51
|
Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Blood 2016; 127:1234-41. [PMID: 26787737 DOI: 10.1182/blood-2015-07-607903] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022] Open
Abstract
Thrombocytopenia is defined as a status in which platelet numbers are reduced. Imbalance between the homeostatic regulation of platelet generation and destruction is 1 potential cause of thrombocytopenia. In adults, platelet generation is a 2-stage process entailing the differentiation of hematopoietic stem cells into mature megakaryocytes (MKs; known as megakaryopoiesis) and release of platelets from MKs (known as thrombopoiesis or platelet biogenesis). Until recently, information about the genetic defects responsible for congenital thrombocytopenia was only available for a few forms of the disease. However, investigations over the past 15 years have identified mutations in genes encoding >20 different proteins that are responsible for these disorders, which has advanced our understanding of megakaryopoiesis and thrombopoiesis. The underlying pathogenic mechanisms can be categorized as (1) defects in MK lineage commitment and differentiation, (2) defects in MK maturation, and (3) defect in platelet release. Using these developmental stage categories, we here update recently described mechanisms underlying megakaryopoiesis and thrombopoiesis and discuss the association between platelet generation systems and thrombocytopenia.
Collapse
|
52
|
Ferrell PI, Xi J, Ma C, Adlakha M, Kaufman DS. The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells. Stem Cells 2016; 33:1130-41. [PMID: 25546363 DOI: 10.1002/stem.1940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 11/14/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
Derivation of hematopoietic stem cells (HSCs) from human pluripotent stem cells remains a key goal for the fields of developmental biology and regenerative medicine. Here, we use a novel genetic reporter system to prospectively identify and isolate early hematopoietic cells derived from human embryonic stem cells (hESCs) and human induced pluripotent cells (iPSCs). Cloning the human RUNX1c P1 promoter and +24 enhancer to drive expression of tdTomato (tdTom) in hESCs and iPSCs, we demonstrate that tdTom expression faithfully enriches for RUNX1c-expressing hematopoietic progenitor cells. Time-lapse microscopy demonstrated the tdTom(+) hematopoietic cells to emerge from adherent cells. Furthermore, inhibition of primitive hematopoiesis by blocking Activin/Nodal signaling promoted the expansion and/or survival of the tdTom(+) population. Notably, RUNX1c/tdTom(+) cells represent only a limited subpopulation of the CD34(+) CD45(+) and CD34(+) CD43(+) cells with a unique genetic signature. Using gene array analysis, we find significantly lower expression of Let-7 and mir181a microRNAs in the RUNX1c/tdTom(+) cell population. These phenotypic and genetic analyses comparing the RUNX1c/tdTom(+) population to CD34(+) CD45(+) umbilical cord blood and fetal liver demonstrate several key differences that likely impact the development of HSCs capable of long-term multilineage engraftment from hESCs and iPSCs.
Collapse
Affiliation(s)
- Patrick I Ferrell
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
53
|
Papayannopoulou T, Kaushansky K. Evolving insights into the synergy between erythropoietin and thrombopoietin and the bipotent erythroid/megakaryocytic progenitor cell. Exp Hematol 2016; 44:664-8. [PMID: 26773569 DOI: 10.1016/j.exphem.2015.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 01/21/2023]
Abstract
Although the synergy between erythropoietin and thrombopoietin has previously been pointed out, the clonal demonstration of a human bipotent erythroid/megakaryocytic progenitor (MEP) was first published in Experimental Hematology (Papayannopoulou T, Brice M, Farrer D, Kaushansky K. Exp Hematol. 1996;24:660-669) and later in the same year in Blood (Debili N, Coulombel L, Croisille L, et al. Blood. 1996;88:1284-1296). This demonstration, and the fact that both bipotent and monopotent erythroid or megakaryocytic progenitors co-express markers of both lineages and respond to both lineage-specific transcription factors, has provided a background for the extensive use of MEP assessment by fluorescence-activated cell sorting in many subsequent studies. Beyond this, the demonstration of shared regulatory elements and the presence of single mutations affecting both lineages have inspired further studies to decipher how the shift in transcription factor networks occurs from one lineage to the other. Furthermore, in addition to shared effects, erythropoietin and thrombopoietin have additional independent effects. Most notable for thrombopoietin is its effect on hematopoietic stem cells illustrated by in vitro and in vivo approaches.
Collapse
Affiliation(s)
| | - Kenneth Kaushansky
- Office of the Senior Vice President for Health Sciences and Dean, Stony Brook University School of Medicine, Stony Brook, NY
| |
Collapse
|
54
|
Origins of the Vertebrate Erythro/Megakaryocytic System. BIOMED RESEARCH INTERNATIONAL 2015; 2015:632171. [PMID: 26557683 PMCID: PMC4628740 DOI: 10.1155/2015/632171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/02/2015] [Indexed: 02/08/2023]
Abstract
Vertebrate erythrocytes and thrombocytes arise from the common bipotent thrombocytic-erythroid progenitors (TEPs). Even though nonmammalian erythrocytes and thrombocytes are phenotypically very similar to each other, mammalian species have developed some key evolutionary improvements in the process of erythroid and thrombocytic differentiation, such as erythroid enucleation, megakaryocyte endoreduplication, and platelet formation. This brings up a few questions that we try to address in this review. Specifically, we describe the ontology of erythro-thrombopoiesis during adult hematopoiesis with focus on the phylogenetic origin of mammalian erythrocytes and thrombocytes (also termed platelets). Although the evolutionary relationship between mammalian and nonmammalian erythroid cells is clear, the appearance of mammalian megakaryocytes is less so. Here, we discuss recent data indicating that nonmammalian thrombocytes and megakaryocytes are homologs. Finally, we hypothesize that erythroid and thrombocytic differentiation evolved from a single ancestral lineage, which would explain the striking similarities between these cells.
Collapse
|
55
|
Langlois T, da Costa Reis Monte-Mor B, Lenglet G, Droin N, Marty C, Le Couédic JP, Almire C, Auger N, Mercher T, Delhommeau F, Christensen J, Helin K, Debili N, Fuks F, Bernard OA, Solary E, Vainchenker W, Plo I. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells. Stem Cells 2015; 32:2084-97. [PMID: 24723429 DOI: 10.1002/stem.1718] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/26/2014] [Accepted: 03/16/2014] [Indexed: 01/23/2023]
Abstract
Ten-eleven-translocation 2 (TET2) belongs to the TET protein family that catalyzes the conversion of 5-methylcytosine into 5-hydroxymethylcytosine and plays a central role in normal and malignant adult hematopoiesis. Yet the role of TET2 in human hematopoietic development remains largely unknown. Here, we show that TET2 expression is low in human embryonic stem cell (ESC) lines and increases during hematopoietic differentiation. shRNA-mediated TET2 knockdown had no effect on the pluripotency of various ESCs. However, it skewed their differentiation into neuroectoderm at the expense of endoderm and mesoderm both in vitro and in vivo. These effects were rescued by reintroducing the targeted TET2 protein. Moreover, TET2-driven differentiation was dependent on NANOG transcriptional factor. Indeed, TET2 bound to NANOG promoter and in TET2-deficient cells the methylation of the NANOG promoter correlated with a decreased in NANOG expression. The altered differentiation resulting from TET2 knockdown in ESCs led to a decrease in both the number and the cloning capacities of hematopoietic progenitors. These defects were due to an increased apoptosis and an altered gene expression profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm and hematopoietic differentiation.
Collapse
Affiliation(s)
- Thierry Langlois
- Institut National de la Santé et de la Recherche Médicale, UMR 1009, Laboratory of Excellence GR-Ex, 114 rue Edouard Vaillant, Villejuif, Paris, France; Institut Gustave Roussy, Villejuif, Paris, France; Université Paris Sud 11, Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Pietrzyk-Nivau A, Poirault-Chassac S, Gandrille S, Derkaoui SM, Kauskot A, Letourneur D, Le Visage C, Baruch D. Three-Dimensional Environment Sustains Hematopoietic Stem Cell Differentiation into Platelet-Producing Megakaryocytes. PLoS One 2015; 10:e0136652. [PMID: 26313154 PMCID: PMC4552162 DOI: 10.1371/journal.pone.0136652] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 08/05/2015] [Indexed: 11/18/2022] Open
Abstract
Hematopoietic stem cells (HSC) differentiate into megakaryocytes (MK), whose function is to release platelets. Attempts to improve in vitro platelet production have been hampered by the low amplification of MK. Providing HSC with an optimal three-dimensional (3D) architecture may favor MK differentiation by mimicking some crucial functions of the bone marrow structure. To this aim, porous hydrogel scaffolds were used to study MK differentiation from HSC as well as platelet production. Flow cytometry, qPCR and perfusion studies showed that 3D was suitable for longer kinetics of CD34+ cell proliferation and for delayed megakaryocytic differentiation far beyond the limited shelf-life observed in liquid culture but also increased production of functional platelets. We provide evidence that these 3D effects were related to 1) persistence of MK progenitors and precursors and 2) prolongation of expression of EKLF and c-myb transcription factors involved in early MK differentiation. In addition, presence of abundant mature MK with increased ploidy and impressive cytoskeleton elongations was in line with expression of NF-E2 transcription factor involved in late MK differentiation. Platelets produced in flow conditions were functional as shown by integrin αIIbβ3 activation following addition of exogenous agonists. This study demonstrates that spatial organization and biological cues synergize to improve MK differentiation and platelet production. Thus, 3D environment constitutes a powerful tool for unraveling the physiological mechanisms of megakaryopoiesis and thrombopoiesis in the bone marrow environment, potentially leading to an improved amplification of MK and platelet production.
Collapse
Affiliation(s)
| | | | - Sophie Gandrille
- INSERM, UMR-S 1140, University Paris Descartes, Sorbonne Paris Cité, Paris, France
- AP-HP, Georges Pompidou European Hospital, Department of Hematology, Paris, France
| | - Sidi-Mohammed Derkaoui
- INSERM, UMR-S 1148, University Paris Diderot, Paris; University Paris Nord, Villetaneuse, Sorbonne Paris Cité, France
| | - Alexandre Kauskot
- INSERM, UMR-S 1140, University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Didier Letourneur
- INSERM, UMR-S 1148, University Paris Diderot, Paris; University Paris Nord, Villetaneuse, Sorbonne Paris Cité, France
| | - Catherine Le Visage
- INSERM, UMR-S 1148, University Paris Diderot, Paris; University Paris Nord, Villetaneuse, Sorbonne Paris Cité, France
| | - Dominique Baruch
- INSERM, UMR-S 1140, University Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
57
|
Ziegler-Heitbrock L. Blood Monocytes and Their Subsets: Established Features and Open Questions. Front Immunol 2015; 6:423. [PMID: 26347746 PMCID: PMC4538304 DOI: 10.3389/fimmu.2015.00423] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/03/2015] [Indexed: 01/20/2023] Open
Abstract
In contrast to the past reliance on morphology, the identification and enumeration of blood monocytes are nowadays done with monoclonal antibodies and flow cytometry and this allows for subdivision into classical, intermediate, and non-classical monocytes. Using specific cell surface markers, dendritic cells in blood can be segregated from these monocytes. While in the past, changes in monocyte numbers as determined in standard hematology counters have not had any relevant clinical impact, the subset analysis now has uncovered informative changes that may be used in management of disease.
Collapse
|
58
|
Saliba J, Saint-Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, Pasquier F, Valle VD, Secardin L, Leroy G, Mahfoudhi E, Grosjean S, Droin N, Diop M, Dessen P, Charrier S, Palazzo A, Merlevede J, Meniane JC, Delaunay-Darivon C, Fuseau P, Isnard F, Casadevall N, Solary E, Debili N, Bernard OA, Raslova H, Najman A, Vainchenker W, Bellanné-Chantelot C, Plo I. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet 2015; 47:1131-40. [DOI: 10.1038/ng.3380] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/21/2015] [Indexed: 02/07/2023]
|
59
|
Kuchma MD, Kyryk VM, Svitina HM, Shablii YM, Lukash LL, Lobyntseva GS, Shablii VA. Comparative Analysis of the Hematopoietic Progenitor Cells from Placenta, Cord Blood, and Fetal Liver, Based on Their Immunophenotype. BIOMED RESEARCH INTERNATIONAL 2015; 2015:418752. [PMID: 26347038 PMCID: PMC4540977 DOI: 10.1155/2015/418752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/18/2022]
Abstract
We have investigated the characteristics of human hematopoietic progenitor cells (HPCs) with the CD34(+)CD45(low)SSC(low) phenotype from full-term placental tissue (FTPT) as compared to cord blood (CB) and fetal liver (FL) cells. We demonstrated the presence of cell subpopulations at various stages of the differentiation with such immunophenotypes as CD34(+/low)CD45(low/-), CD34(++)CD45(low/-), CD34(+++)CD45(low/-), CD34(+/low)CD45(hi), and CD34(++)CD45(hi) in both first trimester placental tissue (FiTPT) and FTPT which implies their higher phenotypic heterogeneity compared to CB. HPCs of the FTPT origin expressed the CD90 antigen at a higher level compared to its expression by the CB HPCs and the CD133 antigen expression being at the same level in both cases. The HPCs compartment of FTPT versus CB contained higher number of myeloid and erythroid committed cells but lower number of myeloid and lymphoid ones compared to FL HPCs. HPCs of the FTPT and CB origin possess similar potentials for the multilineage differentiation in vitro and similar ratios of myeloid and erythroid progenitors among the committed cells. This observation suggests that the active hematopoiesis occurs in the FTPT. We obtained viable HPCs from cryopreserved placental tissue fragments allowing us to develop procedures for banking and testing of placenta-derived HPCs for clinical use.
Collapse
Affiliation(s)
- Maria D. Kuchma
- Institute of Cell Therapy, Komarova Avenue 3, Kyiv 03680, Ukraine
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Street 150, Kyiv 03680, Ukraine
| | - Vitaliy M. Kyryk
- State Institute of Genetics and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Vyshgorodska Street 67, Kyiv 04114, Ukraine
| | - Hanna M. Svitina
- Institute of Cell Therapy, Komarova Avenue 3, Kyiv 03680, Ukraine
| | - Yulia M. Shablii
- Institute of Cell Therapy, Komarova Avenue 3, Kyiv 03680, Ukraine
| | - Lubov L. Lukash
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Zabolotnogo Street 150, Kyiv 03680, Ukraine
| | | | | |
Collapse
|
60
|
McGrath KE, Frame JM, Fegan KH, Bowen JR, Conway SJ, Catherman SC, Kingsley PD, Koniski AD, Palis J. Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood Cells in the Mammalian Embryo. Cell Rep 2015; 11:1892-904. [PMID: 26095363 DOI: 10.1016/j.celrep.2015.05.036] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/29/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic potential arises in mammalian embryos before adult-repopulating hematopoietic stem cells (HSCs). At embryonic day 9.5 (E9.5), we show the first murine definitive erythro-myeloid progenitors (EMPs) have an immunophenotype distinct from primitive hematopoietic progenitors, maturing megakaryocytes and macrophages, and rare B cell potential. EMPs emerge in the yolk sac with erythroid and broad myeloid, but not lymphoid, potential. EMPs migrate to the fetal liver and rapidly differentiate, including production of circulating neutrophils by E11.5. Although the surface markers, transcription factors, and lineage potential associated with EMPs overlap with those found in adult definitive hematopoiesis, they are present in unique combinations or proportions that result in a specialized definitive embryonic progenitor. Furthermore, we find that embryonic stem cell (ESC)-derived hematopoiesis recapitulates early yolk sac hematopoiesis, including primitive, EMP, and rare B cell potential. EMPs do not have long-term potential when transplanted in immunocompromised adults, but they can provide transient adult-like RBC reconstitution.
Collapse
Affiliation(s)
- Kathleen E McGrath
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jenna M Frame
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine H Fegan
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - James R Bowen
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Simon J Conway
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Seana C Catherman
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anne D Koniski
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - James Palis
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
61
|
Jimenez K, Khare V, Evstatiev R, Kulnigg-Dabsch S, Jambrich M, Strobl H, Gasche C. Increased expression of HIF2α during iron deficiency-associated megakaryocytic differentiation. J Thromb Haemost 2015; 13:1113-27. [PMID: 25715026 PMCID: PMC4949661 DOI: 10.1111/jth.12884] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/12/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Iron deficiency is associated with reactive thrombocytosis; however, the mechanisms driving this phenomenon remain unclear. We previously demonstrated that this occurs alongside enhanced megakaryopoiesis in iron-deficient rats, without alterations in the megakaryopoietic growth factors thrombopoietin, interleukin-6, or interleukin-11. OBJECTIVES The aim of this study was to evaluate megakaryocyte differentiation under iron deficiency in an in vitro model and to investigate potential genes involved in this process. METHODS Human erythroleukemia and megakaryoblastic leukemia cell lines, as well as cord-blood derived hematopoietic stem cells were cultured under iron deficiency. Cell morphology, ploidy, expression of CD41, CD61, and CD42b, and proplatelet formation were assessed in iron-deficient cultures. Polymerase chain reaction arrays were used to identify candidate genes that were verified using real-time polymerase chain reaction. Hypoxia-inducible factor 1, α subunit (HIF2α) protein expression was assessed in bone marrow sections from iron-deficient rats and vascular endothelial growth factor (VEGF)-A in culture supernatants. RESULTS AND CONCLUSIONS Iron deficiency enhanced megakaryoid features in cell lines, increasing ploidy and initiating formation of proplatelet-like structures. In cord blood cell cultures, iron deficiency increased the percentage of cells expressing megakaryopoietic markers and enhanced proplatelet formation. HIF2α and VEGF were identified as potential pathways involved in this process. HIF2α protein expression was increased in megakaryocytes from iron-deficient rats, and VEGF-A concentration was higher in iron-deficient culture supernatants. Addition of VEGF-A to cell cultures increased percentage expression of megakaryocyte CD41. In conclusion, the data demonstrate that iron deficiency augments megakaryocytic differentiation and proplatelet formation and a potential role of HIF2α in megakaryopoiesis.
Collapse
Affiliation(s)
- K Jimenez
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - V Khare
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - R Evstatiev
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - S Kulnigg-Dabsch
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - M Jambrich
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - H Strobl
- Center of Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
- Center of Molecular Medicine, Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - C Gasche
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory on Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
62
|
Nishikii H, Kanazawa Y, Umemoto T, Goltsev Y, Matsuzaki Y, Matsushita K, Yamato M, Nolan GP, Negrin R, Chiba S. Unipotent Megakaryopoietic Pathway Bridging Hematopoietic Stem Cells and Mature Megakaryocytes. Stem Cells 2015; 33:2196-207. [PMID: 25753067 DOI: 10.1002/stem.1985] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/07/2015] [Accepted: 02/06/2015] [Indexed: 12/24/2022]
Abstract
Recent identification of platelet/megakaryocyte-biased hematopoietic stem/repopulating cells requires revision of the intermediate pathway for megakaryopoiesis. Here, we show a unipotent megakaryopoietic pathway bypassing the bipotent megakaryocyte/erythroid progenitors (biEMPs). Cells purified from mouse bone marrow by CD42b (GPIbα) marking were demonstrated to be unipotent megakaryocytic progenitors (MKPs) by culture and transplantation. A subpopulation of freshly isolated CD41(+) cells in the lineage Sca1(+) cKit(+) (LSK) fraction (subCD41(+) LSK) differentiated only into MKP and mature megakaryocytes in culture. Although CD41(+) LSK cells as a whole were capable of differentiating into all myeloid and lymphoid cells in vivo, they produced unipotent MKP, mature megakaryocytes, and platelets in vitro and in vivo much more efficiently than Flt3(+) CD41(-) LSK cells, especially at the early phase after transplantation. In single cell polymerase chain reaction and thrombopoietin (TPO) signaling analyses, the MKP and a fraction of CD41(+) LSK, but not the biEMP, showed the similarities in mRNA expression profile and visible TPO-mediated phosphorylation. On increased demand of platelet production after 5-FU treatment, a part of CD41(+) LSK population expressed CD42b on the surface, and 90% of them showed unipotent megakaryopoietic capacity in single cell culture and predominantly produced platelets in vivo at the early phase after transplantation. These results suggest that the CD41(+) CD42b(+) LSK are straightforward progenies of megakaryocytes/platelet-biased stem/repopulating cells, but not progenies of biEMP. Consequently, we show a unipotent/highly biased megakaryopoietic pathway interconnecting stem/repopulating cells and mature megakaryocytes, the one that may play physiologic roles especially in emergency megakaryopoiesis.
Collapse
Affiliation(s)
- Hidekazu Nishikii
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Yosuke Kanazawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Terumasa Umemoto
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yury Goltsev
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University of School of Medicine, Stanford, California, USA
| | - Yu Matsuzaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Kenji Matsushita
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Garry P Nolan
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University of School of Medicine, Stanford, California, USA
| | - Robert Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, California, USA
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
63
|
Byrska-Bishop M, VanDorn D, Campbell AE, Betensky M, Arca PR, Yao Y, Gadue P, Costa FF, Nemiroff RL, Blobel GA, French DL, Hardison RC, Weiss MJ, Chou ST. Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus. J Clin Invest 2015; 125:993-1005. [PMID: 25621499 DOI: 10.1172/jci75714] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 12/15/2014] [Indexed: 01/13/2023] Open
Abstract
Germline GATA1 mutations that result in the production of an amino-truncated protein termed GATA1s (where s indicates short) cause congenital hypoplastic anemia. In patients with trisomy 21, similar somatic GATA1s-producing mutations promote transient myeloproliferative disease and acute megakaryoblastic leukemia. Here, we demonstrate that induced pluripotent stem cells (iPSCs) from patients with GATA1-truncating mutations exhibit impaired erythroid potential, but enhanced megakaryopoiesis and myelopoiesis, recapitulating the major phenotypes of the associated diseases. Similarly, in developmentally arrested GATA1-deficient murine megakaryocyte-erythroid progenitors derived from murine embryonic stem cells (ESCs), expression of GATA1s promoted megakaryopoiesis, but not erythropoiesis. Transcriptome analysis revealed a selective deficiency in the ability of GATA1s to activate erythroid-specific genes within populations of hematopoietic progenitors. Although its DNA-binding domain was intact, chromatin immunoprecipitation studies showed that GATA1s binding at specific erythroid regulatory regions was impaired, while binding at many nonerythroid sites, including megakaryocytic and myeloid target genes, was normal. Together, these observations indicate that lineage-specific GATA1 cofactor associations are essential for normal chromatin occupancy and provide mechanistic insights into how GATA1s mutations cause human disease. More broadly, our studies underscore the value of ESCs and iPSCs to recapitulate and study disease phenotypes.
Collapse
|
64
|
Souza GTD, Maranduba CP, Souza CMD, Amaral DLASD, Guia FCD, Zanette RDSS, Rettore JVP, Rabelo NC, Nascimento LM, Pinto &IFN, Farani JB, Neto AEH, Silva FDS, Maranduba CMDC, Atalla A. Advances in cellular technology in the hematology field: What have we learned so far? World J Stem Cells 2015; 7:106-115. [PMID: 25621110 PMCID: PMC4300920 DOI: 10.4252/wjsc.v7.i1.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/12/2014] [Accepted: 09/19/2014] [Indexed: 02/07/2023] Open
Abstract
Despite the advances in the hematology field, blood transfusion-related iatrogenesis is still a major issue to be considered during such procedures due to blood antigenic incompatibility. This places pluripotent stem cells as a possible ally in the production of more suitable blood products. The present review article aims to provide a comprehensive summary of the state-of-the-art concerning the differentiation of both embryonic stem cells and induced pluripotent stem cells to hematopoietic cell lines. Here, we review the most recently published protocols to achieve the production of blood cells for future application in hemotherapy, cancer therapy and basic research.
Collapse
|
65
|
Kim WS, Zhu Y, Deng Q, Chin CJ, He CB, Grieco AJ, Dravid GG, Parekh C, Hollis RP, Lane TF, Bouhassira EE, Kohn DB, Crooks GM. Erythropoiesis from human embryonic stem cells through erythropoietin-independent AKT signaling. Stem Cells 2015; 32:1503-14. [PMID: 24677652 DOI: 10.1002/stem.1677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/16/2013] [Accepted: 01/11/2014] [Indexed: 12/25/2022]
Abstract
Unlimited self renewal capacity and differentiation potential make human pluripotent stem cells (PSC) a promising source for the ex vivo manufacture of red blood cells (RBCs) for safe transfusion. Current methods to induce erythropoiesis from PSC suffer from low yields of RBCs, most of which are immature and contain embryonic and fetal rather than adult hemoglobins. We have previously shown that homodimerization of the intracellular component of MPL (ic-MPL) induces erythropoiesis from human cord blood progenitors. The goal of this study was to investigate the potential of ic-MPL dimerization to induce erythropoiesis from human embryonic stem cells (hESCs) and to identify the signaling pathways activated by this strategy. We present here the evidence that ic-MPL dimerization induces erythropoietin (EPO)-independent erythroid differentiation from hESC by inducing the generation of erythroid progenitors and by promoting more efficient erythroid maturation with increased RBC enucleation as well as increased gamma:epsilon globin ratio and production of beta-globin protein. ic-MPL dimerization is significantly more potent than EPO in inducing erythropoiesis, and its effect is additive to EPO. Signaling studies show that dimerization of ic-MPL, unlike stimulation of the wild type MPL receptor, activates AKT in the absence of JAK2/STAT5 signaling. AKT activation upregulates GATA-1 and FOXO3 transcriptional pathways with resulting inhibition of apoptosis, modulation of cell cycle, and enhanced maturation of erythroid cells. These findings open up potential new targets for the generation of therapeutically relevant RBC products from hPSC.
Collapse
Affiliation(s)
- William S Kim
- Department of Pathology and Laboratory Medicine, University of California Los Angeles (UCLA),, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
The onset of hematopoiesis in mammals is defined by generation of primitive erythrocytes and macrophage progenitors in embryonic yolk sac. Laboratories have met the challenge of transient and swiftly changing specification events from ventral mesoderm through multipotent progenitors and maturing lineage-restricted hematopoietic subtypes, by developing powerful in vitro experimental models to interrogate hematopoietic ontogeny. Most importantly, studies of differentiating embryonic stem cell derivatives in embryoid body and stromal coculture systems have identified crucial roles for transcription factor networks (e.g. Gata1, Runx1, Scl) and signaling pathways (e.g. BMP, VEGF, WNT) in controlling stem and progenitor cell output. These and other relevant pathways have pleiotropic biological effects, and are often associated with early embryonic lethality in knockout mice. Further refinement in subsequent studies has allowed conditional expression of key regulatory genes, and isolation of progenitors via cell surface markers (e.g. FLK1) and reporter-tagged constructs, with the purpose of measuring their primitive and definitive hematopoietic potential. These observations continue to inform attempts to direct the differentiation, and augment the expansion, of progenitors in human cell culture systems that may prove useful in cell replacement therapies for hematopoietic deficiencies. The purpose of this review is to survey the extant literature on the use of differentiating murine embryonic stem cells in culture to model the developmental process of yolk sac hematopoiesis.
Collapse
|
67
|
Larbi A, Mitjavila-Garcia MT, Flamant S, Valogne Y, Clay D, Usunier B, l'Homme B, Féraud O, Casal I, Gobbo E, Divers D, Chapel A, Turhan AG, Bennaceur-Griscelli A, Haddad R. Generation of multipotent early lymphoid progenitors from human embryonic stem cells. Stem Cells Dev 2014; 23:2983-95. [PMID: 24955741 DOI: 10.1089/scd.2014.0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During human embryonic stem cell (ESC) hematopoietic differentiation, the description of the initial steps of lymphopoiesis remains elusive. Using a two-step culture procedure, we identified two original populations of ESC-derived hematopoietic progenitor cells (HPCs) with CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) phenotypes. Bulk cultures and limiting dilution assays, culture with MS5 cells in the presence of Notch ligand Delta-like-1 (DL-1), and ex vivo colonization tests using fetal thymic organ cultures showed that although CD34(+)CD45RA(+)CD7(-) HPCs could generate cells of the three lymphoid lineages, their potential was skewed toward the B cell lineages. In contrast, CD34(+)CD45RA(+)CD7(+) HPCs predominantly exhibited a T/natural killer (NK) cell differentiation potential. Furthermore these cells could differentiate equivalently into cells of the granulo-macrophagic lineage and dendritic cells and lacked erythroid potential. Expression profiling of 18 markers by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) HPCs express genes of the lymphoid specification and that CD34(+)CD45RA(+)CD7(-) cells express B-cell-associated genes, while CD34(+)CD45RA(+)CD7(+) HPCs display a T-cell molecular profile. Altogether, these findings indicate that CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) HPCs correspond to candidate multipotent early lymphoid progenitors polarized toward either the B or T/NK lineage, respectively. This work should improve our understanding of the early steps of lymphopoiesis from pluripotent stem cells and pave the way for the production of lymphocytes for cell-based immunotherapy and lymphoid development studies.
Collapse
Affiliation(s)
- Aniya Larbi
- 1 Inserm UMR 935, "ESTeam Paris Sud", Stem Cell Core Facility SFR André Lwoff, Paul Brousse Hospital, University Paris Sud , Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood 2014; 125:930-40. [PMID: 25490895 DOI: 10.1182/blood-2014-06-585513] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To explore how RUNX1 mutations predispose to leukemia, we generated induced pluripotent stem cells (iPSCs) from 2 pedigrees with germline RUNX1 mutations. The first, carrying a missense R174Q mutation, which acts as a dominant-negative mutant, is associated with thrombocytopenia and leukemia, and the second, carrying a monoallelic gene deletion inducing a haploinsufficiency, presents only as thrombocytopenia. Hematopoietic differentiation of these iPSC clones demonstrated profound defects in erythropoiesis and megakaryopoiesis and deregulated expression of RUNX1 targets. iPSC clones from patients with the R174Q mutation specifically generated an increased amount of granulomonocytes, a phenotype reproduced by an 80% RUNX1 knockdown in the H9 human embryonic stem cell line, and a genomic instability. This phenotype, found only with a lower dosage of RUNX1, may account for development of leukemia in patients. Altogether, RUNX1 dosage could explain the differential phenotype according to RUNX1 mutations, with a haploinsufficiency leading to thrombocytopenia alone in a majority of cases whereas a more complete gene deletion predisposes to leukemia.
Collapse
|
69
|
Chao R, Gong X, Wang L, Wang P, Wang Y. CD71(high) population represents primitive erythroblasts derived from mouse embryonic stem cells. Stem Cell Res 2014; 14:30-8. [PMID: 25485690 DOI: 10.1016/j.scr.2014.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/03/2023] Open
Abstract
The CD71/Ter119 combination has been widely used to reflect dynamic maturation of erythrocytes in vivo. However, because CD71 is expressed on all proliferating cells, it is unclear whether it can be utilized as an erythrocyte-specific marker during differentiation of embryonic stem cells (ESCs). In this study, we revealed that a population expressing high level of CD71 (CD71(high)) during mouse ESC differentiation represented an in vitro counterpart of yolk sac-derived primitive erythroblasts (EryPs) isolated at 8.5days post coitum. In addition, these CD71(high) cells went through "maturational globin switching" and enucleated during terminal differentiation in vitro that were similar to the yolk sac-derived EryPs in vivo. We further demonstrated that the formation of CD71(high) population was regulated differentially by key factors including Scl, HoxB4, Eaf1, and Klf1. Taken together, our study provides a technical advance that allows efficient segregation of EryPs from differentiated ESCs in vitro for further understanding molecular regulation during primitive erythropoiesis.
Collapse
Affiliation(s)
- Ruihua Chao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueping Gong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Libo Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
70
|
Feng Q, Shabrani N, Thon JN, Huo H, Thiel A, Machlus KR, Kim K, Brooks J, Li F, Luo C, Kimbrel EA, Wang J, Kim KS, Italiano J, Cho J, Lu SJ, Lanza R. Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Reports 2014; 3:817-31. [PMID: 25418726 PMCID: PMC4235139 DOI: 10.1016/j.stemcr.2014.09.010] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid “surge” capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness. Large-scale production of platelets from human iPSCs under defined conditions iPSC platelets are functional both in vivo and in vitro Knockout of β2-microglobulin gene in iPSCs generates universal platelets
Collapse
Affiliation(s)
- Qiang Feng
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Namrata Shabrani
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jonathan N Thon
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115
| | - Hongguang Huo
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Austin Thiel
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Kellie R Machlus
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115
| | - Kyungho Kim
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Julie Brooks
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Feng Li
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Chenmei Luo
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | | | - Jiwu Wang
- Allele Biotechnology, San Diego, CA 92121, USA
| | - Kwang-Soo Kim
- MacLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Joseph Italiano
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115; Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Shi-Jiang Lu
- Advanced Cell Technology, Marlborough, MA 01752, USA
| | - Robert Lanza
- Advanced Cell Technology, Marlborough, MA 01752, USA.
| |
Collapse
|
71
|
Ochi K, Takayama N, Hirose S, Nakahata T, Nakauchi H, Eto K. Multicolor staining of globin subtypes reveals impaired globin switching during erythropoiesis in human pluripotent stem cells. Stem Cells Transl Med 2014; 3:792-800. [PMID: 24873860 DOI: 10.5966/sctm.2013-0216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adult hemoglobin composed of α- and β-globin reflects a change from expression of embryonic ε- and fetal γ-globin to adult β-globin in human erythroid cells, so-called globin switching. Human pluripotent stem cells (hPSCs) are a potential source for in vitro erythrocyte production, but they show prominent expression of γ-globin with little β-globin expression, which indicates incomplete globin switching. To examine the mechanism of this impaired globin switching, we optimized multicolor flow cytometry to simultaneously follow expression of different globin subtypes using different immunofluorescent probes. This enabled us to detect upregulation of β-globin and the corresponding silencing of γ-globin at the single-cell level during cord blood CD34(+) cell-derived erythropoiesis, examined as an endogenous control. Using this approach, we initially characterized the heterogeneous β-globin expression in erythroblasts from several hPSC clones and confirmed the predominant expression of γ-globin. These hPSC-derived erythroid cells also displayed reduced expression of BCL11A-L. However, doxycycline-induced overexpression of BCL11A-L in selected hPSCs promoted γ-globin silencing. These results strongly suggest that impaired γ-globin silencing is associated with downregulated BCL11A-L in hPSC-derived erythroblasts and that multicolor staining of globin subtypes is an effective approach to studying globin switching in vitro.
Collapse
Affiliation(s)
- Kiyosumi Ochi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Laboratory of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Terumo Company Ltd., Tokyo, Japan
| | - Naoya Takayama
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Laboratory of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Terumo Company Ltd., Tokyo, Japan
| | - Shoichi Hirose
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Laboratory of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Terumo Company Ltd., Tokyo, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Laboratory of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Terumo Company Ltd., Tokyo, Japan
| | - Hiromitsu Nakauchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Laboratory of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Terumo Company Ltd., Tokyo, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Laboratory of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Terumo Company Ltd., Tokyo, Japan
| |
Collapse
|
72
|
Evstatiev R, Bukaty A, Jimenez K, Kulnigg‐Dabsch S, Surman L, Schmid W, Eferl R, Lippert K, Scheiber‐Mojdehkar B, Michael Kvasnicka H, Khare V, Gasche C. Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin. Am J Hematol 2014; 89:524-9. [PMID: 24464533 PMCID: PMC4114532 DOI: 10.1002/ajh.23682] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency‐induced thrombocytosis. Within few weeks, iron‐depleted diet caused iron deficiency in young Sprague–Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron‐depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency‐induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding. Am. J. Hematol. 89:524–529, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rayko Evstatiev
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaVienna Austria
- Christian Doppler Laboratory on Molecular Cancer ChemopreventionMedical University of ViennaVienna Austria
| | - Adam Bukaty
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaVienna Austria
| | - Kristine Jimenez
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaVienna Austria
- Christian Doppler Laboratory on Molecular Cancer ChemopreventionMedical University of ViennaVienna Austria
| | - Stefanie Kulnigg‐Dabsch
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaVienna Austria
| | - Lidia Surman
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaVienna Austria
| | - Werner Schmid
- Institute of Physiology, Medical University of ViennaVienna Austria
| | - Robert Eferl
- Comprehensive Cancer CenterMedical University of ViennaVienna Austria
- Institute for Cancer Research, Medical University of ViennaVienna Austria
| | - Kathrin Lippert
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaVienna Austria
| | | | | | - Vineeta Khare
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaVienna Austria
- Christian Doppler Laboratory on Molecular Cancer ChemopreventionMedical University of ViennaVienna Austria
| | - Christoph Gasche
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaVienna Austria
- Christian Doppler Laboratory on Molecular Cancer ChemopreventionMedical University of ViennaVienna Austria
| |
Collapse
|
73
|
Ohgami RS, Chisholm KM, Ma L, Arber DA. E-cadherin is a specific marker for erythroid differentiation and has utility, in combination with CD117 and CD34, for enumerating myeloblasts in hematopoietic neoplasms. Am J Clin Pathol 2014; 141:656-64. [PMID: 24713736 DOI: 10.1309/ajcp8m4qqtazpgrp] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES E-cadherin, epithelial calcium-dependent cell adhesion protein, has been identified as a marker of immature erythroid precursors in recent years. However, the specificity of E-cadherin in bone marrow specimens for erythroblasts vs myeloblasts or other early hematopoietic precursors in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) has not been fully elucidated. METHODS We analyzed 105 cases of AML and MDS to evaluate the specificity of E-cadherin. RESULTS Of 84 cases of AML, including cases with megakaryocytic, erythroid, monocytic, and granulocytic differentiation, all five acute erythroleukemia cases were positive, as well as one case of megakaryoblastic leukemia that showed coexpression of glycophorin A. In addition, we demonstrate that a panel of three markers, E-cadherin, CD117, and CD34, is effective in identifying lineage-specific myeloblasts in cases of MDS where left-shifted erythroid hyperplasia may complicate morphologic assessment of myeloblasts. CONCLUSIONS In marrow specimens, E-cadherin is a useful marker for erythroid differentation.
Collapse
Affiliation(s)
| | | | - Lisa Ma
- Stanford University Medical Center, Stanford CA
| | | |
Collapse
|
74
|
Tiyaboonchai A, Mac H, Shamsedeen R, Mills JA, Kishore S, French DL, Gadue P. Utilization of the AAVS1 safe harbor locus for hematopoietic specific transgene expression and gene knockdown in human ES cells. Stem Cell Res 2014; 12:630-7. [PMID: 24631742 DOI: 10.1016/j.scr.2014.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/05/2014] [Accepted: 02/12/2014] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells offer a powerful system to study human biology and disease. Here, we report a system to both express transgenes specifically in ES cell derived hematopoietic cells and knockdown gene expression stably throughout the differentiation of ES cells. We characterize a CD43 promoter construct that when inserted into the AAVS1 "safe harbor" locus utilizing a zinc finger nuclease specifically drives GFP expression in hematopoietic cells derived from a transgenic ES cell line and faithfully recapitulates endogenous CD43 expression. In addition, using the same gene targeting strategy we demonstrate that constitutive expression of short hairpin RNAs within a microRNA backbone can suppress expression of PU.1, an important regulator of myeloid cell development. We show that PU.1 knockdown cell lines display an inhibition in myeloid cell formation and skewing towards erythroid development. Overall, we have generated a powerful system to track hematopoietic development from pluripotent stem cells and study gene function through hematopoietic specific gene expression and constitutive gene knockdown.
Collapse
Affiliation(s)
- Amita Tiyaboonchai
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Helen Mac
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Razveen Shamsedeen
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jason A Mills
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Siddarth Kishore
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
75
|
Lin Y, Yoder MC, Yoshimoto M. Lymphoid progenitor emergence in the murine embryo and yolk sac precedes stem cell detection. Stem Cells Dev 2014; 23:1168-77. [PMID: 24417306 DOI: 10.1089/scd.2013.0536] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mammalian embryos produce several waves of hematopoietic cells before the establishment of the hematopoietic stem cell (HSC) hierarchy. These early waves of embryonic hematopoiesis present a reversed hierarchy in which hematopoietic potential is first displayed by highly specialized cells that are derived from transient uni- and bipotent progenitor cells. Hematopoiesis progresses through multilineage erythro-myeloid progenitor cells that lack self-renewal potential and, subsequently, to make distinct lymphoid progenitor cells before culminating in detectable definitive HSC. This review provides an overview of the stepwise development of embryonic hematopoiesis. We focus on recent progress in demonstrating that lymphoid lineages emerge from hemogenic endothelial cells before the presence of definitive HSC activity and discuss the implications of these findings.
Collapse
Affiliation(s)
- Yang Lin
- 1 Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine , Indianapolis, Indiana
| | | | | |
Collapse
|
76
|
Kuchma MD. HEMATOPOIETIC PROGENITOR CELLS OF PLACENTAL AND UMBILICAL CORD BLOOD: IMMUNOPHENOTYPIC ANALYSIS AND DIFFERENTIATION POTENTIAL in vitro. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
77
|
Abstract
This chapter describes a two-dimensional "monolayer" system for differentiating human pluripotent stem cells (PSCs) into "primitive" hematopoietic progenitor cells (HPCs) resembling those produced in vivo by the early embryonic yolk sac. This experimental system utilizes defined conditions without serum or feeder cells. Cytokines are added sequentially to stimulate the formation of mesoderm and its subsequent patterning to hematopoietic progenitors. The HPCs produced by this protocol have multi-lineage potential (erythroid, megakaryocyte, and myeloid) and can be isolated as a homogeneous population for use in standard hematopoietic studies including liquid expansion to mature lineages and colony assays. In addition, the HPCs can be cryopreserved for distribution or analysis at later times. The HPCs generated by this protocol have been used successfully to better define intrinsic variation in hematopoietic potential between different PSC lines and to model human hematopoietic diseases using patient-derived induced pluripotent stem cells.
Collapse
|
78
|
Kuchma MD. DETECTION AND CHARACTERISTIC OF FLAT ERYTHROID COLONIES IN SEMISOLID CULTURAL MEDIUMS. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.03.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
79
|
Paluru P, Hudock KM, Cheng X, Mills JA, Ying L, Galvão AM, Lu L, Tiyaboonchai A, Sim X, Sullivan SK, French DL, Gadue P. The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells. Stem Cell Res 2013; 12:441-51. [PMID: 24412757 DOI: 10.1016/j.scr.2013.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 01/17/2023] Open
Abstract
The Wnt gene family consists of structurally related genes encoding secreted signaling molecules that have been implicated in many developmental processes, including regulation of cell fate and patterning during embryogenesis. Previously, we found that Wnt signaling is required for primitive or yolk sac-derived-erythropoiesis using the murine embryonic stem cell (ESC) system. Here, we examine the effect of Wnt signaling on the formation of early hematopoietic progenitors derived from human ESCs. The first hematopoietic progenitor cells in the human ESC system express the pan-hematopoietic marker CD41 and the erythrocyte marker, glycophorin A or CD235. We have developed a novel serum-free, feeder-free, adherent differentiation system that can efficiently generate large numbers of CD41+CD235+ cells. We demonstrate that this cell population contains progenitors not just for primitive erythroid and megakaryocyte cells but for the myeloid lineage as well and term this population the primitive common myeloid progenitor (CMP). Treatment of mesoderm-specified cells with Wnt3a led to a loss of hematopoietic colony-forming ability while the inhibition of canonical Wnt signaling with DKK1 led to an increase in the number of primitive CMPs. Canonical Wnt signaling also inhibits the expansion and/or survival of primitive erythrocytes and megakaryocytes, but not myeloid cells, derived from this progenitor population. These findings are in contrast to the role of Wnt signaling during mouse ESC differentiation and demonstrate the importance of the human ESC system in studying species-specific differences in development.
Collapse
Affiliation(s)
- Prasuna Paluru
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristin M Hudock
- Division of Pulmonary, Allergy & Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xin Cheng
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jason A Mills
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lei Ying
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aline M Galvão
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lin Lu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amita Tiyaboonchai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xiuli Sim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Deborah L French
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Paul Gadue
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
80
|
Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood 2013; 122:4035-46. [PMID: 24124087 DOI: 10.1182/blood-2013-07-474825] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.
Collapse
|
81
|
Fraser ST. The modern primitives: applying new technological approaches to explore the biology of the earliest red blood cells. ISRN HEMATOLOGY 2013; 2013:568928. [PMID: 24222861 PMCID: PMC3814094 DOI: 10.1155/2013/568928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/25/2013] [Indexed: 01/01/2023]
Abstract
One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells.
Collapse
Affiliation(s)
- Stuart T. Fraser
- Disciplines of Physiology, Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, Medical Foundation Building K25, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
82
|
Thachil J, Szeki I. Erythropoietin corrects thrombocytopenia. Am J Med 2013; 126:e3-4. [PMID: 23870787 DOI: 10.1016/j.amjmed.2013.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/02/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Jecko Thachil
- Department of Haematology and Nephrology, Manchester Royal Infirmary, Manchester, UK.
| | | |
Collapse
|
83
|
Saliba J, Hamidi S, Lenglet G, Langlois T, Yin J, Cabagnols X, Secardin L, Legrand C, Galy A, Opolon P, Benyahia B, Solary E, Bernard OA, Chen L, Debili N, Raslova H, Norol F, Vainchenker W, Plo I, Di Stefano A. Heterozygous and homozygous JAK2(V617F) states modeled by induced pluripotent stem cells from myeloproliferative neoplasm patients. PLoS One 2013; 8:e74257. [PMID: 24066127 PMCID: PMC3774801 DOI: 10.1371/journal.pone.0074257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/29/2013] [Indexed: 12/30/2022] Open
Abstract
JAK2V617F is the predominant mutation in myeloproliferative neoplasms (MPN). Modeling MPN in a human context might be helpful for the screening of molecules targeting JAK2 and its intracellular signaling. We describe here the derivation of induced pluripotent stem (iPS) cell lines from 2 polycythemia vera patients carrying a heterozygous and a homozygous mutated JAK2V617F, respectively. In the patient with homozygous JAK2V617F, additional ASXL1 mutation and chromosome 20 allowed partial delineation of the clonal architecture and assignation of the cellular origin of the derived iPS cell lines. The marked difference in the response to erythropoietin (EPO) between homozygous and heterozygous cell lines correlated with the constitutive activation level of signaling pathways. Strikingly, heterozygous iPS cells showed thrombopoietin (TPO)-independent formation of megakaryocytic colonies, but not EPO-independent erythroid colony formation. JAK2, PI3K and HSP90 inhibitors were able to block spontaneous and EPO-induced growth of erythroid colonies from GPA+CD41+ cells derived from iPS cells. Altogether, this study brings the proof of concept that iPS can be used for studying MPN pathogenesis, clonal architecture, and drug efficacy.
Collapse
Affiliation(s)
- Joseph Saliba
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - Sofiane Hamidi
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - Gaëlle Lenglet
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - Thierry Langlois
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - Jingkui Yin
- Beijing Genomic Institute (BGI), Shenzhen, Shenzhen, China
| | - Xénia Cabagnols
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - Lise Secardin
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - Céline Legrand
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - Anne Galy
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 951, University of Évry Val d’Essonne, Genethon, Évry, France
| | - Paule Opolon
- Institut Gustave Roussy, Pathology platform, Villejuif, France
| | - Baya Benyahia
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Unité Fonctionnelle de Génétique Chromosomique, Département de Génétique, Paris, France
| | - Eric Solary
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - Olivier A. Bernard
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 985, Villejuif, France
| | - Longyun Chen
- Beijing Genomic Institute (BGI), Shenzhen, Shenzhen, China
| | - Najet Debili
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - Hana Raslova
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - Françoise Norol
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - William Vainchenker
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
- * E-mail:
| | - Isabelle Plo
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| | - Antonio Di Stefano
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1009, Laboratory of Excellence, Globule rouge-Excellence (GR-Ex), Villejuif, France
- University Paris-Sud 11, Le Kremlin-Bicêtre, France
- Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
84
|
Bluteau O, Langlois T, Rivera-Munoz P, Favale F, Rameau P, Meurice G, Dessen P, Solary E, Raslova H, Mercher T, Debili N, Vainchenker W. Developmental changes in human megakaryopoiesis. J Thromb Haemost 2013; 11:1730-41. [PMID: 23782903 DOI: 10.1111/jth.12326] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The molecular bases of the cellular changes that occur during human megakaryocyte (MK) ontogeny remain unknown, and may be important for understanding the significance of MK differentiation from human embryonic stem cells (hESCs) METHODS We optimized the differentiation of MKs from hESCs, and compared these with MKs obtained from primary human hematopoietic tissues at different stages of development. RESULTS Transcriptome analyses revealed a close relationship between hESC-derived and fetal liver-derived MKs, and between neonate-derived and adult-derived MKs. Major changes in the expression profiles of cell cycle and transcription factors (TFs), including MYC and LIN28b, and MK-specific regulators indicated that MK maturation progresses during ontogeny towards an increase in MK ploidy and a platelet-forming function. Important genes, including CXCR4, were regulated by an on-off mechanism during development. DISCUSSION Our analysis of the pattern of TF network and signaling pathways was consistent with a growing specialization of MKs towards hemostasis during ontogeny, and support the idea that MKs derived from hESCs reflect primitive hematopoiesis.
Collapse
Affiliation(s)
- O Bluteau
- Institut National de la Sante et de la Recherche Medicale, UMR 1009, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris-Sud, Villejuif, France; Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Hirata S, Takayama N, Jono-Ohnishi R, Endo H, Nakamura S, Dohda T, Nishi M, Hamazaki Y, Ishii EI, Kaneko S, Otsu M, Nakauchi H, Kunishima S, Eto K. Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. J Clin Invest 2013; 123:3802-14. [PMID: 23908116 DOI: 10.1172/jci64721] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/30/2013] [Indexed: 12/20/2022] Open
Abstract
Congenital amegakaryocytic thrombocytopenia (CAMT) is caused by the loss of thrombopoietin receptor-mediated (MPL-mediated) signaling, which causes severe pancytopenia leading to bone marrow failure with onset of thrombocytopenia and anemia prior to leukopenia. Because Mpl(-/-) mice do not exhibit the human disease phenotype, we used an in vitro disease tracing system with induced pluripotent stem cells (iPSCs) derived from a CAMT patient (CAMT iPSCs) and normal iPSCs to investigate the role of MPL signaling in hematopoiesis. We found that MPL signaling is essential for maintenance of the CD34+ multipotent hematopoietic progenitor (MPP) population and development of the CD41+GPA+ megakaryocyte-erythrocyte progenitor (MEP) population, and its role in the fate decision leading differentiation toward megakaryopoiesis or erythropoiesis differs considerably between normal and CAMT cells. Surprisingly, complimentary transduction of MPL into normal or CAMT iPSCs using a retroviral vector showed that MPL overexpression promoted erythropoiesis in normal CD34+ hematopoietic progenitor cells (HPCs), but impaired erythropoiesis and increased aberrant megakaryocyte production in CAMT iPSC-derived CD34+ HPCs, reflecting a difference in the expression of the transcription factor FLI1. These results demonstrate that impaired transcriptional regulation of the MPL signaling that normally governs megakaryopoiesis and erythropoiesis underlies CAMT.
Collapse
Affiliation(s)
- Shinji Hirata
- Clinical Application Department, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Spring FA, Griffiths RE, Mankelow TJ, Agnew C, Parsons SF, Chasis JA, Anstee DJ. Tetraspanins CD81 and CD82 facilitate α4β1-mediated adhesion of human erythroblasts to vascular cell adhesion molecule-1. PLoS One 2013; 8:e62654. [PMID: 23704882 PMCID: PMC3660455 DOI: 10.1371/journal.pone.0062654] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/25/2013] [Indexed: 11/28/2022] Open
Abstract
The proliferation and terminal differentiation of erythroid progenitors occurs in human bone marrow within erythroblastic islands, specialised structures consisting of a central macrophage surrounded by developing erythroid cells. Many cell-cell and cell-matrix adhesive interactions maintain and regulate the co-ordinated daily production of reticulocytes. Erythroid cells express only one integrin, α4β1, throughout differentiation, and its interactions with both macrophage Vascular Cell Adhesion Molecule-1 and with extracellular matrix fibronectin are critical for erythropoiesis. We observed that proerythroblasts expressed a broad tetraspanin phenotype, and investigated whether any tetraspanin could modulate integrin function. A specific association between α4β1 and CD81, CD82 and CD151 was demonstrated by confocal microscopy and co-immune precipitation. We observed that antibodies to CD81 and CD82 augmented adhesion of proerythroblasts to Vascular Cell Adhesion Molecule-1 but not to the fibronectin spliceoforms FnIII12-IIICS-15 and FnIII12–15. In contrast, different anti-CD151 antibodies augmented or inhibited adhesion of proerythroblasts to Vascular Cell Adhesion Molecule-1 and the fibronectin spliceoform FnIII12-IIICS-15 but not to FnIII12–15. These results strongly suggest that tetraspanins have a functional role in terminal erythropoiesis by modulating interactions of erythroblast α4β1 with both macrophages and extracellular matrix.
Collapse
Affiliation(s)
- Frances A Spring
- Bristol Institute for Transfusion Sciences, Bristol, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
87
|
Ramirez JM, Bai Q, Péquignot M, Becker F, Kassambara A, Bouin A, Kalatzis V, Dijon-Grinand M, De Vos J. Side scatter intensity is highly heterogeneous in undifferentiated pluripotent stem cells and predicts clonogenic self-renewal. Stem Cells Dev 2013; 22:1851-60. [PMID: 23360234 DOI: 10.1089/scd.2012.0658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In culture, human pluripotent stem cells (PSCs) are phenotypically (for instance, the SSEA3 expression level) and functionally (capacity to survive after single-cell dissociation) heterogeneous. We report here that the side scatter (SSC) signal measured by flow cytometry, a variable correlated with membrane irregularity and cell granularity, is very high in PSCs, even higher than in blood polymorphonuclear cells, and markedly heterogeneous. Moreover, SSC intensity rapidly and strongly decreases upon PSC differentiation into any of the three germ layers. PSCs with high SSC (HSSC cells) or low SSC (LSSC cells) values both express pluripotency markers, but HSSC cells are characterized by more frequent simultaneous expression of the membrane pluripotency factors SSEA3, SSEA4, TRA-1-81, TRA-1-60, and CD24 and by a higher mitochondrial content. Functionally, HSSC cells are more likely to generate colonies upon single-cell passage than LSSC cells. SSC monitoring might provide a simple, but robust and rapid method to estimate pluripotency variations in culture and unveils a new phenotypic and functional heterogeneity in PSCs.
Collapse
Affiliation(s)
- Jean-Marie Ramirez
- CHU Montpellier, Institute for Research in Biotherapy, Hôpital Saint-Eloi, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Pick M, Azzola L, Osborne E, Stanley EG, Elefanty AG. Generation of megakaryocytic progenitors from human embryonic stem cells in a feeder- and serum-free medium. PLoS One 2013; 8:e55530. [PMID: 23424635 PMCID: PMC3570533 DOI: 10.1371/journal.pone.0055530] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/27/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The production of human platelets from embryonic stem cells in a defined culture system is a prerequisite for the generation of platelets for therapeutic use. As an important step towards this goal, we report the differentiation of human embryonic stem cells (hESCs) towards the megakaryocyte (Mk) lineage using a 'spin embryoid body' method in serum-free differentiation medium. METHODOLOGY AND PRINCIPAL FINDINGS Immunophenotypic analyses of differentiating hESC identified a subpopulation of cells expressing high levels of CD41a that expressed other markers associated with the Mk lineage, including CD110, CD42b and CD61. Differentiated cells were sorted on the basis of their expression of CD41a, CD34 and CD45 and assessed for Mk colony formation, expression of myeloid and Mk genes and ability to endoreplicate DNA. In a collagen-based colony assay, the CD41a⁺ cells sorted from these differentiation cultures produced 100-800 Mk progenitors at day 13 and 25-160 Mk progenitors at day 20 of differentiation per 100,000 cells assayed. Differentiated Mk cells produced platelet-like particles which expressed CD42b and were activated by ADP, similar to platelets generated from precursors in cord blood. These studies were complemented by real time PCR analyses showing that subsets of cells enriched for CD41a⁺ Mk precursors expressed high levels of Mk associated genes such as PF4 and MPL. Conversely, high levels of myeloid and erythroid related transcripts, such as GATA1, TAL1/SCL and PU.1, were detected in sorted fractions containing CD34⁺ and CD45⁺ cells. CONCLUSIONS We describe a serum- and feeder-free culture system that enabled the generation of Mk progenitors from human embryonic stem cells. These cells formed colonies that included differentiated Mks that fragmented to form platelet-like particles. This protocol represents an important step towards the generation of human platelets for therapeutic use.
Collapse
Affiliation(s)
- Marjorie Pick
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
89
|
Witkiewicz H, Oh P, Schnitzer JE. I. Embryonal vasculature formation recapitulated in transgenic mammary tumor spheroids implanted pseudo-orthotopicly into mouse dorsal skin fold: the organoblasts concept. F1000Res 2013; 2:8. [PMID: 24627767 PMCID: PMC3938277 DOI: 10.12688/f1000research.2-8.v2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 12/22/2022] Open
Abstract
Inadequate understanding of cancer biology is a problem. This work focused on cellular mechanisms of tumor vascularization. According to earlier studies, the tumor vasculature derives from host endothelial cells (angiogenesis) or their precursors of bone marrow origin circulating in the blood (neo-vasculogenesis) unlike in embryos. In this study, we observed the neo-vasculature form in multiple ways from local precursor cells. Recapitulation of primitive as well as advanced embryonal stages of vasculature formation followed co-implantation of avascular (
in vitro cultured) N202 breast tumor spheroids and homologous tissue grafts into mouse dorsal skin chambers. Ultrastructural and immunocytochemical analysis of tissue sections exposed the interactions between the tumor and the graft tissue stem cells. It revealed details of vasculature morphogenesis not seen before in either tumors or embryos. A gradual increase in complexity of the vascular morphogenesis at the tumor site reflected a range of steps in ontogenic evolution of the differentiating cells. Malignant- and surgical injury repair-related tissue growth prompted local cells to initiate extramedullar erythropoiesis and vascular patterning. The new findings included: interdependence between the extramedullar hematopoiesis and assembly of new vessels (both from the locally differentiating precursors); nucleo-cytoplasmic conversion (karyolysis) as the mechanism of erythroblast enucleation; the role of megakaryocytes and platelets in vascular pattern formation before emergence of endothelial cells; lineage relationships between hematopoietic and endothelial cells; the role of extracellular calmyrin in tissue morphogenesis; and calmyrite, a new ultrastructural entity associated with anaerobic energy metabolism. The central role of the extramedullar erythropoiesis in the formation of new vasculature (blood and vessels) emerged here as part of the tissue building process including the lymphatic system and nerves, and suggests a cellular mechanism for instigating variable properties of endothelial surfaces in different organs. Those findings are consistent with the organoblasts concept, previously discussed in a study on childhood tumors, and have implications for tissue definition.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| |
Collapse
|
90
|
Lambert MP, Sullivan S, Poncz M. Making Platelets Ex Vivo. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
91
|
Kumkhaek C, Liu W, Rodgers GP. Identification and characterization of novel full-length cDNAs expressed during hematopoietic lineage-specific differentiation of cultured human peripheral blood mononuclear cells. Blood Cells Mol Dis 2012; 50:154-5. [PMID: 23266226 DOI: 10.1016/j.bcmd.2012.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/26/2012] [Accepted: 12/05/2012] [Indexed: 11/30/2022]
|
92
|
Zhan H, Cardozo C, Yu W, Wang A, Moliterno AR, Dang CV, Spivak JL. MicroRNA deregulation in polycythemia vera and essential thrombocythemia patients. Blood Cells Mol Dis 2012; 50:190-5. [PMID: 23265742 DOI: 10.1016/j.bcmd.2012.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 11/26/2022]
Abstract
Polycythemia vera (PV) and essential thrombocythemia (ET) are the two most common myeloproliferative neoplasms. The same JAK2(V617F) mutation can be found in both disorders and is able to recapitulate many of the phenotypic abnormalities of these diseases in the murine models. The disease phenotype is also influenced by other unknown genetic or epigenetic factors. MicroRNAs (miRNA) are 18-24 nucleotides single-stranded non-protein-coding RNAs that function primarily as gene repressors by binding to their target messenger RNAs. We performed miRNA expression profiling by oligonucleotide microarray analysis in purified peripheral blood CD34+ cells from eight JAK2(V617F)-positive PV patients and six healthy donors. A quantitative reverse-transcription polymerase chain reaction assay was used to verify differential miRNA expression. Since erythrocytosis is the only feature that distinguishes PV from ET, we also compared specific miRNA expression in the nucleated erythroid cells directly descended from the early erythroid progenitor cells of PV and ET patients. Our data indicate that significant miRNA deregulation occurs in PV CD34+ cells and confirm a genetic basis for the gender-specific differences that characterize PV with respect to miRNA. The results of our study also suggest that deregulated miRNAs may represent an important mechanism by which the PV erythrocytosis and ET thrombocytosis phenotypes are determined.
Collapse
Affiliation(s)
- Huichun Zhan
- James J. Peters VA Medical Center, Bronx, NY 10468, USA.
| | | | | | | | | | | | | |
Collapse
|
93
|
T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Rep 2012; 2:1722-35. [PMID: 23219550 DOI: 10.1016/j.celrep.2012.11.003] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/02/2012] [Accepted: 11/07/2012] [Indexed: 12/13/2022] Open
Abstract
The efficient generation of hematopoietic stem cells from human pluripotent stem cells is dependent on the appropriate specification of the definitive hematopoietic program during differentiation. In this study, we used T lymphocyte potential to track the onset of definitive hematopoiesis from human embryonic and induced pluripotent stem cells differentiated with specific morphogens in serum- and stromal-free cultures. We show that this program develops from a progenitor population with characteristics of hemogenic endothelium, including the expression of CD34, VE-cadherin, GATA2, LMO2, and RUNX1. Along with T cells, these progenitors display the capacity to generate myeloid and erythroid cells. Manipulation of Activin/Nodal signaling during early stages of differentiation revealed that development of the definitive hematopoietic progenitor population is not dependent on this pathway, distinguishing it from primitive hematopoiesis. Collectively, these findings demonstrate that it is possible to generate T lymphoid progenitors from pluripotent stem cells and that this lineage develops from a population whose emergence marks the onset of human definitive hematopoiesis.
Collapse
|
94
|
Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012; 109:17573-8. [PMID: 23045704 DOI: 10.1073/pnas.1211175109] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Patients with Down syndrome (trisomy 21, T21) have hematologic abnormalities throughout life. Newborns frequently exhibit abnormal blood counts and a clonal preleukemia. Human T21 fetal livers contain expanded erythro-megakaryocytic precursors with enhanced proliferative capacity. The impact of T21 on the earliest stages of embryonic hematopoiesis is unknown and nearly impossible to examine in human subjects. We modeled T21 yolk sac hematopoiesis using human induced pluripotent stem cells (iPSCs). Blood progenitor populations generated from T21 iPSCs were present at normal frequency and proliferated normally. However, their developmental potential was altered with enhanced erythropoiesis and reduced myelopoiesis, but normal megakaryocyte production. These abnormalities overlap with those of T21 fetal livers, but also reflect important differences. Our studies show that T21 confers distinct developmental stage- and species-specific hematopoietic defects. More generally, we illustrate how iPSCs can provide insight into early stages of normal and pathological human development.
Collapse
|
95
|
Takayama N, Eto K. Pluripotent stem cells reveal the developmental biology of human megakaryocytes and provide a source of platelets for clinical application. Cell Mol Life Sci 2012; 69:3419-28. [PMID: 22527724 PMCID: PMC3445798 DOI: 10.1007/s00018-012-0995-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells [PSCs; including human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] can infinitely proliferate in vitro and are easily accessible for gene manipulation. Megakaryocytes (MKs) and platelets can be created from human ESCs and iPSCs in vitro and represent a potential source of blood cells for transfusion and a promising tool for studying the human thrombopoiesis. Moreover, disease-specific iPSCs are a powerful tool for elucidating the pathogenesis of hematological diseases and for drug screening. In that context, we and other groups have developed in vitro MK and platelet differentiation systems from human pluripotent stem cells (PSCs). Combining this co-culture system with a drug-inducible gene expression system enabled us to clarify the novel role played by c-MYC during human thrombopoiesis. In the next decade, technical advances (e.g., high-throughput genomic sequencing) will likely enable the identification of numerous gene mutations associated with abnormal thrombopoiesis. Combined with such technology, an in vitro system for differentiating human PSCs into MKs and platelets could provide a novel platform for studying human gene function associated with thrombopoiesis.
Collapse
Affiliation(s)
- Naoya Takayama
- Clinical Application Department, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Koji Eto
- Clinical Application Department, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
96
|
Neuwirtova R, Fuchs O, Holicka M, Vostry M, Kostecka A, Hajkova H, Jonasova A, Cermak J, Cmejla R, Pospisilova D, Belickova M, Siskova M, Hochova I, Vondrakova J, Sponerova D, Kadlckova E, Novakova L, Brezinova J, Michalova K. Transcription factors Fli1 and EKLF in the differentiation of megakaryocytic and erythroid progenitor in 5q- syndrome and in Diamond-Blackfan anemia. Ann Hematol 2012; 92:11-8. [PMID: 22965552 DOI: 10.1007/s00277-012-1568-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Abstract
Friend leukemia virus integration 1 (Fli1) and erythroid Krüppel-like factor (EKLF) participate under experimental conditions in the differentiation of megakaryocytic and erythroid progenitor in cooperation with other transcription factors, cytokines, cytokine receptors, and microRNAs. Defective erythropoiesis with refractory anemia and effective megakaryopoiesis with normal or increased platelet count is typical for 5q- syndrome. We decided to evaluate the roles of EKLF and Fli1 in the pathogenesis of this syndrome and of another ribosomopathy, Diamond-Blackfan anemia (DBA). Fli1 and EKLF mRNA levels were examined in mononuclear blood and bone marrow cells from patients with 5q- syndrome, low-risk MDS patients with normal chromosome 5, DBA patients, and healthy controls. In 5q- syndrome, high Fli1 mRNA levels in the blood and bone marrow mononuclear cells were found. In DBA, Fli1 expression did not differ from the controls. EKLF mRNA level was significantly decreased in the blood and bone marrow of 5q- syndrome and in all DBA patients. We propose that the elevated Fli1 in 5q- syndrome protects megakaryocytic cells from ribosomal stress contrary to erythroid cells and contributes to effective though dysplastic megakaryopoiesis.
Collapse
Affiliation(s)
- Radana Neuwirtova
- 1st Department of Medicine, Department of Hematology, General University Hospital, U Nemocnice 2, Prague 2, 128 00, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Mohib K, Wang L. Differentiation and characterization of dendritic cells from human embryonic stem cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2012; Chapter 22:22F.11.1-22F.11.22. [PMID: 22855358 DOI: 10.1002/0471142735.im22f11s98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human embryonic stem cells (hESCs) offer great hope in regenerative medicine. Their ability to give rise to almost any type of cell present in the adult body makes them an invaluable tool in finding cures for a variety of diseases. While considerable protocols have been devised to efficiently differentiate hESCs into various cells types including cells of hematopoietic origin, this protocol will focus on the derivation of dendritic cells (DC), a potent antigen-presenting cell. DCs are a highly important arm of the immune system, as they represent one of the few cells that bridge the innate and adaptive systems, leading to effective pathogen clearance. The study of DCs has led to potential applications in diverse fields, such as vaccine development, tumor immunology, and transplantation. In this protocol, we describe two different methods of differentiating hESCs into DCs. The first method uses OP9 bone marrow stromal supporting cells as a coculture system, while the second method utilizes the formation of embryoid body (EB, cellular aggregate) as an approach. To assure the successful outcome and subsequent assessment of the differentiated DCs, supporting protocols have been included in this chapter.
Collapse
Affiliation(s)
- Kanishka Mohib
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Regenerative Medicine Program, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
98
|
Kang HK, Chiang MY, Ecklund D, Zhang L, Ramsey-Goldman R, Datta SK. Megakaryocyte progenitors are the main APCs inducing Th17 response to lupus autoantigens and foreign antigens. THE JOURNAL OF IMMUNOLOGY 2012; 188:5970-80. [PMID: 22561152 DOI: 10.4049/jimmunol.1200452] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In search of autoantigen-presenting cells that prime the pathogenic autoantibody-inducing Th cells of lupus, we found that CD41(+)CD151(+) cells among Lineage(-) (Lin(-)) CD117(+) (c-Kit(+)) CX3CR1(-) splenocytes depleted of known APCs were most proficient in presenting nuclear autoantigens from apoptotic cells to induce selectively an autoimmune Th17 response in different lupus-prone mouse strains. The new APCs have properties resembling megakaryocyte and/or bipotent megakaryocyte/erythroid progenitors of bone marrow, hence they are referred to as MM cells in this study. The MM cells produce requisite cytokines, but they require contact for optimal Th17 induction upon nucleosome feeding, and can induce Th17 only before undergoing differentiation to become c-Kit(-)CD41(+) cells. The MM cells expand up to 10-fold in peripheral blood of lupus patients and 49-fold in spleens of lupus mice preceding disease activity; they accelerate lupus in vivo and break tolerance in normal mice, inducing autoimmune Th17 cells. MM cells also cause Th17 skewing to foreign Ag in normal mice without Th17-polarizing culture conditions. Several molecules in MM cells are targets for blocking of autoimmunization. This study advances our understanding of lupus pathogenesis and Th17 differentiation biology by characterizing a novel category of APC.
Collapse
Affiliation(s)
- Hee-Kap Kang
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
99
|
Ho PJ, Yen ML, Yet SF, Yen BL. Current Applications of Human Pluripotent Stem Cells: Possibilities and Challenges. Cell Transplant 2012; 21:801-14. [DOI: 10.3727/096368911x627507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells are self-renewable cells with the differentiation capacity to develop into somatic cells with biological functions. This ability to sustain a renewable source of multi- and/or pluripotential differentiation has brought new hope to the field of regenerative medicine in terms of cell therapy and tissue engineering. Moreover, stem cells are invaluable tools as in vitro models for studying diverse fields, from basic scientific questions such as developmental processes and lineage commitment, to practical application including drug screening and testing. The stem cells with widest differentiation potential are pluripotent stem cells (PSCs), which are rare cells with the ability to generate somatic cells from all three germ layers. PSCs are considered the most optimal choice for therapeutic potential of stem cells, bringing new impetus to the field of regenerative medicine. In this article, we discuss the therapeutic potential of human PSCs (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), reviewing the current preclinical and clinical data using these stem cells. We describe the classification of different sources of hPSCs, ongoing research, and currently encountered clinical obstacles of these novel and versatile human stem cells.
Collapse
Affiliation(s)
- Pai-Jiun Ho
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Men-Luh Yen
- Departmant of Primary Medicine and Department of Obstetrics/Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shaw-Fang Yet
- Cardiovascular Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - B. Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
100
|
Important genes in the pathogenesis of 5q- syndrome and their connection with ribosomal stress and the innate immune system pathway. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:179402. [PMID: 23213547 PMCID: PMC3504201 DOI: 10.1155/2012/179402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/06/2011] [Accepted: 11/14/2011] [Indexed: 01/10/2023]
Abstract
Myelodysplastic syndrome (MDS) with interstitial deletion of a segment of the long arm of chromosome 5q [del(5q)] is characterized by bone marrow erythroid hyperplasia, atypical megakaryocytes, thrombocythemia, refractory anemia, and low risk of progression to acute myeloid leukemia (AML) compared with other types of MDS. The long arm of chromosome 5 contains two distinct commonly deleted regions (CDRs). The more distal CDR lies in 5q33.1 and contains 40 protein-coding genes and genes coding microRNAs (miR-143, miR-145). In 5q-syndrome one allele is deleted that accounts for haploinsufficiency of these genes. The mechanism of erythroid failure appears to involve the decreased expression of the ribosomal protein S14 (RPS14) gene and the upregulation of the p53 pathway by ribosomal stress. Friend leukemia virus integration 1 (Fli1) is one of the target genes of miR145. Increased Fli1 expression enables effective megakaryopoiesis in 5q-syndrome.
Collapse
|