51
|
Lee TJ, Yuan X, Kerr K, Yoo JY, Kim DH, Kaur B, Eltzschig HK. Strategies to Modulate MicroRNA Functions for the Treatment of Cancer or Organ Injury. Pharmacol Rev 2020; 72:639-667. [PMID: 32554488 PMCID: PMC7300323 DOI: 10.1124/pr.119.019026] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer and organ injury-such as that occurring in the perioperative period, including acute lung injury, myocardial infarction, and acute gut injury-are among the leading causes of death in the United States and impose a significant impact on quality of life. MicroRNAs (miRNAs) have been studied extensively during the last two decades for their role as regulators of gene expression, their translational application as diagnostic markers, and their potential as therapeutic targets for disease treatment. Despite promising preclinical outcomes implicating miRNA targets in disease treatment, only a few miRNAs have reached clinical trials. This likely relates to difficulties in the delivery of miRNA drugs to their targets to achieve efficient inhibition or overexpression. Therefore, understanding how to efficiently deliver miRNAs into diseased tissues and specific cell types in patients is critical. This review summarizes current knowledge on various approaches to deliver therapeutic miRNAs or miRNA inhibitors and highlights current progress in miRNA-based disease therapy that has reached clinical trials. Based on ongoing advances in miRNA delivery, we believe that additional therapeutic approaches to modulate miRNA function will soon enter routine medical treatment of human disease, particularly for cancer or perioperative organ injury. SIGNIFICANCE STATEMENT: MicroRNAs have been studied extensively during the last two decades in cancer and organ injury, including acute lung injury, myocardial infarction, and acute gut injury, for their regulation of gene expression, application as diagnostic markers, and therapeutic potentials. In this review, we specifically emphasize the pros and cons of different delivery approaches to modulate microRNAs, as well as the most recent exciting progress in the field of therapeutic targeting of microRNAs for disease treatment in patients.
Collapse
Affiliation(s)
- Tae Jin Lee
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xiaoyi Yuan
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Keith Kerr
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Dong H Kim
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Balveen Kaur
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Holger K Eltzschig
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
52
|
Slack FJ, Chinnaiyan AM. The Role of Non-coding RNAs in Oncology. Cell 2020; 179:1033-1055. [PMID: 31730848 DOI: 10.1016/j.cell.2019.10.017] [Citation(s) in RCA: 1070] [Impact Index Per Article: 214.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
For decades, research into cancer biology focused on the involvement of protein-coding genes. Only recently was it discovered that an entire class of molecules, termed non-coding RNA (ncRNA), plays key regulatory roles in shaping cellular activity. An explosion of studies into ncRNA biology has since shown that they represent a diverse and prevalent group of RNAs, including both oncogenic molecules and those that work in a tumor suppressive manner. As a result, hundreds of cancer-focused clinical trials involving ncRNAs as novel biomarkers or therapies have begun and these are likely just the beginning.
Collapse
Affiliation(s)
- Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
53
|
Tumor miRNA expression profile is related to vestibular schwannoma growth rate. Acta Neurochir (Wien) 2020; 162:1187-1195. [PMID: 32016588 DOI: 10.1007/s00701-020-04238-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/18/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Our objective was to investigate if the tumor microRNA (miRNA) expression profile was related to tumor growth rate. Growth-related miRNAs might be potential targets for future therapeutic intervention. MATERIAL AND METHODS Tumor tissue was sampled during surgery of patients with a sporadic vestibular schwannoma. Tumor growth rate was determined by tumor measurement on the two latest pre-operative MRI scans. Tumor miRNA expression was analyzed using the Affymetrix Gene Chip® protocol, and CEL files were generated using GeneChip® Command Console® Software and normalized using Partek Genomics Suite 6.5. The CEL files were analyzed using the statistical software program R. Principal component analysis, affected gene ontology analysis, and analysis of miRNA expression fold changes were used for analysis of potential relations between miRNA expression profile and tumor growth rate. RESULTS AND CONCLUSION Tumor miRNA expression is related to the growth rate of sporadic vestibular schwannomas. Rapid tumor growth is associated with deregulation of several miRNAs, including upregulation of miR-29abc, miR-19, miR-340-5p, miR-21, and miR-221 and downregulation of miR-744 and let-7b. Gene ontologies affected by the deregulated miRNAs included neuron development and differentiation, gene silencing, and negative regulation of various biological processes, including cellular and intracellular signaling and metabolism.
Collapse
|
54
|
Agostini M, Ganini C, Candi E, Melino G. The role of noncoding RNAs in epithelial cancer. Cell Death Discov 2020; 6:13. [PMID: 32194993 PMCID: PMC7067833 DOI: 10.1038/s41420-020-0247-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Regulatory noncoding RNAs (ncRNAs) are a class of RNAs transcribed by regions of the human genome that do not encode for proteins. The three main members of this class, named microRNA, long noncoding RNA, and circular RNA play a key role in the regulation of gene expression, eventually shaping critical cellular processes. Compelling experimental evidence shows that ncRNAs function either as tumor suppressors or oncogenes by participating in the regulation of one or several cancer hallmarks, including evading cell death, and their expression is frequently deregulated during cancer onset, progression, and dissemination. More recently, preclinical and clinical studies indicate that ncRNAs are potential biomarkers for monitoring cancer progression, relapse, and response to cancer therapy. Here, we will discuss the role of noncoding RNAs in regulating cancer cell death, focusing on those ncRNAs with a potential clinical relevance.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carlo Ganini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- IDI-IRCCS, Via Monti di Creta 106, 00166 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- MRC Toxicology Unit, University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP UK
| |
Collapse
|
55
|
Bhattacharya M, Sharma AR, Sharma G, Patra BC, Lee SS, Chakraborty C. Interaction between miRNAs and signaling cascades of Wnt pathway in chronic lymphocytic leukemia. J Cell Biochem 2020; 121:4654-4666. [PMID: 32100920 DOI: 10.1002/jcb.29683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL), a severe problem all over the world and represents around 25% of all total leukemia cases, is generating the need for novel targets against CLL. Wnt signaling cascade regulates cell proliferation, differentiation, and cell death processes. Thus, any alteration of the Wnt signaling pathway protein cascade might develop into various types of cancers, either by upregulation or downregulation of the Wnt signaling pathway protein components. In addition, it is reported that activation of the Wnt signaling pathway is associated with the transcriptional activation of microRNAs (miRNAs) by binding to its promoter region, suggesting feedback regulation. Considering the protein regulatory functions of various miRNAs, they can be approached therapeutically as modulatory targets for protein components of the Wnt signaling pathway. In this article, we have discussed the potential role of miRNAs in the regulation of Wnt signaling pathway proteins related to the pathogenesis of CLL via crosstalk between miRNAs and Wnt signaling pathway proteins. This might provide a clear insight into the Wnt protein regulatory function of various miRNAs and provide a better understanding of developing advanced and promising therapeutic approaches against CLL.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea.,Department of Zoology, Vidyasagar University, Midnapore, West Bengal, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
56
|
Tang W, Guo J, Gu R, Lei B, Ding X, Ma J, Xu G. MicroRNA-29b-3p inhibits cell proliferation and angiogenesis by targeting VEGFA and PDGFB in retinal microvascular endothelial cells. Mol Vis 2020; 26:64-75. [PMID: 32165827 PMCID: PMC7043642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/21/2020] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Excessive angiogenesis, also known as neovascularization, has considerable pathophysiologic roles in several retinal diseases, including retinopathy of prematurity, diabetic retinopathy, and exudative age-related macular degeneration. Accumulated evidence has revealed that miRNAs play important roles in endothelial cell dysfunction and angiogenesis. However, the role of microRNA-29b-3p (miR-29b-3p) in retinal angiogenesis is still unclear. Therefore, we investigated whether and how miR-29b-3p affects the function of retinal microvascular endothelial cells (RMECs). METHODS The overexpression and inhibition of miR-29b-3p were achieved by transfecting rat RMECs with an miR-29b-3p mimic and inhibitor, respectively. The proliferation, migration, and angiogenesis of RMECs were evaluated using a Cell Counting Kit-8 assay, Ki67 staining, western blotting (of proliferating cell nuclear antigen, cyclin A2, cyclin D1, and cyclin E1), wound healing test, and tube formation assay. The expression levels of vascular endothelial growth factor A (VEGFA) and platelet-derived growth factor B (PDGFB) were examined with quantitative real-time PCR and western blotting, respectively. RESULTS Overexpression of miR-29b-3p statistically significantly inhibited the function of RMECs in cell proliferation and angiogenesis, while inhibition of miR-29b-3p increased the proliferative and angiogenic activities of RMECs. Moreover, VEGFA and PDGFB, as the targets of miR-29b-3p, were statistically significantly downregulated by the miR-29b mimic, whereas the miR-29b-3p inhibitor had the opposite effects. CONCLUSIONS miR-29b-3p negatively regulates RMEC proliferation and angiogenesis, at least partly by targeting VEGFA and PDGFB. These data may provide a potential therapeutic strategy for treating ocular neovascular diseases.
Collapse
Affiliation(s)
- Wenyi Tang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Jingli Guo
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Ruiping Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Boya Lei
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Jun Ma
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,Research Center, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia (Fudan University); Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
57
|
Yang Q, Wu F, Mi Y, Wang F, Cai K, Yang X, Zhang R, Liu L, Zhang Y, Wang Y, Wang X, Xu M, Gui Y, Li Q. Aberrant expression of miR-29b-3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2. Cell Prolif 2020; 53:e12764. [PMID: 32077168 PMCID: PMC7106969 DOI: 10.1111/cpr.12764] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives microRNA‐29 (miR‐29) family have shown different expression patterns in cardiovascular diseases. Our study aims to explore the effect and mechanism of miR‐29 family on cardiac development. Materials and methods A total of 13 patients with congenital heart disease (CHD) and 7 controls were included in our study. Tissues were obtained from the right ventricular outflow tract (RVOT) after surgical resection or autopsy. The next‐generation sequencing was applied to screen the microRNA expression profiles of CHD. Quantitative RT‐PCR and Western blot were employed to measure genes expression. Tg Cmlc2: GFP reporter zebrafish embryos were injected with microRNA (miRNA) to explore its role in cardiac development in vivo. Dual‐luciferase reporter assay was designed to validate the target gene of miRNAs. CCK‐8 and EdU incorporation assays were performed to evaluate cardiomyocyte proliferation. Results Our study showed miR‐29b‐3p expression was significantly increased in the RVOT of the CHD patients. Injection of miR‐29b‐3p into zebrafish embryos induced higher mortality and malformation rates, developmental delay, cardiac malformation and dysfunction. miR‐29b‐3p inhibited cardiomyocyte proliferation, and its inhibitor promoted cardiomyocyte proliferation in vitro and in vivo. Furthermore, we identified that miR‐29b‐3p influenced cardiomyocyte proliferation by targeting NOTCH2, which was down‐regulated in the RVOT of the CHD patients. Conclusion This study reveals that miR‐29b‐3p functions as a novel regulator of cardiac development and inhibits cardiomyocyte proliferation via NOTCH2, which provides novel insights into the aetiology and potential treatment of CHD.
Collapse
Affiliation(s)
- Qian Yang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Wu
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yaping Mi
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Ke Cai
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoshan Yang
- Department of Bioscience, Bengbu Medical College, Bengbu, China
| | - Ranran Zhang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lian Liu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University, Shanghai, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yonghao Gui
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
58
|
Nanocarriers as Magic Bullets in the Treatment of Leukemia. NANOMATERIALS 2020; 10:nano10020276. [PMID: 32041219 PMCID: PMC7075174 DOI: 10.3390/nano10020276] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
Abstract
Leukemia is a type of hematopoietic stem/progenitor cell malignancy characterized by the accumulation of immature cells in the blood and bone marrow. Treatment strategies mainly rely on the administration of chemotherapeutic agents, which, unfortunately, are known for their high toxicity and side effects. The concept of targeted therapy as magic bullet was introduced by Paul Erlich about 100 years ago, to inspire new therapies able to tackle the disadvantages of chemotherapeutic agents. Currently, nanoparticles are considered viable options in the treatment of different types of cancer, including leukemia. The main advantages associated with the use of these nanocarriers summarized as follows: i) they may be designed to target leukemic cells selectively; ii) they invariably enhance bioavailability and blood circulation half-life; iii) their mode of action is expected to reduce side effects. FDA approval of many nanocarriers for treatment of relapsed or refractory leukemia and the desired results extend their application in clinics. In the present review, different types of nanocarriers, their capability in targeting leukemic cells, and the latest preclinical and clinical data are discussed.
Collapse
|
59
|
Li M, Cui X, Guan H. MicroRNAs: pivotal regulators in acute myeloid leukemia. Ann Hematol 2020; 99:399-412. [PMID: 31932900 DOI: 10.1007/s00277-019-03887-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
MicroRNAs are a class of small non-coding RNAs that are 19-22 nucleotides in length and regulate a variety of biological processes at the post-transcriptional level. MicroRNA dysregulation disrupts normal biological processes, resulting in tumorigenesis. Acute myeloid leukemia is an invasive hematological malignancy characterized by the abnormal proliferation and differentiation of immature myeloid cells. Due to the low 5-year survival rate, there is an urgent need to discover novel diagnostic markers and therapeutic targets. In recent years, microRNAs have been shown to play important roles in hematological malignancies by acting as tumor suppressors and oncogenes. MicroRNAs have the potential to be a breakthrough in the diagnosis and treatment of acute myeloid leukemia. In this review, we summarize the biology of microRNAs and discuss the relationships between microRNA dysregulation and acute myeloid leukemia in the following aspects: signaling pathways, the abnormal biological behavior of acute myeloid leukemia cells, the clinical application of microRNAs and competing endogenous RNA regulatory networks.
Collapse
Affiliation(s)
- Mingyu Li
- Department of Clinical Hematology, Medical College of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xianglun Cui
- Department of Inspection, Medical College of Qingdao University, Qingdao, 266071, China
| | - Hongzai Guan
- Department of Clinical Hematology, Medical College of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
60
|
Wu F, Yin C, Qi J, Duan D, Jiang X, Yu J, Luo Z. miR-362-5p promotes cell proliferation and cell cycle progression by targeting GAS7 in acute myeloid leukemia. Hum Cell 2020; 33:405-415. [PMID: 31925702 PMCID: PMC7080691 DOI: 10.1007/s13577-019-00319-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022]
Abstract
Recently, miR-362-5p has attracted special interest as a novel prognostic predictor in acute myeloid leukemia (AML). However, its biological function and underlying molecular mechanism in AML remain to be further defined. Herein, we found that a significant increase in miR-362-5p expression was observed in AML patients and cell lines using quantitative real-time PCR. The expression of miR-362-5p was altered in THP-1 and HL-60 cells by transfecting with miR-362-5p mimic or inhibitor. A series of experiments showed that inhibition of miR-362-5p expression significantly suppressed cell proliferation, induced G0/G1 phase arrest and attenuated tumor growth in vivo. On the contrary, ectopic expression of miR-362-5p resulted in enhanced cell proliferation, cell cycle progression and tumor growth. Moreover, growth arrest-specific 7 (GAS7) was confirmed as a direct target gene of miR-362-5p and was negatively modulated by miR-362-5p. GAS7 overexpression imitated the tumor suppressive effect of silenced miR-362-5p on THP-1 cells. Furthermore, miR-362-5p knockdown or GAS7 overexpression obviously down-regulated the expression levels of PCNA, CDK4 and cyclin D1, but up-regulated p21 expression. Collectively, our findings demonstrate that miR-362-5p exerts oncogenic effects in AML by directly targeting GAS7, which might provide a promising therapeutic target for AML.
Collapse
Affiliation(s)
- Fuqun Wu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun-Yat-Sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, 518017, Guangdong, China. .,Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China.
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junhua Qi
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun-Yat-Sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, 518017, Guangdong, China
| | - Deyu Duan
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun-Yat-Sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, 518017, Guangdong, China
| | - Xi Jiang
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun-Yat-Sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, 518017, Guangdong, China
| | - Jianhua Yu
- Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China
| | - Zhaofan Luo
- Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China
| |
Collapse
|
61
|
Fu Q, Zhang J, Huang G, Zhang Y, Zhao M, Zhang Y, Xie J. microRNA-29b inhibits cell growth and promotes sensitivity to oxaliplatin in colon cancer by targeting FOLR1. Biofactors 2020; 46:136-145. [PMID: 31621972 DOI: 10.1002/biof.1579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
The present study was aimed to explore the functional role of microRNA (miR)-29b in colon cancer, as well as underlying mechanisms. Expressions of miR-29b and folate receptor 1 (FOLR1) were measured in both human colon tumor samples and cell lines. Colon cancer cell lines SW480 and SW620 were transfected with miR-29b mimic, antisense oligonucleotides (ASO)-miR-29b, small interfering (siRNA) against FOLR1 (si-FOLR1), or corresponding negative controls (NCs), and then were incubated with or without oxaliplatin (L-OHP). Thereafter, cell viability, cytotoxicity, cell apoptosis, and expression of FOLR1, ATP Binding Cassette Subfamily G Member 2 (ABCG2) and p-glycoprotein (p-gp) were analyzed. We found that miR-29b was significantly decreased, while FOLR1 was statistically elevated in colon cancer samples and cell lines compared to the nontumor samples and nontumourigenic immortalized human colon epithelial cell line FHC. Overexpression of miR-29b markedly inhibited cell viability, promoted sensitivity to L-OHP, stimulated cell apoptosis (all p < .05), and decreased the levels of ABCG2 and p-gp in cancer cells, whereas suppression of miR-29b showed contrary results. Moreover, we observed that FOLR1 was a direct target of miR-29b and was negatively regulated by miR-29b. In addition, the findings revealed that the effects of FOLR1 inhibition on cell viability, sensitivity to L-OHP, cell apoptosis, and the levels of ABCG2 and p-gp were similar to overexpression of miR-29b. Taken together, our study suggests that miR-29b inhibits cell growth and promotes sensitivity to L-OHP in colon cancer by targeting FOLR1.
Collapse
Affiliation(s)
- Qiang Fu
- Department of General Surgery, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jindai Zhang
- Department of General Surgery, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gaofeng Huang
- Department of General Surgery, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonglei Zhang
- Department of General Surgery, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minghai Zhao
- Department of General Surgery, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongchao Zhang
- Department of General Surgery, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianguo Xie
- Department of General Surgery, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
62
|
|
63
|
Shahkarami S, Zoghi S, Rezaei N. The Role of DNA Methylation in Cancer. CANCER IMMUNOLOGY 2020:491-511. [DOI: 10.1007/978-3-030-30845-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
64
|
Gado MM, Mousa NO, Badawy MA, El Taweel MA, Osman A. Assessment of the Diagnostic Potential of miR-29a-3p and miR-92a-3p as Circulatory Biomarkers in Acute Myeloid Leukemia. Asian Pac J Cancer Prev 2019; 20:3625-3633. [PMID: 31870103 PMCID: PMC7173384 DOI: 10.31557/apjcp.2019.20.12.3625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Acute myeloid leukemia (AML) is a set of Myeloproliferative neoplasms that are identified by excessive growth of myeloid blasts and production of abnormal blood cells. AML is the most common type of acute leukemia that occurs in adults. In addition, AML progresses rapidly and is considered a fatal disease. Thus, there is an urgent need to find new targets for molecularly designed therapies. In This study, we evaluated the circulatory levels of microRNA-29a-3p (miR-29a-3p) and miR-92a-3p beside exploring the expression pattern of their target gene myeloid cell leukemia sequence1 (MCL1) to investigate the role of these molecules in AML pathophysiology and to assess their ability to diagnose AML patients. Methods: 40 adult AML patients along with 20 healthy subjects were enrolled in this study. Plasma were separated from venous blood samples, collected on EDTA, of all individuals were used to assess circulating miRNAs’ levels. In the meantime, total RNA was extracted from isolated leukocytes and was used to quantify target mRNA transcript levels. Results: Our data revealed that the circulating levels of miR-29a-3p and miR-92a-3p exhibited significant reduction in 90% and 100% of AML patients, respectively, when compared to the control group (p<0.001). On the other hand, the transcript level of the target gene of these miRNAs, MCL1, showed a sharp increase in 77.5% (p<0.001) of AML patients, along with a negative correlation with its regulatory miRNAs, miR-29a-3p and miR-92a-3p. Conclusion: Our data validates the negative regulatory role of miR-29a-3p and miR-92a-3p to the expression levels of MCL1 in peripheral blood and indicates that these miRNAs can be used as non-invasive diagnostic markers. Furthermore, our study highlights the therapeutic potential of miR-29a-3p and miR-92a-3p to target and downregulate a very important gene (MCL1), which is highly implicated in the pathogenesis of AML.
Collapse
Affiliation(s)
- Marwa M Gado
- Biotechnology/Biomolecular Chemistry program, Chemistry Department, faculty of Science, Cairo University, Giza, Egypt
| | - Nahla O Mousa
- Biotechnology/Biomolecular Chemistry program, Chemistry Department, faculty of Science, Cairo University, Giza, Egypt.,Biotechnology Program, Biology Department, The American University in Cairo, Cairo, Egypt
| | - M A Badawy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Maha A El Taweel
- Clinical Pathology Department, National Cancer institute, Cairo university, Giza, Egypt
| | - Ahmed Osman
- 5Biochemistry Department, faculty of science, Ain Shams university, Abbasyia, Cairo, Egypt.,Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Borg Al Arab, Alexandria, Egypt
| |
Collapse
|
65
|
Zhao W, Cheng L, Quek C, Bellingham SA, Hill AF. Novel miR-29b target regulation patterns are revealed in two different cell lines. Sci Rep 2019; 9:17449. [PMID: 31767948 PMCID: PMC6877611 DOI: 10.1038/s41598-019-53868-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene or protein expression by targeting mRNAs and triggering either translational repression or mRNA degradation. Distinct expression levels of miRNAs, including miR-29b, have been detected in various biological fluids and tissues from a large variety of disease models. However, how miRNAs "react" and function in different cellular environments is still largely unknown. In this study, the regulation patterns of miR-29b between human and mouse cell lines were compared for the first time. CRISPR/Cas9 gene editing was used to stably knockdown miR-29b in human cancer HeLa cells and mouse fibroblast NIH/3T3 cells with minimum off-targets. Genome editing revealed mir-29b-1, other than mir-29b-2, to be the main source of generating mature miR-29b. The editing of miR-29b decreased expression levels of its family members miR-29a/c via changing the tertiary structures of surrounding nucleotides. Comparing transcriptome profiles of human and mouse cell lines, miR-29b displayed common regulation pathways involving distinct downstream targets in macromolecular complex assembly, cell cycle regulation, and Wnt and PI3K-Akt signalling pathways; miR-29b also demonstrated specific functions reflecting cell characteristics, including fibrosis and neuronal regulations in NIH/3T3 cells and tumorigenesis and cellular senescence in HeLa cells.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Camelia Quek
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
66
|
Sur S, Steele R, Shi X, Ray RB. miRNA-29b Inhibits Prostate Tumor Growth and Induces Apoptosis by Increasing Bim Expression. Cells 2019; 8:E1455. [PMID: 31752117 PMCID: PMC6912792 DOI: 10.3390/cells8111455] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is one of the most common cancers among men. Currently available therapies improve patient survival against local prostate cancer but have shown severe side effects. Advanced prostate cancer is still incurable. Studies have suggested the involvement of non-coding RNAs, especially micro-RNAs (miRNAs), in the regulation of multiple cellular events in cancer and thus several clinical trials are ongoing using miRNAs mimics or inhibitors. We previously demonstrated that miRNA-29b-3p (miR-29b) was downregulated in prostate cancer and that the overexpression of miR-29b limited prostate cancer metastasis. However, the therapeutic potential of the miR-29b against prostate cancer remains unknown. Here, we evaluated the therapeutic role of miR-29b in in vivo prostate tumors in a mouse model. Intratumoral injection of mimic miR-29b significantly inhibited prostate cancer xenograft tumor growth in nude mice. Subsequent study demonstrated that the overexpression of miR-29b reduced prostate cancer cell PC3 proliferation in a time dependent manner and induced cell death. Mechanistic study using a cancer pathway specific transcriptomic array revealed a significant overexpression of the pro-apoptotic gene BCL2L11 (Bim) in the miR-29b overexpressed PC3 cells, which was further verified in PC3 cells overexpressing miR-29b. We also observed a significant induction of Bim protein in miR-29b treated xenograft tumors. The induction of cytosolic accumulation of cytochrome C and PARP cleavage in miR-29b overexpressed PC3 cells was observed. Thus, our results suggest that miR-29b can be used as a potential molecule for prostate cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Ratna B. Ray
- Department of Pathology, Saint Louis University1100 South Grand Boulevard, St. Louis, MO 63104, USA; (S.S.); (R.S.); (X.S.)
| |
Collapse
|
67
|
Saultz JN, Freud AG, Mundy-Bosse BL. MicroRNA regulation of natural killer cell development and function in leukemia. Mol Immunol 2019; 115:12-20. [PMID: 30100210 DOI: 10.1016/j.molimm.2018.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are now recognized as important regulators of all cellular processes, including immune function and cancer survival. These evolutionary preserved, single-stranded, non-coding RNA molecules mediate important functional effects primarily through post-transcriptional regulation of protein expression. MiRNAs are known to mediate multiple oncogenic pathways in tumor cells, both tumor promoting and tumor suppressing. In addition to a direct tumor cell effect, miRNAs have also been shown to play a critical role in immune cell development, function and survival. Here we expand on previous reports to evaluate miRNA regulation in natural killer (NK) cells primarily in humans and focus on their influence on NK cell development and function in the setting of hematologic malignancies. In addition, we highlight the most recent miRNA discoveries in hematologic malignancies and discuss areas of future exploration relevant to the translational field of innate immunology and miRNA-based therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer N Saultz
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, United States.
| |
Collapse
|
68
|
Galardi A, Colletti M, Di Paolo V, Vitullo P, Antonetti L, Russo I, Di Giannatale A. Exosomal MiRNAs in Pediatric Cancers. Int J Mol Sci 2019; 20:ijms20184600. [PMID: 31533332 PMCID: PMC6770697 DOI: 10.3390/ijms20184600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have generated great attention in oncology as they play a fundamental role in the regulation of gene expression and their aberrant expression is present in almost all types of tumors including pediatric ones. The discovery that miRNAs can be transported by exosomes, which are vesicles of 40–120 nm involved in cellular communication, that are produced by different cell types, and that are present in different biological fluids, has opened the possibility of using exosomal miRNAs as biomarkers. The possibility to diagnose and monitor the progression and response to drugs through molecules that can be easily isolated from biological fluids represents a particularly important aspect in the pediatric context where invasive techniques are often used. In recent years, the idea of liquid biopsy as well as studies on the possible role of exosomal miRNAs as biomarkers have developed greatly. In this review, we report an overview of all the evidences acquired in recent years on the identification of exosomal microRNAs with biomarker potential in pediatric cancers. We discuss the following herein: neuroblastoma, hepatoblastoma, sarcomas (osteosarcoma, Ewing’s sarcoma and rhabdoid tumors, and non-rhabdomyosarcoma soft tissue sarcoma), brain tumors, lymphomas, and leukemias.
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Marta Colletti
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Virginia Di Paolo
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Patrizia Vitullo
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Loretta Antonetti
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Ida Russo
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| | - Angela Di Giannatale
- Department of Pediatric Hematology/Oncology, IRCCS, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| |
Collapse
|
69
|
Jin F, Du Z, Tang Y, Wang L, Yang Y. Impact of microRNA-29b on natural killer cells in T-cell acute lymphoblastic leukemia. Oncol Lett 2019; 18:2394-2403. [PMID: 31402942 PMCID: PMC6676734 DOI: 10.3892/ol.2019.10559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/11/2019] [Indexed: 11/17/2022] Open
Abstract
Natural killer (NK)-based immunotherapeutic strategies are showing promise in the clinic, particularly against acute myeloid leukemia (AML). Similar treatments for T-cell acute lymphoblastic leukemia (T-ALL) have been less successful, which is due to the higher resistance of T-ALL blasts to the cytotoxic function of NK cells. Herein, microRNA-29b (miR-29b) upregulation was identified in NK cells in both neurogenic locus notch homolog protein 1 (Notch1)-T-ALL mice and patients with T-ALL. Furthermore, miR-29b expression levels were downregulated in T-ALL blast cells. In addition, there was a selective downregulation of an immature subset of NK cells, as well as a reduction in interferon γ (IFNγ) production and natural killer receptor group 2, member D (NKG2D) expression level by NK cells in Notch1-T-ALL mice and patients with T-ALL. Furthermore, when miR-29b knock-out NK cells were adoptively transfused into Notch1-T-ALL mice, partial restoration of IFNγ production and NKG2D expression was observed in NK cells, accompanied by retarded ALL progression and improved survival time. These results implied that T-ALL blast immune evasion occurred via miR-29b-mediated dysregulation in NK cells in the T-ALL microenvironment.
Collapse
Affiliation(s)
- Fengyan Jin
- Department of Hematology, First Bethune Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhonghua Du
- Department of Hematology, First Bethune Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Tang
- Department of Hematology, First Bethune Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lixia Wang
- Department of Hematology, First Bethune Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanping Yang
- Department of Hematology, First Bethune Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
70
|
Sacko K, Thangavel K, Shoyele SA. Codelivery of Genistein and miRNA-29b to A549 Cells Using Aptamer-Hybrid Nanoparticle Bioconjugates. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1052. [PMID: 31340494 PMCID: PMC6669731 DOI: 10.3390/nano9071052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/24/2022]
Abstract
This study aimed to evaluate the anti-cancer effect of a combination therapy of miRNA-29b and genistein loaded in mucin-1 (MUC 1)-aptamer functionalized hybrid nanoparticles in non-small cell lung cancer (NSCLC) A549 cell line. Genistein-miRNA-29b-loaded hybrid nanoparticles (GMLHN) was prepared and characterized. Particle size and zeta potential were measured using photon correlation spectroscopy (PCS). Encapsulation efficiency and loading efficiency were determined using HPLC. Preferential internalization of MUC 1-aptamer functionalized GMLHN by A549 cells was evaluated and compared to normal MRC-5 cells. The ability of GMLHN to downregulate targeted oncoproteins Phosphorylated protein kinase, strain AK, Thymoma (Phosphorylated protein kinase B) (pAKT), Phosphorylated phosphoinositide 3-kinase (p-PI3K), DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) and Myeloid Cell Leukemia Sequence 1 (MCL 1) was evaluated using western blot, while antiproliferative effect and ability to initiate apoptosis was also assessed in A549 cells. MUC 1-aptamer functionalized GMLHN nanoparticles were prepared. These nanoparticles were preferentially internalized by A549 cells but less so, in MRC-5 cells. pAKT, p-PI3K, DNMT3B and MCL 1 were efficiently downregulated by these nanoparticles without affecting the levels of AKT and PI3K in A549 cells. GMLHN demonstrated a superior antiproliferative effect compared to individual genistein and miRNA-29b-loaded nanoparticles. Results generated were able to demonstrate that genistein-miRNA-29b-loaded hybrid nanoparticles (GMLHN) could be a potential treatment modality for NSCLC because of the ability of the payloads to attack multiple targets.
Collapse
Affiliation(s)
- Koita Sacko
- Department of Pharmaceutical Science, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karthik Thangavel
- Department of Pharmaceutical Science, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sunday A Shoyele
- Department of Pharmaceutical Science, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
71
|
Xu C, Zhang Y, Xu K, Nie JJ, Yu B, Li S, Cheng G, Li Y, Du J, Xu FJ. Multifunctional cationic nanosystems for nucleic acid therapy of thoracic aortic dissection. Nat Commun 2019; 10:3184. [PMID: 31320641 PMCID: PMC6639375 DOI: 10.1038/s41467-019-11068-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/17/2019] [Indexed: 02/03/2023] Open
Abstract
Thoracic aortic dissection (TAD) is an aggressive vascular disease that requires early diagnosis and effective treatment. However, due to the particular vascular structure and narrowness of lesion location, there are no effective drug delivery systems for the therapy of TAD. Here, we report a multifunctional delivery nanosystem (TP-Gd/miRNA-ColIV) composed of gadolinium-chelated tannic acid (TA), low-toxic cationic PGEA (ethanolamine-aminated poly(glycidyl methacrylate)) and type IV collagen targeted peptide (ColIV) for targeted nucleic acid therapy, early diagnosis and noninvasive monitoring of TAD. Such targeted therapy with miR-145 exhibits impressive performances in stabilizing the vascular structures and preventing the deterioration of TAD. After the treatment with TP-Gd/miR-145-ColIV, nearly no dissection occurs in the thoracic aortic arches of the mice with TAD model. Moreover, TP-Gd/miRNA-ColIV also demonstrates good magnetic resonance imaging (MRI) ability and can be used to noninvasively monitor the development conditions of TAD.
Collapse
Affiliation(s)
- Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhenzi Zhang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Ke Xu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Jing-Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Shanxi, 030001, China
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Yulin Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China.
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
72
|
Tang LJ, Sun GK, Zhang TJ, Wu DH, Zhou JD, Ma BB, Xu ZJ, Wen XM, Chen Q, Yao DM, Qian J, Ma JC, Lin J. Down-regulation of miR-29c is a prognostic biomarker in acute myeloid leukemia and can reduce the sensitivity of leukemic cells to decitabine. Cancer Cell Int 2019; 19:177. [PMID: 31333331 PMCID: PMC6617691 DOI: 10.1186/s12935-019-0894-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNA-29c (miR-29c) is abnormally expressed in several cancers and serves as an important predictor of tumor prognosis. Herein, we investigate the effects of abnormal miR-29c expression and analyze its clinical significance in acute myeloid leukemia (AML) patients. In addition, decitabine (DAC) has made great progress in the treatment of AML in recent years, but DAC resistance is still common phenomenon and the mechanism of resistance is still unclear. We further analyze the influences of miR-29c to leukemic cells treated with DAC. Methods Real-time quantitative PCR (RQ-PCR) was carried out to detect miR-29c transcript level in 102 de novo AML patients and 25 normal controls. miR-29c/shRNA-29c were respectively transfected into K562 cells and HEL cells. Cell viability after transfection was detected by cell counting Kit-8 assays. Flow cytometry was used to detect apoptosis. Results MiR-29c was significantly down-regulated in AML (P < 0.001). Low miR-29c expression was frequently observed in patients with poor karyotype and high risk (P = 0.006 and 0.013, respectively). Patients with low miR-29c expression had a markedly shorter overall survival (OS) than those with high miR-29c expression (P < 0.001). Multivariate analysis confirmed the independent prognostic value of low miR-29c expression in both the whole cohort as well as the cytogenetically normal AML (CN-AML) subset. Over-expression of miR-29c in K562 treated with DAC inhibited growth, while silencing of miR-29c in HEL promoted growth and inhibited apoptosis. MiR-29c overexpression decreased the half maximal inhibitory concentration (IC50) of DAC in K562, while miR-29c silencing increased the IC50 of DAC in HEL. The demethylation of the miR-29c promoter was associated with its up-regulated expression. Although miR-29c demethylation was also observed in DAC-resistant K562 (K562/DAC), miR-29c expression was down-regulated. MiR-29c transfection also promoted apoptosis and decreased the IC50 of DAC in K562/DAC cells. Conclusions Our results suggest that miR-29c down-regulation may act as an independent prognostic biomarker in AML patients, and miR-29c over-expression can increase the sensitivity of both non-resistant and resistant of leukemic cells to DAC. Electronic supplementary material The online version of this article (10.1186/s12935-019-0894-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Juan Tang
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Guo-Kang Sun
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Ting-Juan Zhang
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - De-Hong Wu
- Department of Hematology, The Third People's Hospital of Kunshan City, 615 Zizhu Rd, Kunshan, 215300 People's Republic of China
| | - Jing-Dong Zhou
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Bei-Bei Ma
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Zi-Jun Xu
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Xiang-Mei Wen
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Qin Chen
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Dong-Ming Yao
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, Jiangsu People's Republic of China
| | - Jun Qian
- 2Department of Hematology, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China
| | - Ji-Chun Ma
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China
| | - Jiang Lin
- 1Laboratory Center, Affiliated People's Hospital of Jiangsu University, 8 Dianli Rd., Zhenjiang, 212002 People's Republic of China
| |
Collapse
|
73
|
Kong J, He X, Wang Y, Li J. Effect of microRNA-29b on proliferation, migration, and invasion of endometrial cancer cells. J Int Med Res 2019; 47:3803-3817. [PMID: 31187677 PMCID: PMC6726808 DOI: 10.1177/0300060519844403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective Aberrant expression of microRNAs is a key regulator of tumorigenesis and progression in endometrial cancer. We assessed the effect of microRNA-29b (miR-29b) on proliferation, chemosensitivity, migration, and invasion of endometrial cancer cells. Methods The proliferation of endometrial cancer cells was examined by water-soluble tetrazolium (WST)-1 assay. The effects of miR-29b on migration and invasion were evaluated by transwell migration and Matrigel invasion assays. Western blotting was used to assess protein expression levels after altered expression of miR-29b. The effect of miR-29b on cisplatin-induced apoptosis was examined by Caspase-Glo 3/7 assay. Results miR-29b inhibited proliferation and decreased migration and invasion of endometrial cancer cells. It also enhanced the sensitivity of endometrial cancer cells to cisplatin and increased cisplatin-induced apoptosis by regulating expression of BAX and Bcl-2. Moreover, miR-29b changed the expression level of phosphatase and tensin homolog (PTEN) and p-AKT by directly binding to the 3′ untranslated region of PTEN. Conclusion miR-29b played important roles in proliferation and progression in endometrial cancer cells by direct regulation of PTEN. It might be used as a biomarker to predict chemotherapy response and prognosis in endometrial cancer.
Collapse
Affiliation(s)
- Jian Kong
- Department of Geriatrics, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Xiuting He
- Department of Geriatrics, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Yan Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Jie Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
74
|
ROR1-targeted delivery of miR-29b induces cell cycle arrest and therapeutic benefit in vivo in a CLL mouse model. Blood 2019; 134:432-444. [PMID: 31151986 DOI: 10.1182/blood.2018882290] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) occurs in 2 major forms: aggressive and indolent. Low miR-29b expression in aggressive CLL is associated with poor prognosis. Indiscriminate miR-29b overexpression in the B-lineage of mice causes aberrance, thus warranting the need for selective introduction of miR-29b into B-CLL cells for therapeutic benefit. The oncofetal antigen receptor tyrosine kinase orphan receptor 1 (ROR1) is expressed on malignant B-CLL cells, but not normal B cells, encouraging us with ROR1-targeted delivery for therapeutic miRs. Here, we describe targeted delivery of miR-29b to ROR1+ CLL cells leading to downregulation of DNMT1 and DNMT3A, modulation of global DNA methylation, decreased SP1, and increased p21 expression in cell lines and primary CLL cells in vitro. Furthermore, using an Eμ-TCL1 mouse model expressing human ROR1, we report the therapeutic benefit of enhanced survival via cellular reprograming by downregulation of DNMT1 and DNMT3A in vivo. Gene expression profiling of engrafted murine leukemia identified reprogramming of cell cycle regulators with decreased SP1 and increased p21 expression after targeted miR-29b treatment. This finding was confirmed by protein modulation, leading to cell cycle arrest and survival benefit in vivo. Importantly, SP1 knockdown results in p21-dependent compensation of the miR-29b effect on cell cycle arrest. These studies form a basis for leukemic cell-targeted delivery of miR-29b as a promising therapeutic approach for CLL and other ROR1+ B-cell malignancies.
Collapse
|
75
|
Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, Zhao H, Shi J, Ke X, Fu L. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol 2019; 12:51. [PMID: 31126316 PMCID: PMC6534901 DOI: 10.1186/s13045-019-0734-5] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant tumor of the immature myeloid hematopoietic cells in the bone marrow (BM). It is a highly heterogeneous disease, with rising morbidity and mortality in older patients. Although researches over the past decades have improved our understanding of AML, its pathogenesis has not yet been fully elucidated. Long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are three noncoding RNA (ncRNA) molecules that regulate DNA transcription and translation. With the development of RNA-Seq technology, more and more ncRNAs that are closely related to AML leukemogenesis have been discovered. Numerous studies have found that these ncRNAs play an important role in leukemia cell proliferation, differentiation, and apoptosis. Some may potentially be used as prognostic biomarkers. In this systematic review, we briefly described the characteristics and molecular functions of three groups of ncRNAs, including lncRNAs, miRNAs, and circRNAs, and discussed their relationships with AML in detail.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Hongyou Zhao
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. .,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
76
|
Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin Epigenetics 2019; 11:81. [PMID: 31097014 PMCID: PMC6524244 DOI: 10.1186/s13148-019-0675-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
The emergence of nanotechnology applied to medicine has revolutionized the treatment of human cancer. As in the case of classic drugs for the treatment of cancer, epigenetic drugs have evolved in terms of their specificity and efficiency, especially because of the possibility of using more effective transport and delivery systems. The use of nanoparticles (NPs) in oncology management offers promising advantages in terms of the efficacy of cancer treatments, but it is still unclear how these NPs may be affecting the epigenome such that safe routine use is ensured. In this work, we summarize the importance of the epigenetic alterations identified in human cancer, which have led to the appearance of biomarkers or epigenetic drugs in precision medicine, and we describe the transport and release systems of the epigenetic drugs that have been developed to date.
Collapse
Affiliation(s)
- Annalisa Roberti
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-FINBA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Adolfo F Valdes
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Ramón Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain.
| | - Agustin F Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-FINBA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Avenida de Roma, 33011, Oviedo, Asturias, Spain.
| |
Collapse
|
77
|
Lang C, Karunairetnam S, Lo KR, Kralicek AV, Crowhurst RN, Gleave AP, MacDiarmid RM, Ingram JR. Common Variants of the Plant microRNA-168a Exhibit Differing Silencing Efficacy for Human Low-Density Lipoprotein Receptor Adaptor Protein 1 (LDLRAP1). Microrna 2019; 8:166-170. [PMID: 30501607 DOI: 10.2174/2211536608666181203103233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/25/2018] [Accepted: 11/26/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The discovery that a plant microRNA (miRNAs) from rice (Oryza sativa miR168a) can modify post-transcriptional expression of the mammalian. Low-Density Lipoprotein Receptor Adaptor Protein 1 (LDLRAP1) gene highlights the potential for cross-kingdom miRNAmRNA interactions. OBJECTIVE To investigate whether common variants of the conserved miR168a family have the capability for similar cross-kingdom regulatory functions, we selected sequences from three dietary plant sources: rice (Oryza sativa), tomato (Solanum lycopersicum), apple (Malus domestica) and compared their ability to regulate human LDLRAP1 expression. METHODS Target prediction software intaRNA and RNAhybrid were used to analyze and calculate the energy and alignment score between the miR168a variants and human LDLRAP1 mRNA. An in vitro cell-based Dual-Luciferase® Reporter Assay (pmirGLO, Promega), was then used to validate the miRNA-mRNA interaction experimentally. RESULTS Computational analyses revealed that a single nucleotide difference at position 14 (from the 5' end of the miRNA) creates a G:U wobble in the miRNA-mRNA duplex formed by tomato and apple miR168a variants. This G:U wobble had only a small effect on the free energy score (-33.8-34.7 kcal/mol). However, despite reasonable hybridization energy scores (<-20 kcal/mol) for all miR168a variants, only the rice miR168a variant lacking a G:U wobble significantly reduced LDLRAP1 transcript expression by 25.8 + 7.3% (p<0.05), as measured by relative luciferase activity. CONCLUSION In summary, single nucleotide differences at key positions can have a marked influence on regulatory function despite similar predicted energy scores and miRNA-mRNA duplex structures.
Collapse
Affiliation(s)
- Claudia Lang
- The New Zealand Institute for Plant & Food Research Ltd., Auckland 1142, New Zealand
| | | | - Kim R Lo
- The New Zealand Institute for Plant & Food Research Ltd., Auckland 1142, New Zealand
| | - Andrew V Kralicek
- The New Zealand Institute for Plant & Food Research Ltd., Auckland 1142, New Zealand
| | - Ross N Crowhurst
- The New Zealand Institute for Plant & Food Research Ltd., Auckland 1142, New Zealand
| | - Andrew Peter Gleave
- The New Zealand Institute for Plant & Food Research Ltd., Auckland 1142, New Zealand
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant & Food Research Ltd., Auckland 1142, New Zealand
| | - John Ronald Ingram
- The New Zealand Institute for Plant & Food Research Ltd., Auckland 1142, New Zealand
| |
Collapse
|
78
|
Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potential role of miR‐29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol 2019; 234:19280-19297. [DOI: 10.1002/jcp.28607] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mohsen Alizadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Safarzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Fatemeh Beyranvand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Lorestan University of Medical Sciences Khorramabad Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
79
|
Xia X, Teotia P, Ahmad I. miR-29c regulates neurogliogenesis in the mammalian retina through REST. Dev Biol 2019; 450:90-100. [PMID: 30914322 DOI: 10.1016/j.ydbio.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
In the developing central nervous system, including its simple and accessible model retina, neurogenesis is followed by gliogenesis. However, the mechanism underlying the neurogliogenic switch remains poorly understood despite the identification of several regulatory genes, associated with the lineage identity and transition. The mechanism may involve cross talks between regulatory genes, facilitated through microRNAs. Here, we posit miR-29c as one of the regulatory miRNAs that may influence neuronal versus glial differentiation. We observed that the temporal patterns of miR-29c expression corresponded with late retinal histogenesis, the stage in the developing retina when neurogliogenic decision predominantly occurs. Examination of the effects of miR-29c on neurogliogenesis by the perturbation of function approach revealed that miR-29c preferentially facilitated differentiation of late RPCs into rod photoreceptors and bipolar cells, the late-born neurons, at the expense of Müller glia, the sole glia generated by retinal progenitor cells. We further observed that miR-29c facilitated neurogenesis and inhibited gliogenesis by regulating the expression of RE-1 silencing transcription factor (REST), which encodes a transcriptional repressor of cell cycle regulators and neuronal genes. Thus, miR-29c may influence neurogliogenic decision in the developing retina by regulating the instructive out put of a molecular axis helmed by REST.
Collapse
Affiliation(s)
- Xiaohuan Xia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Pooja Teotia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
80
|
Liao Y, Ouyang L, Ci L, Chen B, Lv D, Li Q, Sun Y, Fei J, Bao S, Liu X, Li L. Pravastatin regulates host foreign-body reaction to polyetheretherketone implants via miR-29ab1-mediated SLIT3 upregulation. Biomaterials 2019; 203:12-22. [PMID: 30851489 DOI: 10.1016/j.biomaterials.2019.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Host rejection to biomaterials can induce uncontrolled foreign-body reactions (FBR), resulting in a dense fibrous encapsulation that blocks mass transport and/or communication between the host and the implant. Adequate angiogenesis between the body and the implant has been implicated as a key regulator for overcoming FBR. Thus, approaches for stimulating neovascularization and/or suppressing FBR are under investigation. In this study, pravastatin (Pra) was loaded onto a 3D network surface of sulfonated polyetheretherketone (SP) to achieve superior local drug effects. The SP loaded with Pra (SP-Pra) promoted angiogenesis and mitigated FBR via miR-29 dependent SLIT3 upregulation in wild-type (WT) mice. miR-29a and miR-29b1 were significantly downregulated in the SP-Pra capsule compared to levels in the SP capsule, while SLIT3 and neovascularization were substantially upregulated in WT mice. However, the above effects presented in the WT mice were not detected in miR-29ab1 knockout mice which was generated by the CRISPR/Cas9 approach. Overall, the results suggest that miR-29 plays a critical role in reducing FBR to these implants by targeting SLIT3. Suppression of FBR by SP-Pra implants offers the potential to improve the performance of current medical devices.
Collapse
Affiliation(s)
- Yun Liao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Liping Ouyang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai 201203, China
| | - Baohui Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Lv
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Qin Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yingxiao Sun
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shisan Bao
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Discipline of Pathology, Charles Perkin Centre, Bosch Institute and School of Medical Sciences, The University of Sydney, Australia.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Ling Li
- Department of Pharmacy, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
81
|
Gonzales-Aloy E, Connerty P, Salik B, Liu B, Woo AJ, Haber M, Norris MD, Wang J, Wang JY. miR-101 suppresses the development of MLL-rearranged acute myeloid leukemia. Haematologica 2019; 104:e296-e299. [PMID: 30792205 DOI: 10.3324/haematol.2018.209437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Estrella Gonzales-Aloy
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, University of New South Wales, Sydney, Australia
| | - Patrick Connerty
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, University of New South Wales, Sydney, Australia
| | - Basit Salik
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, University of New South Wales, Sydney, Australia
| | - Bing Liu
- Kids Cancer Alliance, Translational Cancer Research Centre for Kids, Cancer Institute New South Wales, Sydney, Australia
| | - Andrew J Woo
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, the University of Western Australia, Crawley, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, Australia
| | - Michelle Haber
- Children's Cancer Institute, University of New South Wales, Sydney, Australia
| | - Murray D Norris
- Children's Cancer Institute, University of New South Wales, Sydney, Australia
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jenny Y Wang
- Cancer and Stem Cell Biology Group, Children's Cancer Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
82
|
Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negahdari B, Sahebkar A. Regulation of tumor angiogenesis by microRNAs: State of the art. J Cell Physiol 2019; 234:1099-1110. [PMID: 30070704 DOI: 10.1002/jcp.27051] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs, miRs) are small (21-25 nucleotides) endogenous and noncoding RNAs involved in many cellular processes such as apoptosis, development, proliferation, and differentiation via binding to the 3'-untranslated region of the target mRNA and inhibiting its translation. Angiogenesis is a hallmark of cancer, which provides oxygen and nutrition for tumor growth while removing deposits and wastes from the tumor microenvironment. There are many angiogenesis stimulators, among which vascular endothelial growth factor (VEGF) is the most well known. VEGF has three tyrosine kinase receptors, which, following VEGF binding, initiate proliferation, invasion, migration, and angiogenesis of endothelial cells in the tumor environment. One of the tumor microenvironment conditions that induce angiogenesis through increasing VEGF and its receptors expression is hypoxia. Several miRNAs have been identified that affect different targets in the tumor angiogenesis pathway. Most of these miRNAs affect VEGF and its tyrosine kinase receptors expression downstream of the hypoxia-inducible Factor 1 (HIF-1). This review focuses on tumor angiogenesis regulation by miRNAs and the mechanism underlying this regulation.
Collapse
Affiliation(s)
- Nasser H Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejad Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
83
|
Qi Y, Wang X, Kong X, Zhai J, Fang Y, Guan X, Wang J. Expression signatures and roles of microRNAs in inflammatory breast cancer. Cancer Cell Int 2019; 19:23. [PMID: 30733644 PMCID: PMC6357482 DOI: 10.1186/s12935-018-0709-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an infrequent but aggressive manifestation of breast cancer, which accounts for 2-4% of all breast cancer cases but responsible for 7-10% of breast cancer-related deaths, and with a 20-30% 10-year overall survival compared with 80% for patients with non-IBC with an unordinary phenotype, whose molecular mechanisms are still largely unknown to date. Discovering and identifying novel bio-markers responsible for diagnosis and therapeutic targets is a pressing need. MicroRNAs are a class of small non-coding RNAs that are capable to post-transcriptionally regulate gene expression of genes by targeting mRNAs, exerting vital and tremendous affects in numerous malignancy-related biological processes, including cell apoptosis, metabolism, proliferation and differentiation. In this study, we review present and high-quality evidences regarding the potential applications of inflammatory breast cancer associated microRNAs for diagnosis and prognosis of this lethal disease.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
84
|
Kohnken R, Mishra A. MicroRNAs in Cutaneous T-Cell Lymphoma: The Future of Therapy. J Invest Dermatol 2019; 139:528-534. [PMID: 30686578 DOI: 10.1016/j.jid.2018.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/22/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRs) are small, noncoding RNAs with numerous cellular functions. With advancing knowledge of the many functions of miRs in cancer pathogenesis, there is emerging interest in miRs as therapeutic targets in cancers. One disease that poses an intriguing model for miR therapy is cutaneous T-cell lymphoma, a rare disease featuring malignant CD4+ T cells that proliferate in the skin. The hallmark of cutaneous T-cell lymphoma progression is epigenetic dysregulation, with aberrant miR levels being a common feature. This review aims to summarize the rapidly emerging advances in the development of miR-based therapies in cancers, with a special emphasis on CTCL.
Collapse
Affiliation(s)
- Rebecca Kohnken
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA; Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Anjali Mishra
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA; Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio USA; Department of Medical Oncology, Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
85
|
Hu N, Cheng Z, Pang Y, Zhao H, Chen L, Wang C, Qin T, Li Q, Han Y, Shi J, Fu L. High expression of MiR-98 is a good prognostic factor in acute myeloid leukemia patients treated with chemotherapy alone. J Cancer 2019; 10:178-185. [PMID: 30662538 PMCID: PMC6329859 DOI: 10.7150/jca.26391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
It has been demonstrated that microRNA-98 (miR-98) is dysregulated in multiple types of solid tumors, but its expression and impact in acute myeloid leukemia (AML) is unclear. To explore the prognostic role of miR-98 in AML, 164 AML patients with the miR-98 expression data were extracted from The Cancer Genome Atlas (TCGA) database and enrolled in this study. First, patients were divided into chemotherapy-only (chemotherapy) group and allogeneic hematopoietic stem cell transplant (allo-HSCT) group. Each group was then divided in two groups by the median expression level of miR-98. In chemotherapy group, high miR-98 expression was associated with longer event-free survival (EFS, P = 0.003) and overall survival (OS, P = 0.004), but in allo-HSCT group, EFS and OS were not significantly different between high and low miR-98 expressers. Second, All patients were divided in two groups by the median expression level of miR-98. In low miR-98 expressers, those treated with allo-HSCT had longer EFS (P = 0.001) and OS (P < 0.001) than chemotherapy, but in high miR-98 expressers, survival was independent from treatment modalities. Gene ontology enrichment analysis indicated that the genes associated with miR-98 expression were mainly concentrated in “definitive hemopoiesis”, “negative regulation of myeloid cell differentiation” and “signaling pathways regulating pluripotency of stem cells” pathways. In conclusion, our results indicated that high miR-98 expression confers good prognosis in AML patients treated with chemotherapy alone. Patients with low miR-98 expression may benefit from allo-HSCT.
Collapse
Affiliation(s)
- Ning Hu
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Zhiheng Cheng
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yifan Pang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China.,Department of Medicine, William Beaumont Hospital, Royal Oak, MI 48073, USA
| | - Hongmian Zhao
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Li Chen
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Chao Wang
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Tong Qin
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Qianyu Li
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yu Han
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Jinlong Shi
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lin Fu
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China
| |
Collapse
|
86
|
Abstract
MicroRNAs (miRNA) are small non-coding RNAs (∼22 nt in length) that are known as potent master regulators of eukaryotic gene expression. miRNAs have been shown to play a critical role in cancer pathogenesis, and the misregulation of miRNAs is a well-known feature of cancer. In recent years, miR-29 has emerged as a critical miRNA in various cancers, and it has been shown to regulate multiple oncogenic processes, including epigenetics, proteostasis, metabolism, proliferation, apoptosis, metastasis, fibrosis, angiogenesis, and immunomodulation. Although miR-29 has been thoroughly documented as a tumor suppressor in the majority of studies, some controversy remains with conflicting reports of miR-29 as an oncogene. In this review, we provide a systematic overview of miR-29's functional role in various mechanisms of cancer and introspection on the contradictory roles of miR-29.
Collapse
|
87
|
Biofabrication of nano copper oxide and its aptamer bioconjugate for delivery of mRNA 29b to lung cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:827-832. [PMID: 30678973 DOI: 10.1016/j.msec.2018.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022]
Abstract
Copper oxide nanoparticles (CuO NPs) are fabricated using Coleus aromaticus leaf extract with an environmental friendly method and studied using various microscopic and spectroscopic techniques. Also, a new aptamer-conjugated hybrid delivery system using green synthesized CuO NPs is developed to deliver miRNA-29b to A549 cells. This delivery system can effectively deliver miRNAs to cancer cells, with superior performance compared to traditionally available transfection agents, thus acting as an efficient platform for intracellular miRNA delivery and improving therapeutic outcomes for lung cancer.
Collapse
|
88
|
Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi Hayat SM, Motieian M, Pourghadamyari H. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol 2018; 234:8465-8486. [PMID: 30515779 DOI: 10.1002/jcp.27776] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.
Collapse
Affiliation(s)
- Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahsa Motieian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Borujen, Iran
| | - Amir Bayat
- Hematology, Oncology, and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cell and Molecular Biology, College of Science, Kish International Campus, University of Tehran, Kish, Iran
| | - Alireza Farsinezhad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahtab Motieian
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New York, New York
| | - Hossein Pourghadamyari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
89
|
Scoville SD, Nalin AP, Chen L, Chen L, Zhang MH, McConnell K, Beceiro Casas S, Ernst G, Traboulsi AAR, Hashi N, Williams M, Zhang X, Hughes T, Mishra A, Benson DM, Saultz JN, Yu J, Freud AG, Caligiuri MA, Mundy-Bosse BL. Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood 2018; 132:1792-1804. [PMID: 30158248 PMCID: PMC6202909 DOI: 10.1182/blood-2018-03-838474] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) can evade the mouse and human innate immune system by suppressing natural killer (NK) cell development and NK cell function. This is driven in part by the overexpression of microRNA (miR)-29b in the NK cells of AML patients, but how this occurs is unknown. In the current study, we demonstrate that the transcription factor aryl hydrocarbon receptor (AHR) directly regulates miR-29b expression. We show that human AML blasts activate the AHR pathway and induce miR-29b expression in NK cells, thereby impairing NK cell maturation and NK cell function, which can be reversed by treating NK cells with an AHR antagonist. Finally, we show that inhibition of constitutive AHR activation in AML blasts lowers their threshold for apoptosis and decreases their resistance to NK cell cytotoxicity. Together, these results identify the AHR pathway as a molecular mechanism by which AML impairs NK cell development and function. The results lay the groundwork in establishing AHR antagonists as potential therapeutic agents for clinical development in the treatment of AML.
Collapse
MESH Headings
- Animals
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Mice
- MicroRNAs/biosynthesis
- Receptors, Aryl Hydrocarbon/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
| | - Ansel P Nalin
- Medical Scientist Training Program
- Comprehensive Cancer Center
| | - Luxi Chen
- Medical Scientist Training Program
- Comprehensive Cancer Center
| | | | | | | | | | | | | | | | | | | | - Tiffany Hughes
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Anjali Mishra
- Comprehensive Cancer Center
- Division of Dermatology, Department of Internal Medicine, and
| | - Don M Benson
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Jennifer N Saultz
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Jianhua Yu
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine
| | - Aharon G Freud
- Comprehensive Cancer Center
- Department of Pathology, The Ohio State University, Columbus, OH; and
| | | | | |
Collapse
|
90
|
miR-29s function as tumor suppressors in gliomas by targeting TRAF4 and predict patient prognosis. Cell Death Dis 2018; 9:1078. [PMID: 30348972 PMCID: PMC6197255 DOI: 10.1038/s41419-018-1092-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022]
Abstract
Robust proliferation and apoptosis inhibition of tumor cells are responsible for the high mortality and poor outcome of patients with high-grade gliomas. miR-29a/b/c have been reported to be important suppressors in several human tumor types. However, their exact roles in gliomagenesis and their relevance to patient prognosis remain unclear. In this study, using 187 human glioma specimens and 20 nontumoral brain tissues, we demonstrated that the expression of miR-29a/b/c decreased progressively as the grade of glioma and the Ki-67 index increased. However, the expression of TRAF4, the functional target of miR-29a/b/c, exhibited the inverse trend, and its level was inversely correlated with the levels of miR-29a/b/c. A Kaplan–Meier analysis demonstrated that the miR-29a/b/c and TRAF4 levels were closely associated with patient survival even in patients with the same tumor grade and identical IDH gene status. A functional study verified that miR-29a/b/c induced apoptosis and suppressed the proliferation of glioma cells by directly targeting TRAF4. An investigation of the mechanism revealed that miR-29a/b/c promoted apoptosis through the TRAF4/AKT/MDM2 pathway in a p53-dependent manner, while miR-29a/b/c induced G1 arrest and inhibited tumor cell proliferation by blocking the phosphorylation of AKT and GSK-3β, and the expression of cyclin D1 and c-Myc. Furthermore, TRAF4-knockdown perfectly simulated the anti-glioma effects of miR-29a/b/c. These findings enrich our understanding of gliomagenesis, highlight the prognostic value of miR-29a/b/c and TRAF4, and imply their potential therapeutic roles in malignant gliomas.
Collapse
|
91
|
Di Marco M, Ramassone A, Pagotto S, Anastasiadou E, Veronese A, Visone R. MicroRNAs in Autoimmunity and Hematological Malignancies. Int J Mol Sci 2018; 19:ijms19103139. [PMID: 30322050 PMCID: PMC6213554 DOI: 10.3390/ijms19103139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity and hematological malignancies are often concomitant in patients. A causal bidirectional relationship exists between them. Loss of immunological tolerance with inappropriate activation of the immune system, likely due to environmental and genetic factors, can represent a breeding ground for the appearance of cancer cells and, on the other hand, blood cancers are characterized by imbalanced immune cell subsets that could support the development of the autoimmune clone. Considerable effort has been made for understanding the proteins that have a relevant role in both processes; however, literature advances demonstrate that microRNAs (miRNAs) surface as the epigenetic regulators of those proteins and control networks linked to both autoimmunity and hematological malignancies. Here we review the most up-to-date findings regarding the miRNA-based molecular mechanisms that underpin autoimmunity and hematological malignancies.
Collapse
Affiliation(s)
- Mirco Di Marco
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Alice Ramassone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Sara Pagotto
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Angelo Veronese
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medicine and Aging Science (DMSI), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Rosa Visone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
92
|
Fukata T, Mizushima T, Nishimura J, Okuzaki D, Wu X, Hirose H, Yokoyama Y, Kubota Y, Nagata K, Tsujimura N, Inoue A, Miyoshi N, Haraguchi N, Takahashi H, Hata T, Matsuda C, Kayama H, Takeda K, Doki Y, Mori M, Yamamoto H. The Supercarbonate Apatite-MicroRNA Complex Inhibits Dextran Sodium Sulfate-Induced Colitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:658-671. [PMID: 30092402 PMCID: PMC6083010 DOI: 10.1016/j.omtn.2018.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) is increasing. Nucleic acid-based medicine has potential as a next-generation treatment, but it is rarely successful with IBD. The aim of this study was to establish a microRNA-based therapy in an IBD model. For this purpose, we used microRNA-29 (miR-29) and a supercarbonate apatite (sCA) nanoparticle as a drug delivery system. Injection of sCA-miR-29a-3p or sCA-miR-29b-3p into mouse tail veins markedly prevented and restored inflammation because of dextran sulfate sodium (DSS)-induced colitis. RNA sequencing analysis revealed that miR-29a and miR-29b could inhibit the interferon-associated inflammatory cascade. Subcutaneous injection of sCA-miR-29b also potently inhibited inflammation, and it efficiently targeted CD11c+ dendritic cells (DCs) among various types of immune cells in the inflamed mucosa. RT-PCR analysis indicated that the miR-29 RNAs in CD11c+ DCs suppressed the production of interleukin-6 (IL-6), transforming growth factor β (TGF-β), and IL-23 subunits in DSS-treated mice. This may inhibit Th17 differentiation and subsequent activation, which is critical in IBD pathogenesis. In vivo experiments using a non-natural artificial microRNA sequence revealed that targeting of DCs in the inflamed colon is an exceptional feature of sCA. This study suggests that sCA-miR-29s may open a new avenue in nucleic acid-based medicine for IBD treatment.
Collapse
Affiliation(s)
- Tadafumi Fukata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita City, Osaka, Japan
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Haruka Hirose
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Yui Kubota
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Kazuya Nagata
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Naoto Tsujimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Akira Inoue
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Chu Matsuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, Japan; Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka3-1, Suita City, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, Japan; Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka3-1, Suita City, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan; Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan.
| |
Collapse
|
93
|
He C, Luo B, Jiang N, Liang Y, He Y, Zeng J, Liu J, Zheng X. OncomiR or antioncomiR: Role of miRNAs in Acute Myeloid Leukemia. Leuk Lymphoma 2018; 60:284-294. [PMID: 30187809 DOI: 10.1080/10428194.2018.1480769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute Myeloid Leukemia (AML) is a hematopoietic progenitor/stem cell disorder in which neoplastic myeloblasts are stopped at an immature stage of differentiation and lost the normal ability of proliferation and apoptosis. MicroRNAs (miRNAs) are small noncoding, single-stranded RNA molecules that can mediate the expression of target genes. While miRNAs mean to contribute the developments of normal functions, abnormal expression of miRNAs and regulations on their corresponding targets have often been found in the developments of AML and described in recent years. In leukemia, miRNAs may function as regulatory molecules, acting as oncogenes or tumor suppressors. Overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to AML formation. Similarly, miRNAs can down-regulate different proteins with oncogenic activity as tumor suppressors. We herein review the current data on miRNAs, specifically their targets and their biological function based on apoptosis in the development of AML.
Collapse
Affiliation(s)
- Chengcheng He
- a People's Hospital of Zhongjiang , Deyang , Sichuan , P. R. China.,b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Bo Luo
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Nan Jiang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yu Liang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yancheng He
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jingyuan Zeng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jiajia Liu
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Xiaoli Zheng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| |
Collapse
|
94
|
|
95
|
Biological Aspects of mTOR in Leukemia. Int J Mol Sci 2018; 19:ijms19082396. [PMID: 30110936 PMCID: PMC6121663 DOI: 10.3390/ijms19082396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a central processor of intra- and extracellular signals, regulating many fundamental cellular processes such as metabolism, growth, proliferation, and survival. Strong evidences have indicated that mTOR dysregulation is deeply implicated in leukemogenesis. This has led to growing interest in the development of modulators of its activity for leukemia treatment. This review intends to provide an outline of the principal biological and molecular functions of mTOR. We summarize the current understanding of how mTOR interacts with microRNAs, with components of cell metabolism, and with controllers of apoptotic machinery. Lastly, from a clinical/translational perspective, we recapitulate the therapeutic results in leukemia, obtained by using mTOR inhibitors as single agents and in combination with other compounds.
Collapse
|
96
|
Memari F, Joneidi Z, Taheri B, Aval SF, Roointan A, Zarghami N. Epigenetics and Epi-miRNAs: Potential markers/therapeutics in leukemia. Biomed Pharmacother 2018; 106:1668-1677. [PMID: 30170355 DOI: 10.1016/j.biopha.2018.07.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic variations can play remarkable roles in different normal and abnormal situations. Such variations have been shown to have a direct role in the pathogenesis of various diseases either through inhibition of tumor suppressor genes or increasing the expression of oncogenes. Enzymes involving in epigenetic machinery are the main actors in tuning the epigenetic-based controls on gene expressions. Aberrant expression of these enzymes can trigger a big chaos in the cellular gene expression networks and finally lead to cancer progression. This situation has been shown in different types of leukemia, where high or low levels of an epigenetic enzyme are partly or highly responsible for involvement or progression of a disease. DNA hypermethylation, different histone modifications, and aberrant miRNA expressions are three main epigenetic variations, which have been shown to play a role in leukemia progression. Epigenetic based treatments now are considered as novel and effective therapies in order to decrease the abnormal epigenetic modifications in patient cells. Different epigenetic-based approaches have been developed and tested to inhibit or reverse the unusual expression of epigenetic agents in leukemia. The reciprocal behavior of miRNAs in the regulation of epigenetic modifiers, while being regulated by them, unlocks a new opportunity in order to design some epigenetic-based miRNAs able to silence or sensitize these effectors in leukemia.
Collapse
Affiliation(s)
- Fatemeh Memari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Joneidi
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behnaz Taheri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sedigheh Fekri Aval
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
97
|
Kriegel AJ, Terhune SS, Greene AS, Noon KR, Pereckas MS, Liang M. Isomer-specific effect of microRNA miR-29b on nuclear morphology. J Biol Chem 2018; 293:14080-14088. [PMID: 30006350 DOI: 10.1074/jbc.ra117.001705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/02/2018] [Indexed: 12/31/2022] Open
Abstract
Targeting mRNAs via seed region pairing is the canonical mechanism by which microRNAs (miRNAs) regulate cellular functions and disease processes. Emerging evidence suggests miRNAs might also act through other mechanisms. miRNA isomers that contain identical seed region sequences, such as miR-29a and miR-29b, provide naturally occurring, informative models for identifying those miRNA effects that are independent of seed region pairing. miR-29a and miR-29b are both expressed in HeLa cells, and miR-29b has been reported to localize to the nucleus in early mitosis because of unique nucleotide sequences on its 3' end. Here, we sought to better understand the mechanism of miR-29b nuclear localization and its function in cell division. We hypothesized that its nuclear localization may be facilitated by protein-miRNA interactions unique to miR-29b. Specific blockade of miR-29b resulted in striking nuclear irregularities not observed following miR-29a blockade. We also observed that miR-29b, but not miR-29a, is enriched in the nucleus and perinuclear clusters during mitosis. Targeted proteomic analysis of affinity-purified samples identified several proteins interacting with synthetic oligonucleotides mimicking miR-29b, but these proteins did not interact with miR-29a. One of these proteins, ADP/ATP translocase 2 (ANT2), known to be involved in mitotic spindle formation, colocalized with miR-29b in perinuclear clusters independently of Argonaute 2. Of note, ANT2 knockdown resulted in nuclear irregularities similar to those observed following miR-29b blockade and prevented nuclear uptake of endogenous miR-29b. Our findings reveal that miR-29 regulates nuclear morphology during mitosis and that this critical function is unique to the miR-29b isoform.
Collapse
Affiliation(s)
- Alison J Kriegel
- From the Department of Physiology, Center of Systems Molecular Medicine,
| | - Scott S Terhune
- the Department of Microbiology and Molecular Genetics, and.,the Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Andrew S Greene
- From the Department of Physiology, Center of Systems Molecular Medicine.,the Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Kathleen R Noon
- the Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael S Pereckas
- the Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mingyu Liang
- From the Department of Physiology, Center of Systems Molecular Medicine,
| |
Collapse
|
98
|
Abstract
Purpose of Review Systemic lupus erythematosus is a severe autoimmune/inflammatory condition of unknown pathophysiology. Though genetic predisposition is essential for disease expression, risk alleles in single genes are usually insufficient to confer disease. Epigenetic dysregulation has been suggested as the missing link between genetic risk and the development of clinically evident disease. Recent Findings Over the past decade, epigenetic events moved into the focus of research targeting the molecular pathophysiology of SLE. Epigenetic alteration can be the net result of preceding infections, medication, diet, and/or other environmental influences. While altered DNA methylation and histone modifications had already been established as pathomechanisms, DNA hydroxymethylation was more recently identified as an activating epigenetic mark. Summary Defective epigenetic control contributes to uncontrolled cytokine and co-receptor expression, resulting in immune activation and tissue damage in SLE. Epigenetic alterations promise potential as disease biomarkers and/or future therapeutic targets in SLE and other autoimmune/inflammatory conditions.
Collapse
Affiliation(s)
- Christian Michael Hedrich
- Division of Paediatric Rheumatology and Immunology, Children's Hospital Dresden, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Department of Women᾿s & Children᾿s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK. .,Department of Paediatric Rheumatology, Alder Hey Children᾿s NHS Foundation Trust Hospital, East Prescott Road, Liverpool, L14 5AB, UK.
| |
Collapse
|
99
|
Yan M, Yang S, Meng F, Zhao Z, Tian Z, Yang P. MicroRNA 199a-5p induces apoptosis by targeting JunB. Sci Rep 2018; 8:6699. [PMID: 29703907 PMCID: PMC5923206 DOI: 10.1038/s41598-018-24932-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/03/2018] [Indexed: 01/18/2023] Open
Abstract
MicroRNAs participate in a variety of physiological and pathophysiological processes in various organs including the heart. Our previous work revealed that the level of miR-199a-5p was significantly higher in failing hearts than in control hearts. However, whether it is associated with the progression of heart failure (HF) and mediates cardiomyocyte apoptosis remained unclear. In the present study, we used various biochemical and molecular biological approaches to investigate the changes in miR-199a-5p levels in failing hearts in a rat model induced by acute myocardial infarction. We found that miR-199a-5p levels in the heart increased with the progression of HF, and overexpression of miR-199a-5p significantly increased apoptosis in untreated H9C2 cells and potentiated angiotensin II-induced apoptosis. Thus, our results indicate that miR-199a-5p is involved in the progression of HF and mediates cardiomyocyte apoptosis. We also confirmed that JunB, a member of the activator protein-1 transcription factor family, is one of direct targets of miR-199a-5p via a dual-luciferase reporter assay and mutagenesis on the 3' untranslated region of the JunB gene. Consistent with the above findings, overexpression of JunB in H9c2 cells suppressed cell apoptosis. Based on our findings, miR-199a-5p induces apoptosis by targeting JunB.
Collapse
Affiliation(s)
- Mengjie Yan
- Department of Internal Medicine and Cardiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Sibao Yang
- Department of Internal Medicine and Cardiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Fanbo Meng
- Department of Internal Medicine and Cardiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhihui Zhao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhisen Tian
- Department of orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Ping Yang
- Department of Internal Medicine and Cardiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
100
|
Micro-Economics of Apoptosis in Cancer: ncRNAs Modulation of BCL-2 Family Members. Int J Mol Sci 2018; 19:ijms19040958. [PMID: 29570632 PMCID: PMC5979352 DOI: 10.3390/ijms19040958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022] Open
Abstract
In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology.
Collapse
|