51
|
Galigalidou C, Zaragoza-Infante L, Iatrou A, Chatzidimitriou A, Stamatopoulos K, Agathangelidis A. Understanding Monoclonal B Cell Lymphocytosis: An Interplay of Genetic and Microenvironmental Factors. Front Oncol 2021; 11:769612. [PMID: 34858849 PMCID: PMC8631769 DOI: 10.3389/fonc.2021.769612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
The term monoclonal B-cell lymphocytosis (MBL) describes the presence of a clonal B cell population with a count of less than 5 × 109/L and no symptoms or signs of disease. Based on the B cell count, MBL is further classified into 2 distinct subtypes: 'low-count' and 'high-count' MBL. High-count MBL shares a series of biological and clinical features with chronic lymphocytic leukemia (CLL), at least of the indolent type, and evolves to CLL requiring treatment at a rate of 1-2% per year, whereas 'low-count' MBL seems to be distinct, likely representing an immunological rather than a pre-malignant condition. That notwithstanding, both subtypes of MBL can carry 'CLL-specific' genomic aberrations such as cytogenetic abnormalities and gene mutations, yet to a much lesser extent compared to CLL. These findings suggest that such aberrations are mostly relevant for disease progression rather than disease onset, indirectly pointing to microenvironmental drive as a key contributor to the emergence of MBL. Understanding microenvironmental interactions is therefore anticipated to elucidate MBL ontogeny and, most importantly, the relationship between MBL and CLL.
Collapse
Affiliation(s)
- Chrysi Galigalidou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece.,Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Laura Zaragoza-Infante
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece.,Hematology Department, University General Hospital of Thessaloniki AHEPA, Thessaloniki, Greece
| | - Anastasia Iatrou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Anastasia Chatzidimitriou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Agathangelidis
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece.,Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
52
|
Mai Z, Liu Q, Wang X, Xie J, Yuan J, Zhong J, Fang S, Xie X, Yang H, Wen J, Fu J. Integration of Tumor Heterogeneity for Recurrence Prediction in Patients with Esophageal Squamous Cell Cancer. Cancers (Basel) 2021; 13:cancers13236084. [PMID: 34885197 PMCID: PMC8656931 DOI: 10.3390/cancers13236084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This manuscript reports a deep sequencing study comprehensively analyzing the clinical impact of mutations considering the abundance of mutations. We built an eight-gene mutation predictor considering intratumoral heterogeneity to predict post-surgery recurrence in ESCC patients. Unlike previous studies that simply treated mutations as binary variables (mutant and wild type), we quantified mutations by the fraction of cancer cells carrying the mutations, and our results showed that the cancer cell fraction of mutations was more informative than the mutation status of genes in recurrence prediction. The predictor was further validated as a powerful recurrence indicator in our validation set and the TCGA-ESCC cohort. With the popularization of targeted deep sequencing in clinical work, our study will help clinicians make accurate predictions of recurrence for patients and will provide a new perspective in the clinical transformation of genomic findings. Abstract Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignancies in China. The prognostic value of mutations, especially those in minor tumor clones, has not been systematically investigated. We conducted targeted deep sequencing to analyze the mutation status and the cancer cell fraction (CCF) of mutations in 201 ESCC patients. Our analysis showed that the prognostic effect of mutations was relevant to the CCF, and it should be considered in prognosis prediction. EP300 was a promising biomarker for overall survival, impairing prognosis in a CCF dose-dependent manner. We constructed a CCF-based predictor using a smooth clipped absolute deviation Cox model in the training set of 143 patients. The 3-year disease-free survival rates were 6.3% (95% CI: 1.6–23.9%), 29.8% (20.9–42.6%) and 70.5% (56.6–87.7%) in high-, intermediate- and low-risk patients, respectively, in the training set. The prognostic accuracy was verified in a validation set of 58 patients and the TCGA-ESCC cohort. The eight-gene model predicted prognosis independent of clinicopathological factors and the combination of our model and pathological staging markedly improved the prognostic accuracy of pathological staging alone. Our study describes a novel recurrence predictor for ESCC patients and provides a new perspective for the clinical translation of genomic findings.
Collapse
Affiliation(s)
- Zihang Mai
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (Z.M.); (Q.L.); (X.W.); (J.Y.); (J.Z.); (S.F.); (H.Y.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Qianwen Liu
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (Z.M.); (Q.L.); (X.W.); (J.Y.); (J.Z.); (S.F.); (H.Y.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Xinye Wang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (Z.M.); (Q.L.); (X.W.); (J.Y.); (J.Z.); (S.F.); (H.Y.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Jiaxin Xie
- School of Statistics, Renmin University of China, Beijing 100872, China;
| | - Jianye Yuan
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (Z.M.); (Q.L.); (X.W.); (J.Y.); (J.Z.); (S.F.); (H.Y.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Jian Zhong
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (Z.M.); (Q.L.); (X.W.); (J.Y.); (J.Z.); (S.F.); (H.Y.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Shuogui Fang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (Z.M.); (Q.L.); (X.W.); (J.Y.); (J.Z.); (S.F.); (H.Y.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Xiuying Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Hong Yang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (Z.M.); (Q.L.); (X.W.); (J.Y.); (J.Z.); (S.F.); (H.Y.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
- Correspondence: (J.W.); (J.F.)
| | - Jianhua Fu
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (Z.M.); (Q.L.); (X.W.); (J.Y.); (J.Z.); (S.F.); (H.Y.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
- Guangdong Esophageal Cancer Institute, Guangzhou 510060, China
- Correspondence: (J.W.); (J.F.)
| |
Collapse
|
53
|
Mansouri L, Thorvaldsdottir B, Laidou S, Stamatopoulos K, Rosenquist R. Precision diagnostics in lymphomas - Recent developments and future directions. Semin Cancer Biol 2021; 84:170-183. [PMID: 34699973 DOI: 10.1016/j.semcancer.2021.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Genetics is an integral part of the clinical diagnostics of lymphomas that improves disease subclassification and patient risk-stratification. With the introduction of high-throughput sequencing technologies, a rapid, in-depth portrayal of the genomic landscape in major lymphoma entities was achieved. Whilst a few lymphoma entities were characterized by a predominant gene mutation (e.g. Waldenström's macroglobulinemia and hairy cell leukemia), the vast majority demonstrated a very diverse genetic landscape with a high number of recurrent gene mutations (e.g. chronic lymphocytic leukemia and diffuse large B cell lymphoma), indeed reflecting the great clinical heterogeneity among lymphomas. These studies have allowed better understanding of the ontogeny and evolution of different lymphomas, while also identifying new genetic markers that can complement lymphoma diagnostics and improve prognostication. However, despite these efforts, there is still a limited number of gene mutations with predictive impact that can guide treatment selection. In this review, we will highlight clinically relevant diagnostic, prognostic and predictive markers in lymphomas that are used today in routine diagnostics. We will also discuss how comprehensive genomic characterization using broad sequencing panels, allowing for the simultaneous detection of different types of genetic aberrations, may aid future development of precision diagnostics in lymphomas. This may in turn pave the way for the implementation of tailored precision therapy strategies at the individual patient level.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Stamatia Laidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
54
|
Cafforio L, Raponi S, Cappelli LV, Ilari C, Soscia R, De Propris MS, Mariglia P, Rigolin GM, Bardi A, Peragine N, Piciocchi A, Arena V, Mauro FR, Cuneo A, Guarini A, Foa R, Del Giudice I. Treatment with ibrutinib does not induce a TP53 clonal evolution in chronic lymphocytic leukemia. Haematologica 2021; 107:334-337. [PMID: 34647439 PMCID: PMC8719070 DOI: 10.3324/haematol.2020.263715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/09/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Luciana Cafforio
- Hematology, Department of Translational and Precision Medicine, Sapienza University
| | - Sara Raponi
- Hematology, Department of Translational and Precision Medicine, Sapienza University
| | | | - Caterina Ilari
- Hematology, Department of Translational and Precision Medicine, Sapienza University
| | - Roberta Soscia
- Hematology, Department of Translational and Precision Medicine, Sapienza University
| | | | - Paola Mariglia
- Hematology, Department of Translational and Precision Medicine, Sapienza University
| | - Gian Matteo Rigolin
- Hematology Section, Department of Medical Science, Azienda Ospedaliero-Universitaria Arcispedale S. Anna, University of Ferrara
| | - Antonella Bardi
- Hematology Section, Department of Medical Science, Azienda Ospedaliero-Universitaria Arcispedale S. Anna, University of Ferrara
| | - Nadia Peragine
- Hematology, Department of Translational and Precision Medicine, Sapienza University
| | | | | | | | - Antonio Cuneo
- Hematology Section, Department of Medical Science, Azienda Ospedaliero-Universitaria Arcispedale S. Anna, University of Ferrara
| | - Anna Guarini
- Department of Molecular Medicine, Sapienza University, Rome
| | - Robin Foa
- Hematology, Department of Translational and Precision Medicine, Sapienza University
| | - Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University.
| |
Collapse
|
55
|
Kwok M, Agathanggelou A, Davies N, Stankovic T. Targeting the p53 Pathway in CLL: State of the Art and Future Perspectives. Cancers (Basel) 2021; 13:4681. [PMID: 34572908 PMCID: PMC8468925 DOI: 10.3390/cancers13184681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
The p53 pathway is a desirable therapeutic target, owing to its critical role in the maintenance of genome integrity. This is exemplified in chronic lymphocytic leukemia (CLL), one of the most common adult hematologic malignancies, in which functional loss of p53 arising from genomic aberrations are frequently associated with clonal evolution, disease progression, and therapeutic resistance, even in the contemporary era of CLL targeted therapy and immunotherapy. Targeting the 'undruggable' p53 pathway therefore arguably represents the holy grail of cancer research. In recent years, several strategies have been proposed to exploit p53 pathway defects for cancer treatment. Such strategies include upregulating wild-type p53, restoring tumor suppressive function in mutant p53, inducing synthetic lethality by targeting collateral genome maintenance pathways, and harnessing the immunogenicity of p53 pathway aberrations. In this review, we will examine the biological and clinical implications of p53 pathway defects, as well as our progress towards development of therapeutic approaches targeting the p53 pathway, specifically within the context of CLL. We will appraise the opportunities and pitfalls associated with these therapeutic strategies, and evaluate their place amongst the array of new biological therapies for CLL.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2SY, UK
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Nicholas Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| |
Collapse
|
56
|
Bloehdorn J, Braun A, Taylor-Weiner A, Jebaraj BMC, Robrecht S, Krzykalla J, Pan H, Giza A, Akylzhanova G, Holzmann K, Scheffold A, Johnston HE, Yeh RF, Klymenko T, Tausch E, Eichhorst B, Bullinger L, Fischer K, Weisser M, Robak T, Schneider C, Gribben J, Dahal LN, Carter MJ, Elemento O, Landau DA, Neuberg DS, Cragg MS, Benner A, Hallek M, Wu CJ, Döhner H, Stilgenbauer S, Mertens D. Multi-platform profiling characterizes molecular subgroups and resistance networks in chronic lymphocytic leukemia. Nat Commun 2021; 12:5395. [PMID: 34518531 PMCID: PMC8438057 DOI: 10.1038/s41467-021-25403-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Knowledge of the genomic landscape of chronic lymphocytic leukemia (CLL) grows increasingly detailed, providing challenges in contextualizing the accumulated information. To define the underlying networks, we here perform a multi-platform molecular characterization. We identify major subgroups characterized by genomic instability (GI) or activation of epithelial-mesenchymal-transition (EMT)-like programs, which subdivide into non-inflammatory and inflammatory subtypes. GI CLL exhibit disruption of genome integrity, DNA-damage response and are associated with mutagenesis mediated through activation-induced cytidine deaminase or defective mismatch repair. TP53 wild-type and mutated/deleted cases constitute a transcriptionally uniform entity in GI CLL and show similarly poor progression-free survival at relapse. EMT-like CLL exhibit high genomic stability, reduced benefit from the addition of rituximab and EMT-like differentiation is inhibited by induction of DNA damage. This work extends the perspective on CLL biology and risk categories in TP53 wild-type CLL. Furthermore, molecular targets identified within each subgroup provide opportunities for new treatment approaches.
Collapse
Affiliation(s)
| | - Andrejs Braun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | | | - Sandra Robrecht
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Julia Krzykalla
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Heng Pan
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Adam Giza
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Gulnara Akylzhanova
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Annika Scheffold
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Harvey E Johnston
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Ru-Fang Yeh
- Biostatistics, Genentech Inc., South San Francisco, CA, USA
| | - Tetyana Klymenko
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Eugen Tausch
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Barbara Eichhorst
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Lars Bullinger
- Medical Clinic for Hematology, Oncology and Tumor Biology, Charité University Hospital, Berlin, Germany
| | - Kirsten Fischer
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Martin Weisser
- Roche Pharma Research and Early Development, Penzberg, Germany
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lekh N Dahal
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Pharmacology and Therapeutics, Faculty of Life and Health Sciences, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mathew J Carter
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dan A Landau
- Cancer Genomics and Evolutionary Dynamics, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Donna S Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark S Cragg
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Hallek
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Catherine J Wu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | | | - Daniel Mertens
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
57
|
Putowski M, Giannopoulos K. Perspectives on Precision Medicine in Chronic Lymphocytic Leukemia: Targeting Recurrent Mutations-NOTCH1, SF3B1, MYD88, BIRC3. J Clin Med 2021; 10:jcm10163735. [PMID: 34442029 PMCID: PMC8396993 DOI: 10.3390/jcm10163735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is highly heterogeneous, with extremely variable clinical course. The clinical heterogeneity of CLL reflects differences in the biology of the disease, including chromosomal alterations, specific immunophenotypic patterns and serum markers. The application of next-generation sequencing techniques has demonstrated the high genetic and epigenetic heterogeneity in CLL. The novel mutations could be pharmacologically targeted for individualized approach in some of the CLL patients. Potential neurogenic locus notch homolog protein 1 (NOTCH1) signalling targeting mechanisms in CLL include secretase inhibitors and specific antibodies to block NOTCH ligand/receptor interactions. In vitro studies characterizing the effect of the splicing inhibitors resulted in increased apoptosis of CLL cells regardless of splicing factor 3B subunit 1 (SF3B1) status. Several therapeutic strategies have been also proposed to directly or indirectly inhibit the toll-like receptor/myeloid differentiation primary response gene 88 (TLR/MyD88) pathway. Another potential approach is targeting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inhibition of this prosurvival pathway. Newly discovered mutations and their signalling pathways play key roles in the course of the disease. This opens new opportunities in the management and treatment of CLL.
Collapse
Affiliation(s)
- Maciej Putowski
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-66-32
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Hematology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
58
|
Genetics of Chronic Lymphocytic Leukemia. ACTA ACUST UNITED AC 2021; 27:259-265. [PMID: 34398552 DOI: 10.1097/ppo.0000000000000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT During the past 10 years, relevant advances have been made in the understanding of the pathogenesis of chronic lymphocytic leukemia via the integrated analysis of its genome and related epigenome, and transcriptome. These analyses also had an impact on our understanding of the initiation, as well as of the evolution of chronic lymphocytic leukemia, including resistance to chemotherapy and sensitivity and resistance to novel targeted therapies. This chapter will review the current state of the art in this field, with emphasis on the genetic heterogeneity of the disease and the biological pathways that are altered by the genetic lesions.
Collapse
|
59
|
Bomben R, Rossi FM, Vit F, Bittolo T, D'Agaro T, Zucchetto A, Tissino E, Pozzo F, Vendramini E, Degan M, Zaina E, Cattarossi I, Varaschin P, Nanni P, Berton M, Braida A, Polesel J, Cohen JA, Santinelli E, Biagi A, Gentile M, Morabito F, Fronza G, Pozzato G, D'Arena G, Olivieri J, Bulian P, Pepper C, Hockaday A, Schuh A, Hillmen P, Rossi D, Chiarenza A, Zaja F, Di Raimondo F, Del Poeta G, Gattei V. TP53 Mutations with Low Variant Allele Frequency Predict Short Survival in Chronic Lymphocytic Leukemia. Clin Cancer Res 2021; 27:5566-5575. [PMID: 34285062 DOI: 10.1158/1078-0432.ccr-21-0701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In chronic lymphocytic leukemia (CLL), TP53 mutations are associated with reduced survival and resistance to standard chemoimmunotherapy (CIT). Nevertheless, the clinical impact of subclonal TP53 mutations below 10% to 15% variant allele frequency (VAF) remains unclear. EXPERIMENTAL DESIGN Using a training/validation approach, we retrospectively analyzed the clinical and biological features of TP53 mutations above (high-VAF) or below (low-VAF) the previously reported 10.0% VAF threshold, as determined by deep next-generation sequencing. Clinical impact of low-VAF TP53 mutations was also confirmed in a cohort (n = 251) of CLL treated with fludarabine-cyclophosphamide-rituximab (FCR) or FCR-like regimens from two UK trials. RESULTS In the training cohort, 97 of 684 patients bore 152 TP53 mutations, while in the validation cohort, 71 of 536 patients had 109 TP53 mutations. In both cohorts, patients with the TP53 mutation experienced significantly shorter overall survival (OS) than TP53 wild-type patients, regardless of the TP53 mutation VAF. By combining TP53 mutation and 17p13.1 deletion (del17p) data in the total cohort (n = 1,220), 113 cases were TP53 mutated only (73/113 with low-VAF mutations), 55 del17p/TP53 mutated (3/55 with low-VAF mutations), 20 del17p only, and 1,032 (84.6%) TP53 wild-type. A model including low-VAF cases outperformed the canonical model, which considered only high-VAF cases (c-indices 0.643 vs. 0.603, P < 0.0001), and improved the prognostic risk stratification of CLL International Prognostic Index. Clinical results were confirmed in CIT-treated cases (n = 552) from the retrospective cohort, and the UK trials cohort. CONCLUSIONS TP53 mutations affected OS regardless of VAF. This finding can be used to update the definition of TP53 mutated CLL for clinical purposes.
Collapse
Affiliation(s)
- Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy.
| | - Francesca Maria Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Filippo Vit
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Tiziana D'Agaro
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Elena Vendramini
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Massimo Degan
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Eva Zaina
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Ilaria Cattarossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Paola Varaschin
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Paola Nanni
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Michele Berton
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Alessandra Braida
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Jared A Cohen
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | | | - Annalisa Biagi
- Division of Haematology, University of Tor Vergata, Rome, Italy
| | | | - Fortunato Morabito
- Biothecnology Research Unit, AO of Cosenza, Cosenza, Italy
- Haematology and Bone Marrow Transplant Unit, Haemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - Giovanni D'Arena
- Haematology Unit, Presidio Ospedaliero S. Luca, ASL Salerno, Italy
| | - Jacopo Olivieri
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "Carlo Melzi" DISM, Azienda Ospedaliera Universitaria S. Maria Misericordia, Udine, Italy
| | - Pietro Bulian
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - Chris Pepper
- University of Sussex, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Anna Hockaday
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, United Kingdom
| | - Anna Schuh
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Peter Hillmen
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology (LICAP), University of Leeds, Leeds, United Kingdom
| | - Davide Rossi
- Haematology, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | - Francesco Zaja
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | | | | | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy.
| |
Collapse
|
60
|
The Biology of Chronic Lymphocytic Leukemia: Diagnostic and Prognostic Implications. ACTA ACUST UNITED AC 2021; 27:266-274. [PMID: 34398553 DOI: 10.1097/ppo.0000000000000534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT The high degree of clinical heterogeneity of chronic lymphocytic leukemia (CLL) is influenced by the disease molecular complexity. Genetic studies have allowed to better understand CLL biology and to identify molecular biomarkers of clinical relevance. TP53 disruption represents the strongest prognosticator of chemorefractoriness and indicates the use of Bruton tyrosine kinase inhibitors (BTKis) and BCL2 inhibitors. Unmutated IGHV (immunoglobulin heavy variable) genes also predict refractoriness to chemoimmunotherapy; importantly, when treated with B-cell receptor inhibitors or BCL2 inhibitors, IGHV unmutated patients display an outcome similar to that of IGHV mutated CLL. Before choosing treatment, a comprehensive assessment of TP53 and IGHV status is recommended by all guidelines for CLL clinical management. In case of fixed-duration therapeutic strategies, monitoring of minimal residual disease may provide a tool to decide treatment duration. The current precision medicine management of CLL patients might be further improved by the adoption of novel biomarkers that are emerging as clinically meaningful for this disease.
Collapse
|
61
|
How to Obtain a High Quality ctDNA in Lymphoma Patients: Preanalytical Tips and Tricks. Pharmaceuticals (Basel) 2021; 14:ph14070617. [PMID: 34206947 PMCID: PMC8308879 DOI: 10.3390/ph14070617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 01/20/2023] Open
Abstract
The analysis of circulating tumor DNA (ctDNA) released by tumor cells holds great promise for patients with lymphoma, to refine the diagnostic procedure, clarify the prognosis, monitor the response to treatment, and detect relapses earlier. One of the main challenges of the coming years is to adapt techniques from highly specialized translational teams to routine laboratories as this requires a careful technical and clinical validation, and we have to achieve this as fast as possible to transform a promising biomarker into a routine analysis to have a direct consequence on patient care. Whatever the analytical technology used, the prerequisite is to obtain high yields of ctDNA of optimal quality. In this review, we propose a step-by-step description of the preanalytical process to obtain high-quality ctDNA, emphasizing the technical choices that need to be made and the experimental data that can support these choices.
Collapse
|
62
|
Abstract
Targeting BCR and BCL-2 signaling is a widely used therapeutic strategy for chronic lymphocytic leukemia. C481S mutation decreases the covalent binding affinity of ibrutinib to BTK, resulting in reversible rather than irreversible inhibition. In addition to BTK, mutations in PLCG2 have been demonstrated to mediate acquired ibrutinib resistance. Venetoclax, a highly selective BCL2 inhibitor, has high affinity to the BH3-binding grove of BCL2. Mutation in BCL2 (Gly101Val) decreases the affinity of BCL2 for venetoclax and confers acquired resistance in cell lines and primary patient cells. This review discusses the common mechanisms of resistance to targeted therapies in chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Shanmugapriya Thangavadivel
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 455D Wiseman Hall CCC, 410 West 12th Avenue, Columbus, OH 43210, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, 455D Wiseman Hall CCC, 410 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
63
|
Pérez-Carretero C, González-Gascón-y-Marín I, Rodríguez-Vicente AE, Quijada-Álamo M, Hernández-Rivas JÁ, Hernández-Sánchez M, Hernández-Rivas JM. The Evolving Landscape of Chronic Lymphocytic Leukemia on Diagnosis, Prognosis and Treatment. Diagnostics (Basel) 2021; 11:diagnostics11050853. [PMID: 34068813 PMCID: PMC8151186 DOI: 10.3390/diagnostics11050853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
The knowledge of chronic lymphocytic leukemia (CLL) has progressively deepened during the last forty years. Research activities and clinical studies have been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease, improving CLL diagnosis, prognosis and treatment. Whereas the diagnostic criteria for CLL have not substantially changed over time, prognostication has experienced an expansion with the identification of new biological and genetic biomarkers. Thanks to next-generation sequencing (NGS), an unprecedented number of gene mutations were identified with potential prognostic and predictive value in the 2010s, although significant work on their validation is still required before they can be used in a routine clinical setting. In terms of treatment, there has been an impressive explosion of new approaches based on targeted therapies for CLL patients during the last decade. In this current chemotherapy-free era, BCR and BCL2 inhibitors have changed the management of CLL patients and clearly improved their prognosis and quality of life. In this review, we provide an overview of these novel advances, as well as point out questions that should be further addressed to continue improving the outcomes of patients.
Collapse
Affiliation(s)
- Claudia Pérez-Carretero
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Ana E. Rodríguez-Vicente
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Miguel Quijada-Álamo
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - José-Ángel Hernández-Rivas
- Department of Hematology, Infanta Leonor University Hospital, 28031 Madrid, Spain; (I.G.-G.-y-M.); (J.-Á.H.-R.)
- Department of Medicine, Complutense University, 28040 Madrid, Spain
| | - María Hernández-Sánchez
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| | - Jesús María Hernández-Rivas
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| |
Collapse
|
64
|
Brieghel C, Aarup K, Torp MH, Andersen MA, Yde CW, Tian X, Wiestner A, Ahn IE, Niemann CU. Clinical Outcomes in Patients with Multi-Hit TP53 Chronic Lymphocytic Leukemia Treated with Ibrutinib. Clin Cancer Res 2021; 27:4531-4538. [PMID: 33963002 DOI: 10.1158/1078-0432.ccr-20-4890] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/23/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE TP53 aberration (TP53 mutation and/or 17p deletion) is the most important predictive marker in chronic lymphocytic leukemia (CLL). Although each TP53 aberration is considered an equal prognosticator, the prognostic value of carrying isolated (single-hit) or multiple (multi-hit) TP53 aberrations remains unclear, particularly in the context of targeted agents. PATIENTS AND METHODS We performed deep sequencing of TP53 using baseline samples collected from 51 TP53 aberrant patients treated with ibrutinib in a phase II study (NCT01500733). RESULTS We identified TP53 mutations in 43 patients (84%) and del(17p) in 47 (92%); 9 and 42 patients carried single-hit and multi-hit TP53, respectively. The multi-hit TP53 subgroup was enriched with younger patients who had prior treatments and unmutated immunoglobulin heavy-chain variable region gene status. We observed significantly shorter overall survival, progression-free survival (PFS), and time-to-progression (TTP) in patients with multi-hit TP53 compared with those with single-hit TP53. Clinical outcomes were similar in patient subgroups stratified by 2 or >2 TP53 aberrations. In multivariable analyses, multi-hit TP53 CLL was independently associated with inferior PFS and TTP. In sensitivity analyses, excluding mutations below 1% VAF demonstrated similar outcome. Results were validated in an independent population-based cohort of 112 patients with CLL treated with ibrutinib. CONCLUSIONS In this study, single-hit TP53 defines a distinct subgroup of patients with an excellent long-term response to single-agent ibrutinib, whereas multi-hit TP53 is independently associated with shorter PFS. These results warrant further investigations on prognostication and management of multi-hit TP53 CLL.See related commentary by Bomben et al., p. 4462.
Collapse
Affiliation(s)
- Christian Brieghel
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kathrine Aarup
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mathias H Torp
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael A Andersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina W Yde
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Inhye E Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
65
|
Low-burden TP53 mutations in CLL: Clinical impact and clonal evolution within the context of different treatment options. Blood 2021; 138:2670-2685. [PMID: 33945616 PMCID: PMC8703362 DOI: 10.1182/blood.2020009530] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) patients with TP53 mutations experience chemo-refractory disease and are therefore indicated for targeted therapy. However, the significance of low-burden TP53 mutations with <10% variant allele frequency (VAF) remains a matter of debate. Here we describe clonal evolution scenarios of low-burden TP53 mutations and analyzed their clinical impact in a "real-world" CLL cohort. TP53 status was assessed by targeted NGS in 511 patients entering first-line treatment with chemo/immunotherapy and 159 relapsed patients treated with targeted agents. Within the pre-therapy cohort, 16% of patients carried low-burden TP53 mutations (0.1-10% VAF). While their presence did not significantly shorten event-free survival after first-line therapy, it affected overall survival (OS). For a subgroup with TP53 mutations of 1-10% VAF, the impact on OS was only observed in patients with unmutated IGHV that had not received targeted therapy, as patients benefited from switching to targeted agents regardless of initial TP53 mutational status. Analysis of the clonal evolution of low-burden TP53 mutations showed that the highest expansion rates were associated with FCR in both first and second-line treatment (median VAF increase 14.8x and 11.8x, respectively) in contrast to treatment with less intense chemo/immunotherapy regimens (1.6x) and without treatment (0.8x). In the relapsed cohort, 33% of patients carried low-burden TP53 mutations, which did not expand significantly upon targeted treatment (median VAF change 1x). Sporadic cases of TP53-mut clonal shifts were connected with the development of resistance-associated mutations. Altogether, our data support the incorporation of low-burden TP53 variants in clinical decision-making.
Collapse
|
66
|
Do C, Best OG, Thurgood L, Hotinski A, Apostolou S, Mulligan SP, Lower K, Kuss B. Insight into del17p low-frequency subclones in chronic lymphocytic leukaemia (CLL): data from the Australasian Leukaemia and Lymphoma Group (ALLG)/CLL Australian Research Consortium (CLLARC) CLL5 trial. Br J Haematol 2021; 193:556-560. [PMID: 33851417 DOI: 10.1111/bjh.17394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/23/2020] [Indexed: 01/29/2023]
Abstract
The clinical significance of low-frequency deletions of 17p13 [tumour protein p53 (TP53)] in patients with chronic lymphocytic leukaemia (CLL) is currently unclear. Low-frequency del17p clones (<25%) were identified in 15/95 patients in the Australasian Leukaemia and Lymphoma Group (ALLG)/CLL Australian Research Consortium (CLLARC) CLL5 trial. Patients with low del17p, without tumour protein p53 (TP53) mutation, had significantly longer progression-free survival and overall survival durations than patients with high del17p clones. In 11/15 cases with low-frequency del17p, subclones solely with del17p or del13q were also noted. These data suggest that low-frequency del17p does not necessarily confer a poor outcome in CLL and challenges the notion of del13q as a founding event in CLL.
Collapse
Affiliation(s)
- Cuc Do
- Department of Molecular Medicine and Genetics, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA
| | - O Giles Best
- Department of Molecular Medicine and Genetics, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA.,Chronic Lymphocytic Leukaemia Australian Research Consortium (CLLARC), Sydney, Australia
| | - Lauren Thurgood
- Department of Molecular Medicine and Genetics, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA
| | - Anya Hotinski
- Department of Molecular Medicine and Genetics, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA
| | - Sinoula Apostolou
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stephen P Mulligan
- Chronic Lymphocytic Leukaemia Australian Research Consortium (CLLARC), Sydney, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Karen Lower
- Department of Molecular Medicine and Genetics, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA
| | - Bryone Kuss
- Department of Molecular Medicine and Genetics, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA.,Chronic Lymphocytic Leukaemia Australian Research Consortium (CLLARC), Sydney, Australia
| |
Collapse
|
67
|
Petrackova A, Turcsanyi P, Papajik T, Kriegova E. Revisiting Richter transformation in the era of novel CLL agents. Blood Rev 2021; 49:100824. [PMID: 33775465 DOI: 10.1016/j.blre.2021.100824] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/14/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022]
Abstract
Richter transformation (RT) is the development of aggressive lymphoma - most frequently diffuse large B-cell lymphoma (DLBCL) and rarely Hodgkin lymphoma (HL) - arising on the background of chronic lymphocytic leukaemia (CLL). Despite recent advances in CLL treatment, RT also develops in patients on novel agents, usually occurring as an early event. RT incidence is lower in CLL patients treated with novel agents in the front line compared to relapsed/refractory cases, with a higher incidence in patients with TP53 disruption. The genetic heterogeneity and complexity are higher in RT-DLBCL than CLL; the genetics of RT-HL are largely unknown. In addition to TP53, aberrations in CDKN2A, MYC, and NOTCH1 are common in RT-DLBCL; however, no distinct RT-specific genetic aberration is recognised yet. RT-DLBCL on ibrutinib is frequently associated with BTK and PLCG2 mutations. Here, we update on genetic analysis, diagnostics and treatment options in RT in the era of novel agents.
Collapse
Affiliation(s)
- Anna Petrackova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Peter Turcsanyi
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Tomas Papajik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
68
|
Sutton LA, Ljungström V, Enjuanes A, Cortese D, Skaftason A, Tausch E, Stano Kozubik K, Nadeu F, Armand M, Malcikova J, Pandzic T, Forster J, Davis Z, Oscier D, Rossi D, Ghia P, Strefford JC, Pospisilova S, Stilgenbauer S, Davi F, Campo E, Stamatopoulos K, Rosenquist R, On Behalf Of The European Research Initiative On Cll Eric. Comparative analysis of targeted next-generation sequencing panels for the detection of gene mutations in chronic lymphocytic leukemia: an ERIC multi-center study. Haematologica 2021; 106:682-691. [PMID: 32273480 PMCID: PMC7927885 DOI: 10.3324/haematol.2019.234716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) has transitioned from research to clinical routine, yet the comparability of different technologies for mutation profiling remains an open question. We performed a European multicenter (n=6) evaluation of three amplicon-based NGS assays targeting 11 genes recurrently mutated in chronic lymphocytic leukemia. Each assay was assessed by two centers using 48 pre-characterized chronic lymphocytic leukemia samples; libraries were sequenced on the Illumina MiSeq instrument and bioinformatics analyses were centralized. Across all centers the median percentage of target reads ≥100x ranged from 94.2-99.8%. In order to rule out assay-specific technical variability, we first assessed variant calling at the individual assay level i.e., pairwise analysis of variants detected amongst partner centers. After filtering for variants present in the paired normal sample and removal of PCR/sequencing artefacts, the panels achieved 96.2% (Multiplicom), 97.7% (TruSeq) and 90% (HaloPlex) concordance at a variant allele frequency (VAF) >0.5%. Reproducibility was assessed by looking at the inter-laboratory variation in detecting mutations and 107 of 115 (93% concordance) mutations were detected by all six centers, while the remaining eight variants (7%) were undetected by a single center. Notably, 6 of 8 of these variants concerned minor subclonal mutations (VAF <5%). We sought to investigate low-frequency mutations further by using a high-sensitivity assay containing unique molecular identifiers, which confirmed the presence of several minor subclonal mutations. Thus, while amplicon-based approaches can be adopted for somatic mutation detection with VAF >5%, after rigorous validation, the use of unique molecular identifiers may be necessary to reach a higher sensitivity and ensure consistent and accurate detection of low-frequency variants.
Collapse
Affiliation(s)
- Lesley-Ann Sutton
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Viktor Ljungström
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Enjuanes
- Institut d’Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain and Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Diego Cortese
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Eugen Tausch
- Department of Internal Medicine III, Ulm University,Ulm, Germany
| | - Katerina Stano Kozubik
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ferran Nadeu
- Institut d’Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain and Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Marine Armand
- AP-HP, Hopital Pitie-Salpetriere, Department of Hematology, Sorbonne Université, Paris, France
| | - Jikta Malcikova
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jade Forster
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Zadie Davis
- Department of Hematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - David Oscier
- Department of Hematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Davide Rossi
- Hematology Department, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland
| | - Paolo Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sarka Pospisilova
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Frederic Davi
- AP-HP, Hopital Pitie-Salpetriere, Department of Hematology, Sorbonne Université, Paris, France
| | - Elias Campo
- Institut d’Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain and Hospital Clínic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,Institute of Applied Biosciences, Center for Research and Technology, Thessaloniki, Greec
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
69
|
Wiestner A. Validating genomic tools for precision medicine in chronic lymphocytic leukemia: ERIC leads the way. Haematologica 2021; 106:656-658. [PMID: 33645943 PMCID: PMC7927879 DOI: 10.3324/haematol.2020.270652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Adrian Wiestner
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
70
|
Stefaniuk P, Onyszczuk J, Szymczyk A, Podhorecka M. Therapeutic Options for Patients with TP53 Deficient Chronic Lymphocytic Leukemia: Narrative Review. Cancer Manag Res 2021; 13:1459-1476. [PMID: 33603488 PMCID: PMC7886107 DOI: 10.2147/cmar.s283903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL), which is the most common type of leukemia in western countries in adults, is characterized by heterogeneity in clinical course, prognosis and response to the treatment. Although, in recent years a number of factors with probable prognostic value in CLL have been identified (eg NOTCH1, SF3B1 and BIRC-3 mutations, or evaluation of microRNA expression), TP53 aberrations are still the most important single factors of poor prognosis. It was found that approximately 30% of all TP53 defects are mutations lacking 17p13 deletion, whereas sole 17p13 deletion with the absence of TP53 mutation consists of 10% of all TP53 defects. The detection of del(17)(p13) and/or TP53 mutation is not a criterion itself for starting antileukemic therapy, but it is associated with an aggressive course of the disease and poor response to the standard chemoimmunotherapy. Treatment of patients with CLL harbouring TP53-deficiency requires drugs that promote cell death independently of TP53. Novel and smarter therapies revolutionize the treatment of del(17p) and/or aberrant TP53 CLL, but development of alternative therapeutic approaches still remains an issue of critical importance.
Collapse
Affiliation(s)
- Paulina Stefaniuk
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Julia Onyszczuk
- Students Scientific Association, Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Szymczyk
- Department of Clinical Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
71
|
Chen AP, Kummar S, Moore N, Rubinstein LV, Zhao Y, Williams PM, Palmisano A, Sims D, O'Sullivan Coyne G, Rosenberger CL, Simpson M, Raghav KPS, Meric-Bernstam F, Leong S, Waqar S, Foster JC, Konaté MM, Das B, Karlovich C, Lih CJ, Polley E, Simon R, Li MC, Piekarz R, Doroshow JH. Molecular Profiling-Based Assignment of Cancer Therapy (NCI-MPACT): A Randomized Multicenter Phase II Trial. JCO Precis Oncol 2021; 5:PO.20.00372. [PMID: 33928209 PMCID: PMC8078898 DOI: 10.1200/po.20.00372] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
This trial assessed the utility of applying tumor DNA sequencing to treatment selection for patients with advanced, refractory cancer and somatic mutations in one of four signaling pathways by comparing the efficacy of four study regimens that were either matched to the patient's aberrant pathway (experimental arm) or not matched to that pathway (control arm). MATERIALS AND METHODS Adult patients with an actionable mutation of interest were randomly assigned 2:1 to receive either (1) a study regimen identified to target the aberrant pathway found in their tumor (veliparib with temozolomide or adavosertib with carboplatin [DNA repair pathway], everolimus [PI3K pathway], or trametinib [RAS/RAF/MEK pathway]), or (2) one of the same four regimens, but chosen from among those not targeting that pathway. RESULTS Among 49 patients treated in the experimental arm, the objective response rate was 2% (95% CI, 0% to 10.9%). One of 20 patients (5%) in the experimental trametinib cohort had a partial response. There were no responses in the other cohorts. Although patients and physicians were blinded to the sequencing and random assignment results, a higher pretreatment dropout rate was observed in the control arm (22%) compared with the experimental arm (6%; P = .038), suggesting that some patients may have had prior tumor mutation profiling performed that led to a lack of participation in the control arm. CONCLUSION Further investigation, better annotation of predictive biomarkers, and the development of more effective agents are necessary to inform treatment decisions in an era of precision cancer medicine. Increasing prevalence of tumor mutation profiling and preference for targeted therapy make it difficult to use a randomized phase II design to evaluate targeted therapy efficacy in an advanced disease setting.
Collapse
Affiliation(s)
- Alice P. Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Nancy Moore
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Yingdong Zhao
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - P. Mickey Williams
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Alida Palmisano
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
- General Dynamics Information Technology (GDIT), Falls Church, VA
| | - David Sims
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Mel Simpson
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kanwal P. S. Raghav
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Funda Meric-Bernstam
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Saiama Waqar
- Department of Medical Oncology, Washington University School of Medicine, St Louis, MO
| | - Jared C. Foster
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Mariam M. Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Biswajit Das
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Chris Karlovich
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Chih-Jian Lih
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Eric Polley
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Richard Simon
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Ming-Chung Li
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Richard Piekarz
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
72
|
Hampel PJ, Parikh SA, Call TG. Incorporating molecular biomarkers into the continuum of care in chronic lymphocytic leukemia. Leuk Lymphoma 2021; 62:1289-1301. [PMID: 33410372 DOI: 10.1080/10428194.2020.1869966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a mature B-cell malignancy characterized by marked heterogeneity. Discoveries in disease biology over the past two decades have helped explain clinical variability and heralded the arrival of the targeted therapy era. In this article, we review improvements in risk stratification which have coincided with this progress, including individual biomarkers and their incorporation into prognostic models. Amidst an ever-expanding list of biomarkers, we seek to bring focus to the essential tests to improve patient care and counseling at particular times in the disease course, beginning with prognosis at diagnosis. The majority of patients do not require treatment at the time of diagnosis, making time-to-first-treatment a key initial prognostic concern. Prognostic and predictive biomarkers are then considered at subsequent major junctures, including at the time of treatment initiation, while on therapy, and at the time of relapse on novel agents.
Collapse
Affiliation(s)
- Paul J Hampel
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sameer A Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Call
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
73
|
Antitumor Effects of PRIMA-1 and PRIMA-1 Met (APR246) in Hematological Malignancies: Still a Mutant P53-Dependent Affair? Cells 2021; 10:cells10010098. [PMID: 33430525 PMCID: PMC7827888 DOI: 10.3390/cells10010098] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Because of its role in the regulation of the cell cycle, DNA damage response, apoptosis, DNA repair, cell migration, autophagy, and cell metabolism, the TP53 tumor suppressor gene is a key player for cellular homeostasis. TP53 gene is mutated in more than 50% of human cancers, although its overall dysfunction may be even more frequent. TP53 mutations are detected in a lower percentage of hematological malignancies compared to solid tumors, but their frequency generally increases with disease progression, generating adverse effects such as resistance to chemotherapy. Due to the crucial role of P53 in therapy response, several molecules have been developed to re-establish the wild-type P53 function to mutant P53. PRIMA-1 and its methylated form PRIMA-1Met (also named APR246) are capable of restoring the wild-type conformation to mutant P53 and inducing apoptosis in cancer cells; however, they also possess mutant P53-independent properties. This review presents the activities of PRIMA-1 and PRIMA-1Met/APR246 and describes their potential use in hematological malignancies.
Collapse
|
74
|
Condoluci A, Rossi D. Genomic Instability and Clonal Evolution in Chronic Lymphocytic Leukemia: Clinical Relevance. J Natl Compr Canc Netw 2020; 19:227-233. [PMID: 33383567 DOI: 10.6004/jnccn.2020.7623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022]
Abstract
Genomic instability and clonal heterogeneity can influence cancer progression, response to therapy, and relapse. Chronic lymphocytic leukemia (CLL) harbors a variety of clones and subclones that will evolve differently according to intrinsic (microenvironment) and extrinsic (therapy) pressures. Different patterns of clonal evolution have been described, providing insights into the CLL leukemic cell, dynamics, selection, and treatment refractoriness. With the help of genomic technologies allowing a granular resolution of CLL clones, novel synergic therapeutic strategies can be tested with the aim of reaching a genomic-epigenomic ultrapersonalized, tailored approach. These efforts should consider the presence of targetable alterations, continuous cancer reshaping conferring disease refractoriness, and intratumoral clonal equilibrium to possibly avoid clonal selection.
Collapse
Affiliation(s)
- Adalgisa Condoluci
- 1Division of Hematology, Oncology Institute of Southern Switzerland, and.,2Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Davide Rossi
- 1Division of Hematology, Oncology Institute of Southern Switzerland, and.,2Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| |
Collapse
|
75
|
Single Cell Detection of the p53 Protein by Mass Cytometry. Cancers (Basel) 2020; 12:cancers12123699. [PMID: 33317179 PMCID: PMC7764694 DOI: 10.3390/cancers12123699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Investigation of protein expression in cancer cells is an important part of the diagnostic process. Increasing knowledge about expression of different proteins has been exploited for prognostic assessments and in some cases also for selection of treatment. The p53 protein has proven important in development of various cancers, and the expression of this protein and its signaling pathway is therefore of interest when examining cancer patient samples. Here, we present mass cytometry as a tool for detection of p53 expression. Mass cytometry allows for measurement of up to 50 parameters per sample with single cell resolution, and we aim to demonstrate its potential for p53-focused research. Abstract Purpose: The p53 protein and its post-translational modifications are distinctly expressed in various normal cell types and malignant cells and are usually detected by immunohistochemistry and flow cytometry in contemporary diagnostics. Here, we describe an approach for simultaneous multiparameter detection of p53, its post-translational modifications and p53 pathway-related signaling proteins in single cells using mass cytometry. Method: We conjugated p53-specific antibodies to metal tags for detection by mass cytometry, allowing the detection of proteins and their post-translational modifications in single cells. We provide an overview of the antibody validation process using relevant biological controls, including cell lines treated in vitro with a stimulus (irradiation) known to induce changes in the expression level of p53. Finally, we present the potential of the method through investigation of primary samples from leukemia patients with distinct TP53 mutational status. Results: The p53 protein can be detected in cell lines and in primary samples by mass cytometry. By combining antibodies for p53-related signaling proteins with a surface marker panel, we show that mass cytometry can be used to decipher the single cell p53 signaling pathway in heterogeneous patient samples. Conclusion: Single cell profiling by mass cytometry allows the investigation of the p53 functionality through examination of relevant downstream signaling proteins in normal and malignant cells. Our work illustrates a novel approach for single cell profiling of p53.
Collapse
|
76
|
Hotinski AK, Best OG, Thurgood LA, Lower KM, Kuss BJ. A biclonal case of chronic lymphocytic leukaemia with discordant mutational status of the immunoglobulin heavy chain variable region and bimodal CD49d expression. Br J Haematol 2020; 192:e77-e81. [PMID: 33278845 DOI: 10.1111/bjh.17257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Anya K Hotinski
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Oliver G Best
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Lauren A Thurgood
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Karen M Lower
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Bryone J Kuss
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia.,Haematology and Genetic Pathology, Flinders Medical Centre, Bedford Park, South Australia
| |
Collapse
|
77
|
Rhodes JM, Barrientos JC. Chemotherapy-free frontline therapy for CLL: is it worth it? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:24-32. [PMID: 33275668 PMCID: PMC7727503 DOI: 10.1182/hematology.2020000085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The treatment of chronic lymphocytic leukemia (CLL) embodies one of the great success stories in translational research, with the development of therapies aimed at disrupting crucial pathways that allow for the survival and proliferation of the malignant clone. The arrival of targeted agents into our armamentarium, along with the advent of novel monoclonal antibodies that can achieve deeper remissions, has steered the field to a new treatment paradigm. Given the panoply of therapeutic options available, the question arises whether chemotherapy still has a role in the management of CLL. The novel targeted agents, which include the Bruton's tyrosine kinase inhibitors, ibrutinib and acalabrutinib, along with the B-cell lymphoma-2 inhibitor, venetoclax, are highly effective in achieving a response with improved remission duration and survival, particularly in high-risk patients. Despite this major progress, the new agents bring a unique set of toxicities unlike those associated with cytotoxic chemotherapy. There is a paucity of head-to-head comparisons among all of the novel agents, because their approval was based on randomization against traditional chemoimmunotherapeutic regimens. Parallel to the increase in the number of available targeted agents, there has been a significant improvement in quality of life and life expectancy of the patients with a CLL diagnosis over the last decade. Our review will examine whether "chemotherapy-free" frontline treatment approaches are worth the associated risks. Our goal is to help identify optimal treatment strategies tailored to the individual by reviewing available data on monotherapy vs combination strategies, depth of response, treatment duration, and potential toxicities.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Male
- Middle Aged
- Pyrazines/therapeutic use
- Rituximab/therapeutic use
- Sulfonamides/therapeutic use
Collapse
Affiliation(s)
- Joanna M Rhodes
- CLL Research and Treatment Center, Division of Hematology-Oncology, Department of Medicine at Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY
| | - Jacqueline C Barrientos
- CLL Research and Treatment Center, Division of Hematology-Oncology, Department of Medicine at Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY
| |
Collapse
|
78
|
Berendsen MR, Stevens WBC, van den Brand M, van Krieken JH, Scheijen B. Molecular Genetics of Relapsed Diffuse Large B-Cell Lymphoma: Insight into Mechanisms of Therapy Resistance. Cancers (Basel) 2020; 12:E3553. [PMID: 33260693 PMCID: PMC7760867 DOI: 10.3390/cancers12123553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
The majority of patients with diffuse large B-cell lymphoma (DLBCL) can be treated successfully with a combination of chemotherapy and the monoclonal anti-CD20 antibody rituximab. Nonetheless, approximately one-third of the patients with DLBCL still experience relapse or refractory (R/R) disease after first-line immunochemotherapy. Whole-exome sequencing on large cohorts of primary DLBCL has revealed the mutational landscape of DLBCL, which has provided a framework to define novel prognostic subtypes in DLBCL. Several studies have investigated the genetic alterations specifically associated with R/R DLBCL, thereby uncovering molecular pathways linked to therapy resistance. Here, we summarize the current state of knowledge regarding the genetic alterations that are enriched in R/R DLBCL, and the corresponding pathways affected by these gene mutations. Furthermore, we elaborate on their potential role in mediating therapy resistance, also in connection with findings in other B-cell malignancies, and discuss alternative treatment options. Hence, this review provides a comprehensive overview on the gene lesions and molecular mechanisms underlying R/R DLBCL, which are considered valuable parameters to guide treatment.
Collapse
Affiliation(s)
- Madeleine R. Berendsen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| | - Wendy B. C. Stevens
- Department of Hematology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands;
| | - Michiel van den Brand
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Pathology-DNA, Rijnstate Hospital, 6815AD Arnhem, The Netherlands
| | - J. Han van Krieken
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
| | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (M.R.B.); (M.v.d.B.); (J.H.v.K.)
- Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
79
|
Gonzalez-Rodriguez AP, Payer AR, Menendez-Suarez JJ, Sordo-Bahamonde C, Lorenzo-Herrero S, Zanabili J, Fonseca A, Gonzalez-Huerta AJ, Palomo P, Gonzalez S. Driver Mutations and Single Copy Number Abnormalities Identify Binet Stage A Patients with Chronic Lymphocytic Leukemia with Aggressive Progression. J Clin Med 2020; 9:jcm9113695. [PMID: 33213108 PMCID: PMC7698623 DOI: 10.3390/jcm9113695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023] Open
Abstract
The correlation between progression and the genetic characteristics of Binet stage A patients with chronic lymphocytic leukemia (CLL) detected by whole exome sequencing (WES) was analyzed in 55 patients. The median follow-up for the patients was 102 months. During the follow-up, 24 patients (43%) progressed. Univariate Cox analysis showed that the presence of driver mutations, the accumulation of two or more mutations, the presence of adverse mutations, immunoglobulin heavy chain genes (IGHV) mutation status and unfavorable single copy number abnormalities (SCNAs) were associated with a higher risk of progression. Particularly, the occurrence of an adverse mutation and unfavorable SCNAs increased the risk of progression nine-fold and five-fold, respectively. Nevertheless, only the occurrence of adverse mutations retained statistical significance in the multivariate analysis. All patients carrying an unfavorable mutation progressed with a median progression-free survival (PFS) of 29 months. The accumulation of two or more mutations also increased the risk of progression with a median PFS of 29 months. The median PFS of patients with unfavorable SCNAs was 38 months. Combining mutations and SCNAs, patients may be stratified into three groups with different prognostic outcomes: adverse (17% probability of five-year PFS), protective (86% probability of five-year PFS) and neither (62% probability of five-year PFS, p < 0.001). Overall, the analysis of the mutational status of patients with CLL at an early stage of the disease may allow the identification of patients with a high risk of progression. The feasibility of an early therapeutic intervention in these particular patients requires further investigation.
Collapse
Affiliation(s)
- Ana P. Gonzalez-Rodriguez
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; (C.S.-B.); (S.L.-H.); (S.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence:
| | - Angel R. Payer
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; (C.S.-B.); (S.L.-H.); (S.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan J. Menendez-Suarez
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Christian Sordo-Bahamonde
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; (C.S.-B.); (S.L.-H.); (S.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Seila Lorenzo-Herrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; (C.S.-B.); (S.L.-H.); (S.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Joud Zanabili
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
| | - Ariana Fonseca
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
| | - Ana Julia Gonzalez-Huerta
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
| | - Pilar Palomo
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (A.R.P.); (J.Z.); (A.F.); (A.J.G.-H.); (P.P.)
| | - Segundo Gonzalez
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; (C.S.-B.); (S.L.-H.); (S.G.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Departamento de Biología Funcional, Inmunología, Universidad de Oviedo, 33006 Oviedo, Spain;
| |
Collapse
|
80
|
CD49d promotes disease progression in chronic lymphocytic leukemia: new insights from CD49d bimodal expression. Blood 2020; 135:1244-1254. [PMID: 32006000 DOI: 10.1182/blood.2019003179] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
CD49d is a remarkable prognostic biomarker of chronic lymphocytic leukemia (CLL). The cutoff value for the extensively validated 30% of positive CLL cells is able to separate CLL patients into 2 subgroups with different prognoses, but it does not consider the pattern of CD49d expression. In the present study, we analyzed a cohort of 1630 CLL samples and identified the presence of ∼20% of CLL cases (n = 313) characterized by a bimodal expression of CD49d, that is, concomitant presence of a CD49d+ subpopulation and a CD49d- subpopulation. At variance with the highly stable CD49d expression observed in CLL patients with a homogeneous pattern of CD49d expression, CD49d bimodal CLL showed a higher level of variability in sequential samples, and an increase in the CD49d+ subpopulation over time after therapy. The CD49d+ subpopulation from CD49d bimodal CLL displayed higher levels of proliferation compared with the CD49d- cells; and was more highly represented in the bone marrow compared with peripheral blood (PB), and in PB CLL subsets expressing the CXCR4dim/CD5bright phenotype, known to be enriched in proliferative cells. From a clinical standpoint, CLL patients with CD49d bimodal expression, regardless of whether the CD49d+ subpopulation exceeded the 30% cutoff or not, experienced clinical behavior similar to CD49d+ CLL, both in chemoimmunotherapy (n = 1522) and in ibrutinib (n = 158) settings. Altogether, these results suggest that CD49d can drive disease progression in CLL, and that the pattern of CD49d expression should also be considered to improve the prognostic impact of this biomarker in CLL.
Collapse
|
81
|
Monti P, Menichini P, Speciale A, Cutrona G, Fais F, Taiana E, Neri A, Bomben R, Gentile M, Gattei V, Ferrarini M, Morabito F, Fronza G. Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter? Front Oncol 2020; 10:593383. [PMID: 33194757 PMCID: PMC7655923 DOI: 10.3389/fonc.2020.593383] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
The human TP53 locus, located on the short arm of chromosome 17, encodes a tumour suppressor protein which functions as a tetrameric transcription factor capable of regulating the expression of a plethora of target genes involved in cell cycle arrest, apoptosis, DNA repair, autophagy, and metabolism regulation. TP53 is the most commonly mutated gene in human cancer cells and TP53 germ-line mutations are responsible for the cancer-prone Li-Fraumeni syndrome. When mutated, the TP53 gene generally presents missense mutations, which can be distributed throughout the coding sequence, although they are found most frequently in the central DNA binding domain of the protein. TP53 mutations represent an important prognostic and predictive marker in cancer. The presence of a TP53 mutation does not necessarily imply a complete P53 inactivation; in fact, mutant P53 proteins are classified based on the effects on P53 protein function. Different models have been used to explore these never-ending facets of TP53 mutations, generating abundant experimental data on their functional impact. Here, we briefly review the studies analysing the consequences of TP53 mutations on P53 protein function and their possible implications for clinical outcome. The focus shall be on Chronic Lymphocytic Leukemia (CLL), which also has generated considerable discussion on the role of TP53 mutations for therapy decisions.
Collapse
Affiliation(s)
- Paola Monti
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Speciale
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera (AO) di Cosenza, Cosenza, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Fortunato Morabito
- Unità di Ricerca Biotecnologica, Azienda Sanitaria Provinciale di Cosenza, Aprigliano, Italy.,Department of Hematology and Bone Marrow Transplant Unit, Augusta Victoria Hospital, Jerusalem, Israel
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
82
|
Monti P, Lionetti M, De Luca G, Menichini P, Recchia AG, Matis S, Colombo M, Fabris S, Speciale A, Barbieri M, Gentile M, Zupo S, Dono M, Ibatici A, Neri A, Ferrarini M, Fais F, Fronza G, Cutrona G, Morabito F. Time to first treatment and P53 dysfunction in chronic lymphocytic leukaemia: results of the O-CLL1 study in early stage patients. Sci Rep 2020; 10:18427. [PMID: 33116240 PMCID: PMC7595214 DOI: 10.1038/s41598-020-75364-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/09/2020] [Indexed: 01/05/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is characterised by a heterogeneous clinical course. Such heterogeneity is associated with a number of markers, including TP53 gene inactivation. While TP53 gene alterations determine resistance to chemotherapy, it is not clear whether they can influence early disease progression. To clarify this issue, TP53 mutations and deletions of the corresponding locus [del(17p)] were evaluated in 469 cases from the O-CLL1 observational study that recruited a cohort of clinically and molecularly characterised Binet stage A patients. Twenty-four cases harboured somatic TP53 mutations [accompanied by del(17p) in 9 cases], 2 patients had del(17p) only, and 5 patients had TP53 germ-line variants. While del(17p) with or without TP53 mutations was capable of significantly predicting the time to first treatment, a reliable measure of disease progression, TP53 mutations were not. This was true for cases with high or low variant allele frequency. The lack of predictive ability was independent of the functional features of the mutant P53 protein in terms of transactivation and dominant negative potential. TP53 mutations alone were more frequent in patients with mutated IGHV genes, whereas del(17p) was associated with the presence of adverse prognostic factors, including CD38 positivity, unmutated-IGHV gene status, and NOTCH1 mutations.
Collapse
Affiliation(s)
- Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Marta Lionetti
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Giuseppa De Luca
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Anna Grazia Recchia
- Biotechnology Research Unit, Aprigliano, A.O./ASP of Cosenza, 87100, Cosenza, Italy
| | - Serena Matis
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Colombo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Andrea Speciale
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Marzia Barbieri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Massimo Gentile
- Hematology Unit, Department of Onco-Hematology, A.O. of Cosenza, 87100, Cosenza, Italy
| | - Simonetta Zupo
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Mariella Dono
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Adalberto Ibatici
- Hematology Unit and Bone Marrow Transplantation, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fortunato Morabito
- Biotechnology Research Unit, Aprigliano, A.O./ASP of Cosenza, 87100, Cosenza, Italy. .,Department of Hematology and Bone Marrow Transplant Unit, Augusta Victoria Hospital, Jerusalem, Israel.
| |
Collapse
|
83
|
Moia R, Boggione P, Mahmoud AM, Kodipad AA, Adhinaveni R, Sagiraju S, Patriarca A, Gaidano G. Targeting p53 in chronic lymphocytic leukemia. Expert Opin Ther Targets 2020; 24:1239-1250. [PMID: 33016796 DOI: 10.1080/14728222.2020.1832465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Genomic studies have allowed to identify molecular predictors for chronic lymphocytic leukemia (CLL) treatment tailoring. TP53 disruption is the strongest predictor of chemo-refractoriness and its assessment is the first decisional node in the disease treatment algorithm. AREAS COVERED The review covers the p53 biological pathway, its genetic alterations and clinical implications in CLL, and its druggable targets. The potential therapeutic options for TP53 disrupted patients are described, including: i) agents circumventing TP53 disruption; ii) targeted therapies restoring the physiological function of mutant p53; and iii) medicines potentiating p53 function. EXPERT OPINION The key approach to improve CLL outcome is treatment tailoring in individual patients. BCR and BCL2 inhibitors have significantly improved CLL survival, however TP53 disrupted patients still have a less favorable outcome than wild type cases, possibly because these novel drugs do not directly target p53 and do not restore the function of the disrupted p53 pathway. Emerging innovative molecules in cancer are able to restore the p53 mutant protein and/or potentiate the activity of the p53 wild type protein. If these compounds were confirmed as efficacious also for CLL, they would represent another step forward in the care of high risk CLL patients with TP53 abnormalities.
Collapse
Affiliation(s)
- Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Paola Boggione
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Ahad Ahmed Kodipad
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Ramesh Adhinaveni
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Sruthi Sagiraju
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale , Novara, Italy
| |
Collapse
|
84
|
Szoltysek K, Ciardullo C, Zhou P, Walaszczyk A, Willmore E, Rand V, Marshall S, Hall A, J. Harrison C, Eswaran J, Soundararajan M. DAP Kinase-Related Apoptosis-Inducing Protein Kinase 2 (DRAK2) Is a Key Regulator and Molecular Marker in Chronic Lymphocytic Leukemia. Int J Mol Sci 2020; 21:ijms21207663. [PMID: 33081245 PMCID: PMC7593912 DOI: 10.3390/ijms21207663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the Western World and it is characterized by a marked degree of clinical heterogeneity. An impaired balance between pro- and anti-apoptotic stimuli determines chemorefractoriness and outcome. The low proliferation rate of CLL cells indicates that one of the primary mechanisms involved in disease development may be an apoptotic failure. Here, we study the clinical and functional significance of DRAK2, a novel stress response kinase that plays a critical role in apoptosis, T-cell biology, and B-cell activation in CLL. We have analyzed CLL patient samples and showed that low expression levels of DRAK2 were significantly associated with unfavorable outcome in our CLL cohort. DRAK2 expression levels showed a positive correlation with the expression of DAPK1, and TGFBR1. Consistent with clinical data, the downregulation of DRAK2 in MEC-1 CLL cells strongly increased cell viability and proliferation. Further, our transcriptome data from MEC-1 cells highlighted MAPK, NF-κB, and Akt and as critical signaling hubs upon DRAK2 knockdown. Taken together, our results indicate DRAK2 as a novel marker of CLL survival that plays key regulatory roles in CLL prognosis.
Collapse
MESH Headings
- Aged
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Cell Survival
- Death-Associated Protein Kinases/genetics
- Death-Associated Protein Kinases/metabolism
- Down-Regulation
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MAP Kinase Signaling System
- Male
- Middle Aged
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
Collapse
Affiliation(s)
- Katarzyna Szoltysek
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
- Maria Skłodowska-Curie Institute, Oncology Center, Gliwice Branch, 02-034 Gliwice, Poland
| | - Carmela Ciardullo
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Peixun Zhou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3JN, UK; (P.Z.); (V.R.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Anna Walaszczyk
- Institute of Biosciences, International Centre for Life, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Elaine Willmore
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
| | - Vikki Rand
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3JN, UK; (P.Z.); (V.R.)
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | - Scott Marshall
- Department of Haematology, City Hospitals Sunderland NHS Trust, Sunderland SR4 7TP, UK;
| | - Andy Hall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
| | - Christine J. Harrison
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
| | - Jeyanthy Eswaran
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.S.); (C.C.); (E.W.); (A.H.); (C.J.H.)
- Newcastle University Medicine Malaysia (NUMed Malaysia), EduCity, Iskandar 79200, Johor, Malaysia
- Correspondence: or (J.E); (M.S.)
| | - Meera Soundararajan
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Correspondence: or (J.E); (M.S.)
| |
Collapse
|
85
|
SOHO State of the Art Updates and Next Questions: Clonal Evolution in Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:779-784. [PMID: 33039357 DOI: 10.1016/j.clml.2020.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/27/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an indolent disease with a long-lasting clinical course, with indication for treatment only when symptomatic. Its clinical heterogeneity is widely reported, with some patients requiring treatment soon after diagnosis because of development of cytopenia or bulky lymphadenopathy, and others showing a stable or a slowly progressive disease not requiring treatment for decades. Longitudinal sampling of peripheral blood, with accessible tumor cells and circulating tumor DNA, enabled the analysis of disease growing dynamics and the characterization of clonal evolution. Here we describe the main known features of CLL genomics and its shaping upon treatment, which can lead to progression, treatment refractoriness, or transformation into an aggressive lymphoma.
Collapse
|
86
|
Tausch E, Beck P, Schlenk RF, Jebaraj BM, Dolnik A, Yosifov DY, Hillmen P, Offner F, Janssens A, Babu KG, Grosicki S, Mayer J, Panagiotidis P, McKeown A, Gupta IV, Skorupa A, Pallaud C, Bullinger L, Mertens D, Döhner H, Stilgenbauer S. Prognostic and predictive role of gene mutations in chronic lymphocytic leukemia: results from the pivotal phase III study COMPLEMENT1. Haematologica 2020; 105:2440-2447. [PMID: 33054084 PMCID: PMC7556677 DOI: 10.3324/haematol.2019.229161] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/07/2020] [Indexed: 11/09/2022] Open
Abstract
Next generation sequencing studies in Chronic lymphocytic leukemia (CLL) have revealed novel genetic variants that have been associated with disease characteristics and outcome. The aim of this study was to evaluate the prognostic value of recurrent molecular abnormalities in patients with CLL. Therefore, we assessed their incidences and associations with other clinical and genetic markers in the prospective multicenter COMPLEMENT1 trial (treatment naive patients not eligible for intensive treatment randomized to chlorambucil (CHL) vs. ofatumumab-CHL (O-CHL)). Baseline samples were available from 383 patients (85.6%) representative of the total trial cohort. Mutations were analyzed by amplicon-based targeted next generation sequencing (tNGS). In 52.2% of patients we found at least one mutation and the incidence was highest in NOTCH1 (17.0%), followed by SF3B1 (14.1%), ATM (11.7%), TP53 (10.2%), POT1 (7.0%), RPS15 (4.4%), FBXW7 (3.4%), MYD88 (2.6%) and BIRC3 (2.3%). While most mutations lacked prognostic significance, TP53 (HR2.02,p<0.01), SF3B1 (HR1.66,p=0.01) and NOTCH1 (HR1.39,p=0.03) were associated with inferior PFS in univariate analysis. Multivariate analysis confirmed the independent prognostic role of TP53 for PFS (HR1.71,p=0.04) and OS (HR2.78,p=0.02) and of SF3B1 for PFS only (HR1.52,p=0.02). Notably, NOTCH1 mutation status separates patients with a strong and a weak benefit from ofatumumab addition to CHL (NOTCH1wt:HR0.50,p<0.01, NOTCH1mut:HR0.81,p=0.45). In summary, TP53 and SF3B1 were confirmed as independent prognostic and NOTCH1 as a predictive factor for reduced ofatumumab efficacy in a randomized chemo (immune)therapy CLL trial. These results validate NGS-based mutation analysis in a multicenter trial and provide a basis for expanding molecular testing in the prognostic workup of patients with CLL. ClinicalTrials.gov registration number: NCT00748189.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Mutation
- Phosphoproteins/genetics
- Prognosis
- Prospective Studies
- RNA Splicing Factors/genetics
- Receptor, Notch1/genetics
Collapse
Affiliation(s)
- Eugen Tausch
- Depar tment of Internal Medicine III, Ulm University, Ulm, Germany
| | - Philipp Beck
- Depar tment of Internal Medicine III, Ulm University, Ulm, Germany
| | - Richard F. Schlenk
- Depar tment of Internal Medicine III, Ulm University, Ulm, Germany
- NCT-Trial Center, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany
| | | | - Anna Dolnik
- Depar tment of Internal Medicine III, Ulm University, Ulm, Germany
- Klinik für Innere Medizin mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Charité, Berlin
| | - Deyan Y. Yosifov
- Depar tment of Internal Medicine III, Ulm University, Ulm, Germany
- Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Hillmen
- Department of Haematology, St. James's University Hospital, Leeds, UK
| | | | | | | | - Sebastian Grosicki
- Department of Hematology and Cancer Prevention, School of Public Health, Silesian Medical University in Katowice, Katowice, Poland
| | - Jiri Mayer
- Department of Haematology-Oncology, University Hospital Brno, Brno, Czech Republic
| | | | - Astrid McKeown
- Oncology Global Medicines Development, AstraZeneca, Melbourn, UK
| | | | | | | | - Lars Bullinger
- Depar tment of Internal Medicine III, Ulm University, Ulm, Germany
- Klinik für Innere Medizin mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Charité, Berlin
| | - Daniel Mertens
- Depar tment of Internal Medicine III, Ulm University, Ulm, Germany
- Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hartmut Döhner
- Depar tment of Internal Medicine III, Ulm University, Ulm, Germany
| | - Stephan Stilgenbauer
- Depar tment of Internal Medicine III, Ulm University, Ulm, Germany
- Department for Hematology, Oncology and Rheumatology, Saarland University Medical School, Homburg/Saar, Germany
| |
Collapse
|
87
|
Delgado J, Nadeu F, Colomer D, Campo E. Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies. Haematologica 2020; 105:2205-2217. [PMID: 33054046 PMCID: PMC7556519 DOI: 10.3324/haematol.2019.236000] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic lymphocytic leukemia is a well-defined lymphoid neoplasm with very heterogeneous biological and clinical behavior. The last decade has been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease including mechanisms of genetic susceptibility, insights into the relevance of immunogenetic factors driving the disease, profiling of genomic alterations, epigenetic subtypes, global epigenomic tumor cell reprogramming, modulation of tumor cell and microenvironment interactions, and dynamics of clonal evolution from early steps in monoclonal B cell lymphocytosis to progression and transformation into diffuse large B-cell lymphoma. All this knowledge has offered new perspectives that are being exploited therapeutically with novel target agents and management strategies. In this review we provide an overview of these novel advances and highlight questions and perspectives that need further progress to translate into the clinics the biological knowledge and improve the outcome of the patients.
Collapse
Affiliation(s)
- Julio Delgado
- Department of Hematology, Hospital Clínic, University of Barcelona, Barcelona
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Dolors Colomer
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
- Hematopathology Section, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Elias Campo
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
- Hematopathology Section, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
88
|
Meggendorfer M, Walter W, Haferlach T. WGS and WTS in leukaemia: A tool for diagnostics? Best Pract Res Clin Haematol 2020; 33:101190. [DOI: 10.1016/j.beha.2020.101190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
|
89
|
Moia R, Patriarca A, Mahmoud AM, Ferri V, Favini C, Rasi S, Deambrogi C, Gaidano G. Assessing prognosis of chronic lymphocytic leukemia using biomarkers and genetics. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1804860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Valentina Ferri
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Chiara Favini
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Silvia Rasi
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Clara Deambrogi
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| |
Collapse
|
90
|
Morabito F, Gentile M, Monti P, Recchia AG, Menichini P, Skafi M, Atrash M, De Luca G, Bossio S, Al-Janazreh H, Galimberti S, Salah Z, Morabito L, Mujahed A, Hindiyeh M, Dono M, Fais F, Cutrona G, Neri A, Tripepi G, Fronza G, Ferrarini M. TP53 dysfunction in chronic lymphocytic leukemia: clinical relevance in the era of B-cell receptors and BCL-2 inhibitors. Expert Opin Investig Drugs 2020; 29:869-880. [PMID: 32551999 DOI: 10.1080/13543784.2020.1783239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Patients with TP53 dysfunction, assessed by del(17p) or TP53 mutations, respond poorly to chemo-immunotherapy and fare better with the new therapies (BCR and BCL-2 inhibitors); however, it is unclear whether their response is similar to that of patients without anomalies or whether there is currently an adequate determination of TP53 dysfunction. AREA COVERED A literature search was undertaken on clinical trials and real-world experience data on patients with TP53 dysfunction treated with different protocols. Moreover, data on the TP53 biological function and on the tests currently employed for its assessment were reviewed. EXPERT OPINION Although TP53 dysfunction has less negative influence on the new biological therapies, patients with these alterations, particularly those with biallelic inactivation of TP53, have a worst outcome with these therapies than those without alterations. At present, a determination of TP53, particularly with next generation sequencing (NGS) methodologies, may be sufficient for the identifications of the patients unsuitable for chemo-immunotherapy, although integration with del(17p) would be advisable. For the future, more extensive determinations of the TP53 status, including functional assays, may become part of the current armamentarium for a better patient stratification and treatment with newer protocols.
Collapse
Affiliation(s)
- Fortunato Morabito
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel.,Biotechnology Research Unit, Aprigliano, AO/ASP , Cosenza, Italy
| | - Massimo Gentile
- Biotechnology Research Unit, Aprigliano, AO/ASP , Cosenza, Italy.,Hematology Unit, Hematology and Oncology Department , Cosenza, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | | | - Paola Menichini
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Mamdouh Skafi
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Moien Atrash
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Giuseppa De Luca
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Sabrina Bossio
- Biotechnology Research Unit, Aprigliano, AO/ASP , Cosenza, Italy
| | - Hamdi Al-Janazreh
- Hematology Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | | | - Zaidoun Salah
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School , Jerusalem, Israel
| | - Lucio Morabito
- Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - Alham Mujahed
- Laboratory Department, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Musa Hindiyeh
- Laboratory Department, Cancer Care Center, Augusta Victoria Hospital , Jerusalem, Israel
| | - Mariella Dono
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino , Genova, Italy.,Department of Experimental Medicine, University of Genoa , Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino , Genova, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan , Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan, Italy
| | | | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa , Genoa, Italy
| |
Collapse
|
91
|
Chauffaille MDLLF, Zalcberg I, Barreto WG, Bendit I. Detection of somatic TP53 mutations and 17p deletions in patients with chronic lymphocytic leukemia: a review of the current methods. Hematol Transfus Cell Ther 2020; 42:261-268. [PMID: 32660851 PMCID: PMC7417461 DOI: 10.1016/j.htct.2020.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
Chronic lymphocytic leukemia is the most common hematologic malignancy among adults in Western countries. Several studies show that somatic mutations in the TP53 gene are present in up to 50% of patients with relapsed or refractory chronic lymphocytic leukemia. This study aims to review and compare the methods used to detect somatic TP53 mutations and/or 17p deletions and analyze their importance in the chronic lymphocytic leukemia diagnosis and follow-up. In chronic lymphocytic leukemia patients with refractory or recurrent disease, the probability of clonal expansion of cells with the TP53 mutation and/or 17p deletion is very high. The studies assessed showed several methodologies able to detect these changes. For the 17p deletion, the chromosome G-banding (karyotype) and interphase fluorescence in situ hybridization are the most sensitive. For somatic mutations involving the TP53 gene, moderate or high-coverage read next-generation sequencing and Sanger sequencing are the most recommended ones. The TP53 gene mutations represent a strong adverse prognostic factor for patient survival and treatment resistance in chronic lymphocytic leukemia. Patients carrying low-proportion TP53 mutation (less than 20–25% of all alleles) remain a challenge to these tests. Thus, for any of the methods employed, it is essential that the laboratory conduct its analytical validation, documenting its accuracy, precision and sensitivity/limit of detection.
Collapse
Affiliation(s)
| | - Ilana Zalcberg
- Centro de Transplante de Medula Óssea, Instituto Nacional do Cancer (CEMO-INCA), Rio de Janeiro, RJ, Brazil; GeneOne, DASA, São Paulo, SP, Brazil
| | | | - Israel Bendit
- Laboratório de Biologia do Tumor do Serviço de Hematologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
92
|
Cohen JA, Rossi FM, Zucchetto A, Bomben R, Terzi-di-Bergamo L, Rabe KG, Degan M, Steffan A, Polesel J, Santinelli E, Innocenti I, Cutrona G, D'Arena G, Pozzato G, Zaja F, Chiarenza A, Rossi D, Di Raimondo F, Laurenti L, Gentile M, Morabito F, Neri A, Ferrarini M, Fegan CD, Pepper CJ, Del Poeta G, Parikh SA, Kay NE, Gattei V. A laboratory-based scoring system predicts early treatment in Rai 0 chronic lymphocytic leukemia. Haematologica 2020; 105:1613-1620. [PMID: 31582547 PMCID: PMC7271568 DOI: 10.3324/haematol.2019.228171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/02/2019] [Indexed: 11/09/2022] Open
Abstract
We present a laboratory-based prognostic calculator (designated CRO score) to risk stratify treatment-free survival in early stage (Rai 0) chronic lymphocytic leukemia (CLL) developed using a training-validation model in a series of 1,879 cases from Italy, the United Kingdom and the United States. By means of regression analysis, we identified five prognostic variables with weighting as follows: deletion of the short arm of chromosome 17 and unmutated immunoglobulin heavy chain gene status, 2 points; deletion of the long arm of chromosome 11, trisomy of chromosome 12, and white blood cell count >32.0x103/microliter, 1 point. Low-, intermediate- and high-risk categories were established by recursive partitioning in a training cohort of 478 cases, and then validated in four independent cohorts of 144 / 395 / 540 / 322 cases, as well as in the composite validation cohort. Concordance indices were 0.75 in the training cohort and ranged from 0.63 to 0.74 in the four validation cohorts (0.69 in the composite validation cohort). These findings advocate potential application of our novel prognostic calculator to better stratify early-stage CLL, and aid case selection in risk-adapted treatment for early disease. Furthermore, they support immunocytogenetic analysis in Rai 0 CLL being performed at the time of diagnosis to aid prognosis and treatment, particularly in today's chemofree era.
Collapse
Affiliation(s)
- Jared A Cohen
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - Francesca Maria Rossi
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | | | - Kari G Rabe
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Massimo Degan
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di RiferimentoOncologico, I.R.C.C.S., Aviano (PN), Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | - Enrico Santinelli
- Division of Haematology, S. Eugenio Hospital and University of Tor Vergata, Rome, Italy
| | - Idanna Innocenti
- Hematology Institute, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Giovanna Cutrona
- UO Molecular Pathology, Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Giovanni D'Arena
- Onco-Haematology Department, Centro di Riferimento Oncologico della Basilicata, I.R.C.C.S., Rionero in Vulture, Italy
| | - Gabriele Pozzato
- Department of Internal Medicine and Haematology, Maggiore General Hospital, University of Trieste, Trieste, Italy
| | - Francesco Zaja
- Department of Internal Medicine and Haematology, Maggiore General Hospital, University of Trieste, Trieste, Italy
| | | | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Universita' della Svizzera Italiana, Lugano, Switzerland
| | | | - Luca Laurenti
- Hematology Institute, Catholic University of the Sacred Heart, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Massimo Gentile
- Hematology Unit, AO, Cosenza, Italy
- Biotechnology Research Unit, Aprigliano, Cosenza, Italy
| | - Fortunato Morabito
- Biotechnology Research Unit, Aprigliano, Cosenza, Italy
- Hematogy Department and Bone Marrow Transplant Unit, Cancer Care Center, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Antonino Neri
- Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico and University of Milan, Milan, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Christopher D Fegan
- Division of Cancer and Genetics, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Christopher J Pepper
- Division of Cancer and Genetics, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
- University of Sussex, Brighton and Sussex Medical School, Brighton, UK
| | - Giovanni Del Poeta
- Division of Haematology, S. Eugenio Hospital and University of Tor Vergata, Rome, Italy
| | - Sameer A Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Valter Gattei
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| |
Collapse
|
93
|
Nadeu F, Diaz-Navarro A, Delgado J, Puente XS, Campo E. Genomic and Epigenomic Alterations in Chronic Lymphocytic Leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:149-177. [PMID: 31977296 DOI: 10.1146/annurev-pathmechdis-012419-032810] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic lymphocytic leukemia is a common disease in Western countries and has heterogeneous clinical behavior. The relevance of the genetic basis of the disease has come to the forefront recently, with genome-wide studies that have provided a comprehensive view of structural variants, somatic mutations, and different layers of epigenetic changes. The mutational landscape is characterized by relatively common copy number alterations, a few mutated genes occurring in 10-15% of cases, and a large number of genes mutated in a small number of cases. The epigenomic profile has revealed a marked reprogramming of regulatory regions in tumor cells compared with normal B cells. All of these alterations are differentially distributed in clinical and biological subsets of the disease, indicating that they may underlie the heterogeneous evolution of the disease. These global studies are revealing the molecular complexity of chronic lymphocytic leukemia and provide new perspectives that have helped to understand its pathogenic mechanisms and improve the clinical management of patients.
Collapse
Affiliation(s)
- Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; ,
| | - Ander Diaz-Navarro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematology Department, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematopathology Section, Laboratory of Pathology, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
94
|
Cohen JA, Bomben R, Pozzo F, Tissino E, Härzschel A, Hartmann TN, Zucchetto A, Gattei V. An Updated Perspective on Current Prognostic and Predictive Biomarkers in Chronic Lymphocytic Leukemia in the Context of Chemoimmunotherapy and Novel Targeted Therapy. Cancers (Basel) 2020; 12:cancers12040894. [PMID: 32272636 PMCID: PMC7226446 DOI: 10.3390/cancers12040894] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with a variable clinical course. Novel biomarkers discovered over the past 20 years have revolutionized the way clinicians approach prognostication and treatment especially in the chemotherapy-free era. Herein, we review the best established prognostic and predictive biomarkers in the setting of chemoimmunotherapy (CIT) and novel targeted therapy. We propose that TP53 disruption (defined as either TP53 mutation or chromosome 17p deletion), unmutated immunoglobulin heavy chain variable region gene status (UM IGHV), NOTCH1 mutation, and CD49d expression are the strongest prognosticators of disease progression and overall survival in the field of novel biomarkers including recurrent gene mutations. We also highlight the predictive role of TP53 disruption, UM IGHV, and NOTCH1 mutation in the setting of CIT and TP53 disruption and CD49d expression in the setting of novel targeted therapy employing B-cell receptor (BCR) and B-cell lymphoma-2 (BCL2) inhibition. Finally, we discuss future directions in the field of biomarker development to identify those with relapsed/refractory disease at risk for progression despite treatment with novel therapies.
Collapse
Affiliation(s)
- Jared A. Cohen
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Andrea Härzschel
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (A.H.); (T.N.H.)
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (A.H.); (T.N.H.)
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
- Correspondence: ; Tel.: +39-0434-659720; Fax: +39-0434-659409
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| |
Collapse
|
95
|
Abstract
OPINION STATEMENT Treatment landscape of chronic lymphocytic leukemia (CLL) has changed since 2014 after the introduction of inhibitors of B-cell receptor signaling pathway (ibrutinib, acalabrutinib, idelalisib and duvelisib) and the inhibitor of the anti-apoptotic protein BCL-2 (venetoclax). In 2019, novel agents were upgraded from being a "great treatment option" to the "preferred choice" for all lines of treatment after number of randomized clinical trials proved their superiority compared to conventional chemoimmunotherapy (CIT) regimens. A growing number of next-generation molecules are in clinical trials with a promise of improved efficacy and less toxicity. This includes agents with expected better safety profile (zanubrutinib, umbralisib, etc.) or more importantly with a potential to overcome the resistance mechanism to early generation agents (ARQ-531, LOXO-305, or vecabrutinib). Early intervention has once again become an active topic of research and, if proven to provide an overall survival benefit, will eliminate the "watch and wait" strategy for asymptomatic CLL patients. Until then, treatment should only be offered to patients who meet the standard treatment indication in standard practice. With our upgraded therapeutic toolbox, there are and will be many unanswered questions. CLL field will need to define the optimal treatment sequence and most effective combinations with a goal of having a time-limited and chemotherapy-free regimen that provides longest remissions and potentially cure. Cellular immunotherapy with chimeric antigen receptor T-cell (CAR-T) may become available for high-risk CLL along with allogeneic stem cell transplant (allo-SCT). Financial toxicity of novel agents especially when used in combination will need to be an important aspect of research in coming years to avoid unnecessary overtreatment of patients. As current prognostic models (CLL-IPI, etc.) were developed and validated in the CIT era, there is ongoing effort to develop new models using clinical and molecular characteristics to accurately define high-risk CLL in the era of novel agents. We all need to keep in mind that access to the novel agents is currently limited to certain developed countries and every effort should be made to make sure patients around the world also benefit from these outstanding drugs.
Collapse
|
96
|
Precision Medicine Management of Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12030642. [PMID: 32164276 PMCID: PMC7139574 DOI: 10.3390/cancers12030642] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 11/21/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in western countries, with an incidence of approximately 5.1/100,000 new cases per year. Some patients may never require treatment, whereas others relapse early after front line therapeutic approaches. Recent whole genome and whole exome sequencing studies have allowed a better understanding of CLL pathogenesis and the identification of genetic lesions with potential clinical relevance. Consistently, precision medicine plays a pivotal role in the treatment algorithm of CLL, since the integration of molecular biomarkers with the clinical features of the disease may guide treatment choices. Most CLL patients present at the time of diagnosis with an early stage disease and are managed with a watch and wait strategy. For CLL patients requiring therapy, the CLL treatment armamentarium includes both chemoimmunotherapy strategies and biological drugs. The efficacy of these treatment strategies relies upon specific molecular features of the disease. TP53 disruption (including both TP53 mutation and 17p deletion) is the strongest predictor of chemo-refractoriness, and the assessment of TP53 status is the first and most important decisional node in the first line treatment algorithm. The presence of TP53 disruption mandates treatment with biological drugs that inhibit the B cell receptor or, alternatively, the B-cell lymphoma 2 (BCL2) pathway and can, at least in part, circumvent the chemorefractoriness of TP53-disrupted patients. Beside TP53 disruption, the mutational status of immunoglobulin heavy variable (IGHV) genes also helps clinicians to improve treatment tailoring. In fact, patients carrying mutated IGHV genes in the absence of TP53 disruption experience a long-lasting and durable response to chemoimmunotherapy after fludarabine, cyclophosphamide, and rituximab (FCR) treatment with a survival superimposable to that of a matched general population. In contrast, patients with unmutated IGHV genes respond poorly to chemoimmunotherapy and deserve treatment with B cell receptor inhibitors. Minimal residual disease is also emerging as a relevant biomarker with potential clinical implications. Overall, precision medicine is now a mainstay in the management and treatment stratification of CLL. The identification of novel predictive biomarkers will allow further improvements in the treatment tailoring of this leukemia.
Collapse
|
97
|
Andreani G, Carrà G, Lingua MF, Maffeo B, Brancaccio M, Taulli R, Morotti A. Tumor Suppressors in Chronic Lymphocytic Leukemia: From Lost Partners to Active Targets. Cancers (Basel) 2020; 12:cancers12030629. [PMID: 32182763 PMCID: PMC7139490 DOI: 10.3390/cancers12030629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor suppressors play an important role in cancer pathogenesis and in the modulation of resistance to treatments. Loss of function of the proteins encoded by tumor suppressors, through genomic inactivation of the gene, disable all the controls that balance growth, survival, and apoptosis, promoting cancer transformation. Parallel to genetic impairments, tumor suppressor products may also be functionally inactivated in the absence of mutations/deletions upon post-transcriptional and post-translational modifications. Because restoring tumor suppressor functions remains the most effective and selective approach to induce apoptosis in cancer, the dissection of mechanisms of tumor suppressor inactivation is advisable in order to further augment targeted strategies. This review will summarize the role of tumor suppressors in chronic lymphocytic leukemia and attempt to describe how tumor suppressors can represent new hopes in our arsenal against chronic lymphocytic leukemia (CLL).
Collapse
Affiliation(s)
- Giacomo Andreani
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
| | | | - Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy;
| | - Riccardo Taulli
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (M.F.L.); (R.T.)
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
- Correspondence: ; Tel.: +39-011-9026305
| |
Collapse
|
98
|
Treatment-naive CLL: lessons from phase 2 and phase 3 clinical trials. Blood 2020; 134:1796-1801. [PMID: 31751484 DOI: 10.1182/blood.2019001321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022] Open
Abstract
The management of chronic lymphocytic leukemia (CLL) has undergone dramatic changes over the previous 2 decades with the introduction of multiple new therapies and new combinations. Management of the newly diagnosed asymptomatic patient has not significantly changed outside of the development of a number of prognostic factors and the CLL International Prognostic Index, which is helpful in discussions regarding prognosis and likelihood of requiring treatment. When therapy is required, initial treatment of most patients now includes either the Bruton tyrosine kinase inhibitor ibrutinib or the B-cell lymphoma 2 inhibitor venetoclax in combination with obinutuzumab. Current frontline trials are focused on the optimal sequencing or combination of targeted therapies. In this review, we will discuss the management of previously untreated CLL with an emphasis on the clinical trials that have formed the standard of care, as well as those newer studies that are likely to form the next generation of therapy.
Collapse
|
99
|
Blakemore SJ, Clifford R, Parker H, Antoniou P, Stec-Dziedzic E, Larrayoz M, Davis Z, Kadalyayil L, Colins A, Robbe P, Vavoulis D, Forster J, Carr L, Morilla R, Else M, Bryant D, McCarthy H, Walewska RJ, Steele AJ, Chan J, Speight G, Stankovic T, Cragg MS, Catovsky D, Oscier DG, Rose-Zerilli MJJ, Schuh A, Strefford JC. Clinical significance of TP53, BIRC3, ATM and MAPK-ERK genes in chronic lymphocytic leukaemia: data from the randomised UK LRF CLL4 trial. Leukemia 2020; 34:1760-1774. [PMID: 32015491 PMCID: PMC7326706 DOI: 10.1038/s41375-020-0723-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/06/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
Despite advances in chronic lymphocytic leukaemia (CLL) treatment, globally chemotherapy remains a central treatment modality, with chemotherapy trials representing an invaluable resource to explore disease-related/genetic features contributing to long-term outcomes. In 499 LRF CLL4 cases, a trial with >12 years follow-up, we employed targeted resequencing of 22 genes, identifying 623 mutations. After background mutation rate correction, 11/22 genes were recurrently mutated at frequencies between 3.6% (NFKBIE) and 24% (SF3B1). Mutations beyond Sanger resolution (<12% VAF) were observed in all genes, with KRAS mutations principally composed of these low VAF variants. Firstly, employing orthogonal approaches to confirm <12% VAF TP53 mutations, we assessed the clinical impact of TP53 clonal architecture. Whilst ≥ 12% VAF TP53mut cases were associated with reduced PFS and OS, we could not demonstrate a difference between <12% VAF TP53 mutations and either wild type or ≥12% VAF TP53mut cases. Secondly, we identified biallelic BIRC3 lesions (mutation and deletion) as an independent marker of inferior PFS and OS. Finally, we observed that mutated MAPK-ERK genes were independent markers of poor OS in multivariate survival analysis. In conclusion, our study supports using targeted resequencing of expanded gene panels to elucidate the prognostic impact of gene mutations.
Collapse
Affiliation(s)
- Stuart J Blakemore
- Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department I of Internal Medicine, Centre of Excellence in Aging Research, University of Cologne, Cologne, Germany
| | - Ruth Clifford
- Oxford National Institute for Health Research Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, UK
| | - Helen Parker
- Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pavlos Antoniou
- Oxford National Institute for Health Research Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, UK
| | - Ewa Stec-Dziedzic
- Oxford National Institute for Health Research Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, UK
| | - Marta Larrayoz
- Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Zadie Davis
- Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Latha Kadalyayil
- Genetic Epidemiology and Bioinformatics, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andrew Colins
- Genetic Epidemiology and Bioinformatics, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pauline Robbe
- Oxford National Institute for Health Research Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, UK
| | - Dimitris Vavoulis
- Oxford National Institute for Health Research Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, UK
| | - Jade Forster
- Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Louise Carr
- Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ricardo Morilla
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Monica Else
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Dean Bryant
- Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Helen McCarthy
- Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Renata J Walewska
- Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Andrew J Steele
- Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jacqueline Chan
- Oxford Gene Technology, Begbroke Science Park, Begbroke, Oxfordshire, UK
| | - Graham Speight
- Oxford Gene Technology, Begbroke Science Park, Begbroke, Oxfordshire, UK
| | - Tanja Stankovic
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Services, IBR West, University of Birmingham, Birmingham, UK
| | - Mark S Cragg
- Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Antibody & Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Daniel Catovsky
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - David G Oscier
- Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Matthew J J Rose-Zerilli
- Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anna Schuh
- Oxford National Institute for Health Research Biomedical Research Centre and Department of Oncology, University of Oxford, Oxford, UK
| | - Jonathan C Strefford
- Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
100
|
Brieghel C, da Cunha-Bang C, Yde CW, Schmidt AY, Kinalis S, Nadeu F, Andersen MA, Jacobsen LO, Andersen MK, Pedersen LB, Delgado J, Baumann T, Mattsson M, Mansouri L, Rosenquist R, Campo E, Nielsen FC, Niemann CU. The Number of Signaling Pathways Altered by Driver Mutations in Chronic Lymphocytic Leukemia Impacts Disease Outcome. Clin Cancer Res 2020; 26:1507-1515. [PMID: 31919133 DOI: 10.1158/1078-0432.ccr-18-4158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/19/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Investigation of signaling pathways altered by recurrent gene mutations and their clinical impact in a consecutive cohort of patients with newly diagnosed chronic lymphocytic leukemia (CLL). The heterogeneous clinical course and genetic complexity of CLL warrant improved molecular prognostication. However, the prognostic value of recurrent mutations at the time of diagnosis remains unclear. EXPERIMENTAL DESIGN We sequenced samples from 314 consecutive, newly diagnosed patients with CLL to investigate the clinical impact of 56 recurrently mutated genes assessed by next-generation sequencing. RESULTS Mutations were identified in 70% of patients with enrichment among IGHV unmutated cases. With 6.5 years of follow-up, 15 mutated genes investigated at the time of diagnosis demonstrated significant impact on time to first treatment (TTFT). Carrying driver mutations was associated with shorter TTFT and poor overall survival. For outcome from CLL diagnosis, the number of signaling pathways altered by driver mutations stratified patients better than the number of driver mutations. Moreover, we demonstrated gradual impact on TTFT with increasing number of altered pathways independent of CLL-IPI risk. Thus, a 25-gene, pathway-based biomarker assessing recurrent mutations refines prognostication in CLL, in particular for CLL-IPI low- and intermediate-risk patients. External validation emphasized that a broad gene panel including low burden mutations was key for the biomarker based on altered pathways. CONCLUSIONS We propose to include the number of pathways altered by driver mutations as a biomarker together with CLL-IPI in prospective studies of CLL from time of diagnosis for incorporation into clinical care and personalized follow-up and treatment.
Collapse
Affiliation(s)
| | | | | | - Ane Yde Schmidt
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Savvas Kinalis
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Ferran Nadeu
- Lymphoid Neoplasms Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | | | | | | | - Julio Delgado
- Lymphoid Neoplasms Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hematology Department, Hospital Clínic, Barcelona, Spain
| | - Tycho Baumann
- Hematology Department, Hospital Clínic, Barcelona, Spain
| | - Mattias Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Elias Campo
- Lymphoid Neoplasms Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Hematology Department, Hospital Clínic, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|