51
|
Warren JL, MacIver NJ. Regulation of Adaptive Immune Cells by Sirtuins. Front Endocrinol (Lausanne) 2019; 10:466. [PMID: 31354630 PMCID: PMC6637536 DOI: 10.3389/fendo.2019.00466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022] Open
Abstract
It is now well-established that the pathways that control lymphocyte metabolism and function are intimately linked, and changes in lymphocyte metabolism can influence and direct cellular function. Interestingly, a number of recent advances indicate that lymphocyte identity and metabolism is partially controlled via epigenetic regulation. Epigenetic mechanisms, such as changes in DNA methylation or histone acetylation, have been found to alter immune function and play a role in numerous chronic disease states. There are several enzymes that can mediate epigenetic changes; of particular interest are sirtuins, protein deacetylases that mediate adaptive responses to a variety of stresses (including calorie restriction and metabolic stress) and are now understood to play a significant role in immunity. This review will focus on recent advances in the understanding of how sirtuins affect the adaptive immune system. These pathways are of significant interest as therapeutic targets for the treatment of autoimmunity, cancer, and transplant tolerance.
Collapse
Affiliation(s)
- Jonathan L. Warren
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Nancie J. MacIver
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Nancie J. MacIver
| |
Collapse
|
52
|
Affiliation(s)
- Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia.
| |
Collapse
|
53
|
Dominguez PM, Ghamlouch H, Rosikiewicz W, Kumar P, Béguelin W, Fontán L, Rivas MA, Pawlikowska P, Armand M, Mouly E, Torres-Martin M, Doane AS, Calvo Fernandez MT, Durant M, Della-Valle V, Teater M, Cimmino L, Droin N, Tadros S, Motanagh S, Shih AH, Rubin MA, Tam W, Aifantis I, Levine RL, Elemento O, Inghirami G, Green MR, Figueroa ME, Bernard OA, Aoufouchi S, Li S, Shaknovich R, Melnick AM. TET2 Deficiency Causes Germinal Center Hyperplasia, Impairs Plasma Cell Differentiation, and Promotes B-cell Lymphomagenesis. Cancer Discov 2018; 8:1632-1653. [PMID: 30274972 PMCID: PMC6279514 DOI: 10.1158/2159-8290.cd-18-0657] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/26/2018] [Accepted: 09/26/2018] [Indexed: 01/04/2023]
Abstract
TET2 somatic mutations occur in ∼10% of diffuse large B-cell lymphomas (DLBCL) but are of unknown significance. Herein, we show that TET2 is required for the humoral immune response and is a DLBCL tumor suppressor. TET2 loss of function disrupts transit of B cells through germinal centers (GC), causing GC hyperplasia, impaired class switch recombination, blockade of plasma cell differentiation, and a preneoplastic phenotype. TET2 loss was linked to focal loss of enhancer hydroxymethylation and transcriptional repression of genes that mediate GC exit, such as PRDM1. Notably, these enhancers and genes are also repressed in CREBBP-mutant DLBCLs. Accordingly, TET2 mutation in patients yields a CREBBP-mutant gene-expression signature, CREBBP and TET2 mutations are generally mutually exclusive, and hydroxymethylation loss caused by TET2 deficiency impairs enhancer H3K27 acetylation. Hence, TET2 plays a critical role in the GC reaction, and its loss of function results in lymphomagenesis through failure to activate genes linked to GC exit signals. SIGNIFICANCE: We show that TET2 is required for exit of the GC, B-cell differentiation, and is a tumor suppressor for mature B cells. Loss of TET2 phenocopies CREBBP somatic mutation. These results advocate for sequencing TET2 in patients with lymphoma and for the testing of epigenetic therapies to treat these tumors.See related commentary by Shingleton and Dave, p. 1515.This article is highlighted in the In This Issue feature, p. 1494.
Collapse
Affiliation(s)
- Pilar M Dominguez
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Hussein Ghamlouch
- INSERM U1170, équipe labelisée Ligue Nationale Contre le Cancer, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | | | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Wendy Béguelin
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Lorena Fontán
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Martín A Rivas
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Patrycja Pawlikowska
- CNRS UMR8200, équipe labelisée Ligue Nationale Contre le Cancer, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marine Armand
- INSERM U1170, équipe labelisée Ligue Nationale Contre le Cancer, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- CNRS UMR8200, équipe labelisée Ligue Nationale Contre le Cancer, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Enguerran Mouly
- INSERM U1170, équipe labelisée Ligue Nationale Contre le Cancer, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Miguel Torres-Martin
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Ashley S Doane
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - María T Calvo Fernandez
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Matt Durant
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Veronique Della-Valle
- INSERM U1170, équipe labelisée Ligue Nationale Contre le Cancer, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Matt Teater
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Luisa Cimmino
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York
| | - Nathalie Droin
- INSERM U1170, équipe labelisée Ligue Nationale Contre le Cancer, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Saber Tadros
- Department of Lymphoma/Myeloma and Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samaneh Motanagh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Alan H Shih
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Wayne Tam
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine, New York, New York
| | - Iannis Aifantis
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, New York
| | - Ross L Levine
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine, New York, New York
| | - Michael R Green
- Department of Lymphoma/Myeloma and Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida
| | - Olivier A Bernard
- INSERM U1170, équipe labelisée Ligue Nationale Contre le Cancer, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| | - Said Aoufouchi
- CNRS UMR8200, équipe labelisée Ligue Nationale Contre le Cancer, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.
- The Jackson Laboratory Cancer Center, Bar Harbor, Maine
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Rita Shaknovich
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York.
- Cancer Genetics, Inc., Rutherford, New Jersey
| | - Ari M Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
54
|
Arama C, Quin JE, Kouriba B, Östlund Farrants AK, Troye-Blomberg M, Doumbo OK. Epigenetics and Malaria Susceptibility/Protection: A Missing Piece of the Puzzle. Front Immunol 2018; 9:1733. [PMID: 30158923 PMCID: PMC6104485 DOI: 10.3389/fimmu.2018.01733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
A better understanding of stable changes in regulation of gene expression that result from epigenetic events is of great relevance in the development of strategies to prevent and treat infectious diseases. Histone modification and DNA methylation are key epigenetic mechanisms that can be regarded as marks, which ensure an accurate transmission of the chromatin states and gene expression profiles over generations of cells. There is an increasing list of these modifications, and the complexity of their action is just beginning to be understood. It is clear that the epigenetic landscape plays a fundamental role in most biological processes that involve the manipulation and expression of DNA. Although the molecular mechanism of gene regulation is relatively well understood, the hierarchical order of events and dependencies that lead to protection against infection remain largely unknown. In this review, we propose that host epigenetics is an essential, though relatively under studied, factor in the protection or susceptibility to malaria.
Collapse
Affiliation(s)
- Charles Arama
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Jaclyn E Quin
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Bourèma Kouriba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | | | - Marita Troye-Blomberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| |
Collapse
|
55
|
Insight into origins, mechanisms, and utility of DNA methylation in B-cell malignancies. Blood 2018; 132:999-1006. [PMID: 30037886 DOI: 10.1182/blood-2018-02-692970] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/15/2018] [Indexed: 12/12/2022] Open
Abstract
Understanding how tumor cells fundamentally alter their identity is critical to identify specific vulnerabilities for use in precision medicine. In B-cell malignancy, knowledge of genetic changes has resulted in great gains in our understanding of the biology of tumor cells, impacting diagnosis, prognosis, and treatment. Despite this knowledge, much remains to be explained as genetic events do not completely explain clinical behavior and outcomes. Many patients lack recurrent driver mutations, and said drivers can persist in nonmalignant cells of healthy individuals remaining cancer-free for decades. Epigenetics has emerged as a valuable avenue to further explain tumor phenotypes. The epigenetic landscape is the software that powers and stabilizes cellular identity by abridging a broad genome into the essential information required per cell. A genome-level view of B-cell malignancies reveals complex but recurrent epigenetic patterns that define tumor types and subtypes, permitting high-resolution classification and novel insight into tumor-specific mechanisms. Epigenetic alterations are guided by distinct cellular processes, such as polycomb-based silencing, transcription, signaling pathways, and transcription factor activity, and involve B-cell-specific aspects, such as activation-induced cytidine deaminase activity and germinal center-specific events. Armed with a detailed knowledge of the epigenetic events that occur across the spectrum of B-cell differentiation, B-cell tumor-specific aberrations can be detected with improved accuracy and serve as a model for identification of tumor-specific events in cancer. Insight gained through recent efforts may prove valuable in guiding the use of both epigenetic- and nonepigenetic-based therapies.
Collapse
|
56
|
Barwick BG, Scharer CD, Martinez RJ, Price MJ, Wein AN, Haines RR, Bally APR, Kohlmeier JE, Boss JM. B cell activation and plasma cell differentiation are inhibited by de novo DNA methylation. Nat Commun 2018; 9:1900. [PMID: 29765016 PMCID: PMC5953949 DOI: 10.1038/s41467-018-04234-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
B cells provide humoral immunity by differentiating into antibody-secreting plasma cells, a process that requires cellular division and is linked to DNA hypomethylation. Conversely, little is known about how de novo deposition of DNA methylation affects B cell fate and function. Here we show that genetic deletion of the de novo DNA methyltransferases Dnmt3a and Dnmt3b (Dnmt3-deficient) in mouse B cells results in normal B cell development and maturation, but increased cell activation and expansion of the germinal center B cell and plasma cell populations upon immunization. Gene expression is mostly unaltered in naive and germinal center B cells, but dysregulated in Dnmt3-deficient plasma cells. Differences in gene expression are proximal to Dnmt3-dependent DNA methylation and chromatin changes, both of which coincide with E2A and PU.1-IRF composite-binding motifs. Thus, de novo DNA methylation limits B cell activation, represses the plasma cell chromatin state, and regulates plasma cell differentiation.
Collapse
Affiliation(s)
- Benjamin G Barwick
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, 1701 Uppergate Drive, WCI 4060 C, Atlanta, GA, 30322, USA
| | - Christopher D Scharer
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
| | - Ryan J Martinez
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
- Department of Medicine, Emory University School of Medicine, 1648 Pierce Dr. NE, Atlanta, GA, 30307, USA
| | - Madeline J Price
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
| | - Alexander N Wein
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
| | - Robert R Haines
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
| | - Alexander P R Bally
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
- Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, 954 Gatewood Rd NE, Suite 3052, Atlanta, GA, 30329, USA
| | - Jacob E Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA
| | - Jeremy M Boss
- Department of Microbiology & Immunology, Emory University School of Medicine, 1510 Clifton Rd., Rm 3001, Atlanta, GA, 30322, USA.
| |
Collapse
|
57
|
Chen C, Zhai S, Zhang L, Chen J, Long X, Qin J, Li J, Huo R, Wang X. Uhrf1 regulates germinal center B cell expansion and affinity maturation to control viral infection. J Exp Med 2018; 215:1437-1448. [PMID: 29618490 PMCID: PMC5940267 DOI: 10.1084/jem.20171815] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
The production of high-affinity antibody is essential for pathogen clearance. Antibody affinity is increased through germinal center (GC) affinity maturation, which relies on BCR somatic hypermutation (SHM) followed by antigen-based selection. GC B cell proliferation is essentially involved in these processes; it provides enough templates for SHM and also serves as a critical mechanism of positive selection. In this study, we show that expression of epigenetic regulator ubiquitin-like with PHD and RING finger domains 1 (Uhrf1) was markedly up-regulated by c-Myc-AP4 in GC B cells, and it was required for GC response. Uhrf1 regulates cell proliferation-associated genes including cdkn1a, slfn1, and slfn2 by DNA methylation, and its deficiency inhibited the GC B cell cycle at G1-S phase. Subsequently, GC B cell SHM and affinity maturation were impaired, and Uhrf1 GC B knockout mice were unable to control chronic virus infection. Collectively, our data suggest that Uhrf1 regulates GC B cell proliferation and affinity maturation, and its expression in GC B cells is required for virus clearance.
Collapse
Affiliation(s)
- Chao Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Sulan Zhai
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Le Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jingjing Chen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuehui Long
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jun Qin
- Key Laboratory of Stem Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
58
|
Base-Resolution Analysis of DNA Methylation Patterns Downstream of Dnmt3a in Mouse Naïve B Cells. G3-GENES GENOMES GENETICS 2018; 8:805-813. [PMID: 29326230 PMCID: PMC5844302 DOI: 10.1534/g3.117.300446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The DNA methyltransferase, Dnmt3a, is dynamically regulated throughout mammalian B cell development and upon activation by antigenic stimulation. Dnmt3a inactivation in hematopoietic stem cells has been shown to drive B cell-related malignancies, including chronic lymphocytic leukemia, and associates with specific DNA methylation patterns in transformed cells. However, while it is clear that inactivation of Dnmt3a in hematopoietic stem cells has profound functional effects, the consequences of Dnmt3a inactivation in cells of the B lineage are unclear. To assess whether loss of Dnmt3a at the earliest stages of B cell development lead to DNA methylation defects that might impair function, we selectively inactivated Dnmt3a early in mouse B cell development and then utilized whole genome bisulfite sequencing to generate base-resolution profiles of Dnmt3a+/+ and Dnmt3a−/− naïve splenic B cells. Overall, we find that global methylation patterns are largely consistent between Dnmt3a+/+ and Dnmt3a−/− naïve B cells, indicating a minimal functional effect of DNMT3A in mature B cells. However, loss of Dnmt3a induced 449 focal DNA methylation changes, dominated by loss-of-methylation events. Regions found to be hypomethylated in Dnmt3a−/− naïve splenic B cells were enriched in gene bodies of transcripts expressed in B cells, a fraction of which are implicated in B cell-related disease. Overall, the results from this study suggest that factors other than Dnmt3a are the major drivers for methylome maintenance in B cell development.
Collapse
|
59
|
Sheppard EC, Morrish RB, Dillon MJ, Leyland R, Chahwan R. Epigenomic Modifications Mediating Antibody Maturation. Front Immunol 2018. [PMID: 29535729 PMCID: PMC5834911 DOI: 10.3389/fimmu.2018.00355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, such as histone modifications, DNA methylation status, and non-coding RNAs (ncRNA), all contribute to antibody maturation during somatic hypermutation (SHM) and class-switch recombination (CSR). Histone modifications alter the chromatin landscape and, together with DNA primary and tertiary structures, they help recruit Activation-Induced Cytidine Deaminase (AID) to the immunoglobulin (Ig) locus. AID is a potent DNA mutator, which catalyzes cytosine-to-uracil deamination on single-stranded DNA to create U:G mismatches. It has been shown that alternate chromatin modifications, in concert with ncRNAs and potentially DNA methylation, regulate AID recruitment and stabilize DNA repair factors. We, hereby, assess the combination of these distinct modifications and discuss how they contribute to initiating differential DNA repair pathways at the Ig locus, which ultimately leads to enhanced antibody–antigen binding affinity (SHM) or antibody isotype switching (CSR). We will also highlight how misregulation of epigenomic regulation during DNA repair can compromise antibody development and lead to a number of immunological syndromes and cancer.
Collapse
Affiliation(s)
- Emily C Sheppard
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Michael J Dillon
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Richard Chahwan
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
60
|
Lu H, Bhoopatiraju S, Wang H, Schmitz NP, Wang X, Freeman MJ, Forster CL, Verneris MR, Linden MA, Hallstrom TC. Loss of UHRF2 expression is associated with human neoplasia, promoter hypermethylation, decreased 5-hydroxymethylcytosine, and high proliferative activity. Oncotarget 2018; 7:76047-76061. [PMID: 27738314 PMCID: PMC5340178 DOI: 10.18632/oncotarget.12583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 09/24/2016] [Indexed: 12/31/2022] Open
Abstract
Ubiquitin-like with PHD and ring finger domains 2 (UHRF2) binds to 5-hydroxymethylcytosine (5hmC), a DNA base involved in tissue development, but it is unknown how their distribution compares with each other in normal and malignant human tissues. We used IHC on human tumor specimens (160 from 19 tumor types) or normal tissue to determine the expression and distribution of UHRF2, Ki-67, and 5hmC. We also examined UHRF2 expression in cord blood progenitors and compared its expression to methylation status in 6 leukemia cell lines and 15 primary human leukemias. UHRF2 is highly expressed, paralleling that of 5hmC, in most non-neoplastic, differentiated tissue with low Ki-67 defined proliferative activity. UHRF2 is expressed in common lymphoid progenitors and mature lymphocytes but not common myeloid progenitors or monocytes. In contrast, UHRF2 immunostaining in human cancer tissues revealed widespread reduction or abnormal cytoplasmic localization which correlated with a higher Ki-67 and reduced 5hmC. UHRF2 expression is reduced in some leukemia cell lines, this correlates with promoter hypermethylation, and similar UHRF2 methylation profiles are seen in primary human leukemia samples. Thus, UHRF2 and 5hmC are widely present in differentiated human tissues, and UHRF2 protein is poorly expressed or mislocalized in diverse human cancers.
Collapse
Affiliation(s)
- Huarui Lu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sweta Bhoopatiraju
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hongbo Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nolan P Schmitz
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaohong Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew J Freeman
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Colleen L Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael R Verneris
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy C Hallstrom
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
61
|
Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 2018; 15:676-684. [PMID: 29375128 PMCID: PMC6123482 DOI: 10.1038/cmi.2017.133] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
B cells have a critical role in the initiation and acceleration of autoimmune diseases, especially those mediated by autoantibodies. In the peripheral lymphoid system, mature B cells are activated by self or/and foreign antigens and signals from helper T cells for differentiating into either memory B cells or antibody-producing plasma cells. Accumulating evidence has shown that epigenetic regulations modulate somatic hypermutation and class switch DNA recombination during B-cell activation and differentiation. Any abnormalities in these complex regulatory processes may contribute to aberrant antibody production, resulting in autoimmune pathogenesis such as systemic lupus erythematosus. Newly generated knowledge from advanced modern technologies such as next-generation sequencing, single-cell sequencing and DNA methylation sequencing has enabled us to better understand B-cell biology and its role in autoimmune development. Thus this review aims to summarize current research progress in epigenetic modifications contributing to B-cell activation and differentiation, especially under autoimmune conditions such as lupus, rheumatoid arthritis and type 1 diabetes.
Collapse
|
62
|
Teater M, Dominguez PM, Redmond D, Chen Z, Ennishi D, Scott DW, Cimmino L, Ghione P, Chaudhuri J, Gascoyne RD, Aifantis I, Inghirami G, Elemento O, Melnick A, Shaknovich R. AICDA drives epigenetic heterogeneity and accelerates germinal center-derived lymphomagenesis. Nat Commun 2018; 9:222. [PMID: 29335468 PMCID: PMC5768781 DOI: 10.1038/s41467-017-02595-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 12/13/2017] [Indexed: 12/22/2022] Open
Abstract
Epigenetic heterogeneity is emerging as a feature of tumors. In diffuse large B-cell lymphoma (DLBCL), increased cytosine methylation heterogeneity is associated with poor clinical outcome, yet the underlying mechanisms remain unclear. Activation-induced cytidine deaminase (AICDA), an enzyme that mediates affinity maturation and facilitates DNA demethylation in germinal center (GC) B cells, is required for DLBCL pathogenesis and linked to inferior outcome. Here we show that AICDA overexpression causes more aggressive disease in BCL2-driven murine lymphomas. This phenotype is associated with increased cytosine methylation heterogeneity, but not with increased AICDA-mediated somatic mutation burden. Reciprocally, the cytosine methylation heterogeneity characteristic of normal GC B cells is lost upon AICDA depletion. These observations are relevant to human patients, since DLBCLs with high AICDA expression manifest increased methylation heterogeneity vs. AICDA-low DLBCLs. Our results identify AICDA as a driver of epigenetic heterogeneity in B-cell lymphomas with potential significance for other tumors with aberrant expression of cytidine deaminases. In diffuse large B-cell lymphoma (DLBCL) increased epigenetic heterogeneity in the form of cytosine methylation is known to link to a poor clinical outcome. Here, the authors show that AICDA, an enzyme required for DLBCL pathogenesis, increases cytosine methylation heterogeneity.
Collapse
Affiliation(s)
- Matt Teater
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.,Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Pilar M Dominguez
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David Redmond
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Daisuke Ennishi
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Luisa Cimmino
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Paola Ghione
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.,Division of Hematology, Department of Experimental Medicine and Oncology, University of Turin, 10124, Turin, Italy
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY, 10021, USA
| | - Randy D Gascoyne
- Department of Pathology, British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Iannis Aifantis
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, and The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10021, USA. .,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Rita Shaknovich
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA. .,Cancer Genetics, Inc., Rutherford, NJ, 07070, USA.
| |
Collapse
|
63
|
Guo M, Price MJ, Patterson DG, Barwick BG, Haines RR, Kania AK, Bradley JE, Randall TD, Boss JM, Scharer CD. EZH2 Represses the B Cell Transcriptional Program and Regulates Antibody-Secreting Cell Metabolism and Antibody Production. THE JOURNAL OF IMMUNOLOGY 2017; 200:1039-1052. [PMID: 29288200 DOI: 10.4049/jimmunol.1701470] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
Epigenetic remodeling is required during B cell differentiation. However, little is known about the direct functions of epigenetic enzymes in Ab-secreting cells (ASC) in vivo. In this study, we examined ASC differentiation independent of T cell help and germinal center reactions using mice with inducible or B cell-specific deletions of Ezh2 Following stimulation with influenza virus or LPS, Ezh2-deficient ASC poorly proliferated and inappropriately maintained expression of inflammatory pathways, B cell-lineage transcription factors, and Blimp-1-repressed genes, leading to fewer and less functional ASC. In the absence of EZH2, genes that normally gained histone H3 lysine 27 trimethylation were dysregulated and exhibited increased chromatin accessibility. Furthermore, EZH2 was also required for maximal Ab secretion by ASC, in part due to reduced mitochondrial respiration, impaired glucose metabolism, and poor expression of the unfolded-protein response pathway. Together, these data demonstrate that EZH2 is essential in facilitating epigenetic changes that regulate ASC fate, function, and metabolism.
Collapse
Affiliation(s)
- Muyao Guo
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322.,Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Madeline J Price
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Benjamin G Barwick
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322; and
| | - Robert R Haines
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Anna K Kania
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - John E Bradley
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322;
| | | |
Collapse
|
64
|
Bontha SV, Maluf DG, Archer KJ, Dumur CI, Dozmorov M, King A, Akalin E, Mueller TF, Gallon L, Mas VR. Effects of DNA Methylation on Progression to Interstitial Fibrosis and Tubular Atrophy in Renal Allograft Biopsies: A Multi-Omics Approach. Am J Transplant 2017; 17:3060-3075. [PMID: 28556588 PMCID: PMC5734859 DOI: 10.1111/ajt.14372] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/01/2017] [Accepted: 05/20/2017] [Indexed: 01/25/2023]
Abstract
Progressive fibrosis of the interstitium is the dominant final pathway in renal destruction in native and transplanted kidneys. Over time, the continuum of molecular events following immunological and nonimmunological insults lead to interstitial fibrosis and tubular atrophy and culminate in kidney failure. We hypothesize that these insults trigger changes in DNA methylation (DNAm) patterns, which in turn could exacerbate injury and slow down the regeneration processes, leading to fibrosis development and graft dysfunction. Herein, we analyzed biopsy samples from kidney allografts collected 24 months posttransplantation and used an integrative multi-omics approach to understand the underlying molecular mechanisms. The role of DNAm and microRNAs on the graft gene expression was evaluated. Enrichment analyses of differentially methylated CpG sites were performed using GenomeRunner. CpGs were strongly enriched in regions that were variably methylated among tissues, implying high tissue specificity in their regulatory impact. Corresponding to this methylation pattern, gene expression data were related to immune response (activated state) and nephrogenesis (inhibited state). Preimplantation biopsies showed similar DNAm patterns to normal allograft biopsies at 2 years posttransplantation. Our findings demonstrate for the first time a relationship among epigenetic modifications and development of interstitial fibrosis, graft function, and inter-individual variation on long-term outcomes.
Collapse
Affiliation(s)
- Sai Vineela Bontha
- Translational Genomics Transplant Laboratory, Transplant Division, University of Virginia, Department of Surgery, PO Box 800625. 409 Lane Rd, Charlottesville, VA, 22908- 0625, USA
| | - Daniel G. Maluf
- Translational Genomics Transplant Laboratory, Transplant Division, University of Virginia, Department of Surgery, PO Box 800625. 409 Lane Rd, Charlottesville, VA, 22908- 0625, USA
| | - Kellie J. Archer
- Division of Biostatistics, The Ohio State University, 1841 Neil Avenue, 240 Cunz Hall, Columbus, OH 43210
| | - Catherine I. Dumur
- Department of Pathology, Virginia Commonwealth University, PO Box 980662, 1101 E. Marshall Street, Richmond, VA 23298-0662
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, One Capitol Square, room 730, 830 East Main Street, Richmond, Virginia 23298
| | - Anne King
- Division of Nephrology, Internal Medicine. Virginia commonwealth University, VA, 1101 E. Marshall Street, Richmond, VA 23298-0662
| | - Enver Akalin
- Departments of Clinical Medicine and Surgery, Albert Einstein College of Medicine Montefiore Medical Center, 11 E 210th St, Bronx, NY 10467
| | - Thomas F. Mueller
- Division of Nephorology, Internal Medicine, University Hospital Zurich, Ramistrasse 100, Zurich-8091
| | - Lorenzo Gallon
- Department of Medicine-Nephrology, Northwestern University676 N St Clair St # 100, Chicago, IL 60611
| | - Valeria R. Mas
- Translational Genomics Transplant Laboratory, Transplant Division, University of Virginia, Department of Surgery, PO Box 800625. 409 Lane Rd, Charlottesville, VA, 22908- 0625, USA
| |
Collapse
|
65
|
Loo SK, Ch'ng ES, Lawrie CH, Muruzabal MA, Gaafar A, Pomposo MP, Husin A, Md Salleh MS, Banham AH, Pedersen LM, Møller MB, Green TM, Wong KK. DNMT1 is predictive of survival and associated with Ki-67 expression in R-CHOP-treated diffuse large B-cell lymphomas. Pathology 2017; 49:731-739. [PMID: 29074044 DOI: 10.1016/j.pathol.2017.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/26/2022]
Abstract
DNMT1 is a target of approved anti-cancer drugs including decitabine. However, the prognostic value of DNMT1 protein expression in R-CHOP-treated diffuse large B-cell lymphomas (DLBCLs) remains unexplored. Here we showed that DNMT1 was expressed in the majority of DLBCL cases (n = 209/230, 90.9%) with higher expression in germinal centre B-cell-like (GCB)-DLBCL subtype. Low and negative DNMT1 expression (20% cut-off, n = 33/230, 14.3%) was predictive of worse overall survival (OS; p < 0.001) and progression-free survival (PFS; p < 0.001). Nonetheless, of the 209 DNMT1 positive patients, 33% and 42% did not achieve 5-year OS and PFS, respectively, indicating that DNMT1 positive patients showed considerably heterogeneous outcomes. Moreover, DNMT1 was frequently expressed in mitotic cells and significantly correlated with Ki-67 or BCL6 expression (r = 0.60 or 0.44, respectively; p < 0.001). We demonstrate that DNMT1 is predictive of DLBCL patients' survival, and suggest that DNMT1 could be a DLBCL therapeutic target due to its significant association with Ki-67.
Collapse
Affiliation(s)
- Suet Kee Loo
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Charles H Lawrie
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oncology Department, Biodonostia Research Institute, San Sebastian, Spain
| | | | - Ayman Gaafar
- Department of Pathology, Hospital Universitario Cruces, Barakaldo, Spain
| | | | - Azlan Husin
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Md Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lars M Pedersen
- Department of Haematology, Herlev University Hospital, Copenhagen, Denmark
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW Perturbation of the epigenome is emerging as a central driving force in the pathogenesis of diffuse large B-cell lymphomas (DLBCL) and follicular lymphoma. The purpose of this review is to explain how alteration of different layers of the epigenome contributes to the biology and clinical features of these tumors. RECENT FINDINGS Key new findings implicate DNA methylation heterogeneity as a core feature of DLBCL. Epigenetic diversity is linked to unfavorable clinical outcomes, clonal selection at relapse, and is driven at least in part because of the actions of activation-induced cytosine deaminase, which is a unique feature of B-cell lymphomas. Somatic mutations in histone modifier genes drive lymphomagenesis through the establishment of aberrant gene-specific histone modification signatures. For example, EZH2 somatic mutations drive silencing of bivalent gene promoters through histone 3 lysine 27 trimethylation, whereas KMT2D (MLL2) mutations disrupt specific sets of enhancers through depletion of histone 3 lysine 4 mono and dimethylation (H3K4me1/me2). SUMMARY Appreciation of the epigenome in determining lymphoma clonal heterogeneity and in driving lymphoma phenotypes through altered promoter and enhancer histone modification profiles is leading to a paradigm shift in how we understand and design therapies for DLBCL and follicular lymphoma.
Collapse
|
67
|
Loo SK, Ab Hamid SS, Musa M, Wong KK. DNMT1 is associated with cell cycle and DNA replication gene sets in diffuse large B-cell lymphoma. Pathol Res Pract 2017; 214:134-143. [PMID: 29137822 DOI: 10.1016/j.prp.2017.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
Dysregulation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) is associated with the pathogenesis of various types of cancer. It has been previously shown that DNMT1 is frequently expressed in diffuse large B-cell lymphoma (DLBCL), however its functions remain to be elucidated in the disease. In this study, we gene expression profiled (GEP) shRNA targeting DNMT1(shDNMT1)-treated germinal center B-cell-like DLBCL (GCB-DLBCL)-derived cell line (i.e. HT) compared with non-silencing shRNA (control shRNA)-treated HT cells. Independent gene set enrichment analysis (GSEA) performed using GEPs of shRNA-treated HT cells and primary GCB-DLBCL cases derived from two publicly-available datasets (i.e. GSE10846 and GSE31312) produced three separate lists of enriched gene sets for each gene sets collection from Molecular Signatures Database (MSigDB). Subsequent Venn analysis identified 268, 145 and six consensus gene sets from analyzing gene sets in C2 collection (curated gene sets), C5 sub-collection [gene sets from gene ontology (GO) biological process ontology] and Hallmark collection, respectively to be enriched in positive correlation with DNMT1 expression profiles in shRNA-treated HT cells, GSE10846 and GSE31312 datasets [false discovery rate (FDR) <0.05]. Cell cycle progression and DNA replication were among the significantly enriched biological processes (FDR <0.05). Expression of genes involved in the activation of cell cycle and DNA replication (e.g. CDK1, CCNA2, E2F2, PCNA, RFC5 and POLD3) were highly correlated (r>0.8) with DNMT1 expression and significantly downregulated (log fold-change <-1.35; p<0.05) following DNMT1 silencing in HT cells. These results suggest the involvement of DNMT1 in the activation of cell cycle and DNA replication in DLBCL cells.
Collapse
Affiliation(s)
- Suet Kee Loo
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Suzina Sheikh Ab Hamid
- Tissue Bank Unit, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mustaffa Musa
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
68
|
Charting the dynamic epigenome during B-cell development. Semin Cancer Biol 2017; 51:139-148. [PMID: 28851627 DOI: 10.1016/j.semcancer.2017.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
The epigenetic landscape undergoes a widespread modulation during embryonic development and cell differentiation. Within the hematopoietic system, B cells are perhaps the cell lineage with a more dynamic DNA methylome during their maturation process, which involves approximately one third of all the CpG sites of the genome. Although each B-cell maturation step displays its own DNA methylation fingerprint, the DNA methylome is more extensively modified in particular maturation transitions. These changes are gradually accumulated in specific chromatin environments as cell differentiation progresses and reflect different features and functional states of B cells. Promoters and enhancers of B-cell transcription factors acquire activation-related epigenetic marks and are sequentially expressed in particular maturation windows. These transcription factors further reconfigure the epigenetic marks and activity state of their target sites to regulate the expression of genes related to B-cell functions. Together with this observation, extensive DNA methylation changes in areas outside gene regulatory elements such as hypomethylation of heterochromatic regions and hypermethylation of CpG-rich regions, also take place in mature B cells, which intriguingly have been described as hallmarks of cancer. This process starts in germinal center B cells, a highly proliferative cell type, and becomes particularly apparent in long-lived cells such as memory and plasma cells. Overall, the characterization of the DNA methylome during B-cell differentiation not only provides insights into the complex epigenetic network of regulatory elements that mediate the maturation process but also suggests that late B cells also passively accumulate epigenetic changes related to cell proliferation and longevity.
Collapse
|
69
|
Rahmani T, Azad M, Chahardouli B, Nasiri H, Vatanmakanian M, Kaviani S. Patterns of DNMT1 Promoter Methylation in Patients with Acute Lymphoblastic Leukemia. Int J Hematol Oncol Stem Cell Res 2017; 11:172-177. [PMID: 28989582 PMCID: PMC5625466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Background: Acute lymphoblastic leukemia (ALL) is a clonal malignant disorder characterized by an uncontrolled proliferation of immature T or B lymphocytes. Extensive studies have shown that the epigenetic changes, especially modified DNA methylation patterns in the regulatory regions through the DNA methyltransferase (DNMTs), play an important role in the development of genetic disorders and abnormal growth and maturation capacity of leukemic stem cells (LSCs).The aim of this study was to evaluate the changes in DNMT1 promoter methylation and its expression pattern in patients with ALL. Materials and Methods: In this experimental study, methylation specific PCR (MSP) was used to assess the methylation status of DNMT1 promoter regions in samples collected from ALL patients (n=45) and healthy control subjects. According to this method, un-methylated cytosine nucleotides are converted to uracil by sodium bisulfite and the proliferation of methylated and un-methylated regions are performed using specific primers for target sequences. Results: None of the patients with B and T-ALL showed methylated promoter regions of the DNMT1 gene, while the methylation pattern of both pre-B ALL patients and the control group showed a relative promoter methylation. Conclusion: Analysis of promoter methylation patterns in various subgroups of ALL has revealed the importance of DNMT1 in the regulation of gene expression. Likewise, extensive data have also highlighted the methylation-based mechanisms exerted by DNAM1 as one of the main participants regulating gene expression in B-ALL and T-ALL patients. Investigation of the overall DNA methylation pattern offers significant improvements in the prediction of disease prognosis and treatment response.
Collapse
Affiliation(s)
- Tirdad Rahmani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bahram Chahardouli
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hajar Nasiri
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran,Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mousa Vatanmakanian
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Kaviani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
70
|
|
71
|
Tsagaratou A, Lio CWJ, Yue X, Rao A. TET Methylcytosine Oxidases in T Cell and B Cell Development and Function. Front Immunol 2017; 8:220. [PMID: 28408905 PMCID: PMC5374156 DOI: 10.3389/fimmu.2017.00220] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is established by DNA methyltransferases and is a key epigenetic mark. Ten-eleven translocation (TET) proteins are enzymes that oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidization products (oxi-mCs), which indirectly promote DNA demethylation. Here, we provide an overview of the effect of TET proteins and altered DNA modification status in T and B cell development and function. We summarize current advances in our understanding of the role of TET proteins and 5hmC in T and B cells in both physiological and pathological contexts. We describe how TET proteins and 5hmC regulate DNA modification, chromatin accessibility, gene expression, and transcriptional networks and discuss potential underlying mechanisms and open questions in the field.
Collapse
Affiliation(s)
- Ageliki Tsagaratou
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Chan-Wang J Lio
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Xiaojing Yue
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Anjana Rao
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| |
Collapse
|
72
|
Stagi S, Gulino AV, Lapi E, Rigante D. Epigenetic control of the immune system: a lesson from Kabuki syndrome. Immunol Res 2016; 64:345-59. [PMID: 26411453 DOI: 10.1007/s12026-015-8707-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kabuki syndrome (KS) is a rare multi-systemic disorder characterized by a distinct face, postnatal growth deficiency, mild-to-moderate intellectual disability, skeletal and visceral (mainly cardiovascular, renal, and skeletal) malformations, dermatoglyphic abnormalities. Its cause is related to mutations of two genes: KMT2D (histone-lysine N-methyltransferase 2D) and KDM6A (lysine-specific demethylase 6A), both functioning as epigenetic modulators through histone modifications in the course of embryogenesis and in several biological processes. Epigenetic regulation is defined as the complex of hereditable modifications to DNA and histone proteins that modulates gene expression in the absence of DNA nucleotide sequence changes. Different human disorders are caused by mutations of genes involved in the epigenetic regulation, and not surprisingly, all these share developmental defects, disturbed growth (in excess or defect), multiple congenital organ malformations, and also hematological and immunological defects. In particular, most KS patients show increased susceptibility to infections and have reduced serum immunoglobulin levels, while some suffer also from autoimmune manifestations, such as idiopathic thrombocytopenic purpura, hemolytic anemia, autoimmune thyroiditis, and vitiligo. Herein we review the immunological aspects of KS and propose a novel model to account for the immune dysfunction observed in this condition.
Collapse
Affiliation(s)
- Stefano Stagi
- Health Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy.
| | | | - Elisabetta Lapi
- Health Sciences Department, University of Florence, Anna Meyer Children's University Hospital, Florence, Italy
| | - Donato Rigante
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| |
Collapse
|
73
|
|
74
|
Raghuraman S, Donkin I, Versteyhe S, Barrès R, Simar D. The Emerging Role of Epigenetics in Inflammation and Immunometabolism. Trends Endocrinol Metab 2016; 27:782-795. [PMID: 27444065 DOI: 10.1016/j.tem.2016.06.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Recent research developments have shed light on the risk factors contributing to metabolic complications, implicating both genetic and environmental factors, potentially integrated by epigenetic mechanisms. Distinct epigenetic changes in immune cells are frequently observed in obesity and type 2 diabetes mellitus, and these are associated with alterations in the phenotype, function, and trafficking patterns of these cells. The first step in the development of effective therapeutic strategies is the identification of distinct epigenetic signatures associated with metabolic disorders. In this review we provide an overview of the epigenetic mechanisms influencing immune cell phenotype and function, summarize current knowledge about epigenetic changes affecting immune functions in the context of metabolic diseases, and discuss the therapeutic options currently available to counteract epigenetically driven metabolic complications.
Collapse
Affiliation(s)
- Sukanya Raghuraman
- Inflammation and Infection Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Ida Donkin
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Soetkin Versteyhe
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Inflammation and Infection Research, School of Medical Sciences, University of New South Wales, Sydney, Australia; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Simar
- Inflammation and Infection Research, School of Medical Sciences, University of New South Wales, Sydney, Australia; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
75
|
Barwick BG, Scharer CD, Bally AP, Boss JM. Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation. Nat Immunol 2016; 17:1216-1225. [PMID: 27500631 PMCID: PMC5157049 DOI: 10.1038/ni.3519] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/23/2016] [Indexed: 12/16/2022]
Abstract
The epigenetic processes that regulate antibody-secreting plasma cells are not well understood. Here, analysis of plasma cell differentiation revealed DNA hypomethylation of 10% of CpG loci that were overrepresented at enhancers. Inhibition of DNA methylation enhanced plasma cell commitment in a cell-division-dependent manner. Analysis of B cells differentiating in vivo stratified by cell division revealed a fivefold increase in mRNA transcription coupled to DNA hypomethylation. Demethylation occurred first at binding motifs for the transcription factors NF-κB and AP-1 and later at those for the transcription factors IRF and Oct-2 and was coincident with activation and differentiation gene-expression programs in a cell-division-dependent manner. These data provide mechanistic insight into cell-division-coupled transcriptional and epigenetic reprogramming and suggest that DNA hypomethylation reflects the cis-regulatory history of plasma cell differentiation.
Collapse
Affiliation(s)
- Benjamin G. Barwick
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| | - Christopher D. Scharer
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| | - Alexander P.R. Bally
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| | - Jeremy M. Boss
- Department of Microbiology & Immunology Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
76
|
Bunting KL, Soong TD, Singh R, Jiang Y, Béguelin W, Poloway DW, Swed BL, Hatzi K, Reisacher W, Teater M, Elemento O, Melnick AM. Multi-tiered Reorganization of the Genome during B Cell Affinity Maturation Anchored by a Germinal Center-Specific Locus Control Region. Immunity 2016; 45:497-512. [PMID: 27637145 PMCID: PMC5033726 DOI: 10.1016/j.immuni.2016.08.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
During the humoral immune response, B cells undergo a dramatic change in phenotype to enable antibody affinity maturation in germinal centers (GCs). Using genome-wide chromosomal conformation capture (Hi-C), we found that GC B cells undergo massive reorganization of the genomic architecture that encodes the GC B cell transcriptome. Coordinate expression of genes that specify the GC B cell phenotype-most prominently BCL6-was achieved through a multilayered chromatin reorganization process involving (1) increased promoter connectivity, (2) formation of enhancer networks, (3) 5' to 3' gene looping, and (4) merging of gene neighborhoods that share active epigenetic marks. BCL6 was an anchor point for the formation of GC-specific gene and enhancer loops on chromosome 3. Deletion of a GC-specific, highly interactive locus control region upstream of Bcl6 abrogated GC formation in mice. Thus, large-scale and multi-tiered genomic three-dimensional reorganization is required for coordinate expression of phenotype-driving gene sets that determine the unique characteristics of GC B cells.
Collapse
Affiliation(s)
- Karen L Bunting
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - T David Soong
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Rajat Singh
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yanwen Jiang
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David W Poloway
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brandon L Swed
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Katerina Hatzi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - William Reisacher
- Department of Otorhinolaryngology, Weill Cornell Medical College/New York Presbyterian Hospital, New York, NY 10065, USA
| | - Matt Teater
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
77
|
Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, Brown AL, Perl AE, Cannon J, Bullinger L, Luger S, Becker M, Lewis ID, To LB, Delwel R, Löwenberg B, Döhner H, Döhner K, Guzman ML, Hassane DC, Roboz GJ, Grimwade D, Valk PJ, D’Andrea RJ, Carroll M, Park CY, Neuberg D, Levine R, Melnick AM, Mason CE. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med 2016; 22:792-9. [PMID: 27322744 PMCID: PMC4938719 DOI: 10.1038/nm.4125] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022]
Abstract
Genetic heterogeneity contributes to clinical outcome and progression of most tumors, but little is known about allelic diversity for epigenetic compartments, and almost no data exist for acute myeloid leukemia (AML). We examined epigenetic heterogeneity as assessed by cytosine methylation within defined genomic loci with four CpGs (epialleles), somatic mutations, and transcriptomes of AML patient samples at serial time points. We observed that epigenetic allele burden is linked to inferior outcome and varies considerably during disease progression. Epigenetic and genetic allelic burden and patterning followed different patterns and kinetics during disease progression. We observed a subset of AMLs with high epiallele and low somatic mutation burden at diagnosis, a subset with high somatic mutation and lower epiallele burdens at diagnosis, and a subset with a mixed profile, suggesting distinct modes of tumor heterogeneity. Genes linked to promoter-associated epiallele shifts during tumor progression showed increased single-cell transcriptional variance and differential expression, suggesting functional impact on gene regulation. Thus, genetic and epigenetic heterogeneity can occur with distinct kinetics likely to affect the biological and clinical features of tumors.
Collapse
MESH Headings
- Adult
- Alleles
- CpG Islands
- Cytosine/metabolism
- DNA Methylation
- Disease Progression
- Epigenesis, Genetic
- Evolution, Molecular
- Female
- Gene Expression Regulation, Leukemic
- Genetic Heterogeneity
- High-Throughput Nucleotide Sequencing
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Multivariate Analysis
- Prognosis
- Promoter Regions, Genetic
- Proportional Hazards Models
- Sequence Analysis, DNA
- Sequence Analysis, RNA
- Survival Rate
Collapse
Affiliation(s)
- Sheng Li
- Department of Physiology and Biophysics and the Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | - Francine E. Garrett-Bakelman
- Division of Hematology/Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Stephen S. Chung
- Leukemia Service, Department of Medicine, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathijs A. Sanders
- Erasmus University Medical Center, Department of Hematology, Rotterdam, The Netherlands
| | - Todd Hricik
- Leukemia Service, Department of Medicine, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franck Rapaport
- Leukemia Service, Department of Medicine, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jay Patel
- Leukemia Service, Department of Medicine, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Dillon
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, UK
| | - Priyanka Vijay
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Anna L. Brown
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia
- Department of Haematology, SA Pathology and Royal Adelaide Hospital, Adelaide, South Australia
| | - Alexander E. Perl
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joy Cannon
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Selina Luger
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Becker
- University of Rochester Medical Center, Rochester, NY, USA
| | - Ian D. Lewis
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia
- Department of Haematology, SA Pathology and Royal Adelaide Hospital, Adelaide, South Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Luen Bik To
- Department of Haematology, SA Pathology and Royal Adelaide Hospital, Adelaide, South Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia
| | - Ruud Delwel
- Erasmus University Medical Center, Department of Hematology, Rotterdam, The Netherlands
| | - Bob Löwenberg
- Erasmus University Medical Center, Department of Hematology, Rotterdam, The Netherlands
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Monica L. Guzman
- Division of Hematology/Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Duane C. Hassane
- Division of Hematology/Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Gail J. Roboz
- Division of Hematology/Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David Grimwade
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, UK
| | - Peter J.M. Valk
- Erasmus University Medical Center, Department of Hematology, Rotterdam, The Netherlands
| | - Richard J. D’Andrea
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia
- Department of Haematology, SA Pathology and Royal Adelaide Hospital, Adelaide, South Australia
| | - Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Y. Park
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ross Levine
- Leukemia Service, Department of Medicine, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ari M. Melnick
- Division of Hematology/Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
78
|
Flinders C, Lam L, Rubbi L, Ferrari R, Fitz-Gibbon S, Chen PY, Thompson M, Christofk H, B Agus D, Ruderman D, Mallick P, Pellegrini M. Epigenetic changes mediated by polycomb repressive complex 2 and E2a are associated with drug resistance in a mouse model of lymphoma. Genome Med 2016; 8:54. [PMID: 27146673 PMCID: PMC4857420 DOI: 10.1186/s13073-016-0305-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 04/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background The genetic origins of chemotherapy resistance are well established; however, the role of epigenetics in drug resistance is less well understood. To investigate mechanisms of drug resistance, we performed systematic genetic, epigenetic, and transcriptomic analyses of an alkylating agent-sensitive murine lymphoma cell line and a series of resistant lines derived by drug dose escalation. Methods Dose escalation of the alkylating agent mafosfamide was used to create a series of increasingly drug-resistant mouse Burkitt’s lymphoma cell lines. Whole genome sequencing, DNA microarrays, reduced representation bisulfite sequencing, and chromatin immunoprecipitation sequencing were used to identify alterations in DNA sequence, mRNA expression, CpG methylation, and H3K27me3 occupancy, respectively, that were associated with increased resistance. Results Our data suggest that acquired resistance cannot be explained by genetic alterations. Based on integration of transcriptional profiles with transcription factor binding data, we hypothesize that resistance is driven by epigenetic plasticity. We observed that the resistant cells had H3K27me3 and DNA methylation profiles distinct from those of the parental lines. Moreover, we observed DNA methylation changes in the promoters of genes regulated by E2a and members of the polycomb repressor complex 2 (PRC2) and differentially expressed genes were enriched for targets of E2a. The integrative analysis considering H3K27me3 further supported a role for PRC2 in mediating resistance. By integrating our results with data from the Immunological Genome Project (Immgen.org), we showed that these transcriptional changes track the B-cell maturation axis. Conclusions Our data suggest a novel mechanism of drug resistance in which E2a and PRC2 drive changes in the B-cell epigenome; these alterations attenuate alkylating agent treatment-induced apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0305-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin Flinders
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA.,Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Larry Lam
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Roberto Ferrari
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Sorel Fitz-Gibbon
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Pao-Yang Chen
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Michael Thompson
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Heather Christofk
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - David B Agus
- Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Daniel Ruderman
- Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Parag Mallick
- Canary Center, Stanford University, Palo Alto, CA, 94305, USA. .,Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Matteo Pellegrini
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
79
|
Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions. Transplantation 2016; 100:23-38. [PMID: 26356174 DOI: 10.1097/tp.0000000000000878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are changes to the genome that occur without any alteration in DNA sequence. These changes include cytosine methylation of DNA at cytosine-phosphate diester-guanine dinucleotides, histone modifications, microRNA interactions, and chromatin remodeling complexes. Epigenetic modifications may exert their effect independently or complementary to genetic variants and have the potential to modify gene expression. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. There is emerging evidence that epigenetics play an important role in health and disease. However, the impact of epigenetic modifications on the outcomes of kidney transplantation is currently poorly understood and deserves further exploration. Kidney transplantation is the best treatment option for end-stage renal disease, but allograft loss remains a significant challenge that leads to increased morbidity and return to dialysis. Epigenetic modifications may influence the activation, proliferation, and differentiation of the immune cells, and therefore may have a critical role in the host immune response to the allograft and its outcome. The epigenome of the donor may also impact kidney graft survival, especially those epigenetic modifications associated with early transplant stressors (e.g., cold ischemia time) and donor aging. In the present review, we discuss evidence supporting the role of epigenetic modifications in ischemia-reperfusion injury, host immune response to the graft, and graft response to injury as potential new tools for the diagnosis and prediction of graft function, and new therapeutic targets for improving outcomes of kidney transplantation.
Collapse
|
80
|
Rodríguez-Cortez VC, Del Pino-Molina L, Rodríguez-Ubreva J, López-Granados E, Ballestar E. Dissecting Epigenetic Dysregulation of Primary Antibody Deficiencies. J Clin Immunol 2016; 36 Suppl 1:48-56. [PMID: 26984849 DOI: 10.1007/s10875-016-0267-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 01/04/2023]
Abstract
Primary antibody deficiencies (PADs), the most prevalent inherited primary immunodeficiencies (PIDs), are associated with a wide range of genetic alterations (both monogenic or polygenic) in B cell-specific genes. However, correlations between the genotype and clinical manifestations are not evident in all cases indicating that genetic interactions, environmental and epigenetic factors may have a role in PAD pathogenesis. The recent identification of key defects in DNA methylation in common variable immunodeficiency as well as the multiple evidences on the role of epigenetic control during B cell differentiation, activation and during antibody formation highlight the importance of investing research efforts in dissecting the participation of epigenetic defects in this group of diseases. This review focuses on the role of epigenetic control in B cell biology which can provide clues for the study of potential novel pathogenic defects involved in PADs.
Collapse
Affiliation(s)
- Virginia C Rodríguez-Cortez
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lucia Del Pino-Molina
- Clinical Immunology Department, University Hospital La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
- Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Javier Rodríguez-Ubreva
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eduardo López-Granados
- Clinical Immunology Department, University Hospital La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
- Physiopathology of Lymphocytes in Immunodeficiencies Group, IdiPAZ Institute for Health Research, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Esteban Ballestar
- Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
81
|
Abstract
Aberrant DNA methylation is a characteristic feature of cancer including blood malignancies. Mutations in the DNA methylation regulators DNMT3A, TET1/2 and IDH1/2 are recurrent in leukemia and lymphoma. Specific and distinct DNA methylation patterns characterize subtypes of AML and lymphoma. Regulatory regions such as promoter CpG islands, CpG shores and enhancers show changes in methylation during transformation. However, the reported poor correlation between changes in methylation and gene expression in many mouse models and human studies reflects the complexity in the precise molecular mechanism for why aberrant DNA methylation promotes malignancies. This review will summarize current concepts regarding the mechanisms behind aberrant DNA methylation in hematopoietic malignancy and discuss its importance in cancer prognosis, tumor heterogeneity and relapse.
Collapse
Affiliation(s)
- Maria Guillamot
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Luisa Cimmino
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA; Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
82
|
DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat Genet 2016; 48:253-64. [PMID: 26780610 DOI: 10.1038/ng.3488] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 12/17/2015] [Indexed: 12/14/2022]
Abstract
Charting differences between tumors and normal tissue is a mainstay of cancer research. However, clonal tumor expansion from complex normal tissue architectures potentially obscures cancer-specific events, including divergent epigenetic patterns. Using whole-genome bisulfite sequencing of normal B cell subsets, we observed broad epigenetic programming of selective transcription factor binding sites coincident with the degree of B cell maturation. By comparing normal B cells to malignant B cells from 268 patients with chronic lymphocytic leukemia (CLL), we showed that tumors derive largely from a continuum of maturation states reflected in normal developmental stages. Epigenetic maturation in CLL was associated with an indolent gene expression pattern and increasingly favorable clinical outcomes. We further uncovered that most previously reported tumor-specific methylation events are normally present in non-malignant B cells. Instead, we identified a potential pathogenic role for transcription factor dysregulation in CLL, where excess programming by EGR and NFAT with reduced EBF and AP-1 programming imbalances the normal B cell epigenetic program.
Collapse
|
83
|
Zan H, Casali P. Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response. Front Immunol 2015; 6:631. [PMID: 26697022 PMCID: PMC4677338 DOI: 10.3389/fimmu.2015.00631] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM), as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens, such as those on microbial pathogens, and generation of pathogenic autoantibodies, IgE in allergic reactions, as well as B cell neoplasia. Epigenetic marks would be attractive targets for new therapeutics for autoimmune and allergic diseases, and B cell malignancies.
Collapse
Affiliation(s)
- Hong Zan
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| | - Paolo Casali
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| |
Collapse
|
84
|
Kretzmer H, Bernhart SH, Wang W, Haake A, Weniger MA, Bergmann AK, Betts MJ, Carrillo-de-Santa-Pau E, Doose G, Gutwein J, Richter J, Hovestadt V, Huang B, Rico D, Jühling F, Kolarova J, Lu Q, Otto C, Wagener R, Arnolds J, Burkhardt B, Claviez A, Drexler HG, Eberth S, Eils R, Flicek P, Haas S, Humme M, Karsch D, Kerstens HH, Klapper W, Kreuz M, Lawerenz C, Lenzek D, Loeffler M, López C, MacLeod RA, Martens JH, Kulis M, Martín-Subero JI, Möller P, Nage I, Picelli S, Vater I, Rohde M, Rosenstiel P, Rosolowski M, Russell RB, Schilhabel M, Schlesner M, Stadler PF, Szczepanowski M, Trümper L, Stunnenberg HG, Küppers R, Ammerpohl O, Lichter P, Siebert R, Hoffmann S, Radlwimmer B. DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control. Nat Genet 2015; 47:1316-1325. [PMID: 26437030 PMCID: PMC5444523 DOI: 10.1038/ng.3413] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/08/2015] [Indexed: 12/14/2022]
Abstract
Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation-positive Burkitt lymphoma, nine BCL2 translocation-positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas.
Collapse
Affiliation(s)
- Helene Kretzmer
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
- German ICGC MMML-Seq-project
| | - Stephan H. Bernhart
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
- German ICGC MMML-Seq-project
| | - Wei Wang
- German Cancer Research Center (DKFZ), Division Molecular Genetics, Heidelberg, Germany
| | - Andrea Haake
- German ICGC MMML-Seq-project
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Marc A. Weniger
- German ICGC MMML-Seq-project
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Anke K. Bergmann
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- BLUEPRINT project
| | - Matthew J. Betts
- Cell Networks, Bioquant, University of Heidelberg, Heidelberg, Germany
| | - Enrique Carrillo-de-Santa-Pau
- BLUEPRINT project
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Gero Doose
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
- German ICGC MMML-Seq-project
| | - Jana Gutwein
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Julia Richter
- German ICGC MMML-Seq-project
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Volker Hovestadt
- German Cancer Research Center (DKFZ), Division Molecular Genetics, Heidelberg, Germany
| | - Bingding Huang
- Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Division Theoretical Bioinformatics, Heidelberg, Germany
| | - Daniel Rico
- BLUEPRINT project
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Frank Jühling
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Qianhao Lu
- Cell Networks, Bioquant, University of Heidelberg, Heidelberg, Germany
| | - Christian Otto
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Rabea Wagener
- German ICGC MMML-Seq-project
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Judith Arnolds
- Department of Otorhinolaryngology, University of Duisburg-Essen, Essen, Germany
| | - Birgit Burkhardt
- German ICGC MMML-Seq-project
- University Hospital Muenster - Pediatric Hematology and Oncology, Münster Germany
| | - Alexander Claviez
- German ICGC MMML-Seq-project
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hans G. Drexler
- Leibniz-Institut DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sonja Eberth
- German ICGC MMML-Seq-project
- Leibniz-Institut DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Department of Hematology and Oncology, Georg-Augusts-University of Göttingen, Göttingen, Germany
| | - Roland Eils
- German ICGC MMML-Seq-project
- Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Division Theoretical Bioinformatics, Heidelberg, Germany
- Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Heidelberg, Germany
| | - Paul Flicek
- BLUEPRINT project
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Siegfried Haas
- German ICGC MMML-Seq-project
- Friedrich-Ebert Hospital Neumuenster, Clinics for Haematology, Oncology and Nephrology, Neumünster, Germany
| | - Michael Humme
- German ICGC MMML-Seq-project
- Institute of Pathology, Charité – University Medicine Berlin, Berlin, Germany
| | - Dennis Karsch
- German ICGC MMML-Seq-project
- Department of Internal Medicine II: Hematology and Oncology, University Medical Centre, Campus Kiel, Kiel, Germany
| | - Hinrik H.D. Kerstens
- BLUEPRINT project
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen, Netherlands
| | - Wolfram Klapper
- German ICGC MMML-Seq-project
- Hematopathology Section, Christian-Albrechts-University, Kiel, Germany
| | - Markus Kreuz
- German ICGC MMML-Seq-project
- BLUEPRINT project
- Institute for Medical Informatics Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Chris Lawerenz
- German ICGC MMML-Seq-project
- Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Division Theoretical Bioinformatics, Heidelberg, Germany
| | - Dido Lenzek
- German ICGC MMML-Seq-project
- Institute of Pathology, Charité – University Medicine Berlin, Berlin, Germany
| | - Markus Loeffler
- German ICGC MMML-Seq-project
- BLUEPRINT project
- Institute for Medical Informatics Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Cristina López
- German ICGC MMML-Seq-project
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Roderick A.F. MacLeod
- Leibniz-Institut DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Joost H.A. Martens
- BLUEPRINT project
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen, Netherlands
| | - Marta Kulis
- BLUEPRINT project
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen, Netherlands
| | - José Ignacio Martín-Subero
- BLUEPRINT project
- Departamento de Anatomía Patológica, Farmacología y Microbiología, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter Möller
- German ICGC MMML-Seq-project
- Institute of Pathology, Medical Faculty of the Ulm University, Ulm, Germany
| | - Inga Nage
- German ICGC MMML-Seq-project
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Simone Picelli
- German Cancer Research Center (DKFZ), Division Molecular Genetics, Heidelberg, Germany
| | - Inga Vater
- German ICGC MMML-Seq-project
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Marius Rohde
- German ICGC MMML-Seq-project
- University Hospital Giessen, Pediatric Hematology and Oncology, Giessen, Germany
| | - Philip Rosenstiel
- German ICGC MMML-Seq-project
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Maciej Rosolowski
- German ICGC MMML-Seq-project
- Institute for Medical Informatics Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Robert B. Russell
- Cell Networks, Bioquant, University of Heidelberg, Heidelberg, Germany
| | - Markus Schilhabel
- German ICGC MMML-Seq-project
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Matthias Schlesner
- German ICGC MMML-Seq-project
- Deutsches Krebsforschungszentrum Heidelberg (DKFZ), Division Theoretical Bioinformatics, Heidelberg, Germany
| | - Peter F. Stadler
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
- German ICGC MMML-Seq-project
- RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- Max-Planck-Institute for Mathematics in Sciences, Leipzig, Germany
| | | | - Lorenz Trümper
- German ICGC MMML-Seq-project
- Department of Hematology and Oncology, Georg-Augusts-University of Göttingen, Göttingen, Germany
| | - Hendrik G. Stunnenberg
- BLUEPRINT project
- Radboud University, Department of Molecular Biology, Faculty of Science, Nijmegen, Netherlands
| | - Ralf Küppers
- German ICGC MMML-Seq-project
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
- BLUEPRINT project
| | - Ole Ammerpohl
- German ICGC MMML-Seq-project
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Peter Lichter
- German ICGC MMML-Seq-project
- German Cancer Research Center (DKFZ), Division Molecular Genetics, Heidelberg, Germany
| | - Reiner Siebert
- German ICGC MMML-Seq-project
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
- BLUEPRINT project
| | - Steve Hoffmann
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
- German ICGC MMML-Seq-project
- BLUEPRINT project
| | - Bernhard Radlwimmer
- German ICGC MMML-Seq-project
- German Cancer Research Center (DKFZ), Division Molecular Genetics, Heidelberg, Germany
| |
Collapse
|
85
|
Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers. Genes (Basel) 2015; 6:1076-112. [PMID: 26506391 PMCID: PMC4690029 DOI: 10.3390/genes6041076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation.
Collapse
|
86
|
Epigenetic dynamics in immunity and autoimmunity. Int J Biochem Cell Biol 2015; 67:65-74. [DOI: 10.1016/j.biocel.2015.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 02/01/2023]
|
87
|
Dominguez PM, Teater M, Chambwe N, Kormaksson M, Redmond D, Ishii J, Vuong B, Chaudhuri J, Melnick A, Vasanthakumar A, Godley LA, Papavasiliou FN, Elemento O, Shaknovich R. DNA Methylation Dynamics of Germinal Center B Cells Are Mediated by AID. Cell Rep 2015; 12:2086-98. [PMID: 26365193 DOI: 10.1016/j.celrep.2015.08.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/10/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022] Open
Abstract
Changes in DNA methylation are required for the formation of germinal centers (GCs), but the mechanisms of such changes are poorly understood. Activation-induced cytidine deaminase (AID) has been recently implicated in DNA demethylation through its deaminase activity coupled with DNA repair. We investigated the epigenetic function of AID in vivo in germinal center B cells (GCBs) isolated from wild-type (WT) and AID-deficient (Aicda(-/-)) mice. We determined that the transit of B cells through the GC is associated with marked locus-specific loss of methylation and increased methylation diversity, both of which are lost in Aicda(-/-) animals. Differentially methylated cytosines (DMCs) between GCBs and naive B cells (NBs) are enriched in genes that are targeted for somatic hypermutation (SHM) by AID, and these genes form networks required for B cell development and proliferation. Finally, we observed significant conservation of AID-dependent epigenetic reprogramming between mouse and human B cells.
Collapse
Affiliation(s)
- Pilar M Dominguez
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matt Teater
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nyasha Chambwe
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - David Redmond
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jennifer Ishii
- Epigenomics Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bao Vuong
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY 10065, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY 10065, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Lucy A Godley
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - F Nina Papavasiliou
- Laboratories of Lymphocyte Biology and Molecular Parasitology, The Rockefeller University, New York, NY 10065, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Rita Shaknovich
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
88
|
Hopp L, Löffler-Wirth H, Binder H. Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States. Genes (Basel) 2015; 6:812-40. [PMID: 26371046 PMCID: PMC4584331 DOI: 10.3390/genes6030812] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/18/2015] [Indexed: 01/30/2023] Open
Abstract
Mature B-cell lymphoma is a clinically and biologically highly diverse disease. Its diagnosis and prognosis is a challenge due to its molecular heterogeneity and diverse regimes of biological dysfunctions, which are partly driven by epigenetic mechanisms. We here present an integrative analysis of DNA methylation and gene expression data of several lymphoma subtypes. Our study confirms previous results about the role of stemness genes during development and maturation of B-cells and their dysfunction in lymphoma locking in more proliferative or immune-reactive states referring to B-cell functionalities in the dark and light zone of the germinal center and also in plasma cells. These dysfunctions are governed by widespread epigenetic effects altering the promoter methylation of the involved genes, their activity status as moderated by histone modifications and also by chromatin remodeling. We identified four groups of genes showing characteristic expression and methylation signatures among Burkitt’s lymphoma, diffuse large B cell lymphoma, follicular lymphoma and multiple myeloma. These signatures are associated with epigenetic effects such as remodeling from transcriptionally inactive into active chromatin states, differential promoter methylation and the enrichment of targets of transcription factors such as EZH2 and SUZ12.
Collapse
Affiliation(s)
- Lydia Hopp
- Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Henry Löffler-Wirth
- Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
89
|
Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet 2015; 47:746-56. [PMID: 26053498 DOI: 10.1038/ng.3291] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/03/2015] [Indexed: 02/06/2023]
Abstract
We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.
Collapse
|
90
|
Epigenomic evolution in diffuse large B-cell lymphomas. Nat Commun 2015; 6:6921. [PMID: 25891015 PMCID: PMC4411286 DOI: 10.1038/ncomms7921] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
The contribution of epigenomic alterations to tumour progression and relapse is not well characterized. Here we characterize an association between disease progression and DNA methylation in diffuse large B-cell lymphoma (DLBCL). By profiling genome-wide DNA methylation at single-base pair resolution in thirteen DLBCL diagnosis–relapse sample pairs, we show that DLBCL patients exhibit heterogeneous evolution of tumour methylomes during relapse. We identify differentially methylated regulatory elements and determine a relapse-associated methylation signature converging on key pathways such as transforming growth factor-β (TGF-β) receptor activity. We also observe decreased intra-tumour methylation heterogeneity from diagnosis to relapsed tumour samples. Relapse-free patients display lower intra-tumour methylation heterogeneity at diagnosis compared with relapsed patients in an independent validation cohort. Furthermore, intra-tumour methylation heterogeneity is predictive of time to relapse. Therefore, we propose that epigenomic heterogeneity may support or drive the relapse phenotype and can be used to predict DLBCL relapse. The contribution of epigenomic alterations to tumour progression and relapse is not well characterized. Here the authors characterize epigenetic evolution in aggressive B-cell lymphoma and find that epigenomic heterogeneity may not only support and drive the relapse phenotype but also be used to predict lymphoma relapse.
Collapse
|
91
|
Robaina MC, Mazzoccoli L, Arruda VO, Reis FRDS, Apa AG, de Rezende LMM, Klumb CE. Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp Mol Pathol 2015; 98:200-7. [PMID: 25746661 DOI: 10.1016/j.yexmp.2015.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/23/2015] [Accepted: 03/02/2015] [Indexed: 12/24/2022]
Abstract
Methylation of CpG islands in promoter gene regions is frequently observed in lymphomas. DNA methylation is established by DNA methyltransferases (DNMTs). DNMT1 maintains methylation patterns, while DNMT3A and DNMT3B are critical for de novo DNA methylation. Little is known about the expression of DNMTs in lymphomas. DNMT3A and 3B genes can be regulated post-transcriptionally by miR-29 family. Here, we demonstrated for the first time the overexpression of DNMT1 and DNMT3B in Burkitt lymphoma (BL) tumor samples (69% and 86%, respectively). Specifically, the treatment of two BL cell lines with the DNMT inhibitor 5-aza-dC decreased DNMT1 and DNMT3B protein levels and inhibited cell growth. Additionally, miR-29a, miR-29b and miR-29c levels were significantly decreased in the BL tumor samples. Besides, the ectopic expression of miR-29a, miR-29b and miR-29c reduced the DNMT3B expression and miR-29a and miR-29b lead to increase of p16(INK4a) mRNA expression. Altogether, our data suggest that deregulation of DNMT1, DNMT3B and miR29 may be involved in BL pathogenesis.
Collapse
Affiliation(s)
- Marcela C Robaina
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luciano Mazzoccoli
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Viviane Oliveira Arruda
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | | | | - Claudete Esteves Klumb
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
| |
Collapse
|
92
|
Matsuda I, Imai Y, Hirota S. Distinct global DNA methylation status in B-cell lymphomas: immunohistochemical study of 5-methylcytosine and 5-hydroxymethylcytosine. J Clin Exp Hematop 2015; 54:67-73. [PMID: 24942948 DOI: 10.3960/jslrt.54.67] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Lymphomas are malignant neoplasms composed of lymphoid cells at various developmental stages and lineages. Recent advances in comprehensive genomic analyses in acute myeloid leukemia have revealed prevalent mutations in regulators of epigenetic phenomena including global DNA methylation status. The examples include mutations in isocitrate dehydrogenase 1 (IDH1), IDH2, and ten-eleven translocation 2. These mutations are proposed to inhibit conversion of 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine (5 hmC), leading to global accumulation of 5 mC. These changes in global DNA methylation status can be visualized immunohistochemically using specific antibodies against 5 mC and 5 hmC. We examined the global DNA methylation status of B-cell lymphomas and that of their normal counterparts by immunohistochemistry for 5 mC and 5 hmC. Non-tumor lymphoid cells inside germinal centers (GC) in reactive lymphoid hyperplasia (RLH) were stained positive for 5 mC, but they were negative for 5 hmC. Similarly, follicular lymphomas, whose postulated normal counterparts are centrocytes in GCs, were 5 mC-positive but 5 hmC-negative by immunohistochemistry. This immunostaining pattern was also observed in Burkitt lymphoma. In contrast, non-tumor lymphoid cells in mantle zones were stained positive for 5 mC as well as for 5 hmC. Likewise, most mantle cell lymphomas, whose postulated normal counterparts are mantle zone B cells in RLH, were stained positive for 5 mC as well as for 5 hmC. This immunostaining pattern was also observed in chronic lymphocytic leukemia/small lymphocytic lymphoma. These results suggest that, in terms of 5 mC/5 hmC immunohistochemistry, B-cell lymphomas with different histological subtypes are associated with distinct global DNA methylation statuses that resemble those of their postulated normal counterparts.
Collapse
Affiliation(s)
- Ikuo Matsuda
- Department of Surgical Pathology, Hyogo College of Medicine
| | | | | |
Collapse
|
93
|
Abstract
The pathogenesis of diffuse large B-cell lymphoma (DLBCL) is strongly linked to perturbation of epigenetic mechanisms. The germinal center (GC) B cells from which DLBCLs arise are prone to instability in their cytosine methylation patterns. DLBCLs inherit this epigenetic instability and display variable degrees of epigenetic heterogeneity. Greater epigenetic heterogeneity is linked with poor clinical outcome. Somatic mutations of histone-modifying proteins have also emerged as a hallmark of DLBCL. The effect of these somatic mutations may be to disrupt epigenetic switches that control the GC phenotype and "lock in" certain oncogenic features of GC B cells, resulting in malignant transformation. DNA methyltransferase and histone methyltransferase inhibitors are emerging as viable therapeutic approaches to erase aberrant epigenetic programming, suppress DLBCL growth, and overcome chemotherapy resistance. This review will discuss these recent advances and their therapeutic implications.
Collapse
Affiliation(s)
- Yanwen Jiang
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
94
|
Pawlyn C, Kaiser MF, Davies FE, Morgan GJ. Current and potential epigenetic targets in multiple myeloma. Epigenomics 2015; 6:215-28. [PMID: 24811790 DOI: 10.2217/epi.14.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite recent advances in therapy, subgroups of multiple myeloma continue to have a poor prognosis. Numerous epigenetic changes have been described and occur as both etiologic and secondary events, making myeloma a good disease in which to understand the role of epigenetic therapies. Here, we describe a number of current and potential epigenetic targets in myeloma.
Collapse
Affiliation(s)
- Charlotte Pawlyn
- Centre for Myeloma Research, Institute of Cancer Research, 15 Cotswold Rd, Sutton, SM2 5NG, UK
| | | | | | | |
Collapse
|
95
|
Dominguez PM, Shaknovich R. Epigenetic function of activation-induced cytidine deaminase and its link to lymphomagenesis. Front Immunol 2014; 5:642. [PMID: 25566255 PMCID: PMC4270259 DOI: 10.3389/fimmu.2014.00642] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for somatic hypermutation and class switch recombination of immunoglobulin (Ig) genes during B cell maturation and immune response. Expression of AID is tightly regulated due to its mutagenic and recombinogenic potential, which is known to target not only Ig genes, but also non-Ig genes, contributing to lymphomagenesis. In recent years, a new epigenetic function of AID and its link to DNA demethylation came to light in several developmental systems. In this review, we summarize existing evidence linking deamination of unmodified and modified cytidine by AID to base-excision repair and mismatch repair machinery resulting in passive or active removal of DNA methylation mark, with the focus on B cell biology. We also discuss potential contribution of AID-dependent DNA hypomethylation to lymphomagenesis.
Collapse
Affiliation(s)
- Pilar M Dominguez
- Division of Hematology and Oncology, Weill Cornell Medical College , New York, NY , USA
| | - Rita Shaknovich
- Division of Hematology and Oncology, Weill Cornell Medical College , New York, NY , USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College , New York, NY , USA
| |
Collapse
|
96
|
Good-Jacobson KL. Regulation of germinal center, B-cell memory, and plasma cell formation by histone modifiers. Front Immunol 2014; 5:596. [PMID: 25477884 PMCID: PMC4237133 DOI: 10.3389/fimmu.2014.00596] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/06/2014] [Indexed: 01/05/2023] Open
Abstract
Understanding the regulation of antibody production and B-cell memory formation and function is core to finding new treatments for B-cell-derived cancers, antibody-mediated autoimmune disorders, and immunodeficiencies. Progression from a small number of antigen-specific B-cells to the production of a large number of antibody-secreting cells is tightly regulated. Although much progress has been made in revealing the transcriptional regulation of B-cell differentiation that occurs during humoral immune responses, there are still many questions that remain unanswered. Recent work on the expression and roles of histone modifiers in lymphocytes has begun to shed light on this additional level of regulation. This review will discuss the recent advancements in understanding how humoral immune responses, in particular germinal centers and memory cells, are modulated by histone modifiers.
Collapse
Affiliation(s)
- Kim L Good-Jacobson
- Immunology Division, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
97
|
Shaknovich R, De S, Michor F. Epigenetic diversity in hematopoietic neoplasms. Biochim Biophys Acta Rev Cancer 2014; 1846:477-84. [PMID: 25240947 DOI: 10.1016/j.bbcan.2014.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/31/2022]
Abstract
Tumor cell populations display a remarkable extent of variability in non-genetic characteristics such as DNA methylation, histone modification patterns, and differentiation levels of individual cells. It remains to be elucidated whether non-genetic heterogeneity is simply a byproduct of tumor evolution or instead a manifestation of a higher-order tissue organization that is maintained within the neoplasm to establish a differentiation hierarchy, a favorable microenvironment, or a buffer against changing selection pressures during tumorigenesis. Here, we review recent findings on epigenetic diversity, particularly heterogeneity in DNA methylation patterns in hematologic malignancies. We also address the implications of epigenetic heterogeneity for the clonal evolution of tumors and discuss its effects on gene expression and other genome functions in cancer.
Collapse
Affiliation(s)
- Rita Shaknovich
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Division of Immunopathology, Department of Pathology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Subhajyoti De
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; University of Colorado Cancer Center, Aurora, CO 80045, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02215, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA.
| |
Collapse
|
98
|
Huang E, Wells CA. The ground state of innate immune responsiveness is determined at the interface of genetic, epigenetic, and environmental influences. THE JOURNAL OF IMMUNOLOGY 2014; 193:13-9. [PMID: 24951823 DOI: 10.4049/jimmunol.1303410] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Monocytes and macrophages form the major cellular component of the innate immune system, with roles in tissue development, homeostasis, and host defense against infection. Environmental factors were shown to play a significant part in determining innate immune responsiveness, and this included systemic conditions, such as circulating glucose levels, gut microflora, time of year, and even diurnal rhythm, which had a direct impact on innate immune receptor expression. Although the underlying molecular processes are just beginning to emerge, it is clear that environmental factors may alter epigenetic states of peripheral blood monocytes and resident tissue macrophages. We conclude that some measure of cellular ground state must become an essential part of the analysis of myeloid responsiveness or infectious susceptibility.
Collapse
Affiliation(s)
- Edward Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia; and
| | - Christine Anne Wells
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia; and Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
99
|
Steinhardt JJ, Gartenhaus RB. Epigenetic approaches for chemosensitization of refractory diffuse large B-cell lymphomas. Cancer Discov 2014; 3:968-70. [PMID: 24019329 DOI: 10.1158/2159-8290.cd-13-0358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common form of non-Hodgkin lymphoma, with the greatest challenge for improving patient survival being the management of chemorefractory disease upon relapse. Epigenetic dysregulation has been correlated with more-aggressive malignancies and chemoresistance. In this issue of Cancer Discovery, Clozel and colleagues show the potential for low-dose DNA methyltransferase inhibitors as both a rational and an effective neoadjuvant approach for chemosensitization in DLBCL.
Collapse
Affiliation(s)
- James J Steinhardt
- 1Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland; and 2Veterans Administration Medical Center, Baltimore, Maryland
| | | |
Collapse
|
100
|
Esterhuyse MM, Kaufmann SH. Diagnostic biomarkers are hidden in the infected host's epigenome. Expert Rev Mol Diagn 2013; 13:625-37. [PMID: 23895131 DOI: 10.1586/14737159.2013.811897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The success of our immune system depends on its ability to react efficiently, which in turn is supported by a large degree of plasticity as well as memory. Some aspects of this plasticity and memory are now known to be under epigenetic control - determined both by default, during differentiation, and by responses to environmental factors, including infectious agents. Thus, epigenetic marks in the immune system can occur as predetermined or as responsive marks and as such can potentially serve as diagnostic markers for disease susceptibility and disease progression or treatment response. Here, the authors review some examples of epigenetic control and epigenetic marks during the differentiation process of the immune system and memory formation, followed by some examples of epigenetic marks in the immune system subsequent to infection. These are used to illustrate the potential use of epigenetic marks as diagnostic markers in adverse immune system conditions and treatment thereof.
Collapse
Affiliation(s)
- Maria M Esterhuyse
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | | |
Collapse
|