategies to block the activities of CPEBs might be developed to treat chronic liver and other angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Vittorio Calderone
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Javier Gallego
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Gonzalo Fernandez-Miranda
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Garcia-Pras
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Carlos Maillo
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Annalisa Berzigotti
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Marc Mejias
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Felice-Alessio Bava
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ana Angulo-Urarte
- Program of Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Graupera
- Program of Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pilar Navarro
- Program of Cancer, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Jaime Bosch
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain
| | - Mercedes Fernandez
- Program of Liver, Digestive System and Metabolism, IDIBAPS Biomedical Research Institute, CIBERehd, University of Barcelona, Barcelona, Spain.
| | - Raul Mendez
- Program of Molecular Medicine, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
52
|
Flamini V, Jiang WG, Lane J, Cui YX. Significance and therapeutic implications of endothelial progenitor cells in angiogenic-mediated tumour metastasis. Crit Rev Oncol Hematol 2016; 100:177-89. [PMID: 26917455 DOI: 10.1016/j.critrevonc.2016.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/30/2015] [Accepted: 02/15/2016] [Indexed: 01/16/2023] Open
Abstract
Cancer conveys profound social and economic consequences throughout the world. Metastasis is responsible for approximately 90% of cancer-associated mortality and, when it occurs, cancer becomes almost incurable. During metastatic dissemination, cancer cells pass through a series of complex steps including the establishment of tumour-associated angiogenesis. The human endothelial progenitor cells (hEPCs) are a cell population derived from the bone marrow which are required for endothelial tubulogenesis and neovascularization. They also express abundant inflammatory cytokines and paracrine angiogenic factors. Clinically hEPCs are highly correlated with relapse, disease progression, metastasis and treatment response in malignancies such as breast cancer, ovarian cancer and non-small-cell lung carcinoma. It has become evident that the hEPCs are involved in the angiogenesis-required progression and metastasis of tumours. However, it is not clear in what way the signalling pathways, controlling the normal cellular function of human BM-derived EPCs, are hijacked by aggressive tumour cells to facilitate tumour metastasis. In addition, the actual roles of hEPCs in tumour angiogenesis-mediated metastasis are not well characterised. In this paper we reviewed the clinical relevance of the hEPCs with cancer diagnosis, progression and prognosis. We further summarised the effects of tumour microenvironment on the hEPCs and underlying mechanisms. We also hypothesized the roles of altered hEPCs in tumour angiogenesis and metastasis. We hope this review may enhance our understanding of the interaction between hEPCs and tumour cells thus aiding the development of cellular-targeted anti-tumour therapies.
Collapse
Affiliation(s)
- Valentina Flamini
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Jane Lane
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Yu-Xin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK.
| |
Collapse
|
53
|
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int 2016; 89:767-78. [PMID: 26924058 DOI: 10.1016/j.kint.2015.11.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a global health care burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including proangiogenic, anti-inflammatory, and antifibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This Review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation.
Collapse
|
54
|
Functional and Biological Role of Endothelial Precursor Cells in Tumour Progression: A New Potential Therapeutic Target in Haematological Malignancies. Stem Cells Int 2015; 2016:7954580. [PMID: 26788072 PMCID: PMC4691637 DOI: 10.1155/2016/7954580] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/19/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
It was believed that vasculogenesis occurred only during embryo life and that postnatal formation of vessels arose from angiogenesis. Recent findings demonstrate the existence of Endothelial Precursor Cells (EPCs), which take partin postnatal vasculogenesis. EPCs are recruited from the bone marrow under the stimulation of growth factors and cytokines and reach the sites of neovascularization in both physiological and pathological conditions such as malignancies where they contribute to the “angiogenic switch” and tumor progression. An implementation of circulating EPCs in the bloodstream of patients with haematological malignancies has been demonstrated. This increase is strictly related to the bone marrow microvessel density and correlated with a poor prognosis. The EPCs characterization is a very complex process and still under investigation. This literature review aims to provide an overview of the functional and biological role of EPCs in haematological malignancies and to investigate their potential as a new cancer therapeutic target.
Collapse
|
55
|
Su J, Li Z, Cui S, Ji L, Geng H, Chai K, Ma X, Bai Z, Yang Y, Wuren T, Ge RL, Rondina MT. The Local HIF-2α/EPO Pathway in the Bone Marrow is Associated with Excessive Erythrocytosis and the Increase in Bone Marrow Microvessel Density in Chronic Mountain Sickness. High Alt Med Biol 2015; 16:318-30. [PMID: 26625252 DOI: 10.1089/ham.2015.0015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIM Chronic mountain sickness (CMS) is characterized by excessive erythrocytosis, and angiogenesis may be involved in the pathogenesis of this disease. The bone marrow niche is the primary site of erythropoiesis and angiogenesis. This study was aimed at investigating the associations of the levels of hypoxia-inducible factors (HIFs), erythropoietin (EPO), and erythropoietin receptor (EPOR), as well as microvessel density (MVD) in the bone marrow with CMS. RESULTS A total of 34 patients with CMS and 30 control subjects residing in areas at altitudes of 3000-4500 m were recruited for this study. The mRNA and protein expression of HIF-2α and EPO in the bone marrow cells was significantly higher in the CMS patients than in the controls. Moreover, changes in HIF-2α expression in CMS patients were significantly correlated with EPO and hemoglobin levels. In contrast, the expression of mRNA and protein expression of HIF-1α and EPOR did not differ significantly between the CMS and control patients. Increased MVD was observed in the bone marrow of the patients with CMS and it was significantly correlated with hemoglobin. CONCLUSIONS Bone marrow cells of CMS patients may show enhanced activity of the HIF-2α/EPO pathway, and EPO may regulate the erythropoiesis and vasculogenesis through autocrine or/and paracrine mechanisms in the bone marrow niche. The increased MVD in the bone marrow of CMS patients appears to be involved in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Juan Su
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Zhanquan Li
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Sen Cui
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Linhua Ji
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Hui Geng
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Kexia Chai
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Xiaojing Ma
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China .,2 Department of Hematology, Qinghai University Affiliated Hospital , Xining, China
| | - Zhenzhong Bai
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China
| | - Yingzhong Yang
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China
| | - Tana Wuren
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China
| | - Ri-Li Ge
- 1 Research Center for High Altitude Medicine, Qinghai University , Xining, China
| | - Matthew T Rondina
- 3 Division of General Internal Medicine and University Healthcare Thrombosis Service, Department of Internal Medicine, University of Utah Health Sciences Center , Salt Lake City, Utah
| |
Collapse
|
56
|
Grasso G, Tomasello G, Noto M, Alafaci C, Cappello F. Erythropoietin for the Treatment of Subarachnoid Hemorrhage: A Feasible Ingredient for a Successful Medical Recipe. Mol Med 2015; 21:979-987. [PMID: 26581085 DOI: 10.2119/molmed.2015.00177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 11/06/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Although an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbidity and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered for the treatment of cerebral vasospasm. In recent years, the mechanisms contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been investigated intensively. A number of pathological processes have been identified in the pathogenesis of vasospasm, including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. To date, the current therapeutic interventions remain ineffective as they are limited to the manipulation of systemic blood pressure, variation of blood volume and viscosity and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO) has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is administered systemically. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the current review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Giovanni Grasso
- Neurosurgical Clinic, Department of Experimental Biomedicine and Clinical Neurosciences, Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giovanni Tomasello
- Section of Anatomy, Department of Experimental Biomedicine and Clinical Neurosciences, and Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | | | - Concetta Alafaci
- Department of Neurosurgery, University of Messina, Messina, Italy
| | - Francesco Cappello
- Section of Anatomy, Department of Experimental Biomedicine and Clinical Neurosciences, and Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| |
Collapse
|
57
|
Kapitsinou PP, Haase VH. Molecular mechanisms of ischemic preconditioning in the kidney. Am J Physiol Renal Physiol 2015; 309:F821-34. [DOI: 10.1152/ajprenal.00224.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/26/2022] Open
Abstract
More effective therapeutic strategies for the prevention and treatment of acute kidney injury (AKI) are needed to improve the high morbidity and mortality associated with this frequently encountered clinical condition. Ischemic and/or hypoxic preconditioning attenuates susceptibility to ischemic injury, which results from both oxygen and nutrient deprivation and accounts for most cases of AKI. While multiple signaling pathways have been implicated in renoprotection, this review will focus on oxygen-regulated cellular and molecular responses that enhance the kidney's tolerance to ischemia and promote renal repair. Central mediators of cellular adaptation to hypoxia are hypoxia-inducible factors (HIFs). HIFs play a crucial role in ischemic/hypoxic preconditioning through the reprogramming of cellular energy metabolism, and by coordinating adenosine and nitric oxide signaling with antiapoptotic, oxidative stress, and immune responses. The therapeutic potential of HIF activation for the treatment and prevention of ischemic injuries will be critically examined in this review.
Collapse
Affiliation(s)
- Pinelopi P. Kapitsinou
- Departments of Medicine, Anatomy and Cell Biology, and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Volker H. Haase
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and
- Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
58
|
Enhanced brain release of erythropoietin, cytokines and NO during carotid clamping. Neurol Sci 2015; 37:243-52. [PMID: 26494654 DOI: 10.1007/s10072-015-2398-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 10/08/2015] [Indexed: 01/29/2023]
Abstract
Although effective and safe, carotid endarterectomy (CEA) implies a reduced blood flow to the brain and likely an ischemia/reperfusion event. The high rate of uneventful outcomes associated with CEA suggests the activation of brain endogenous protection mechanisms aimed at limiting the possible ischemia/reperfusion damage. This study aims at assessing whether CEA triggers protective mechanisms such as brain release of erythropoietin and nitric oxide. CEA was performed in 12 patients; blood samples were withdrawn simultaneously from the surgically exposed ipsilateral jugular and leg veins before, during (2 and 40 min) and after clamp removal (2 min). Plasma antioxidant capacity, carbonylated proteins, erythropoietin, nitrates and nitrites (NOx) were determined. No changes in intraoperative EEG, peripheral and transcranial blood oxygen saturation were detectable, and no patients showed any neurologic sign after the intervention. Antioxidant capacity and protein carbonylation in plasma were unaffected. Differently, erythropoietin, VEGF, TNF-α and NOx increased during clamping in the jugular blood (2 and 40 min), while no changes were observed in the peripheral circulation. These results show that blood erythropoietin, VEGF, TNF-α, and NOx increased in the brain during uncomplicated CEA. This may represent an endogenous self-activated neuroprotective mechanism aimed at the prevention of ischemia/reperfusion damage.
Collapse
|
59
|
Lv W, Li WY, Xu XY, Jiang H, Bang OY. Bone marrow mesenchymal stem cells transplantation promotes the release of endogenous erythropoietin after ischemic stroke. Neural Regen Res 2015; 10:1265-70. [PMID: 26487854 PMCID: PMC4590239 DOI: 10.4103/1673-5374.162759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study investigated whether bone marrow mesenchymal stem cell (BMSC) transplantation protected ischemic cerebral injury by stimulating endogenous erythropoietin. The model of ischemic stroke was established in rats through transient middle cerebral artery occlusion. Twenty-four hours later, 1 × 106 human BMSCs (hBMSCs) were injected into the tail vein. Fourteen days later, we found that hBMSCs promoted the release of endogenous erythropoietin in the ischemic region of rats. Simultaneously, 3 μg/d soluble erythropoietin receptor (sEPOR) was injected into the lateral ventricle, and on the next 13 consecutive days. sEPOR blocked the release of endogenous erythropoietin. The neurogenesis in the subventricular zone was less in the hBMSCs + sEPOR group than in the hBMSCs + heat-denatured sEPOR group. The adhesive-removal test result and the modified Neurological Severity Scores (mNSS) were lower in the hBMSCs + sEPOR group than in the heat-denatured sEPOR group. The adhesive-removal test result and mNSS were similar between the hBMSCs + heat-denatured sEPOR group and the hBMSCs + sEPOR group. These findings confirm that BMSCs contribute to neurogenesis and improve neurological function by promoting the release of endogenous erythropoietin following ischemic stroke.
Collapse
Affiliation(s)
- Wen Lv
- Department of Neurology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Wen-Yu Li
- Department of Neurology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiao-Yan Xu
- Department of Neurology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hong Jiang
- Department of Neurology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Oh Yong Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
60
|
Wright DG, Wright EC, Narva AS, Noguchi CT, Eggers PW. Association of Erythropoietin Dose and Route of Administration with Clinical Outcomes for Patients on Hemodialysis in the United States. Clin J Am Soc Nephrol 2015; 10:1822-30. [PMID: 26358266 PMCID: PMC4594062 DOI: 10.2215/cjn.01590215] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/30/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Recombinant human erythropoietin (epoetin) is used routinely to increase blood hemoglobin levels in patients with ESRD and anemia. Although lower doses of epoetin are required to achieve equivalent hemoglobin responses when administered subcutaneously rather than intravenously, standard practice has been to administer epoetin to patients on hemodialysis intravenously. Randomized trials of alternative epoetin treatment regimens in patients with kidney failure have shown that risks of cardiovascular complications and death are related to the dose levels of epoetin used. Therefore, given the dose-sparing advantages of subcutaneous epoetin administration, the possibility that treatment of patients on hemodialysis with subcutaneous epoetin might be associated with more favorable outcomes compared with intravenous treatment was investigated. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A retrospective cohort study of 62,710 adult patients on hemodialysis treated with either intravenous or subcutaneous epoetin-α and enrolled in the Centers for Medicare and Medicaid Services ESRD Clinical Performance Measures Project from 1997 to 2005 was carried out. Risks of death and/or hospitalization for cardiovascular complications (adverse composite event outcomes) during 2 years of follow-up were determined in relationship to epoetin dose and route of administration (intravenous versus subcutaneous) by multivariate Cox proportional hazard modeling adjusted for demographics and clinical parameters. RESULTS Epoetin doses used to achieve equivalent hemoglobin responses in study patients were, on average, 25% higher when epoetin was administered intravenously rather than subcutaneously (as expected). Moreover, adverse composite event outcomes were found to be significantly more likely to occur during follow-up for patients on hemodialysis managed with intravenous rather than subcutaneous epoetin (adjusted hazard ratio for adverse events within 1 year [intravenous versus subcutaneous] was 1.11 [95% confidence interval, 1.04 to 1.18]). CONCLUSIONS This study finds that treatment of patients on hemodialysis with subcutaneous epoetin is associated with more favorable clinical outcomes than those associated with intravenous epoetin treatment.
Collapse
Affiliation(s)
| | | | - Andrew S Narva
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Paul W Eggers
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
61
|
Heikal L, Ghezzi P, Mengozzi M, Ferns G. Low Oxygen Tension Primes Aortic Endothelial Cells to the Reparative Effect of Tissue-Protective Cytokines. Mol Med 2015; 21:709-716. [PMID: 26349058 DOI: 10.2119/molmed.2015.00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) has both erythropoietic and tissue-protective properties. The EPO analogues carbamylated EPO (CEPO) and pyroglutamate helix B surface peptide (pHBSP) lack the erythropoietic activity of EPO but retain the tissue-protective properties that are mediated by a heterocomplex of EPO receptor (EPOR) and the β common receptor (βCR). We studied the action of EPO and its analogues in a model of wound healing where a bovine aortic endothelial cells (BAECs) monolayer was scratched and the scratch closure was assessed over 24 h under different oxygen concentrations. We related the effects of EPO and its analogues on repair to their effect on BAECs proliferation and migration (evaluated using a micro-Boyden chamber). EPO, CEPO and pHBSP enhanced scratch closure only at lower oxygen (5%), while their effect at atmospheric oxygen (21%) was not significant. The mRNA expression of EPOR was doubled in 5% compared with 21% oxygen, and this was associated with increased EPOR assessed by immunofluorescence and Western blot. By contrast, βCR mRNA levels were similar in 5% and 21% oxygen. EPO and its analogues increased both BAECs proliferation and migration, suggesting that both may be involved in the reparative process. The priming effect of low oxygen tension on the action of tissue-protective cytokines may be of relevance to vascular disease, including atherogenesis and restenosis.
Collapse
Affiliation(s)
- Lamia Heikal
- Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Gordon Ferns
- Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
62
|
Lineen JR, Kuliszewski M, Dacouris N, Liao C, Rudenko D, Deva DP, Goldstein M, Leong-Poi H, Wald R, Yan AT, Yuen DA. Early outgrowth pro-angiogenic cell number and function do not correlate with left ventricular structure and function in conventional hemodialysis patients: a cross-sectional study. Can J Kidney Health Dis 2015; 2:25. [PMID: 26229686 PMCID: PMC4520283 DOI: 10.1186/s40697-015-0060-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background Left ventricular hypertrophy (LVH) is commonly found in chronic dialysis (CD) recipients, and is associated with impaired microvascular cardiac perfusion and heart failure. In response to LVH and cardiac ischemia, early outgrowth pro-angiogenic cellS(EPCs) mobilize from the bone marrow to facilitate angiogenesis and endothelial repair. In the general population, EPC number and function correlate inversely with cardiovascular risk. In end-stage renal disease (ESRD), EPC number and function are generally reduced. Objectives To test whether left ventricular abnormalities retain their potent ability to promote EPC reparative responses in the setting of ESRD. Design Cross-sectional study. Setting St. Michael’s Hospital, Toronto, Ontario, Canada. Patients 47 prevalent chronic dialysis recipients. Measurements (1) circulating CD34+ and CD133+ EPC number, (2) cultured EPC migratory ability, in vitro differentiation potential, and apoptosis rate, and (3) cardiac magnetic resonance-measured LV mass, volume and ejection fraction. Methods Bivariate correlation analysis was performed with Spearman's rho test. Results Of the 47 patients (mean age: 54 ± 13 years), the mean delivered urea reduction was 74 ± 10 %. Mean LV mass was 123 ± 38 g. Circulating CD34+ and CD133+ EPCs represented 0.14 % (IQR: 0.05 – 0.29 %) and 0.05 % (IQR: 0.01 – 0.10 %) of peripheral blood mononuclear cells. There were no significant correlations between any EPC parameter and measures of LV mass or ejection fraction. Limitations Lack of a non-ESRD control population, and the inability to measure all parameters of EPC function due to limitations in blood sampling. Our inability to measure cardiac VEGF expression prevented an assessment of changes in cardiac EPC mobilization signals. Conclusions These data suggest that in ESRD, the reparative EPC response to cardiac hypertrophy may be blunted. Further investigation of the effects of uremia on EPC physiology and its relationship to cardiac injury are required.
Collapse
Affiliation(s)
- James R Lineen
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Michael Kuliszewski
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Niki Dacouris
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Christine Liao
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Dmitriy Rudenko
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Djeven P Deva
- Department of Medical Imaging, St. Michael's Hospital, Toronto, ON Canada
| | - Marc Goldstein
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Howard Leong-Poi
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Ron Wald
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Andrew T Yan
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada
| | - Darren A Yuen
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON Canada ; Division of Nephrology, St. Michael's Hospital, Li Ka Shing Knowledge Institute, Rm 509, 5th Floor, Toronto, ON M5B 2T2 Canada
| |
Collapse
|
63
|
Winkelmayer WC, Chang TI, Mitani AA, Wilhelm-Leen ER, Ding V, Chertow GM, Brookhart MA, Goldstein BA. Longer-term outcomes of darbepoetin alfa versus epoetin alfa in patients with ESRD initiating hemodialysis: a quasi-experimental cohort study. Am J Kidney Dis 2015; 66:106-13. [PMID: 25943715 DOI: 10.1053/j.ajkd.2015.02.339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adequately powered studies directly comparing hard clinical outcomes of darbepoetin alfa (DPO) versus epoetin alfa (EPO) in patients undergoing dialysis are lacking. STUDY DESIGN Observational, registry-based, retrospective cohort study; we mimicked a cluster-randomized trial by comparing mortality and cardiovascular events in US patients initiating hemodialysis therapy in facilities (almost) exclusively using DPO versus EPO. SETTING & PARTICIPANTS Nonchain US hemodialysis facilities; each facility switching from EPO to DPO (2003-2010) was matched for location, profit status, and facility type with one EPO facility. Patients subsequently initiating hemodialysis therapy in these facilities were assigned their facility-level exposure. INTERVENTION DPO versus EPO. OUTCOMES All-cause mortality, cardiovascular mortality; composite of cardiovascular death, nonfatal myocardial infarction (MI), and nonfatal stroke. MEASUREMENTS Unadjusted and adjusted HRs from Cox proportional hazards regression models. RESULTS Of 508 dialysis facilities that switched to DPO, 492 were matched with a similar EPO facility; 19,932 (DPO: 9,465 [47.5%]; EPO: 10,467 [52.5%]) incident hemodialysis patients were followed up for 21,918 person-years during which 5,550 deaths occurred. Almost all baseline characteristics were tightly balanced. The demographics-adjusted mortality HR for DPO (vs EPO) was 1.06 (95% CI, 1.00-1.13) and was materially unchanged after adjustment for all other baseline characteristics (HR, 1.05; 95% CI, 0.99-1.12). Cardiovascular mortality did not differ between groups (HR, 1.05; 95% CI, 0.94-1.16). Nonfatal outcomes were evaluated among 9,455 patients with fee-for-service Medicare: 4,542 (48.0%) in DPO and 4,913 (52.0%) in EPO facilities. During 10,457 and 10,363 person-years, 248 and 372 events were recorded, respectively, for strokes and MIs. We found no differences in adjusted stroke or MI rates or their composite with cardiovascular death (HR, 1.10; 95% CI, 0.96-1.25). LIMITATIONS Nonrandom treatment assignment, potential residual confounding. CONCLUSIONS In incident hemodialysis patients, mortality and cardiovascular event rates did not differ between patients treated at facilities predominantly using DPO versus EPO.
Collapse
Affiliation(s)
- Wolfgang C Winkelmayer
- Section of Nephrology, Baylor College of Medicine, Houston, TX; Division of Nephrology, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA.
| | - Tara I Chang
- Division of Nephrology, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA
| | - Aya A Mitani
- Division of General Medical Disciplines, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA
| | - Emilee R Wilhelm-Leen
- Division of Nephrology, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA
| | - Victoria Ding
- Division of General Medical Disciplines, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA
| | - Glenn M Chertow
- Division of Nephrology, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA
| | - M Alan Brookhart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Benjamin A Goldstein
- Division of General Medical Disciplines, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA; Duke University School of Medicine, Durham, NC
| |
Collapse
|
64
|
Ruszkowska-Ciastek B, Sokup A, Leszcz M, Drela E, Stankowska K, Boinska J, Haor B, Ślusarz R, Lisewska B, Gadomska G, Kubica J, Rość D. The number of circulating endothelial progenitor cells in healthy individuals--effect of some anthropometric and environmental factors (a pilot study). Adv Med Sci 2015; 60:58-63. [PMID: 25437349 DOI: 10.1016/j.advms.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE The aim of the study was the evaluation of the number of circulating endothelial progenitor cells (CEPCs) in healthy people and the assessment of the variability of quantitative of CEPCs after 6 weeks. MATERIAL AND METHODS The study involved 48 healthy individuals; the group consisted of 24 men and 24 women; the mean age of 34. The criterion for the patients' eligibility for the study was the absence of diabetes, thrombosis and cardiovascular diseases such as atherosclerosis, hypertension, and heart failure. Neither did the respondents take any medication that could clearly affect the value of the results. In the whole blood samples the number of circulating endothelial progenitor cells was determined using flow cytometry. During the analysis the fluorescence of 100,000 cells was measured. CEPCs were identified with immunophenotype CD45-, CD31+, CD34+, CD133+. RESULTS In the study, the median of the number of circulating endothelial progenitor cells in the whole group was 0.41/μL. There was also recorded an increased number of CEPCs after 6 weeks, as compared to the baseline; the difference was significant. There were no differences in the number of CEPCs between the women and the men. There was found no effect on the number of CEPCs factors such as: smoking, physical activity and alcohol consumption. CONCLUSIONS The study showed that in healthy individuals the gender had no essential effect on the number of endothelial progenitor cells. Based on the demographic and lifestyle data acquired, it is difficult to explain the increase number of CEPCs after 6 weeks.
Collapse
|
65
|
Liu J, Li W, Wang Y, Fan W, Li P, Lin W, Yang D, Fang R, Feng M, Hu C, Du Z, Wu G, Xiang AP. Islet-1 overexpression in human mesenchymal stem cells promotes vascularization through monocyte chemoattractant protein-3. Stem Cells 2015; 32:1843-54. [PMID: 24578274 DOI: 10.1002/stem.1682] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/27/2014] [Accepted: 02/11/2014] [Indexed: 01/14/2023]
Abstract
The LIM-homeobox transcription factor islet-1 (ISL1) has been proposed to mark a cardiovascular progenitor cell lineage that gives rise to cardiomyocytes, endothelial cells, and smooth muscle cells. The aim of this study was to investigate whether forced expression of ISL1 in human mesenchymal stem cells (hMSCs) influenced the differentiation capacity and angiogenic properties of hMSCs. The lentiviral vector, EF1α-ISL1, was constructed using the Multisite Gateway System and used to transduce hMSCs. We found that ISL1 overexpression did not alter the proliferation, migration, or survival of hMSCs or affect their ability to differentiate into osteoblasts, adipocytes, cardiomyocytes, or endotheliocytes. However, ISL1-hMSCs differentiated into smooth muscle cells more efficiently than control hMSCs. Furthermore, conditioned medium from ISL1-hMSCs greatly enhanced the survival, migration, and tube-formation ability of human umbilical vein endothelial cells (HUVECs) in vitro. In vivo angiogenesis assays also showed much more vascular-like structures in the group cotransplanted with ISL1-hMSCs and HUVECs than in the group cotransplanted with control hMSCs and HUVECs. Quantitative RT-PCR and antibody arrays detected monocyte chemoattractant protein-3 (MCP3) at a higher level in conditioned medium from ISL1-hMSCs cultures than in conditioned medium from control hMSCs. Neutralization assays showed that addition of an anti-MCP3 antibody to ISL1-hMSCs-conditioned medium efficiently abolished the angiogenesis-promoting effect of ISL1-hMSCs. Our data suggest that overexpression of ISL1 in hMSCs promotes angiogenesis in vitro and in vivo through increasing secretion of paracrine factors, smooth muscle differentiation ability, and enhancing the survival of HUVECs.
Collapse
Affiliation(s)
- Jia Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Heart Center, The Affiliated Futian Hospital of Guangdong Medical College, Shenzhen, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Wilhelm-Leen ER, Winkelmayer WC. Mortality risk of darbepoetin alfa versus epoetin alfa in patients with CKD: systematic review and meta-analysis. Am J Kidney Dis 2015; 66:69-74. [PMID: 25636816 DOI: 10.1053/j.ajkd.2014.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/21/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epoetin alfa (EPO) and darbepoetin alfa (DPO) are erythropoiesis-stimulating agents that are widely and interchangeably used for the treatment of anemia in patients with advanced chronic kidney disease and end-stage renal disease. No study has specifically compared the risks of hard study outcomes between EPO and DPO, including mortality. STUDY DESIGN Systematic review of the literature and meta-analysis. SETTING & POPULATION Patients enrolled in randomized trials comparing EPO versus DPO for the treatment of anemia in adults with chronic kidney disease, including those requiring dialysis. SELECTION CRITERIA FOR STUDIES We conducted a systematic search of the literature (PubMed, CENTRAL, SCOPUS, and EMBASE, all years) and industry resources, using predefined search terms and data abstraction tools. We then summarized key characteristics and findings of these trials and performed a random-effects meta-analysis of trials with at least 3 months' duration to identify the summary OR of mortality between patients randomly assigned to DPO versus EPO. INTERVENTION DPO versus EPO. OUTCOME All-cause mortality. RESULTS We identified 9 trials that met the stated inclusion criteria. Overall, 2,024 patients were included in the meta-analysis, of whom 126 died during follow-up, which ranged from 20 to 52 weeks. We found no significant difference in mortality between patients randomly assigned to DPO versus EPO (OR, 1.33; 95% CI, 0.88-2.01). No treatment heterogeneity across studies was detected (Q statistic=4.60; P=0.8). LIMITATIONS Generalizability to nontrial populations is uncertain. CONCLUSIONS Few trials directly comparing DPO and EPO have been conducted and follow-up was limited. In aggregate, no effect of specific erythropoiesis-stimulating agent on mortality was identified, but the confidence limits were wide and remained compatible with considerable harm from DPO. Absent adequately powered randomized trials, observational postmarketing comparative effectiveness studies comparing these erythropoiesis-stimulating agents are required to better characterize the long-term safety profiles of these agents.
Collapse
Affiliation(s)
| | - Wolfgang C Winkelmayer
- Division of Nephrology, Stanford University School of Medicine, Palo Alto, CA; Section of Nephrology, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
67
|
Suzuki E, Nishimatsu H, Oba S, Takahashi M, Homma Y. Chronic kidney disease and erectile dysfunction. World J Nephrol 2014; 3:220-229. [PMID: 25374815 PMCID: PMC4220354 DOI: 10.5527/wjn.v3.i4.220] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/22/2014] [Accepted: 09/10/2014] [Indexed: 02/05/2023] Open
Abstract
Erectile dysfunction (ED) is a common condition among male chronic kidney disease (CKD) patients. Its prevalence is estimated to be approximately 80% among these patients. It has been well established that the production of nitric oxide from the cavernous nerve and vascular endothelium and the subsequent production of cyclic GMP are critically important in initiating and maintaining erection. Factors affecting these pathways can induce ED. The etiology of ED in CKD patients is multifactorial. Factors including abnormalities in gonadal-pituitary system, disturbance in autonomic nervous system, endothelial dysfunction, anemia (and erythropoietin deficiency), secondary hyperparathyroidism, drugs, zinc deficiency, and psychological problems are implicated in the occurrence of ED. An improvement of general conditions is the first step of treatment. Sufficient dialysis and adequate nutritional intake are necessary. In addition, control of anemia and secondary hyperparathyroidism is required. Changes of drugs that potentially affect erectile function may be necessary. Further, zinc supplementation may be necessary when zinc deficiency is suspected. Phosphodiesterase type 5 inhibitors (PDE5Is) are commonly used for treating ED in CKD patients, and their efficacy was confirmed by many studies. Testosterone replacement therapy in addition to PDE5Is may be useful, particularly for CKD patients with hypogonadism. Renal transplantation may restore erectile function. ED is an early marker of cardiovascular disease (CVD), which it frequently precedes; therefore, it is crucial to examine the presence of ED in CKD patients not only for the improvement of the quality of life but also for the prevention of CVD attack.
Collapse
|
68
|
Glucose, insulin, and oxygen interplay in placental hypervascularisation in diabetes mellitus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:145846. [PMID: 25258707 PMCID: PMC4167234 DOI: 10.1155/2014/145846] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/06/2014] [Indexed: 02/07/2023]
Abstract
The placental vasculature rapidly expands during the course of pregnancy in order to sustain the growing needs of the fetus. Angiogenesis and vascular growth are stimulated and regulated by a variety of growth factors expressed in the placenta or present in the fetal circulation. Like in tumors, hypoxia is a major regulator of angiogenesis because of its ability to stimulate expression of various proangiogenic factors. Chronic fetal hypoxia is often found in pregnancies complicated by maternal diabetes as a result of fetal hyperglycaemia and hyperinsulinemia. Both are associated with altered levels of hormones, growth factors, and proinflammatory cytokines, which may act in a proangiogenic manner and, hence, affect placental angiogenesis and vascular development. Indeed, the placenta in diabetes is characterized by hypervascularisation, demonstrating high placental plasticity in response to diabetic metabolic derangements. This review describes the major regulators of placental angiogenesis and how the diabetic environment in utero alters their expression. In the light of hypervascularized diabetic placenta, the focus was placed on proangiogenic factors.
Collapse
|
69
|
Recombinant human erythropoietin improves the neurofunctional recovery of rats following traumatic brain injury via an increase in circulating endothelial progenitor cells. Transl Stroke Res 2014; 6:50-9. [PMID: 25085436 DOI: 10.1007/s12975-014-0362-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/17/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Abstract
Previous studies show that circulating endothelial progenitor cells (EPCs) promote angiogenesis, which is a process associated with improved recovery in animal models of traumatic brain injury (TBI), and that recombinant human erythropoietin (rhEPO) plays a protective role following stroke. Thus, it was hypothesized that rhEPO would enhance recovery following brain injury in a rat model of TBI via an increase in the mobilization of EPCs and, subsequently, in angiogenesis. Flow cytometry assays using CD34- and CD133-specific antibodies were utilized to identify alterations in EPC levels, CD31 and CD34 antibody-stained brain tissue sections were used to quantify angiogenesis, and the Morris water maze (MWM) test and the modified Neurological Severity Score (mNSS) test were used to evaluate behavioral recovery. Compared with saline treatment, treatment with rhEPO significantly increased the number of circulating EPCs on days 1, 4, 7, and 14 (P < 0.05), improved spatial learning ability on days 24 and 25 (P < 0.05), and enhanced memory recovery on day 26 (P < 0.05). Moreover, rhEPO treatment decreased mNSS assessment scores on days 14, 21, and 25 (P < 0.05). There was a strong correlation between levels of circulating EPCs and CD34- and CD31-positive cells within the injured boundary zone (CD34(+) r = 0.910, P < 0.01; CD31(+) r = 0.894, P < 0.01) and the ipsilateral hippocampus (CD34(+) r = 0.841, P < 0.01; CD31(+) r = 0.835, P < 0.01). The present data demonstrate that rhEPO treatment improved functional outcomes in rats following TBI via an increase in the mobilization of EPCs and in subsequent angiogenesis.
Collapse
|
70
|
Chen YE, Xie C, Yang B. Stem cells for vascular engineering. BIOMATERIALS AND REGENERATIVE MEDICINE 2014:621-639. [DOI: 10.1017/cbo9780511997839.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
71
|
Kang J, Hur J, Kang JA, Yun JY, Choi JI, Ko SB, Lee CS, Lee J, Han JK, Kim HK, Kim HS. Activated platelet supernatant can augment the angiogenic potential of human peripheral blood stem cells mobilized from bone marrow by G-CSF. J Mol Cell Cardiol 2014; 75:64-75. [PMID: 25016235 DOI: 10.1016/j.yjmcc.2014.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/17/2014] [Accepted: 06/30/2014] [Indexed: 11/20/2022]
Abstract
Platelets not only play a role in hemostasis, but they also promote angiogenesis and tissue recovery by releasing various cytokines and making an angiogenic milieu. Here, we examined autologous 'activated platelet supernatant (APS)' as a priming agent for stem cells; thereby enhance their pro-angiogenic potential and efficacy of stem cell-based therapy for ischemic diseases. The mobilized peripheral blood stem cells ((mob)PBSCs) were isolated from healthy volunteers after subcutaneous injection of granulocyte-colony stimulating factor. APS was collected separately from the platelet rich plasma after activation by thrombin. (mob)PBSCs were primed for 6h before analysis. Compared to naive platelet supernatants, APS had a higher level of various cytokines, such as IL8, IL17, PDGF and VEGF. APS-priming for 6h induced (mob)PBSCs to express key angiogenic factors, surface markers (i.e. CD34, CD31, and CXCR4) and integrins (integrins α5, β1 and β2). Also (mob)PBSCs were polarized toward CD14(++)/CD16(+) pro-angiogenic monocytes. The priming effect was reproduced by an in vitro reconstruction of APS. Through this phenotype, APS-priming increased cell-cell adhesion and cell-extracellular matrix adhesion. The culture supernatant of APS-primed (mob)PBSCs contained high levels of IL8, IL10, IL17 and TNFα, and augmented proliferation and capillary network formation of human umbilical vein endothelial cells. In vivo transplantation of APS-primed (mob)PBSCs into athymic mice ischemic hindlimbs and Matrigel plugs elicited vessel differentiation and tissue repair. In safety analysis, platelet activity increased after mixing with (mob)PBSCs regardless of priming, which was normalized by aspirin treatment. Collectively, our data identify that APS-priming can enhance the angiogenic potential of (mob)PBSCs, which can be used as an adjunctive strategy to improve the efficacy of cell therapy for ischemic diseases.
Collapse
Affiliation(s)
- Jeehoon Kang
- Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jin Hur
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Jin-A Kang
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Ji-Yeon Yun
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Jae-Il Choi
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Seung Bum Ko
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Choon-Soo Lee
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Jaewon Lee
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Jung-Kyu Han
- Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Republic of Korea
| | - Hyo-Soo Kim
- Department of Internal Medicine, Cardiovascular Center, Seoul National University Hospital, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Republic of Korea; National Research Laboratory for Stem Cell Niche, Republic of Korea.
| |
Collapse
|
72
|
Adly AAM, El-Sherif NH, Ismail EAR, El-Zaher YA, Farouk A, El-Refaey AM, Wahba MS. Vascular Dysfunction in Patients With Young β-Thalassemia. Clin Appl Thromb Hemost 2014; 21:733-44. [DOI: 10.1177/1076029614541515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We aimed to study the endothelial dysfunction among children and adolescents with transfusion-dependent β-thalassemia using von Willebrand factor antigen (VWF:Ag) and flow cytometric analysis of circulating CD144+ endothelial microparticles (EMPs) and endothelial progenitor cells (CD34+VEGFR2+) and assess their relation to iron overload, erythropoietin and chelation therapy as well as echocardiographic parameters and carotid intima–media thickness. The VWF:Ag, EMPs, and CD34+VEGFR2+ cells were significantly higher among patients with β-thalassemia than controls ( P < .001). The type of chelation and patients’ compliance did not influence the results. No significant correlations were found between the studied vascular markers. Patients with evident heart disease had higher VWF: Ag, EMPs, and CD34+VEGFR2+ cells than those without. Carotid intima–media thickness was increased among patients but not correlated with vascular markers. We suggest that procoagulant EMPs and VWF: Ag are involved in cardiovascular complications in patients with young β-thalassemia. CD34+VEGFR2+ cells were further increased in response to tissue injury contributing to reendothelialization and neovascularization.
Collapse
Affiliation(s)
| | | | | | - Yosra Abd El-Zaher
- Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amal Farouk
- Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Mohammed Samy Wahba
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
73
|
Povsic TJ, Najjar SS, Prather K, Zhou J, Adams SD, Zavodni KL, Kelly F, Melton LG, Hasselblad V, Heitner JF, Raman SV, Barsness GW, Patel MR, Kim RJ, Lakatta EG, Harrington RA, Rao SV. EPC mobilization after erythropoietin treatment in acute ST-elevation myocardial infarction: the REVEAL EPC substudy. J Thromb Thrombolysis 2014; 36:375-83. [PMID: 23700090 DOI: 10.1007/s11239-013-0944-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Erythropoietin (EPO) was hypothesized to mitigate reperfusion injury, in part via mobilization of endothelial progenitor cells (EPCs). The REVEAL trial found no reduction in infarct size with a single dose of EPO (60,000 U) in patients with ST-segment elevation myocardial infarction. In a substudy, we aimed to determine the feasibility of cryopreserving and centrally analyzing EPC levels to assess the relationship between EPC numbers, EPO administration, and infarct size. As a prespecified substudy, mononuclear cells were locally cryopreserved before as well as 24 and 48-72 h after primary percutaneous coronary intervention. EPC samples were collected in 163 of 222 enrolled patients. At least one sample was obtained from 125 patients, and all three time points were available in 83 patients. There were no significant differences in the absolute EPC numbers over time or between EPO- and placebo-treated patients; however, there was a trend toward a greater increase in EPC levels from 24 to 48-72 h postintervention in patients receiving ≥30,000 U of EPO (P = 0.099 for CD133(+) cells, 0.049 for CD34(+) cells, 0.099 for ALDH(br) cells). EPC numbers at baseline were inversely related to infarct size (P = 0.03 for CD133(+) cells, 0.006 for CD34(+) cells). Local whole cell cryopreservation and central EPC analysis in the context of a multicenter randomized trial is feasible but challenging. High-dose (≥30,000 U) EPO may mobilize EPCs at 48-72 h, and baseline EPC levels may be inversely associated with infarct size.
Collapse
Affiliation(s)
- Thomas J Povsic
- Duke Clinical Research Institute, Duke University Medical Center, Box 103208, Durham, NC, 27710, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Hoppe G, Lee TJ, Yoon S, Yu M, Peachey NS, Rayborn M, Zutel MJ, Trichonas G, Au J, Sears JE. Inducing a visceral organ to protect a peripheral capillary bed: stabilizing hepatic HIF-1α prevents oxygen-induced retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1890-9. [PMID: 24731446 DOI: 10.1016/j.ajpath.2014.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 12/24/2022]
Abstract
Activation of hypoxia-inducible factor (HIF) can prevent oxygen-induced retinopathy in rodents. Here we demonstrate that dimethyloxaloylglycine (DMOG)-induced retinovascular protection is dependent on hepatic HIF-1 because mice deficient in liver-specific HIF-1α experience hyperoxia-induced damage even with DMOG treatment, whereas DMOG-treated wild-type mice have 50% less avascular retina (P < 0.0001). Hepatic HIF stabilization protects retinal function because DMOG normalizes the b-wave on electroretinography in wild-type mice. The localization of DMOG action to the liver is further supported by evidence that i) mRNA and protein erythropoietin levels within liver and serum increased in DMOG-treated wild-type animals but are reduced by 60% in liver-specific HIF-1α knockout mice treated with DMOG, ii) triple-positive (Sca1/cKit/VEGFR2), bone-marrow-derived endothelial precursor cells increased twofold in DMOG-treated wild-type mice (P < 0.001) but are unchanged in hepatic HIF-1α knockout mice in response to DMOG, and iii) hepatic luminescence in the luciferase oxygen-dependent degradation domain mouse was induced by subcutaneous and intraperitoneal DMOG. These findings uncover a novel endocrine mechanism for retinovascular protection. Activating HIF in visceral organs such as the liver may be a simple strategy to protect capillary beds in the retina and in other peripheral tissues.
Collapse
Affiliation(s)
- George Hoppe
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Tamara J Lee
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Suzy Yoon
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Minzhong Yu
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Neal S Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| | - Mary Rayborn
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | - John Au
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jonathan E Sears
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
75
|
Shiozawa Y, McGee S, Pienta MJ, McGregor N, Jung Y, Yumoto K, Wang J, Berry JE, Pienta KJ, Taichman RS. Erythropoietin supports the survival of prostate cancer, but not growth and bone metastasis. J Cell Biochem 2014; 114:2471-8. [PMID: 23696192 DOI: 10.1002/jcb.24592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/03/2013] [Indexed: 12/14/2022]
Abstract
Erythropoietin (Epo) is used in clinical settings to enhance hematopoietic function and to improve the quality of life for patients undergoing chemotherapy by reducing fatigue and the need for transfusions. However, several meta-analyses have revealed that Epo treatments are associated with an increased risk of mortality in cancer patients. In this study, we examined the role of Epo in prostate cancer (PCa) progression, using in vitro cell culture systems and in vivo bone metastatic assays. We found that Epo did not stimulate the proliferation of PCa cell lines, but did protect PCa cells from apoptosis. In animal models of PCa metastasis, no evidence was found to support the hypothesis that Epo enhances metastasis. Together, these findings suggest that Epo may be useful for treating severe anemia in PCa patients without increasing metastatic risk.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Darbepoetin alpha reduces oxidative stress and chronic inflammation in atherosclerotic lesions of apo E deficient mice in experimental renal failure. PLoS One 2014; 9:e88601. [PMID: 24586350 PMCID: PMC3938414 DOI: 10.1371/journal.pone.0088601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/11/2014] [Indexed: 11/19/2022] Open
Abstract
Background Cardiovascular morbidity and mortality is very important in patients with chronic renal failure. This occurs even in mild impairment of renal function and may be related to oxidative stress and chronic inflammation. The nephrectomized apo E knockout mouse is an accepted model for evaluating atherosclerosis in renal dysfunction. Erythropoietin derivates showed anti-oxidative and anti-inflammatory effects. Therefore, this study evaluates the effects of Darbepoetin on markers of oxidative stress and chronic inflammation in atherosclerotic lesions in apo E knockout mice with renal dysfunction. Methods Apo E knockout mice underwent unilateral (Unx, n = 20) or subtotal (Snx, n = 26) nephrectomy or sham operation (Sham, n = 16). Mice of each group were either treated with Darbepoetin or saline solution, a part of Snx mice received a tenfold higher dose of Darbepoetin. The aortic plaques were measured and morphologically characterized. Additional immunhistochemical analyses were performed on tissue samples taken from the heart and the aorta. Results Both Unx and Snx mice showed increased expression of markers of oxidative stress and chronic inflammation. While aortic plaque size was not different, Snx mice showed advanced plaque stages when compared to Unx mice. Darbepoetin treatment elevated hematocrit and lowered Nitrotyrosin as one marker of oxidative stress, inflammation in heart and aorta, plaque stage and in the high dose even plaque cholesterol content. In contrast, there was no influence of Darbepoetin on aortic plaque size; high dose Darbepoetin treatment resulted in elevated renal serum parameters. Conclusion Darbepoetin showed some protective cardiovascular effects irrespective of renal function, i.e. it improved plaque structure and reduced some signs of oxidative stress and chronic inflammation without affecting plaque size. Nevertheless, the dose dependent adverse effects must be considered as high Darbepoetin treatment elevated serum urea. Elevation of hematocrit might be a favorable effect in anemic Snx animals but a thrombogenic risk in Sham animals.
Collapse
|
77
|
Alba AC, Delgado DH, Rao V, Walter S, Guyatt G, Ross HJ. Are endothelial progenitor cells a prognostic factor in patients with heart failure? Expert Rev Cardiovasc Ther 2014; 10:167-75. [DOI: 10.1586/erc.11.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
78
|
Howlett JG. Recognition and treatment of anemia in the setting of heart failure due to systolic left ventricular dysfunction. Expert Rev Cardiovasc Ther 2014; 6:199-208. [DOI: 10.1586/14779072.6.2.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
79
|
Krautkrämer E, Zeier M. Old World hantaviruses: aspects of pathogenesis and clinical course of acute renal failure. Virus Res 2014; 187:59-64. [PMID: 24412712 DOI: 10.1016/j.virusres.2013.12.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/09/2013] [Accepted: 12/24/2013] [Indexed: 12/31/2022]
Abstract
Hantavirus-associated diseases represent emerging infections that are ranked in the highest priority group of communicable diseases for surveillance and epidemiological research. In the last years, several novel hantavirus species were described and the number of host reservoir species harboring hantaviruses is also increasing. Reports of cases with severe or atypical clinical courses become also more frequent. These facts raise more and more questions concerning host reservoir specificity, pathogenicity and molecular mechanism of pathogenesis. Hantavirus disease is characterized by vascular leakage due to increased capillary permeability. The infection manifests often in the lung (hantaviral cardiopulmonary syndrome; HCPS) or in the kidney (hemorrhagic fever with renal syndrome, HFRS). The underlying mechanisms of both syndromes are probably similar despite the difference in organ tropism. Characterization of hantaviral replication cycle and of patient-specific determinants will help to identify factors responsible for the clinical symptoms and course.
Collapse
Affiliation(s)
- Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
80
|
Hamed S, Bennett CL, Demiot C, Ullmann Y, Teot L, Desmoulière A. Erythropoietin, a novel repurposed drug: an innovative treatment for wound healing in patients with diabetes mellitus. Wound Repair Regen 2013; 22:23-33. [PMID: 24471742 DOI: 10.1111/wrr.12135] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/24/2013] [Indexed: 12/22/2022]
Abstract
Developing a new drug is expensive: the cost of going from bench to bedside is about $US1 billion. Therefore, the repurposing of an approved drug is potentially rewarding because it expands the drug's existing therapeutic profile and preempts additional development costs. As the safety profile of a repurposed drug is already well known, any new investigations could then focus on its efficacy and other therapeutic benefits. Recombinant erythropoietin (EPO) is a potential candidate for repurposing because the results of numerous studies have shown that systemic and topical EPO is therapeutically beneficial when it is administered to healthy and diabetic animals with acute and chronic skin wounds and burns. Moreover, the molecular mechanisms of EPO's actions have been elucidated: EPO acts on those nonhematopoietic cells which are involved in the innate immune response where it promotes cellular proliferation and differentiation, exerts its cytoprotective actions, and inhibits apoptosis. In this review, the mechanism of EPO's action in skin wound healing is reviewed, and its potential for treating acute and chronic skin wounds and stimulating tissue regeneration in diabetic patients is discussed.
Collapse
|
81
|
Jelkmann W, Elliott S. Erythropoietin and the vascular wall: the controversy continues. Nutr Metab Cardiovasc Dis 2013; 23 Suppl 1:S37-S43. [PMID: 22682530 DOI: 10.1016/j.numecd.2012.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Erythropoietin (EPO) stimulates erythropoiesis through its specific receptor (EPO-R). Preclinical work has assigned a role for the EPO/EPO-R system in the heart and blood vessels. The potential use of erythropoiesis-stimulating agents (ESAs) for nonhematopoietic indications is a focus of current research. This article considers proven actions of EPO in the cardiovascular system, with emphasis on the human responses. DATA SYNTHESIS By use of specific anti-EPO-R antibody no EPO-R protein was detected by Western blotting in normal non-erythroid tissues. Clinical trials failed to demonstrate clear beneficial effects of high-dosed ESAs in patients with coronary syndrome or myocardial infarct. While ESA therapy may lead to an elevation in arterial blood pressure in previously anemic patients, several studies have reported no effects on vessels/blood pressure with ESAs. EPO has been reported to stimulate angiogenesis. EPO-R mRNA is detectable in human vascular endothelium. However, in most vitro studies very high concentrations of EPO were applied and well-designed studies have failed to show direct effects of ESAs on endothelial cells. Whether EPO promotes the mobilization of myeloid progenitor cells into the blood stream still needs to be studied in more detail, as this effect may prove useful for augmenting the neovascularization of ischemic tissues. With respect to the administration of ESAs to tumor patients, a deeper insight into the role of EPO for tumor angiogenesis is desirable. CONCLUSIONS The enthusiastic reports of the nonhematopoietic cytoprotective potential of EPO and its derivatives in the cardiovascular system have not yet been confirmed in placebo-controlled clinical trials.
Collapse
Affiliation(s)
- W Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, D-23562 Luebeck, Germany.
| | - S Elliott
- Department of Hematology, Hematology/Oncology, Amgen Inc., Thousand Oaks, CA, USA
| |
Collapse
|
82
|
Mobilization of circulating endothelial progenitor cells correlates with the clinical course of hantavirus disease. J Virol 2013; 88:483-9. [PMID: 24155401 DOI: 10.1128/jvi.02063-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Infections with hemorrhagic fever viruses are characterized by increased permeability leading to capillary leakage. Hantavirus infection is associated with endothelial dysfunction, and the clinical course is related to the degree of vascular injury. Circulating endothelial progenitor cells (cEPCs) play a pivotal role in the repair of the damaged endothelium. Therefore, we analyzed the number of cEPCs and their mobilizing growth factors in patients suffering from hantavirus disease induced by infection with Puumala virus. The numbers of EPCs of 36 hantavirus-infected patients and age- and gender-matched healthy controls were analyzed by flow cytometry. Concentrations of cEPC-mobilizing growth factors in plasma were determined by enzyme-linked immunosorbent assay. Laboratory parameters were correlated with the number of cEPCs. In patients infected with hantavirus, the number of cEPCs was significantly higher than that in healthy controls. Levels of mobilizing cytokines were upregulated in patients, and the mobilization of cEPCs is paralleled with the normalization of clinical parameters. Moreover, higher levels of cEPCs correlated with higher serum albumin levels and platelet concentrations. Our data indicate that cEPCs may play a role in the repair of hantavirus-induced endothelial damage, thereby influencing the clinical course and the severity of symptoms.
Collapse
|
83
|
Jelkmann I, Jelkmann W. Impact of erythropoietin on intensive care unit patients. ACTA ACUST UNITED AC 2013; 40:310-8. [PMID: 24273484 DOI: 10.1159/000354128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022]
Abstract
Anemia is common in intensive care unit (ICU) patients. Red blood cell (RBC) transfusions are mainstays of their treatment and can be life-saving. Allogeneic blood components inherently bear risks of infection and immune reactions. Although these risks are rare in developed countries, recombinant human erythropoietin (rhEpo) and other erythropoiesis-stimulating agents (ESAs) have been considered alternative anti-anemia treatment options. As summarized herein, however, most of the clinical studies suggest that ESAs are not usually advisable in ICU patients unless approved indications exist (e.g., renal disease). First, ESAs act in a delayed way, inducing an increase in reticulocytes only after a lag of 3-4 days. Second, many critically ill patients present with ESA resistance as inflammatory mediators impair erythropoietic cell proliferation and iron availability. Third, the ESA doses used for treatment of ICU patients are very high. Fourth, ESAs are not legally approved for general use in ICU patients. Solely in distinct cases, such as Jehovah's Witnesses who refuse allogeneic blood transfusions due to religious beliefs, ESAs may be considered an exceptional therapy.
Collapse
Affiliation(s)
- Ines Jelkmann
- Department of Surgery, University of Lübeck, Germany
| | | |
Collapse
|
84
|
Effect of conversion from ciclosporin to tacrolimus on endothelial progenitor cells in stable long-term kidney transplant recipients. Transplantation 2013; 95:1338-45. [PMID: 23594858 DOI: 10.1097/tp.0b013e31828fabb3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Endothelial progenitor cell (EPC) counts are proposed surrogate markers for vascular function and cardiovascular risk. The effect of tacrolimus (TAC) on EPC is unknown. METHODS In this randomized controlled trial, we assigned 148 stable long-term kidney transplant recipients (KTR) to maintaining ciclosporin (CSA) or to commencing TAC-based immunosuppression at a 2:1 ratio. EPC counts (CD34/KDR) after 24 months were defined as primary endpoint. RESULTS The intent-to-treat analysis included 141 KTR (estimated glomerular filtration rate, 46.7 [40.1-61.8] mL/min per 1.73 m). Median (interquartile range [IQR]) EPC counts at baseline and month 24 were 6 (2-9) and 3 (1-9) cells and 4 (2-8) and 2 (0-5) cells per 5×10 mononuclear cells in CSA and TAC, respectively. Median (IQR) circulating angiogenic cells at baseline and month 24 were 28 (10.7-57) and 44.33 (14.6-59.8) cells and 22 (10.8-41) and 21 (9.7-49.5) cells per high-power field in CSA and TAC, respectively. Median (IQR) endothelial cell colony-forming units count per well at baseline and month 24 were 10.5 (3.3-34.3) and 4.38 (1.7-26.5) in CSA and significantly declined from 9.31 (1.8-29.3) to 4.13 (1.1-9.5) in TAC (P=0.003). There were no cardiovascular events in either group. CONCLUSION Although late conversion from CSA to TAC appears safe in KTR, conversion to TAC has no favorable effect on EPC. Low EPC levels are associated with a higher risk of subsequent cardiovascular events and are therefore of prognostic value. Their trend to decline over time deserves further examination.
Collapse
|
85
|
de Boer HC, van Oeveren-Rietdijk AM, Rotmans JI, Dekkers OM, Rabelink TJ, van Zonneveld AJ. Activated platelets correlate with mobilization of naïve CD34(+) cells and generation of CD34(+) /KDR(+) cells in the circulation. A meta-regression analysis. J Thromb Haemost 2013; 11:1583-92. [PMID: 23895310 DOI: 10.1111/jth.12315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Bone marrow-derived circulating CD34(+) progenitor cells participate in remodeling and repair of the vasculature. Coexpression of the kinase-insert domain-containing receptor (KDR) has been proposed to identify the regenerative capacity. Recently, we provided evidence that the major fraction of circulating CD34(+) /KDR(+) cells is not mobilized from bone marrow, but is generated at sites of vascular injury through interaction with platelets. OBJECTIVES To determine the relationship between platelet activation, the recruitment of naïve CD34(+) cells and the generation of CD34(+) /KDR(+) progenitor cells in a broad range of (patho)physiologic conditions, a detailed meta-regression analysis was conducted. METHODS/RESULTS Twenty-eight conditions were found in which the numbers of CD34(+) and/or CD34(+) /KDR(+) cells and the levels of soluble P-selectin, as a marker for in vivo platelet activation, were documented. To combine heterogeneous data from 214 selected articles, results were standardized to a uniform scale by calculating standardized mean differences (SMDs) obtained from patient and control cohorts. Subsequently, a random-effects meta-regression analysis was performed on pooled SMDs. CONCLUSIONS Our systemic survey supports a model in which activated platelets are a determinant for mobilization of CD34(+) cells from the bone marrow and the generation of CD34(+) /KDR(+) cells in the circulation.
Collapse
Affiliation(s)
- H C de Boer
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
86
|
Jelkmann W. Physiology and pharmacology of erythropoietin. ACTA ACUST UNITED AC 2013; 40:302-9. [PMID: 24273483 DOI: 10.1159/000356193] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/03/2013] [Indexed: 12/13/2022]
Abstract
Human erythropoietin (Epo) is a 30.4 kDa glycoprotein hormone composed of a single 165 amino acid residues chain to which four glycans are attached. The kidneys are the primary sources of Epo, its synthesis is controlled by hypoxia-inducible transcription factors (HIFs). Epo is an essential factor for the viability and proliferation of erythrocytic progenitors. Whether Epo exerts cytoprotection outside the bone marrow still needs to be clarified. Epo deficiency is the primary cause of the anemia in chronic kidney disease (CKD). Treatment with recombinant human Epo (rhEpo, epoetin) can be beneficial not only in CKD but also for other indications, primarily anemia in cancer patients receiving chemotherapy. Considering unwanted events, the administration of rhEpo or its analogs may increase the incidence of thromboembolism. The expiry of the patents for the original epoetins has initiated the production of similar biological medicinal products ('biosimilars'). Furthermore, analogs (darbepoetin alfa, methoxy PEG-epoetin beta) with prolonged survival in circulation have been developed ('biobetter'). New erythropoiesis-stimulating agents are in clinical trials. These include compounds that augment erythropoiesis directly (e.g. Epo mimetic peptides or activin A binding protein) and chemicals that act indirectly by stimulating endogenous Epo synthesis (HIF stabilizers).
Collapse
|
87
|
Swaminathan S, Bose C, Shah SV, Hall KA, Hiatt KM. Gadolinium contrast agent-induced CD163+ ferroportin+ osteogenic cells in nephrogenic systemic fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:796-807. [PMID: 23867799 DOI: 10.1016/j.ajpath.2013.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/29/2013] [Accepted: 06/05/2013] [Indexed: 12/21/2022]
Abstract
Gadolinium-based contrast agents are linked to nephrogenic systemic fibrosis in patients with renal insufficiency. The pathology of nephrogenic systemic fibrosis is characterized by abnormal tissue repair: fibrosis and ectopic ossification. The mechanisms by which gadolinium could induce fibrosis and ossification are not known. We examined in vitro the effect of a gadolinium-based contrast agent on human peripheral blood mononuclear cells for phenotype and function relevant to the pathology of nephrogenic systemic fibrosis using immunofluorescence, flow cytometry, real-time PCR, and osteogenic assays. We also examined tissues from patients with nephrogenic systemic fibrosis, using IHC to identify the presence of cells with phenotype induced by gadolinium. Gadolinium contrast induced differentiation of human peripheral blood mononuclear cells into a unique cellular phenotype--CD163(+) cells expressing proteins involved in fibrosis and bone formation. These cells express fibroblast growth factor (FGF)23, osteoblast transcription factors Runt-related transcription factor 2, and osterix, and show an osteogenic phenotype in in vitro assays. We show in vivo the presence of CD163(+)/procollagen-1(+)/osteocalcin(+) cells in the fibrotic and calcified tissues of nephrogenic systemic fibrosis patients. Gadolinium contrast-induced CD163(+)/ferroportin(+)/FGF23(+) cells with osteogenic potential may play a role in systemic fibrosis and ectopic ossification in nephrogenic systemic fibrosis.
Collapse
Affiliation(s)
- Sundararaman Swaminathan
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | | | | | | | |
Collapse
|
88
|
Isolation and characterization of mouse bone marrow-derived Lin⁻/VEGF-R2⁺ progenitor cells. Ann Hematol 2013; 92:1461-72. [PMID: 23771478 DOI: 10.1007/s00277-013-1815-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) in the peripheral blood (PB) have physiological roles in the maintenance of the existing vascular beds and rescue of vascular injury. In this study, we have evaluated the properties of Lin⁻/VEGF-R2⁺ progenitor cells isolated from the mouse bone marrow (BM) and further studied their distribution and integration in an animal model of laser-induced retinal vascular injury. Lin⁻/VEGF-R2⁺ cells were enriched from C57BL/6 mice BM using magnetic cell sorting with hematopoietic lineage (Lin) depletion followed by VEGF-R2 positive selection. Lin⁻/VEGF-R2⁺ BM cells were characterized using flow cytometry and immunocytochemistry and further tested for colony formation during culture and tube formation on Matrigel®. Lin⁻/VEGF-R2⁺ BM cells possessed typical EPC properties such as forming cobble-stone shaped colonies after 3 to 4 weeks of culture, CD34⁺ expression, take up of Dil-acLDL and binding to Ulex europaeus agglutinin. However, they did not form tube-like structures on Matrigel®. The progenitor cells retained their phenotype over extended period of culture. After intravitreal transplantation in eyes subjected to the laser-induced retinal vascular injury, some Lin⁻/VEGF-R2⁺ cells were able to integrate into the damaged retinal vasculature but the level of cell integration seemed less efficient when compared with previous reports in which EPCs from the human PB were employed. Our results indicate that Lin⁻/VEGF-R2⁺ cells isolated from the mouse BM share some similarities to EPCs from the human PB but most of them are at a very early stage of maturation and remain quiescent during culture and after intravitreal transplantation.
Collapse
|
89
|
Christou G, Abou-Nassar K, Li Y, Labonté L, Tinmouth A, McArdle T, Watpool I, McIntyre L, Allan DS. A pilot prospective study of the vascular repair response following red cell transfusion in critically ill patients. Transfus Med 2013; 23:94-9. [PMID: 23448208 DOI: 10.1111/tme.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Red blood cell transfusion has been associated with adverse outcomes including infection, delayed recovery and increased mortality in some patient populations. Circulating cells that yield endothelial-like vascular progenitor cell (VPC) clusters are correlated with vascular repair and recovery after ischaemic injury. The impact of red cell transfusion on VPC clusters and vascular repair remains uncertain. STUDY DESIGN We prospectively enrolled patients admitted to intensive care requiring red cell transfusion and subjects at low likelihood of requiring red cell transfusion. Levels of VPC clusters and plasma levels of angiogenic cytokines were compared. A total of 17 patients were recruited and had blood samples collected at time of enrolment and at 24-48 h, 48-72 h and 1 week following transfusion. RESULTS We could not discern differences in the number of VPC clusters between transfused patients (n = 6) and non-transfused subjects (n = 11) at baseline or throughout the study period. VPC cluster levels demonstrated wide variance and were highest at 24-h post-enrolment in the entire cohort. Furthermore, levels of all 16 cytokines analysed were not significantly different between transfused and non-transfused patients and we did not observe a correlation between cytokine concentrations and levels of circulating VPC-cluster forming cells in the overall study population. CONCLUSIONS Our data suggest that assessment of vascular repair responses after red blood cell transfusion in critically ill patients is challenging. Although our study did not allow us to discern an influence of red cell transfusion on VPC cluster levels or angiogenic cytokines, new methods evaluating vascular repair mechanisms may be required.
Collapse
Affiliation(s)
- G Christou
- Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Broughton SE, Dhagat U, Hercus TR, Nero TL, Grimbaldeston MA, Bonder CS, Lopez AF, Parker MW. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol Rev 2013; 250:277-302. [PMID: 23046136 DOI: 10.1111/j.1600-065x.2012.01164.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 are members of a discrete family of cytokines that regulates the growth, differentiation, migration and effector function activities of many hematopoietic cells and immunocytes. These cytokines are involved in normal responses to infectious agents, bridging innate and adaptive immunity. However, in certain cases, the overexpression of these cytokines or their receptors can lead to excessive or aberrant initiation of signaling resulting in pathological conditions, with chronic inflammatory diseases and myeloid leukemias the most notable examples. Recent crystal structures of the GM-CSF receptor ternary complex and the IL-5 binary complex have revealed new paradigms of cytokine receptor activation. Together with a wealth of associated structure-function studies, they have significantly enhanced our understanding of how these receptors recognize cytokines and initiate signals across cell membranes. Importantly, these structures provide opportunities for structure-based approaches for the discovery of novel and disease-specific therapeutics. In addition, recent biochemical evidence has suggested that the GM-CSF/IL-3/IL-5 receptor family is capable of interacting productively with other membrane proteins at the cell surface. Such interactions may afford additional or unique biological activities and might be harnessed for selective modulation of the function of these receptors in disease.
Collapse
|
91
|
Albiero M, Avogaro A, Fadini GP. Restoring stem cell mobilization to promote vascular repair in diabetes. Vascul Pharmacol 2013; 58:253-8. [PMID: 23369723 DOI: 10.1016/j.vph.2013.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 12/30/2022]
Abstract
Diabetes triggers endothelial dysfunction, which is linked to increased risk of cardiovascular diseases. Stem and progenitor cells from the bone marrow are involved in the maintenance of vascular integrity. Diabetic patients show a dysfunction of these cells, which might represent a novel pathophysiological mechanism of vascular disease. Specifically, stem and progenitor cells fail to egress from the bone marrow (BM) due to BM pathological alterations and unresponsiveness to mobilizing stimuli. In this review, we describe impaired stem cell mobilization in diabetes as a mechanism of failed vascular repair and we provide evidence that pharmacological strategies can restore mobilization. We discuss recent advances in the knowledge of aberrant organization of the diabetic BM and its implications for impaired mobilization. Finally, we describe in detail the pharmacological exploitation of the G-CSF/DPP-4(CD26)/SDF-1α axis as a novel strategy to improve mobilization and attain vascular repair in diabetes.
Collapse
Affiliation(s)
- Mattia Albiero
- Venetian Institute of Molecular Medicine, Laboratory of Experimental Diabetology, 35100 Padova, Italy
| | | | | |
Collapse
|
92
|
Uchikura Y, Matsubara K, Matsubara Y, Mori M, Nabeta M, Hashimoto H, Fujioka T, Hamada K, Nawa A. Nucleated red blood cells are involved in endothelial progenitor cell proliferation in umbilical venous blood of preeclamptic patients. HYPERTENSION RESEARCH IN PREGNANCY 2013. [DOI: 10.14390/jsshp.1.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuka Uchikura
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Keiichi Matsubara
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Miki Mori
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Motowo Nabeta
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Hisashi Hashimoto
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Toru Fujioka
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Katsuyuki Hamada
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| | - Akihiro Nawa
- Department of Obstetrics and Gynecology, Ehime University School of Medicine
| |
Collapse
|
93
|
Abstract
The hematopoietic growth factor erythropoietin (Epo) circulates in plasma and controls the oxygen carrying capacity of the blood (Fisher. Exp Biol Med (Maywood) 228:1-14, 2003). Epo is produced primarily in the adult kidney and fetal liver and was originally believed to play a role restricted to stimulation of early erythroid precursor proliferation, inhibition of apoptosis, and differentiation of the erythroid lineage. Early studies showed that mice with targeted deletion of Epo or the Epo receptor (EpoR) show impaired erythropoiesis, lack mature erythrocytes, and die in utero around embryonic day 13.5 (Wu et al. Cell 83:59-67, 1995; Lin et al. Genes Dev. 10:154-164, 1996). These animals also exhibited heart defects, abnormal vascular development as well as increased apoptosis in the brain suggesting additional functions for Epo signaling in normal development of the central nervous system and heart. Now, in addition to its well-known role in erythropoiesis, a diverse array of cells have been identified that produce Epo and/or express the Epo-R including endothelial cells, smooth muscle cells, and cells of the central nervous system (Masuda et al. J Biol Chem. 269:19488-19493, 1994; Marti et al. Eur J Neurosci. 8:666-676, 1996; Bernaudin et al. J Cereb Blood Flow Metab. 19:643-651, 1999; Li et al. Neurochem Res. 32:2132-2141, 2007). Endogenously produced Epo and/or expression of the EpoR gives rise to autocrine and paracrine signaling in different organs particularly during hypoxia, toxicity, and injury conditions. Epo has been shown to regulate a variety of cell functions such as calcium flux (Korbel et al. J Comp Physiol B. 174:121-128, 2004) neurotransmitter synthesis and cell survival (Velly et al. Pharmacol Ther. 128:445-459, 2010; Vogel et al. Blood. 102:2278-2284, 2003). Furthermore Epo has neurotrophic effects (Grimm et al. Nat Med. 8:718-724, 2002; Junk et al. Proc Natl Acad Sci U S A. 99:10659-10664, 2002), can induce an angiogenic phenotype in cultured endothelial cells and is a potent angiogenic factor in vivo (Ribatti et al. Eur J Clin Invest. 33:891-896, 2003) and might enhance ventilation in hypoxic conditions (Soliz et al. J Physiol. 568:559-571, 2005; Soliz et al. J Physiol. 583, 329-336, 2007). Thus multiple functions have been identified breathing new life and exciting possibilities into what is really an old growth factor.This review will address the function of Epo in non-hematopoietic tissues with significant emphasis on the brain and heart.
Collapse
Affiliation(s)
- Omolara O Ogunshola
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
94
|
Nandra KK, Collino M, Rogazzo M, Fantozzi R, Patel NSA, Thiemermann C. Pharmacological preconditioning with erythropoietin attenuates the organ injury and dysfunction induced in a rat model of hemorrhagic shock. Dis Model Mech 2012; 6:701-9. [PMID: 23264564 PMCID: PMC3634653 DOI: 10.1242/dmm.011353] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pre-treatment with erythropoietin (EPO) has been demonstrated to exert tissue-protective effects against 'ischemia-reperfusion'-type injuries. This protection might be mediated by mobilization of bone marrow endothelial progenitor cells (EPCs), which are thought to secrete paracrine factors. These effects could be exploited to protect against tissue injury induced in cases where hemorrhage is foreseeable, for example, prior to major surgery. Here, we investigate the effects of EPO pre-treatment on the organ injury and dysfunction induced by hemorrhagic shock (HS). Recombinant human EPO (1000 IU/kg/day i.p.) was administered to rats for 3 days. Rats were subjected to HS on day 4 (pre-treatment protocol). Mean arterial pressure was reduced to 35 ± 5 mmHg for 90 minutes, followed by resuscitation with 20 ml/kg Ringer's lactate for 10 minutes and 50% of the shed blood for 50 minutes. Rats were sacrificed 4 hours after the onset of resuscitation. EPC (CD34(+)/flk-1(+) cell) mobilization was measured following the 3-day pre-treatment with EPO and was significantly increased compared with rats pre-treated with phosphate-buffered saline. EPO pre-treatment significantly attenuated organ injury and dysfunction (renal, hepatic and neuromuscular) caused by HS. In livers from rats subjected to HS, EPO enhanced the phosphorylation of Akt (activation), glycogen synthase kinase-3β (GSK-3β; inhibition) and endothelial nitric oxide synthase (eNOS; activation). In the liver, HS also caused an increase in nuclear translocation of p65 (activation of NF-κB), which was attenuated by EPO. This data suggests that repetitive dosing with EPO prior to injury might protect against the organ injury and dysfunction induced by HS, by a mechanism that might involve mobilization of CD34(+)/flk-1(+) cells, resulting in the activation of the Akt-eNOS survival pathway and inhibition of activation of GSK-3β and NF-κB.
Collapse
Affiliation(s)
- Kiran K Nandra
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | | | | | | | | | | |
Collapse
|
95
|
Resch T, Pircher A, Kähler CM, Pratschke J, Hilbe W. Endothelial progenitor cells: current issues on characterization and challenging clinical applications. Stem Cell Rev Rep 2012; 8:926-39. [PMID: 22095429 DOI: 10.1007/s12015-011-9332-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since their discovery about a decade ago, endothelial precursor cells (EPC) have been subjected to intensive investigation. The vision to stimulate respectively suppress a key player of vasculogenesis opened a plethora of clinical applications. However, as research opened deeper insights into EPC biology, the enthusiasm of the pioneer era has been damped in favour of a more critical view. Recent research is focused on three major questions: The fact that the number of EPC in peripheral blood is exceedingly low has consistently raised suspicion whether these cells can plausibly have an impact on physiological or pathophysiological processes. Secondly, whereas the key role of EPC in tumourigenesis has been strongly emphasized by various groups in the past, recent publications are challenging this hypothesis. Thirdly, the lack of consensus on EPC-defining markers and standardized protocols for their detection have repeatedly led to difficulties concerning comparability between papers. In this current review, an overview on recent findings on EPC biology is given, their challenging clinical implications are discussed and the perplexity underlying the current controversial debate is illustrated.
Collapse
Affiliation(s)
- Thomas Resch
- Center of Operative Medicine, Department of Visceral, Transplant, and Thoracic Surgery, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
96
|
Prognostic significance of left ventricular hypertrophy observed at dialysis initiation depends on the pre-dialysis use of erythropoiesis-stimulating agents. Clin Exp Nephrol 2012; 17:294-303. [PMID: 23100176 DOI: 10.1007/s10157-012-0705-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 09/28/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND Recent experimental studies suggest that erythropoietin promotes beneficial myocardial remodeling during left ventricular hypertrophy (LVH); however, such compensatory capacity may be limited due to insufficient erythropoietin production in chronic kidney disease patients. Thus, this study aimed to explore the effect of pre-dialysis erythropoiesis-stimulating agent (ESA) use on the prognostic significance of LVH in dialyzed patients. METHODS This retrospective study included 404 consecutive patients who started dialysis between 2001 and 2009. The interaction of ESA with the association between left ventricular mass index (LVMI) observed at dialysis initiation and all-cause and cardiovascular mortality was analyzed at the end of 2010 using the Cox model. RESULTS During a median follow-up of 36.5 months, 164 patients died, 31 of them from heart failure. The frequency of pre-dialysis ESA use was 58.7 % and median LVMI was 160.3 g/m(2). Of interest, patients with the lowest tertile of LVMI had worse survival compared with those with each subsequent tertile. LVMI was inversely associated with all-cause mortality [hazard ratio (HR) 0.991, 95 % confidence interval (CI) 0.988-0.995, P = 0.000] after extensive adjustment including ejection fraction, whereas the prognostic value of LVMI for cardiovascular mortality was dependent on pre-dialysis ESA use [adjusted HR 1.010, 95 % CI 0.999-1.020, P = 0.065 for pre-dialysis ESA(+) and 0.978, 95 % CI 0.967-0.989, P = 0.000 for pre-dialysis ESA(-), respectively]. CONCLUSIONS Our results suggest that reverse epidemiology may exist between LVH and mortality and that pre-dialysis ESA use may modify the prognostic significance of LVH observed at dialysis initiation for cardiovascular mortality in dialyzed patients.
Collapse
|
97
|
Ahmet I, Lakatta EG, Talan MI. Acute hemodynamic effects of erythropoietin do not mediate its cardioprotective properties. Biol Open 2012; 1:1049-53. [PMID: 23213383 PMCID: PMC3507179 DOI: 10.1242/bio.20122378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/31/2012] [Indexed: 11/26/2022] Open
Abstract
Activation of nitric oxide (NO) signaling is considered, at list partially, a mechanistic basis for EPO-induced cardioprotection. Surprisingly, hemodynamic response subsequent to NO activation after EPO administration has never been reported. The objectives of this study were to evaluate the acute hemodynamic and cardiovascular responses to EPO administration, to confirm their NO genesis, and to test the hypothesis that EPO-induced cardioprotection is mediated through cardiovascular changes related to NO activation. In Experiment 1, after 3000 U/kg of rhEPO was administered intravenously to Wistar rats, arterial blood pressure, monitored via indwelling catheter, progressively declined almost immediately until it leveled off 90 minutes after injection at 20% below control level. In Experiment 2 the 25% reduction of mean blood pressure, compared to control group, was observed 2 hours after intravenous injection of either 3000 or 150 U/kg of rhEPO. Detailed pressure–volume loop analyses of cardiac performance (Experiment 3) 2 hours after intravenous injection of human or rat recombinant EPO (3000 U/kg) revealed a significant reduction of systolic function (PRSW was 33% less than control). Reduction of arterial blood pressure and systolic cardiac function in response to rhEPO were blocked in rats pretreated with a non-selective inhibitor of nitric oxide synthase (L-NAME). In Experiment 4, 24 hours after a permanent ligation of a coronary artery, myocardial infarction (MI) measured 26±3.5% of left ventricle in untreated rats. MI in rats treated with 3000 U/kg of rhEPO immediately after coronary ligation was 56% smaller. Pretreatment with L-NAME did not attenuate the beneficial effect of rhEPO on MI size, while MI size in rats treated with L-NAME alone did not differ from control. Therefore, a single injection of rhEPO resulted in a significant, NO-mediated reduction of systemic blood pressure and corresponding reduction of cardiac systolic function. However, EPO-induced protection of myocardium from ischemic damage is not associated with NO activation or NO-mediated hemodynamic responses.
Collapse
Affiliation(s)
- Ismayil Ahmet
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Mark I. Talan
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
98
|
Zhu JZ, Zhang J, Yang K, Du R, Jing YJ, Lu L, Zhang RY. P-cresol, but not p-cresylsulphate, disrupts endothelial progenitor cell function in vitro. Nephrol Dial Transplant 2012; 27:4323-30. [PMID: 22962408 DOI: 10.1093/ndt/gfs382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Patients afflicted with chronic kidney disease (CKD) typically suffer from cardiovascular disease (CVD) which is a leading cause of patient mortality. It has been demonstrated that two distinct physiological events contribute to this disease state. These include the abundance of abnormally high levels of protein-bound uraemic toxins as well as functionally aberrant endothelial progenitor cells (EPCs). Specifically, it has been demonstrated that the uraemic toxin p-cresol (pC; 4-methylphenol) inhibits EPC proliferation and tube formation in previous in vitro studies. More recently, however, it has been demonstrated that circulating pC is actually conjugated and that p-cresylsulphate (pCS) is its main metabolite. Therefore, within the context of this study, we examined the in vitro effects of pC and pCS treatment on cultured human EPCs. METHODS Late-outgrowth EPCs were treated with physiological concentrations of pC or pCS (10, 40, 80, and 160 or 10, 40, 80, 160 and 320 µg/mL for up to 72 h, respectively) in the presence of 4% human serum albumin (HSA). Cell proliferation was determined using WST-1 assay, while migration and tube formation assays were used to evaluate EPC function in vitro. Cell cycle analyses were also performed to determine the effects of pC and pCS on cell cycle status. RESULTS With regard to EPC proliferation, data demonstrate that pC in the presence or absence of HSA had an IC50 of 80.1 and 100.8 µg/mL 72 h post-treatment, respectively, while pCS-treated groups did not impair EPC proliferation. Similarly, pC-treated groups showed limited vessel formation and migration compared with controls and no detrimental effects were seen with pCS treatment. Lastly, pC treatment of EPCs caused cells to accumulate in the G2/M phase of the cell cycle with accompanied down-regulation of cyclin B1 and phosphorylated CDK1. pCS had no effect on cell cycle parameters. CONCLUSIONS Our data demonstrate that pC and pCS have different effects on EPC function. Since there is a dearth of data that have focused on the toxicity of pCS, further research should be performed to determine the exact biological toxicity of pCS on the cardiovascular system.
Collapse
Affiliation(s)
- Jin-zhou Zhu
- Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
99
|
Bennis Y, Sarlon-Bartoli G, Guillet B, Lucas L, Pellegrini L, Velly L, Blot-Chabaud M, Dignat-Georges F, Sabatier F, Pisano P. Priming of late endothelial progenitor cells with erythropoietin before transplantation requires the CD131 receptor subunit and enhances their angiogenic potential. J Thromb Haemost 2012; 10:1914-28. [PMID: 22738133 DOI: 10.1111/j.1538-7836.2012.04835.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Endothelial colony-forming cells (ECFCs) are promising candidates for cell therapy of ischemic diseases. Erythropoietin (EPO) is a cytokine that promotes angiogenesis after ischemic injury. EPO receptors (EPORs) classically include two EPOR subunits, but may also associate with the β-common chain (CD131) in a newly identified receptor involved in EPO cytoprotective effects. OBJECTIVE The aim was to take advantage of the proangiogenic properties of EPO to enhance ECFC graft efficiency. We postulated that priming ECFCs by adding epoietin α in culture medium prior to experiments might increase their angiogenic properties. We also explored the role of the CD131 subunit in EPO priming of ECFCs. METHODS AND RESULTS By western blotting on cord blood ECFC lysates, we showed that EPOR and CD131 expression increased significantly after EPO priming. These proteins coimmunoprecipitated and colocalized, suggesting that they are covalently bound in ECFCs. EPO at 5 IU mL(-1) significantly stimulated proliferation, wound healing, migration and tube formation of ECFCs. EPO priming also increased ECFC resistance to H2 O2-induced apoptosis and survival in vivo. Similarly, in vivo studies showed that, as compared with non-primed ECFC injection, 5 IU mL(-1) EPO-primed ECFCs, injected intravenously 24 h after hindlimb ischemia in athymic nude mice, increased the ischemic/non-ischemic ratios of hindlimb blood flow and capillary density. These effects were all prevented by CD131 small interfering RNA transfection, and involved the phosphoinositide 3-kinase-Akt pathway. CONCLUSION These results highlight the potential role of EPO-primed ECFCs for cell-based therapy in hindlimb ischemia, and underline the critical role of CD131 as an EPO coreceptor.
Collapse
Affiliation(s)
- Y Bennis
- Aix-Marseille Université, UMR INSERM1076, Faculté de Pharmacie, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Zhu J, Yang K, Jing Y, Du R, Zhu Z, Lu L, Zhang R. The effects of low-dose nepsilon-(carboxymethyl)lysine (CML) and nepsilon-(carboxyethyl)lysine (CEL), two main glycation free adducts considered as potential uremic toxins, on endothelial progenitor cell function. Cardiovasc Diabetol 2012; 11:90. [PMID: 22853433 PMCID: PMC3471041 DOI: 10.1186/1475-2840-11-90] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/27/2012] [Indexed: 11/10/2022] Open
Abstract
Background Patients with chronic kidney disease (CKD) are at high risk of cardiovascular disease (CVD). Endothelial progenitor cell (EPCs) dysfunction plays a key role in this pathogenesis. Uremic retention toxins have been reported to be in associated with EPC dysfunction. Advanced glycation end-products (AGEs) free adducts, including Nepsilon-(carboxymethyl)lysine (CML) and Nepsilon-(carboxyethyl)lysine (CEL), are formed by physiological proteolysis of AGEs and released into plasma for urinary excretion. They are retained in CKD patients and are considered to be potential uremic toxins. Though AGEs have been demonstrated to impair EPC function in various ways, the effect of AGE free adducts on EPC function has not been studied. Thus, we examined the role of CML and CEL in the regulation of growth-factor-dependent function in cultured human EPCs and the mechanisms by which they may affect EPC function. Methods Late outgrowth EPCs were incubated with different concentrations of CML or CEL for up to 72 hours. Cell proliferation was determined using WST-1 and BrdU assays. Cell apoptosis was tested with annexin V staining. Migration and tube formation assays were used to evaluate EPC function. Results Though CML and CEL were determined to have anti-proliferative effects on EPCs, cells treated with concentrations of CML and CEL in the range found in CKD patients had no observable impairment on migration or tube formation. CML and CEL did not induce EPC apoptosis. The reduced growth response was accompanied by significantly less phosphorylation of mitogen-activated protein kinases (MAPKs). Conclusions Our study revealed that CML and CEL at uremic concentrations have low biological toxicity when separately tested. The biologic effects of AGE free adducts on the cardiovascular system merit further study.
Collapse
Affiliation(s)
- Jinzhou Zhu
- Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|