51
|
Pal A, Dziubinski M, Di Magliano MP, Simeone DM, Owens S, Thomas D, Peterson L, Potu H, Talpaz M, Donato NJ. Usp9x Promotes Survival in Human Pancreatic Cancer and Its Inhibition Suppresses Pancreatic Ductal Adenocarcinoma In Vivo Tumor Growth. Neoplasia 2017; 20:152-164. [PMID: 29248719 PMCID: PMC5735260 DOI: 10.1016/j.neo.2017.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022] Open
Abstract
Usp9x has emerged as a potential therapeutic target in some hematologic malignancies and a broad range of solid tumors including brain, breast, and prostate. To examine Usp9x tumorigenicity and consequence of Usp9x inhibition in human pancreatic tumor models, we carried out gain- and loss-of-function studies using established human pancreatic tumor cell lines (PANC1 and MIAPACA2) and four spontaneously immortalized human pancreatic patient-derived tumor (PDX) cell lines. The effect of Usp9x activity inhibition by small molecule deubiquitinase inhibitor G9 was assessed in 2D and 3D culture, and its efficacy was tested in human tumor xenografts. Overexpression of Usp9x increased 3D growth and invasion in PANC1 cells and up-regulated the expression of known Usp9x substrates Mcl-1 and ITCH. Usp9x inhibition by shRNA-knockdown or by G9 treatment reduced 3D colony formation in PANC1 and PDX cell lines, induced rapid apoptosis in MIAPACA2 cells, and associated with reduced Mcl-1 and ITCH protein levels. Although G9 treatment reduced human MIAPACA2 tumor burden in vivo, in mouse pancreatic cancer cell lines established from constitutive (8041) and doxycycline-inducible (4668) KrasG12D/Tp53R172H mouse pancreatic tumors, Usp9x inhibition increased and sustained the 3D colony growth and showed no significant effect on tumor growth in 8041-xenografts. Thus, Usp9x inhibition may be therapeutically active in human PDAC, but this activity was not predicted from studies of genetically engineered mouse pancreatic tumor models.
Collapse
Affiliation(s)
- Anupama Pal
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center
| | | | | | - Diane M Simeone
- Department of Surgery, University of Michigan School of Medicine
| | - Scott Owens
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Dafydd Thomas
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Luke Peterson
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center
| | - Harish Potu
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center
| | - Moshe Talpaz
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center
| | - Nicholas J Donato
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine and Comprehensive Cancer Center.
| |
Collapse
|
52
|
Lei H, Wang W, Wu Y. Targeting oncoproteins for degradation by small molecules in myeloid leukemia. Leuk Lymphoma 2017; 59:2297-2304. [DOI: 10.1080/10428194.2017.1403600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Weiwei Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
53
|
Kapoor S, Natarajan K, Baldwin PR, Doshi KA, Lapidus RG, Mathias TJ, Scarpa M, Trotta R, Davila E, Kraus M, Huszar D, Tron AE, Perrotti D, Baer MR. Concurrent Inhibition of Pim and FLT3 Kinases Enhances Apoptosis of FLT3-ITD Acute Myeloid Leukemia Cells through Increased Mcl-1 Proteasomal Degradation. Clin Cancer Res 2017; 24:234-247. [PMID: 29074603 DOI: 10.1158/1078-0432.ccr-17-1629] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023]
Abstract
Purpose:fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is present in 30% of acute myeloid leukemia (AML), and these patients have short disease-free survival. FLT3 inhibitors have limited and transient clinical activity, and concurrent treatment with inhibitors of parallel or downstream signaling may improve responses. The oncogenic serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD and also promotes its signaling in a positive feedback loop, suggesting benefit of combined Pim and FLT3 inhibition.Experimental Design: Combinations of clinically active Pim and FLT3 inhibitors were studied in vitro and in vivoResults: Concurrent treatment with the pan-Pim inhibitor AZD1208 and FLT3 inhibitors at clinically applicable concentrations abrogated in vitro growth of FLT3-ITD, but not wild-type FLT3 (FLT3-WT), cell lines. AZD1208 cotreatment increased FLT3 inhibitor-induced apoptosis of FLT3-ITD, but not FLT3-WT, cells measured by sub-G1 fraction, annexin V labeling, mitochondrial membrane potential, and PARP and caspase-3 cleavage. Concurrent treatment with AZD1208 and the FLT3 inhibitor quizartinib decreased growth of MV4-11 cells, with FLT3-ITD, in mouse xenografts, and prolonged survival, enhanced apoptosis of FLT3-ITD primary AML blasts, but not FLT3-WT blasts or remission marrow cells, and decreased FLT3-ITD AML blast colony formation. Mechanistically, AZD1208 and quizartinib cotreatment decreased expression of the antiapoptotic protein Mcl-1. Decrease in Mcl-1 protein expression was abrogated by treatment with the proteasome inhibitor MG132, and was preceded by downregulation of the Mcl-1 deubiquitinase USP9X, a novel mechanism of Mcl-1 regulation in AML.Conclusions: The data support clinical testing of Pim and FLT3 inhibitor combination therapy for FLT3-ITD AML. Clin Cancer Res; 24(1); 234-47. ©2017 AACR.
Collapse
Affiliation(s)
- Shivani Kapoor
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Karthika Natarajan
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Patrick R Baldwin
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kshama A Doshi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Rena G Lapidus
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Trevor J Mathias
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Mario Scarpa
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Rossana Trotta
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eduardo Davila
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland.,Veterans Affairs Medical Center, Baltimore, Maryland
| | | | | | | | - Danilo Perrotti
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
54
|
Yu X, Li W, Xia Z, Xie L, Ma X, Liang Q, Liu L, Wang J, Zhou X, Yang Y, Liu H. Targeting MCL-1 sensitizes human esophageal squamous cell carcinoma cells to cisplatin-induced apoptosis. BMC Cancer 2017; 17:449. [PMID: 28659182 PMCID: PMC5490225 DOI: 10.1186/s12885-017-3442-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/22/2017] [Indexed: 01/10/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies in China and is an exceptionally drug-resistant tumor with a 5-year survival rate less than 15%. Cisplatin is the most commonly used conventional chemotherapeutic drug for the treatment of ESCC, but some patients have a poor response to cisplatin-based chemotherapy. New strategies that could enhance chemosensitivity to cisplatin are needed. Methods We used reverse transcription-RCR (RT-PCR), immunoblot, immunohistochemical (IHC) staining, anchorage-dependent and -independent growth assays, co-immunoprecipitation (Co-IP) assay, RNA interference and in vivo tumor growth assay to study the expression of MCL-1 in ESCCs and the response of ESCC cells to cisplatin. Results The present study showed that MCL-1 expression was significantly increased in ESCC tissues compared to normal adjacent tissues and was associated with depth of invasion and lymph node metastasis. Knockdown of MCL-1 produced significant chemosensitization to cisplatin in association with caspase-3 activation and PARP cleavage in KYSE150 and KYSE510 cells. The selective MCL-1 inhibitor UMI-77 caused dissociation of MCL-1 from the proapoptotic protein BAX and BAK, and enhanced KYSE150 and KYSE510 cells to cisplatin-induced apoptosis accompanied by caspase-3 activation and PARP cleavage. Conclusions The current study suggests that MCL-1 contributes to the development of ESCC and is a promising therapeutic target for chemosensitization of ESCC cells to cisplatin. This might provide a scientific basis for developing effective approaches to treat the subset of ESCCs patients with MCL-1 overexpression.
Collapse
Affiliation(s)
- Xinfang Yu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China.,Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Lijun Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Jian Wang
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Yifeng Yang
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China. .,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
55
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|
56
|
Spinella JF, Cassart P, Richer C, Saillour V, Ouimet M, Langlois S, St-Onge P, Sontag T, Healy J, Minden MD, Sinnett D. Genomic characterization of pediatric T-cell acute lymphoblastic leukemia reveals novel recurrent driver mutations. Oncotarget 2016; 7:65485-65503. [PMID: 27602765 PMCID: PMC5323170 DOI: 10.18632/oncotarget.11796] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with variable prognosis. It represents 15% of diagnosed pediatric ALL cases and has a threefold higher incidence among males. Many recurrent alterations have been identified and help define molecular subgroups of T-ALL, however the full range of events involved in driving transformation remain to be defined. Using an integrative approach combining genomic and transcriptomic data, we molecularly characterized 30 pediatric T-ALLs and identified common recurrent T-ALL targets such as FBXW7, JAK1, JAK3, PHF6, KDM6A and NOTCH1 as well as novel candidate T-ALL driver mutations including the p.R35L missense mutation in splicesome factor U2AF1 found in 3 patients and loss of function mutations in the X-linked tumor suppressor genes MED12 (frameshit mutation p.V167fs, splice site mutation g.chrX:70339329T>C, missense mutation p.R1989H) and USP9X (nonsense mutation p.Q117*). In vitro functional studies further supported the putative role of these novel T-ALL genes in driving transformation. U2AF1 p.R35L was shown to induce aberrant splicing of downstream target genes, and shRNA knockdown of MED12 and USP9X was shown to confer resistance to apoptosis following T-ALL relevant chemotherapy drug treatment in Jurkat leukemia cells. Interestingly, nearly 60% of novel candidate driver events were identified among immature T-ALL cases, highlighting the underlying genomic complexity of pediatric T-ALL, and the need for larger integrative studies to decipher the mechanisms that contribute to its various subtypes and provide opportunities to refine patient stratification and treatment.
Collapse
Affiliation(s)
| | - Pauline Cassart
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Chantal Richer
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Virginie Saillour
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Manon Ouimet
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Sylvie Langlois
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Pascal St-Onge
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Thomas Sontag
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Jasmine Healy
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Daniel Sinnett
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
57
|
Drießen S, Berleth N, Friesen O, Löffler AS, Böhler P, Hieke N, Stuhldreier F, Peter C, Schink KO, Schultz SW, Stenmark H, Holland P, Simonsen A, Wesselborg S, Stork B. Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy. Autophagy 2016. [PMID: 26207339 DOI: 10.1080/15548627.2015.1067359] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Autophagy represents an intracellular degradation process which is involved in both regular cell homeostasis and disease settings. In recent years, the molecular machinery governing this process has been elucidated. The ULK1 kinase complex consisting of the serine/threonine protein kinase ULK1 and the adapter proteins ATG13, RB1CC1, and ATG101, is centrally involved in the regulation of autophagy initiation. This complex is in turn regulated by the activity of different nutrient- or energy-sensing kinases, including MTOR, AMPK, and AKT. However, next to phosphorylation processes it has been suggested that ubiquitination of ULK1 positively influences ULK1 function. Here we report that the inhibition of deubiquitinases by the compound WP1130 leads to increased ULK1 ubiquitination, the transfer of ULK1 to aggresomes, and the inhibition of ULK1 activity. Additionally, WP1130 can block the autophagic flux. Thus, treatment with WP1130 might represent an efficient tool to inhibit the autophagy-initiating ULK1 complex and autophagy.
Collapse
Affiliation(s)
- Stefan Drießen
- a Institute of Molecular Medicine; Heinrich-Heine-University ; Düsseldorf , Germany
| | - Niklas Berleth
- a Institute of Molecular Medicine; Heinrich-Heine-University ; Düsseldorf , Germany
| | - Olena Friesen
- a Institute of Molecular Medicine; Heinrich-Heine-University ; Düsseldorf , Germany
| | - Antje S Löffler
- a Institute of Molecular Medicine; Heinrich-Heine-University ; Düsseldorf , Germany
| | - Philip Böhler
- a Institute of Molecular Medicine; Heinrich-Heine-University ; Düsseldorf , Germany
| | - Nora Hieke
- a Institute of Molecular Medicine; Heinrich-Heine-University ; Düsseldorf , Germany
| | - Fabian Stuhldreier
- a Institute of Molecular Medicine; Heinrich-Heine-University ; Düsseldorf , Germany
| | - Christoph Peter
- a Institute of Molecular Medicine; Heinrich-Heine-University ; Düsseldorf , Germany
| | - Kay O Schink
- b Department of Biochemistry ; Institute for Cancer Research; The Norwegian Radium Hospital ; Oslo , Norway
| | - Sebastian W Schultz
- b Department of Biochemistry ; Institute for Cancer Research; The Norwegian Radium Hospital ; Oslo , Norway
| | - Harald Stenmark
- b Department of Biochemistry ; Institute for Cancer Research; The Norwegian Radium Hospital ; Oslo , Norway
| | - Petter Holland
- c Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo ; Oslo , Norway
| | - Anne Simonsen
- c Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo ; Oslo , Norway
| | - Sebastian Wesselborg
- a Institute of Molecular Medicine; Heinrich-Heine-University ; Düsseldorf , Germany
| | - Björn Stork
- a Institute of Molecular Medicine; Heinrich-Heine-University ; Düsseldorf , Germany
| |
Collapse
|
58
|
Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrob Agents Chemother 2016; 60:4183-96. [PMID: 27139470 DOI: 10.1128/aac.03021-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/24/2016] [Indexed: 12/17/2022] Open
Abstract
Due to the rise of antibiotic resistance and the small number of effective antiviral drugs, new approaches for treating infectious diseases are urgently needed. Identifying targets for host-based therapies represents an emerging strategy for drug discovery. The ubiquitin-proteasome system is a central mode of signaling in the eukaryotic cell and may be a promising target for therapies that bolster the host's ability to control infection. Deubiquitinase (DUB) enzymes are key regulators of the host inflammatory response, and we previously demonstrated that a selective DUB inhibitor and its derivative promote anti-infective activities in host cells. To find compounds with anti-infective efficacy but improved toxicity profiles, we tested a library of predominantly 2-cyano-3-acrylamide small-molecule DUB inhibitors for anti-infective activity in macrophages against two intracellular pathogens: murine norovirus (MNV) and Listeria monocytogenes We identified compound C6, which inhibited DUB activity in human and murine cells and reduced intracellular replication of both pathogens with minimal toxicity in cell culture. Treatment with C6 did not significantly affect the ability of macrophages to internalize virus, suggesting that the anti-infective activity interferes with postentry stages of the MNV life cycle. Metabolic stability and pharmacokinetic assays showed that C6 has a half-life in mouse liver microsomes of ∼20 min and has a half-life of approximately 4 h in mice when administered intravenously. Our results provide a framework for targeting the host ubiquitin system in the development of host-based therapies for infectious disease. Compound C6 represents a promising tool with which to elucidate the role of DUBs in the macrophage response to infection.
Collapse
|
59
|
Abstract
Deubiquitinases are deubiquitinating enzymes (DUBs), which remove ubiquitin from proteins, thus regulating their proteasomal degradation, localization and activity. Here, we discuss DUBs as anti-cancer drug targets.
Collapse
|
60
|
Lim KH, Song MH, Baek KH. Decision for cell fate: deubiquitinating enzymes in cell cycle checkpoint. Cell Mol Life Sci 2016; 73:1439-55. [PMID: 26762302 PMCID: PMC11108577 DOI: 10.1007/s00018-015-2129-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/03/2015] [Accepted: 12/30/2015] [Indexed: 09/29/2022]
Abstract
All organs consisting of single cells are consistently maintaining homeostasis in response to stimuli such as free oxygen, DNA damage, inflammation, and microorganisms. The cell cycle of all mammalian cells is regulated by protein expression in the right phase to respond to proliferation and apoptosis signals. Post-translational modifications (PTMs) of proteins by several protein-editing enzymes are associated with cell cycle regulation by their enzymatic functions. Ubiquitination, one of the PTMs, is also strongly related to cell cycle regulation by protein degradation or signal transduction. The importance of deubiquitinating enzymes (DUBs), which have a reversible function for ubiquitination, has recently suggested that the function of DUBs is also important for determining the fate of proteins during cell cycle processing. This article reviews and summarizes the diverse roles of DUBs, including DNA damage, cell cycle processing, and regulation of histone proteins, and also suggests the possibility for therapeutic targets.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Myoung-Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 463-400, Republic of Korea.
| |
Collapse
|
61
|
Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 2016; 16:2129-44. [PMID: 25824729 DOI: 10.7314/apjcp.2015.16.6.2129] [Citation(s) in RCA: 386] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Programmed cell death (PCD) or apoptosis is a mechanism which is crucial for all multicellular organisms to control cell proliferation and maintain tissue homeostasis as well as eliminate harmful or unnecessary cells from an organism. Defects in the physiological mechanisms of apoptosis may contribute to different human diseases like cancer. Identification of the mechanisms of apoptosis and its effector proteins as well as the genes responsible for apoptosis has provided a new opportunity to discover and develop novel agents that can increase the sensitivity of cancer cells to undergo apoptosis or reset their apoptotic threshold. These novel targeted therapies include those targeting anti-apoptotic Bcl-2 family members, p53, the extrinsic pathway, FLICE-inhibitory protein (c-FLIP), inhibitor of apoptosis (IAP) proteins, and the caspases. In recent years a number of these novel agents have been assessed in preclinical and clinical trials. In this review, we introduce some of the key regulatory molecules that control the apoptotic pathways, extrinsic and intrinsic death receptors, discuss how defects in apoptotic pathways contribute to cancer, and list several agents being developed to target apoptosis.
Collapse
Affiliation(s)
- Samira Goldar
- Department of Biochemistry and Clinical Labratorary, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | |
Collapse
|
62
|
Lawson AP, Long MJC, Coffey RT, Qian Y, Weerapana E, El Oualid F, Hedstrom L. Naturally Occurring Isothiocyanates Exert Anticancer Effects by Inhibiting Deubiquitinating Enzymes. Cancer Res 2015; 75:5130-5142. [PMID: 26542215 DOI: 10.1158/0008-5472.can-15-1544] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/31/2015] [Indexed: 01/09/2023]
Abstract
The anticancer properties of cruciferous vegetables are well known and attributed to an abundance of isothiocyanates such as benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC). While many potential targets of isothiocyanates have been proposed, a full understanding of the mechanisms underlying their anticancer activity has remained elusive. Here we report that BITC and PEITC effectively inhibit deubiquitinating enzymes (DUB), including the enzymes USP9x and UCH37, which are associated with tumorigenesis, at physiologically relevant concentrations and time scales. USP9x protects the antiapoptotic protein Mcl-1 from degradation, and cells dependent on Mcl-1 were especially sensitive to BITC and PEITC. These isothiocyanates increased Mcl-1 ubiquitination and either isothiocyanate treatment, or RNAi-mediated silencing of USP9x decreased Mcl-1 levels, consistent with the notion that USP9x is a primary target of isothiocyanate activity. These isothiocyanates also increased ubiquitination of the oncogenic fusion protein Bcr-Abl, resulting in degradation under low isothiocyanate concentrations and aggregation under high isothiocyanate concentrations. USP9x inhibition paralleled the decrease in Bcr-Abl levels induced by isothiocyanate treatment, and USP9x silencing was sufficient to decrease Bcr-Abl levels, further suggesting that Bcr-Abl is a USP9x substrate. Overall, our findings suggest that USP9x targeting is critical to the mechanism underpinning the well-established anticancer activity of isothiocyanate. We propose that the isothiocyanate-induced inhibition of DUBs may also explain how isothiocyanates affect inflammatory and DNA repair processes, thus offering a unifying theme in understanding the function and useful application of isothiocyanates to treat cancer as well as a variety of other pathologic conditions.
Collapse
Affiliation(s)
- Ann P Lawson
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA
| | - Marcus J C Long
- Graduate Program in Biochemistry and Biophysics, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA
| | - Rory T Coffey
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA.,Graduate Program in Molecular and Cellular Biology, Brandeis University, MS008, 415 South St., Waltham MA 02453-9110
| | - Yu Qian
- Department of Chemistry, Merkert Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467-3860 USA
| | - Eranthie Weerapana
- Department of Chemistry, Merkert Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467-3860 USA
| | | | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, MA 02453-9110 USA.,Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453-9110 USA
| |
Collapse
|
63
|
D'Arcy P, Linder S. Molecular pathways: translational potential of deubiquitinases as drug targets. Clin Cancer Res 2015; 20:3908-14. [PMID: 25085788 DOI: 10.1158/1078-0432.ccr-14-0568] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ubiquitin proteasome system (UPS) is the main system for controlled protein degradation and a key regulator of fundamental cellular processes. The dependency of cancer cells on a functioning UPS coupled with the clinical success of bortezomib for the treatment of multiple myeloma have made the UPS an obvious target for drug development. Deubiquitinases (DUB) are components of the UPS that encompass a diverse family of ubiquitin isopeptidases that catalyze the removal of ubiquitin moieties from target proteins or from polyubiquitin chains, resulting in altered signaling or changes in protein stability. Increasing evidence has implicated deregulation of DUB activity in the initiation and progression of cancer. The altered pattern of DUB expression observed in many tumors can potentially serve as a clinical marker for predicting disease outcome and therapy response. The finding of DUB overexpression in tumor cells suggests that they may serve as novel targets for the development of anticancer therapies. Several specific and broad-spectrum DUB inhibitors are shown to have antitumor activity in preclinical in vivo models with low levels of systemic toxicity. Future studies will hopefully establish the clinical potential for DUB inhibitors as a strategy to treat cancer.
Collapse
Affiliation(s)
- Pádraig D'Arcy
- Department of Oncology-Pathology, Karolinska Institute, Stockholm and
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institute, Stockholm and Department of Medical Sciences, Division of Clinical Pharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
64
|
Hu H, Tang C, Jiang Q, Luo W, Liu J, Wei X, Liu R, Wu Z. Reduced ubiquitin-specific protease 9X expression induced by RNA interference inhibits the bioactivity of hepatocellular carcinoma cells. Oncol Lett 2015; 10:268-272. [PMID: 26171012 DOI: 10.3892/ol.2015.3152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/24/2015] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin-specific protease 9X (USP9X) is crucial in many tumor types, but not in hepatocellular carcinoma (HCC). The current study aimed to examine the effects of RNA interference on USP9X expression, and subsequently on the bioactivity of HCC SMMC7721 and HepG2 cells. The protein expression of USP9X in SMMC7721, HepG2 and normal human liver cell line L02 at the cellular level was determined by western blot analysis; USP9X was knocked down by small interfering RNA (siRNA) in HCC SMMC7721 and HepG2 cells. In vitro cell viability was assessed by MTT assay, apoptosis was determined by flow cytometry (FCM) and cell migration was evaluated by Transwell assays. The protein expression of USP9X in SMMC7721 and HepG2 were both significantly higher than that in L02 (P<0.01). The results of western blot demonstrated that the USP9X-siRNA could efficiently inhibit USP9X expression when compared with that of the negative control (NC) group (P<0.01) and MTT assay demonstrated that cell proliferation in USP9X-blocked cells was significantly reduced when compared with that of the NC group (P<0.01). The results of FCM revealed that apoptosis was significantly increased in USP9X-blocked cells when compared with that of the NC group (P<0.01). The results of transwell assay showed that cell migration was significantly inhibited in USP9X-blocked cells when compared with that of the NC group (P<0.01). These results show that expression of USP9X is upregulated in hepatoma cells SMMC7721 and HepG2, and that downregulating USP9X by siRNA may induce cell apoptosis, inhibit cell growth and cell migration in the HCC SMMC7721 and HepG2 cell lines. USP9X may therefore be a potential target for HCC treatment and early detection.
Collapse
Affiliation(s)
- Huiwen Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chengyong Tang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qinghu Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiming Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
65
|
Targeting deubiquitinase activity with a novel small-molecule inhibitor as therapy for B-cell malignancies. Blood 2015; 125:3588-97. [PMID: 25814533 DOI: 10.1182/blood-2014-10-605584] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
Usp9x was recently shown to be highly expressed in myeloma patients with short progression-free survival and is proposed to enhance stability of the survival protein Mcl-1. In this study, we found that the partially selective Usp9x deubiquitinase inhibitor WP1130 induced apoptosis and reduced Mcl-1 protein levels. However, short hairpin RNA-mediated knockdown (KD) of Usp9x in myeloma cells resulted in transient induction of apoptosis, followed by a sustained reduction in cell growth. A compensatory upregulation of Usp24, a deubiquitinase closely related to Usp9x, in Usp9x KD cells was noted. Direct Usp24 KD resulted in marked induction of myeloma cell death that was associated with a reduction of Mcl-1. Usp24 was found to sustain myeloma cell survival and Mcl-1 regulation in the absence of Usp9x. Both Usp9x and Usp24 were expressed and activated in primary myeloma cells whereas Usp24 protein overexpression was noted in some patients with drug-refractory myeloma and other B-cell malignancies. Furthermore, we improved the drug-like properties of WP1130 and demonstrated that the novel compound EOAI3402143 dose-dependently inhibited Usp9x and Usp24 activity, increased tumor cell apoptosis, and fully blocked or regressed myeloma tumors in mice. We conclude that small-molecule Usp9x/Usp24 inhibitors may have therapeutic activity in myeloma.
Collapse
|
66
|
Zhou M, Wang T, Lai H, Zhao X, Yu Q, Zhou J, Yang Y. Targeting of the deubiquitinase USP9X attenuates B-cell acute lymphoblastic leukemia cell survival and overcomes glucocorticoid resistance. Biochem Biophys Res Commun 2015; 459:333-339. [PMID: 25735983 DOI: 10.1016/j.bbrc.2015.02.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 01/21/2023]
Abstract
Although previous studies attributed a pro-survival role to USP9X in human cancer, how USP9X affects B-cell acute lymphoblastic leukemia (B-ALL) remains unclear. Here, we found that USP9X is overexpressed in B-ALL cell lines and human patients. We investigated the role of USP9X in B-ALL and found that USP9X knockdown significantly reduced leukemic cell growth and increased spontaneous apoptosis, thereby improving survival in immunodeficient mice. These effects are partially mediated by the intrinsic apoptotic pathway, as we found that USP9X-knockdown leukemic cells displayed MCL1 down-regulation, with decreased BCL-2/BCL-XL levels and increased BAX levels. In addition, we demonstrated that USP9X inhibition negatively regulates mTORC1 activity toward its substrate S6K1. Clinically, USP9X inhibition sensitized glucocorticoid-resistant ALL cells to prednisolone; this observation reveals a potential avenue for improving the treatment of drug-resistant relapses. Collectively, our findings suggest that the combination of USP9X targeting and glucocorticoids treatment has attractive utility in B-ALL. This approach represents a potential strategy for promising combination therapies for lymphoid malignancies.
Collapse
Affiliation(s)
- Mi Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huiling Lai
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuejiao Zhao
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Yu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianfeng Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Yang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
67
|
Murtaza M, Jolly LA, Gecz J, Wood SA. La FAM fatale: USP9X in development and disease. Cell Mol Life Sci 2015; 72:2075-89. [PMID: 25672900 PMCID: PMC4427618 DOI: 10.1007/s00018-015-1851-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 11/12/2022]
Abstract
Deubiquitylating enzymes (DUBs), act downstream of ubiquitylation. As such, these post-post-translational modifiers function as the final arbitrators of a protein substrate’s ubiquitylation status, thus regulating its fate. In most instances, DUBs moderate the absolute level of a substrate, its locality or activity, rather than being an “all-or-none” phenomenon. Yet, disruption of this quantitative regulation can produce dramatic qualitative differences. The ubiquitin-specific protease 9X (USP9X/FAM) is a substrate-specific DUB, which displays an extraordinarily high level of sequence conservation from Drosophila to mammals. It is primarily the recent revelations of USP9X’s pivotal role in human cancers, both as oncogene or tumour suppressor, in developmental disorders including intellectual disability, epilepsy, autism and developmental delay that has led to a subsequent re-examination of its molecular and cellular functions. Results from experimental animal models have implicated USP9X in neurodegeneration, including Parkinson’s and Alzheimer’s disease, as well as autoimmune diseases. In this review, we describe the current and accumulated knowledge on the molecular, cellular and developmental aspects of USP9X function within the context of the biological consequences during normal development and disease.
Collapse
Affiliation(s)
- Mariyam Murtaza
- The Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
68
|
Thrane S, Pedersen AM, Thomsen MBH, Kirkegaard T, Rasmussen BB, Duun-Henriksen AK, Lænkholm AV, Bak M, Lykkesfeldt AE, Yde CW. A kinase inhibitor screen identifies Mcl-1 and Aurora kinase A as novel treatment targets in antiestrogen-resistant breast cancer cells. Oncogene 2014; 34:4199-210. [DOI: 10.1038/onc.2014.351] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 09/15/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
|
69
|
Pal A, Young MA, Donato NJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res 2014; 74:4955-66. [PMID: 25172841 DOI: 10.1158/0008-5472.can-14-1211] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ubiquitin-proteasome system (UPS) has emerged as a therapeutic focus and target for the treatment of cancer. The most clinically successful UPS-active agents (bortezomib and lenalidomide) are limited in application to hematologic malignancies, with only marginal efficacy in solid tumors. Inhibition of specific ubiquitin E3 ligases has also emerged as a valid therapeutic strategy, and many targets are currently being investigated. Another emerging and promising approach in regulation of the UPS involves targeting deubiquitinases (DUB). The DUBs comprise a relatively small group of proteins, most with cysteine protease activity that target several key proteins involved in regulation of tumorigenesis, apoptosis, senescence, and autophagy. Through their multiple contacts with ubiquitinated protein substrates involved in these pathways, DUBs provide an untapped means of modulating many important regulatory proteins that support oncogenic transformation and progression. Ubiquitin-specific proteases (USP) are one class of DUBs that have drawn special attention as cancer targets, as many are differentially expressed or activated in tumors or their microenvironment, making them ideal candidates for drug development. This review attempts to summarize the USPs implicated in different cancers, the current status of USP inhibitor-mediated pharmacologic intervention, and future prospects for USP inhibitors to treat diverse cancers.
Collapse
Affiliation(s)
- Anupama Pal
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Matthew A Young
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Nicholas J Donato
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
70
|
Cao MN, Zhou YB, Gao AH, Cao JY, Gao LX, Sheng L, Xu L, Su MB, Cao XC, Han MM, Wang MK, Li J. Curcusone D, a novel ubiquitin–proteasome pathway inhibitor via ROS-induced DUB inhibition, is synergistic with bortezomib against multiple myeloma cell growth. Biochim Biophys Acta Gen Subj 2014; 1840:2004-13. [DOI: 10.1016/j.bbagen.2014.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 01/24/2014] [Accepted: 02/04/2014] [Indexed: 12/13/2022]
|
71
|
Cox JL, Wilder PJ, Wuebben EL, Ouellette MM, Hollingsworth MA, Rizzino A. Context-dependent function of the deubiquitinating enzyme USP9X in pancreatic ductal adenocarcinoma. Cancer Biol Ther 2014; 15:1042-52. [PMID: 24841553 DOI: 10.4161/cbt.29182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadly malignancies. Recently, the deubiquitinating protease USP9X has been shown to behave as an oncogene in a number of neoplasms, including those of breast, brain, colon, esophagus and lung, as well as KRAS wild-type PDAC. However, other studies suggest that USP9X may function as a tumor-suppressor in a murine PDAC model when USP9X expression is depleted during early pancreatic development. To address the conflicting findings surrounding the role of USP9X in PDAC, we examined the effects of knocking down USP9X in five human PDAC cell lines (BxPC3, Capan1, CD18, Hs766T, and S2-013). We demonstrate that knocking down USP9X in each of the PDAC cell lines reduces their anchorage-dependent growth. Using an inducible shRNA system to knock down USP9X in both BxPC3 and Capan1 cells, we also determined that USP9X is necessary for the anchorage-independent growth. In addition, knockdown of USP9X alters the cell cycle profile of BxPC3 cells and increases their invasive capacity. Finally, we show that an inhibitor of deubiquitinating proteases, WP1130, induces significant cytotoxicity in each of the five PDAC cell lines tested. Overall, our work and the work of others indicate that the function and role of USP9X is highly context-dependent. Although USP9X may function as a tumor-suppressor during the establishment of PDAC, data presented here argue that USP9X promotes cell growth in advanced PDAC cells when PDAC is typically diagnosed. Hence, USP9X may be a promising therapeutic target for the treatment of advanced PDAC.
Collapse
Affiliation(s)
- Jesse L Cox
- Eppley Institute for Research in Cancer and Allied Diseases; Fred & Pamela Buffett Cancer Center; University of Nebraska Medical Center; Omaha, NE USA
| | - Phillip J Wilder
- Eppley Institute for Research in Cancer and Allied Diseases; Fred & Pamela Buffett Cancer Center; University of Nebraska Medical Center; Omaha, NE USA
| | - Erin L Wuebben
- Eppley Institute for Research in Cancer and Allied Diseases; Fred & Pamela Buffett Cancer Center; University of Nebraska Medical Center; Omaha, NE USA
| | - Michel M Ouellette
- Eppley Institute for Research in Cancer and Allied Diseases; Fred & Pamela Buffett Cancer Center; University of Nebraska Medical Center; Omaha, NE USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases; Fred & Pamela Buffett Cancer Center; University of Nebraska Medical Center; Omaha, NE USA
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases; Fred & Pamela Buffett Cancer Center; University of Nebraska Medical Center; Omaha, NE USA
| |
Collapse
|
72
|
|
73
|
Coughlin K, Anchoori R, Iizuka Y, Meints J, MacNeill L, Vogel RI, Orlowski RZ, Lee MK, Roden RBS, Bazzaro M. Small-molecule RA-9 inhibits proteasome-associated DUBs and ovarian cancer in vitro and in vivo via exacerbating unfolded protein responses. Clin Cancer Res 2014; 20:3174-86. [PMID: 24727327 DOI: 10.1158/1078-0432.ccr-13-2658] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Ovarian cancer is the deadliest of the gynecologic malignancies. Carcinogenic progression is accompanied by upregulation of ubiquitin-dependent protein degradation machinery as a mechanism to compensate with elevated endogenous proteotoxic stress. Recent studies support the notion that deubiquitinating enzymes (DUB) are essential factors in proteolytic degradation and that their aberrant activity is linked to cancer progression and chemoresistance. Thus, DUBs are an attractive therapeutic target for ovarian cancer. EXPERIMENTAL DESIGN The potency and selectivity of RA-9 inhibitor for proteasome-associated DUBs was determined in ovarian cancer cell lines and primary cells. The anticancer activity of RA-9 and its mechanism of action were evaluated in multiple cancer cell lines in vitro and in vivo in immunodeficient mice bearing an intraperitoneal ES-2 xenograft model of human ovarian cancer. RESULTS Here, we report the characterization of RA-9 as a small-molecule inhibitor of proteasome-associated DUBs. Treatment with RA-9 selectively induces onset of apoptosis in ovarian cancer cell lines and primary cultures derived from donors. Loss of cell viability following RA-9 exposure is associated with an unfolded protein response as mechanism to compensate for unsustainable levels of proteotoxic stress. In vivo treatment with RA-9 retards tumor growth, increases overall survival, and was well tolerated by the host. CONCLUSIONS Our preclinical studies support further evaluation of RA-9 as an ovarian cancer therapeutic.
Collapse
Affiliation(s)
- Kathleen Coughlin
- Authors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ravi Anchoori
- Authors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TexasAuthors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yoshie Iizuka
- Authors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Joyce Meints
- Authors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Lauren MacNeill
- Authors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Rachel Isaksson Vogel
- Authors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Robert Z Orlowski
- Authors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Michael K Lee
- Authors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Richard B S Roden
- Authors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TexasAuthors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TexasAuthors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Martina Bazzaro
- Authors' Affiliations: Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, Department of Neurosciences, University of Minnesota Twin Cities, Minneapolis, Minnesota; Departments of Pathology, Oncology, and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland; and Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
74
|
Chemical derivatives of a small molecule deubiquitinase inhibitor have antiviral activity against several RNA viruses. PLoS One 2014; 9:e94491. [PMID: 24722666 PMCID: PMC3983190 DOI: 10.1371/journal.pone.0094491] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/17/2014] [Indexed: 12/21/2022] Open
Abstract
Most antiviral treatment options target the invading pathogen and unavoidably encounter loss of efficacy as the pathogen mutates to overcome replication restrictions. A good strategy for circumventing drug resistance, or for pathogens without treatment options, is to target host cell proteins that are utilized by viruses during infection. The small molecule WP1130 is a selective deubiquitinase inhibitor shown previously to successfully reduce replication of noroviruses and some other RNA viruses. In this study, we screened a library of 31 small molecule derivatives of WP1130 to identify compounds that retained the broad-spectrum antiviral activity of the parent compound in vitro but exhibited improved drug-like properties, particularly increased aqueous solubility. Seventeen compounds significantly reduced murine norovirus infection in murine macrophage RAW 264.7 cells, with four causing decreases in viral titers that were similar or slightly better than WP1130 (1.9 to 2.6 log scale). Antiviral activity was observed following pre-treatment and up to 1 hour postinfection in RAW 264.7 cells as well as in primary bone marrow-derived macrophages. Treatment of the human norovirus replicon system cell line with the same four compounds also decreased levels of Norwalk virus RNA. No significant cytotoxicity was observed at the working concentration of 5 µM for all compounds tested. In addition, the WP1130 derivatives maintained their broad-spectrum antiviral activity against other RNA viruses, Sindbis virus, LaCrosse virus, encephalomyocarditis virus, and Tulane virus. Thus, altering structural characteristics of WP1130 can maintain effective broad-spectrum antiviral activity while increasing aqueous solubility.
Collapse
|
75
|
Lill JR, Wertz IE. Toward understanding ubiquitin-modifying enzymes: from pharmacological targeting to proteomics. Trends Pharmacol Sci 2014; 35:187-207. [PMID: 24717260 DOI: 10.1016/j.tips.2014.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 11/20/2022]
Abstract
Ubiquitination is a highly conserved post-translational modification that regulates protein trafficking, function, and turnover. Ubiquitin ligases (E3s) conjugate ubiquitin polypeptides on substrates, whereas deubiquitnases (DUBs) reverse ubiquitination. Engineering of chemical antagonists and inhibitors of ubiquitin ligases and DUBs has considerably aided the study of enzymes that participate in ubiquitin modification of substrates. In addition, proteomic tools have been developed to characterize the enzymes, substrates, and modifications regulated by DUBs and E3s. Here we review inhibitors and antagonists that have been developed against DUBs and E3s, focusing on enzymes that participate in ubiquitin editing or in the reciprocal ubiquitin regulation of substrates. We outline the cellular biology that is regulated by these DUBs and E3s and highlight how the inhibitory compounds have improved our understanding of these pathways. Finally, we discuss the challenges and future directions for pharmacologically targeting ubiquitin-modifying enzymes, as well as the development of proteomic methods to evaluate ubiquitin modification of substrates.
Collapse
Affiliation(s)
- Jennie R Lill
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, M/S 413A, South San Francisco, CA 94080, USA.
| | - Ingrid E Wertz
- Department of Early Discovery Biochemistry, Genentech, Inc., 1 DNA Way, M/S 40, South San Francisco, CA 94080, USA.
| |
Collapse
|
76
|
Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood 2014; 123:2806-15. [PMID: 24622325 DOI: 10.1182/blood-2013-08-519470] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All 6 human prosurvival Bcl-2 proteins can drive cancer development and contribute to therapy resistance. However, their relative abilities to protect cells against cancer therapy were not examined previously. We report that Bcl-2, Bcl-xL, or Bcl-w consistently protected leukemic cells better than Bcl-B, Bfl-1, or Mcl-1 against a wide variety of anticancer regimens. Current thinking would attribute this to differences in their ability to bind to BH3-only proteins, Bax, and Bak. To address this, we established the first complete, quantitative cellular interaction profile of all human prosurvival Bcl-2 proteins with all their proapoptotic relatives. Binding was unexpectedly promiscuous, except for Bad and Noxa, and did not explain the differential antiapoptotic capacity of the Bcl-2 proteins. Rather, Bcl-B, Bfl-1, or Mcl-1 proved less potent due to steady-state or drug-induced proteasomal degradation. All 6 Bcl-2 proteins similarly protected against the diverse anticancer regimens when expressed at equal protein levels, in agreement with their broad interaction profile. Therefore, clinical diagnostics should include all family members and should be performed at the protein rather than at the messenger RNA level. In drug development, targeting the ubiquitination machinery of prosurvival Bcl-2 proteins will complement and potentially improve on targeting Bcl-2 protein interactions with BH3 mimetics.
Collapse
|
77
|
Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer. Proc Natl Acad Sci U S A 2014; 111:4251-6. [PMID: 24591637 DOI: 10.1073/pnas.1322198111] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The transcription factor E-twenty-six related gene (ERG), which is overexpressed through gene fusion with the androgen-responsive gene transmembrane protease, serine 2 (TMPRSS2) in ∼40% of prostate tumors, is a key driver of prostate carcinogenesis. Ablation of ERG would disrupt a key oncogenic transcriptional circuit and could be a promising therapeutic strategy for prostate cancer treatment. Here, we show that ubiquitin-specific peptidase 9, X-linked (USP9X), a deubiquitinase enzyme, binds ERG in VCaP prostate cancer cells expressing TMPRSS2-ERG and deubiquitinates ERG in vitro. USP9X knockdown resulted in increased levels of ubiquitinated ERG and was coupled with depletion of ERG. Treatment with the USP9X inhibitor WP1130 resulted in ERG degradation both in vivo and in vitro, impaired the expression of genes enriched in ERG and prostate cancer relevant gene signatures in microarray analyses, and inhibited growth of ERG-positive tumors in three mouse xenograft models. Thus, we identified USP9X as a potential therapeutic target in prostate cancer cells and established WP1130 as a lead compound for the development of ERG-depleting drugs.
Collapse
|
78
|
A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res 2014; 24:482-96. [PMID: 24513856 DOI: 10.1038/cr.2014.20] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 10/25/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial fusion is a highly coordinated process that mixes and unifies the mitochondrial compartment for normal mitochondrial functions and mitochondrial DNA inheritance. Dysregulated mitochondrial fusion causes mitochondrial fragmentation, abnormal mitochondrial physiology and inheritance, and has been causally linked with a number of neuronal diseases. Here, we identified a diterpenoid derivative 15-oxospiramilactone (S3) that potently induced mitochondrial fusion to restore the mitochondrial network and oxidative respiration in cells that are deficient in either Mfn1 or Mfn2. A mitochondria-localized deubiquitinase USP30 is a target of S3. The inhibition of USP30 by S3 leads to an increase of non-degradative ubiquitination of Mfn1/2, which enhances Mfn1 and Mfn2 activity and promotes mitochondrial fusion. Thus, through the use of an inhibitor of USP30, our study uncovers an unconventional function of non-degradative ubiquitination of Mfns in promoting mitochondrial fusion.
Collapse
|
79
|
Peng Z, Maxwell DS, Sun D, Bhanu Prasad BA, Schuber PT, Pal A, Ying Y, Han D, Gao L, Wang S, Levitzki A, Kapuria V, Talpaz M, Young M, Showalter HD, Donato NJ, Bornmann WG. Degrasyn-like symmetrical compounds: possible therapeutic agents for multiple myeloma (MM-I). Bioorg Med Chem 2014; 22:1450-8. [PMID: 24457091 DOI: 10.1016/j.bmc.2013.12.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/11/2013] [Accepted: 12/21/2013] [Indexed: 12/13/2022]
Abstract
A series of degrasyn-like symmetrical compounds have been designed, synthesized, and screened against B cell malignancy (multiple myeloma, mantle cell lymphoma) cell lines. The lead compounds T5165804 and CP2005 showed higher nanomolar potency against these tumor cells in comparison to degrasyn and inhibited Usp9x activity in vitro and in intact cells. These observations suggest that this new class of compounds holds promise as cancer therapeutic agents.
Collapse
Affiliation(s)
- Zhenghong Peng
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - David S Maxwell
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Duoli Sun
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Basvoju A Bhanu Prasad
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Paul T Schuber
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Ashutosh Pal
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Yunming Ying
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Dongmei Han
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Liwei Gao
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Shimei Wang
- Department of Experimental Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Alexander Levitzki
- Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vaibhav Kapuria
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine, Comprehensive Cancer Center, United States
| | - Moshe Talpaz
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine, Comprehensive Cancer Center, United States
| | - Matthew Young
- Department of Pharmacology, University of Michigan School of Medicine, Comprehensive Cancer Center, United States
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, United States
| | - Nicholas J Donato
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan School of Medicine, Comprehensive Cancer Center, United States
| | - William G Bornmann
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
80
|
Peng J, Hu Q, Liu W, He X, Cui L, Chen X, Yang M, Liu H, Wei W, Liu S, Wang H. USP9X expression correlates with tumor progression and poor prognosis in esophageal squamous cell carcinoma. Diagn Pathol 2013; 8:177. [PMID: 24152793 PMCID: PMC4016599 DOI: 10.1186/1746-1596-8-177] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022] Open
Abstract
Background Ubiquitination is a reversible process of posttranslational protein modification through the action of the family of deubiquitylating enzymes which contain ubiquitin-specific protease 9x (USP9X). Recent evidence indicates that USP9X is involved in the progression of various human cancers. The aim was to detect the expression of USP9X in the progression from normal epithelium to invasive esophageal squamous cell cancer (ESCC) and evaluate the relevance of USP9X expression to the tumor progression and prognosis. Methods In this study, USP9X immunohistochemical analysis was performed on tissues constructed from ESCC combined with either normal epithelium or adjacent precursor tissues of 102 patients. All analyses were performed by SPSS 13.0 software. Results We observed that the level of high USP9X expression increased gradually in the transformation from normal epithelium (4.0%), to low grade intraepithelial neoplasia (10.5%), then to high grade intraepithelial neoplasia (28.6%), and finally to invasive ESCC (40.2%). The expression of USP9X was found to be significantly different between the normal mucosa and ESCC (P < 0.001), and between low grade intraepithelial neoplasia and high grade intraepithelial neoplasia (p = 0.012). However, no difference was observed between the high expression of USP9X in normal mucosa and low grade intraepithelial neoplasia (P = 0.369), nor between high grade intraepithelial neoplasia and ESCC (p = 0.115). Interestingly, the most intensive staining for USP9X was usually observed in the basal and lower spinous layers of the esophageal epithelium with precursor lesions which often resulted in the earliest malignant lesion. USP9X expression status was positively associated with both depth of invasion (p = 0.046) and lymph node metastasis (p = 0.032). Increased USP9X expression was significantly correlated to poorer survival rate in ESCC patients (p = 0.001). When adjusted by multivariate analysis, USP9X expression (HR 2.066, P = 0.005), together with TNM stage (HR 1.702, P = 0.042) was an independent predictor for overall survival. Conclusions Up-regulation of USP9X plays an important role in formation and progression of precancerous lesions in ESCC and USP9X expression levels were significantly correlated with the survival of ESCC patients. Thus, USP9X could be considered as a potential biomarker and prognostic predictor for ESCC. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1945302932102737
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shanling Liu
- Laboratory of Genetics, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | | |
Collapse
|
81
|
Targeting the ubiquitin proteasome system in haematological malignancies. Blood Rev 2013; 27:297-304. [PMID: 24183816 DOI: 10.1016/j.blre.2013.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 02/07/2023]
Abstract
The ubiquitin proteasome system (UPS) plays a central role in cellular protein homeostasis through the targeted destruction of damaged/misfolded proteins and regulatory proteins that control critical cellular functions. The UPS comprises a sequential series of enzymatic activities to covalently attach ubiquitin to proteins to target them for degradation through the proteasome. Aberrancies within this system have been associated with transformation and tumourigenesis and thus, the UPS represents an attractive target for the development of anti-cancer therapies. The use of the first-in-class proteasome inhibitor, bortezomib, in the treatment of Plasma Cell Myeloma and Mantle Cell Lymphoma has validated the UPS as a therapeutic target. Following on its success, efforts are focused on the development of second-generation proteasome inhibitors and small molecule inhibitors of other components of the UPS. This review will provide an overview of the UPS and discuss current and novel therapies targeting the UPS.
Collapse
|
82
|
Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2012; 17:61-75. [PMID: 23173842 DOI: 10.1517/14728222.2013.733001] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Programmed cell death is well-orchestrated process regulated by multiple pro-apoptotic and anti-apoptotic genes, particularly those of the Bcl-2 gene family. These genes are well documented in cancer with aberrant expression being strongly associated with resistance to chemotherapy and radiation. AREAS COVERED This review focuses on the resistance induced by the Bcl-2 family of anti-apoptotic proteins and current therapeutic interventions currently in preclinical or clinical trials that target this pathway. Major resistance mechanisms that are regulated by Bcl-2 family proteins and potential strategies to circumvent resistance are also examined. Although antisense and gene therapy strategies are used to nullify Bcl-2 family proteins, recent approaches use small molecule inhibitors (SMIs) and peptides. Structural similarity of the Bcl-2 family of proteins greatly favors development of inhibitors that target the BH3 domain, called BH3 mimetics. EXPERT OPINION Strategies to specifically identify and inhibit critical determinants that promote therapy resistance and tumor progression represent viable approaches for developing effective cancer therapies. From a clinical perspective, pretreatment with novel, potent Bcl-2 inhibitors either alone or in combination with conventional therapies hold significant promise for providing beneficial clinical outcomes. Identifying SMIs with broader and higher affinities for inhibiting all of the Bcl-2 pro-survival proteins will facilitate development of superior cancer therapies.
Collapse
Affiliation(s)
- Shibu Thomas
- Virginia Commonwealth University, Department of Human and Molecular Genetics, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Peddaboina C, Jupiter D, Fletcher S, Yap JL, Rai A, Tobin RP, Jiang W, Rascoe P, Rogers MKN, Smythe WR, Cao X. The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition. BMC Cancer 2012; 12:541. [PMID: 23171055 PMCID: PMC3543233 DOI: 10.1186/1471-2407-12-541] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/12/2012] [Indexed: 12/11/2022] Open
Abstract
Background It has been shown in many solid tumors that the overexpression of the pro-survival Bcl-2 family members Bcl-xL and Mcl-1 confers resistance to a variety of chemotherapeutic agents. Mcl-1 is a critical survival protein in a variety of cell lineages and is critically regulated via ubiquitination. Methods The Mcl-1, Bcl-xL and USP9X expression patterns in human lung and colon adenocarcinomas were evaluated via immunohistochemistry. Interaction between USP9X and Mcl-1 was demonstrated by immunoprecipitation-western blotting. The protein expression profiles of Mcl-1, Bcl-xL and USP9X in multiple cancer cell lines were determined by western blotting. Annexin-V staining and cleaved PARP western blotting were used to assay for apoptosis. The cellular toxicities after various treatments were measured via the XTT assay. Results In our current analysis of colon and lung cancer samples, we demonstrate that Mcl-1 and Bcl-xL are overexpressed and also co-exist in many tumors and that the expression levels of both genes correlate with the clinical staging. The downregulation of Mcl-1 or Bcl-xL via RNAi was found to increase the sensitivity of the tumor cells to chemotherapy. Furthermore, our analyses revealed that USP9X expression correlates with that of Mcl-1 in human cancer tissue samples. We additionally found that the USP9X inhibitor WP1130 promotes Mcl-1 degradation and increases tumor cell sensitivity to chemotherapies. Moreover, the combination of WP1130 and ABT-737, a well-documented Bcl-xL inhibitor, demonstrated a chemotherapeutic synergy and promoted apoptosis in different tumor cells. Conclusion Mcl-1, Bcl-xL and USP9X overexpression are tumor survival mechanisms protective against chemotherapy. USP9X inhibition increases tumor cell sensitivity to various chemotherapeutic agents including Bcl-2/Bcl-xL inhibitors.
Collapse
Affiliation(s)
- Chander Peddaboina
- Department of Surgery, Scott & White Memorial Hospital and Clinic, The Texas A&M University System, Health Science Center, College of Medicine, Temple, TX 76504, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Goussetis DJ, Gounaris E, Wu EJ, Vakana E, Sharma B, Bogyo M, Altman JK, Platanias LC. Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood 2012; 120:3555-62. [PMID: 22898604 PMCID: PMC3482863 DOI: 10.1182/blood-2012-01-402578] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 08/02/2012] [Indexed: 01/27/2023] Open
Abstract
We provide evidence that arsenic trioxide (As(2)O(3)) targets the BCR-ABL oncoprotein via a novel mechanism involving p62/SQSTM1-mediated localization of the oncoprotein to the autolysosomes and subsequent degradation mediated by the protease cathepsin B. Our studies demonstrate that inhibitors of autophagy or cathepsin B activity and/or molecular targeting of p62/SQSTM1, Atg7, or cathepsin B result in partial reversal of the suppressive effects of AS(2)O(3) on BCR-ABL expressing leukemic progenitors, including primitive leukemic precursors from chronic myelogenous leukemia (CML) patients. Altogether, these findings indicate that autophagic degradation of BCR-ABL is critical for the induction of the antileukemic effects of As(2)O(3) and raise the potential for future therapeutic approaches to target BCR-ABL expressing cells by modulating elements of the autophagic machinery to promote BCR-ABL degradation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/pharmacology
- Arsenic Trioxide
- Arsenicals/pharmacology
- Autophagy/drug effects
- Autophagy/genetics
- Autophagy-Related Protein 7
- Cathepsin B/antagonists & inhibitors
- Cathepsin B/genetics
- Cathepsin B/metabolism
- Enzyme Inhibitors/pharmacology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Lysosomes/drug effects
- Lysosomes/metabolism
- Oxides/pharmacology
- Phosphorylation
- Plasmids
- Primary Cell Culture
- Proteolysis/drug effects
- Sequestosome-1 Protein
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transfection
- Ubiquitin-Activating Enzymes/antagonists & inhibitors
- Ubiquitin-Activating Enzymes/genetics
- Ubiquitin-Activating Enzymes/metabolism
Collapse
Affiliation(s)
- Dennis J Goussetis
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
de Jong A, Merkx R, Berlin I, Rodenko B, Wijdeven RHM, El Atmioui D, Yalçin Z, Robson CN, Neefjes JJ, Ovaa H. Ubiquitin-based probes prepared by total synthesis to profile the activity of deubiquitinating enzymes. Chembiochem 2012; 13:2251-8. [PMID: 23011887 PMCID: PMC3487179 DOI: 10.1002/cbic.201200497] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Indexed: 11/08/2022]
Abstract
Epitope-tagged active-site-directed probes are widely used to visualize the activity of deubiquitinases (DUBs) in cell extracts, to investigate the specificity and potency of small-molecule DUB inhibitors, and to isolate and identify DUBs by mass spectrometry. With DUBs arising as novel potential drug targets, probes are required that can be produced in sufficient amounts and to meet the specific needs of a given experiment. The established method for the generation of DUB probes makes use of labor-intensive intein-based methods that have inherent limitations concerning the incorporation of unnatural amino acids and the amount of material that can be obtained. Here, we describe the total chemical synthesis of active-site-directed probes and their application to activity-based profiling and identification of functional DUBs. This synthetic methodology allowed the easy incorporation of desired tags for specific applications, for example, fluorescent reporters, handles for immunoprecipitation or affinity pull-down, and cleavable linkers. Additionally, the synthetic method can be scaled up to provide significant amounts of probe. Fluorescent ubiquitin probes allowed faster, in-gel detection of active DUBs, as compared to (immuno)blotting procedures. A biotinylated probe holding a photocleavable linker enabled the affinity pull-down and subsequent mild, photorelease of DUBs. Also, DUB activity levels were monitored in response to overexpression or knockdown, and to inhibition by small molecules. Furthermore, fluorescent probes revealed differential DUB activity profiles in a panel of lung and prostate cancer cells.
Collapse
Affiliation(s)
- Annemieke de Jong
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
O'Hare T, Zabriskie MS, Eiring AM, Deininger MW. Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nat Rev Cancer 2012; 12:513-26. [PMID: 22825216 DOI: 10.1038/nrc3317] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tyrosine kinase inhibitor (TKI) therapy targeting the BCR-ABL1 kinase is effective against chronic myeloid leukaemia (CML), but is not curative for most patients. Minimal residual disease (MRD) is thought to reside in TKI-insensitive leukaemia stem cells (LSCs) that are not fully addicted to BCR-ABL1. Recent conceptual advances in both CML biology and therapeutic intervention have increased the potential for the elimination of CML cells, including LSCs, through simultaneous inhibition of BCR-ABL1 and other newly identified, crucial targets.
Collapse
Affiliation(s)
- Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, Utah 84112, USA.
| | | | | | | |
Collapse
|
87
|
Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response. PLoS Pathog 2012; 8:e1002783. [PMID: 22792064 PMCID: PMC3390402 DOI: 10.1371/journal.ppat.1002783] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 05/16/2012] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin (Ub) is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub) cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs). However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1), a critical mediator of the unfolded protein response (UPR). WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1) through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies. Deubiquitinases (DUBs) are enzymes, which are implicated in many cellular processes but their functions during virus infection are not well understood. We used WP1130, a small molecule inhibitor of a subset of DUBs, as a probe to unravel the functions of DUBs during norovirus infections. We identified USP14 as a cellular DUB target of WP1130 that is required for optimal norovirus infection. Furthermore, we demonstrated that chemical induction of the unfolded protein response can significantly inhibit viral progeny production of several RNA viruses, including noroviruses. These results suggest that chemical inhibition of cellular DUBs and/or modulation of the unfolded protein response could represent novel targets for therapy against a variety of viral pathogens.
Collapse
|
88
|
Abstract
Targeted small-molecule drugs have revolutionized treatment of chronic myeloid leukemia (CML) during the last decade. These agents interrupt a constitutively active BCR-ABL, the causative agent for CML, by interfering with adenosine 5' triphosphate-dependent ABL tyrosine kinase. Although the efficacy of tyrosine kinase inhibitors (TKIs) has resulted in overall survival of greater than 90%, TKIs are not curative. Moreover, no currently approved TKIs are effective against the T315I BCR-ABL variant. However, a new generation of TKIs with activity against T315I is on the horizon. We will highlight the clinical utility of historical CML therapeutics, those used today (first- and second-generation TKIs), and discuss treatment modalities that are under development. Recent advances have illuminated the complexity of CML, especially within the marrow microenvironment. We contend that the key to curing CML will involve strategies beyond targeting BCR-ABL because primitive human CML stem cells are not dependent on BCR-ABL. Ultimately, drug combinations or exploiting synthetic lethality may transform responses into definitive cures for CML.
Collapse
|
89
|
Patched dependence receptor triggers apoptosis through ubiquitination of caspase-9. Proc Natl Acad Sci U S A 2012; 109:10510-5. [PMID: 22679284 DOI: 10.1073/pnas.1200094109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Patched (Ptc), the main receptor for Sonic Hedgehog, is a tumor suppressor. Ptc has been shown to be a dependence receptor, and as such triggers apoptosis in the absence of its ligand. This apoptosis induction occurs through the recruitment by the Ptc intracellular domain of a caspase-activating complex, which includes the adaptor proteins DRAL and TUCAN, and the apical caspase-9. We show here that this caspase-activating complex also includes the E3 ubiquitin ligase NEDD4. We demonstrate that Ptc-mediated apoptosis and Ptc-induced caspase-9 activation require NEDD4. We show that Ptc, but not Bax, the prototypical inducer of the intrinsic cell-death pathway, triggers polyubiquitination of caspase-9. Moreover, a caspase-9 mutant that could not be ubiquitinated failed to mediate Ptc-induced apoptosis. Taken together, these data support the view that the Ptc dependence receptor specifically allows the activation of caspase-9 via its ubiquitination, which occurs via the recruitment by Ptc of NEDD4.
Collapse
|
90
|
The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 2012; 486:266-70. [PMID: 22699621 PMCID: PMC3376394 DOI: 10.1038/nature11114] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 04/05/2012] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite tremendous progress in its molecular characterization. Indeed, PDA tumors harbor four signature somatic mutations1–4, and a plethora of lower frequency genetic events of uncertain significance5. Here, we used Sleeping Beauty (SB) transposon-mediated insertional mutagenesis6,7 in a mouse model of pancreatic ductal preneoplasia8 to identify genes that cooperate with oncogenic KrasG12D to accelerate tumorigenesis and promote progression. Our screen revealed new candidates and confirmed the importance of many genes and pathways previously implicated in human PDA. Interestingly, the most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumors. Although prior work had attributed a pro-survival role to USP9X in human neoplasia9, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and mRNA expression in PDA correlates with poor survival following surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2′-deoxycytidine elevates USP9X expression in human PDA cell lines to suggest a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with KrasG12D to rapidly accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. Therefore, we propose USP9X as a major new tumor suppressor gene with prognostic and therapeutic relevance in PDA.
Collapse
|
91
|
Gores GJ, Kaufmann SH. Selectively targeting Mcl-1 for the treatment of acute myelogenous leukemia and solid tumors. Genes Dev 2012; 26:305-11. [PMID: 22345513 DOI: 10.1101/gad.186189.111] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bcl-2, Bcl-x(L), Mcl-1, and A1 are the predominant anti-apoptotic members of the Bcl-2 family in somatic cells. Malignant B lymphocytes are critically dependent on Bcl-2 or Bcl-x(L) for survival. In contrast, a new study by Glaser and colleagues in the January 15, 2012, issue of Genes & Development (pp. 120-125) demonstrates that Mcl-1 is essential for development and survival of acute myelogenous leukemia cells. These results provide new impetus for the generation of selective Mcl-1 inhibitors.
Collapse
Affiliation(s)
- Gregory J Gores
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
92
|
|
93
|
Aveic S, Pigazzi M, Basso G. BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia. PLoS One 2011; 6:e26097. [PMID: 22016818 PMCID: PMC3189928 DOI: 10.1371/journal.pone.0026097] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/19/2011] [Indexed: 02/01/2023] Open
Abstract
BCL2 associated Athano-Gene 1 (BAG1) is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Apoptosis Regulatory Proteins/metabolism
- Cell Survival/genetics
- Child
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- HL-60 Cells
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Proteasome Endopeptidase Complex/metabolism
- Proteolysis
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ubiquitin Thiolesterase/metabolism
Collapse
Affiliation(s)
- Sanja Aveic
- Hematology-Oncology Laboratory, Pediatrics Department, University of Padova, Padova, Italy
| | - Martina Pigazzi
- Hematology-Oncology Laboratory, Pediatrics Department, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Hematology-Oncology Laboratory, Pediatrics Department, University of Padova, Padova, Italy
| |
Collapse
|
94
|
Tyrphostin-like compounds with ubiquitin modulatory activity as possible therapeutic agents for multiple myeloma. Bioorg Med Chem 2011; 19:7194-204. [PMID: 22036213 DOI: 10.1016/j.bmc.2011.09.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/22/2011] [Accepted: 09/28/2011] [Indexed: 11/21/2022]
Abstract
With the goal of developing small molecules as novel regulators of signal transduction and apoptosis, a series of tyrphostin-like compounds were synthesized and screened for their activity against MM-1 (multiple myeloma) cells and other cell lines representing this malignancy. Synthesis was completed in solution-phase initially and then adopted to solid-phase for generating a more diverse set of compounds. A positive correlation was noted between compounds capable of inducing apoptosis and their modulation of protein ubiquitination. Further analysis suggested that ubiquitin modulation occurs through inhibition of cellular deubiquitinase activity. Bulky groups on the sidechain near the α,β-unsaturated ketone caused a complete loss of activity, whereas cyclization on the opposite side was tolerated. Theoretical calculations at the B3LYP/LACV3P(∗∗) level were completed on each molecule, and the resulting molecular orbitals and Fukui reactivity values for C(β) carbon were utilized in developing a model to explain the compound activity.
Collapse
|
95
|
Fraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 2011; 31:2373-88. [PMID: 21996736 DOI: 10.1038/onc.2011.443] [Citation(s) in RCA: 348] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deubiquitinases (DUBs) have fundamental roles in the ubiquitin system through their ability to specifically deconjugate ubiquitin from targeted proteins. The human genome encodes at least 98 DUBs, which can be grouped into 6 families, reflecting the need for specificity in their function. The activity of these enzymes affects the turnover rate, activation, recycling and localization of multiple proteins, which in turn is essential for cell homeostasis, protein stability and a wide range of signaling pathways. Consistent with this, altered DUB function has been related to several diseases, including cancer. Thus, multiple DUBs have been classified as oncogenes or tumor suppressors because of their regulatory functions on the activity of other proteins involved in tumor development. Therefore, recent studies have focused on pharmacological intervention on DUB activity as a rationale to search for novel anticancer drugs. This strategy may benefit from our current knowledge of the physiological regulatory mechanisms of these enzymes and the fact that growth of several tumors depends on the normal activity of certain DUBs. Further understanding of these processes may provide answers to multiple remaining questions on DUB functions and lead to the development of DUB-targeting strategies to expand the repertoire of molecular therapies against cancer.
Collapse
Affiliation(s)
- J M Fraile
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
96
|
Quinn BA, Dash R, Azab B, Sarkar S, Das SK, Kumar S, Oyesanya RA, Dasgupta S, Dent P, Grant S, Rahmani M, Curiel DT, Dmitriev I, Hedvat M, Wei J, Wu B, Stebbins JL, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Targeting Mcl-1 for the therapy of cancer. Expert Opin Investig Drugs 2011; 20:1397-411. [PMID: 21851287 DOI: 10.1517/13543784.2011.609167] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Human cancers are genetically and epigenetically heterogeneous and have the capacity to commandeer a variety of cellular processes to aid in their survival, growth and resistance to therapy. One strategy is to overexpress proteins that suppress apoptosis, such as the Bcl-2 family protein Mcl-1. The Mcl-1 protein plays a pivotal role in protecting cells from apoptosis and is overexpressed in a variety of human cancers. AREAS COVERED Targeting Mcl-1 for extinction in these cancers, using genetic and pharmacological approaches, represents a potentially effectual means of developing new efficacious cancer therapeutics. Here we review the multiple strategies that have been employed in targeting this fundamental protein, as well as the significant potential these targeting agents provide in not only suppressing cancer growth, but also in reversing resistance to conventional cancer treatments. EXPERT OPINION We discuss the potential issues that arise in targeting Mcl-1 and other Bcl-2 anti-apoptotic proteins, as well problems with acquired resistance. The application of combinatorial approaches that involve inhibiting Mcl-1 and manipulation of additional signaling pathways to enhance therapeutic outcomes is also highlighted. The ability to specifically inhibit key genetic/epigenetic elements and biochemical pathways that maintain the tumor state represent a viable approach for developing rationally based, effective cancer therapies.
Collapse
Affiliation(s)
- Bridget A Quinn
- Virginia Commonwealth University, School of Medicine, Department of Human and Molecular Genetics, Richmond, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kapuria V, Levitzki A, Bornmann WG, Maxwell D, Priebe W, Sorenson RJ, Showalter HD, Talpaz M, Donato NJ. A novel small molecule deubiquitinase inhibitor blocks Jak2 signaling through Jak2 ubiquitination. Cell Signal 2011; 23:2076-85. [PMID: 21855629 DOI: 10.1016/j.cellsig.2011.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 12/30/2022]
Abstract
AG490 is a tyrosine kinase inhibitor with activity against Jak2 and apoptotic activity in specific leukemias. Due to its weak kinase inhibitory activity and poor pharmacology, we conducted a cell-based screen for derivatives with improved Jak2 inhibition and activity in animals. Two hits emerged from an initial small chemical library screen, and more detailed structure-activity relationship studies led to the development of WP1130 with 50-fold greater activity in suppressing Jak2-dependent cytokine signaling than AG490. However, WP1130 did not directly suppress Jak2 kinase activity, but mediated Jak2 ubiquitination resulting in its trafficking through HDAC6 to perinuclear aggresomes without cytokine stimulation or SOCS-1 induction. Jak2 primarily contained K63-linked ubiquitin polymers, and mutation of this lysine blocked Jak2 ubiquitination and mobilization in WP1130-treated cells. Further analysis demonstrated that WP1130, but not AG490, acts as a deubiquitinating enzyme (DUB) inhibitor, possibly through a Michael addition reaction. We conclude that chemical modification of AG490 resulted in development of a DUB inhibitor with activity against a DUB capable of modulating Jak2 ubiquitination, trafficking and signal transduction.
Collapse
Affiliation(s)
- Vaibhav Kapuria
- Department of Internal Medicine, Division of Hematology-Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|