51
|
Preferential Homing of Tumor-specific and Functional CD8+ Stem Cell-like Memory T Cells to the Bone Marrow. J Immunother 2020; 42:197-207. [PMID: 31145231 PMCID: PMC6587217 DOI: 10.1097/cji.0000000000000273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supplemental Digital Content is available in the text. The bone marrow (BM) harbors not only hematopoietic stem cells but also conventional memory T and B cells. Studies of BM-resident memory T cells have revealed the complex relationship between BM and immunologic memory. In the present study, we identified CD122high stem cells antigen-1 (Sca-1)high, B-cell lymphoma protein-2 (Bcl-2)high, CD8+ stem cell-like memory T cells (TSCMs) as a distinct memory T-cell subset preferentially residing in the BM, where these cells respond vigorously to blood-borne antigens. We found that the most TSCMs favorably relocate to the BM by adhesion molecules such as vascular cell adhesion protein 1, P-selectin glycoprotein 1, and P-selectin or E-selectin. Moreover, the BM-resident TSCMs exhibited much higher levels of antitumor activity than the spleen-resident TSCMs. These results indicate that the BM provides an appropriate microenvironment for the survival of CD8+ TSCMs, thereby broadening our knowledge of the memory maintenance of antigen-specific CD8+ T lymphocytes. The present findings are expected to be instructive for the development of tumor immunotherapy.
Collapse
|
52
|
Ahmad S, Bhattacharya D, Gupta N, Rawat V, Tousif S, Van Kaer L, Das G. Clofazimine enhances the efficacy of BCG revaccination via stem cell-like memory T cells. PLoS Pathog 2020; 16:e1008356. [PMID: 32437421 PMCID: PMC7269335 DOI: 10.1371/journal.ppat.1008356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is one of the deadliest diseases, claiming ~2 million deaths annually worldwide. The majority of people in TB endemic regions are vaccinated with Bacillus Calmette Guerin (BCG), which is the only usable vaccine available. BCG is efficacious against meningeal and disseminated TB in children, but protective responses are relatively short-lived and fail to protect against adult pulmonary TB. The longevity of vaccine efficacy critically depends on the magnitude of long-lasting central memory T (TCM) cells, a major source of which is stem cell-like memory T (TSM) cells. These TSM cells exhibit enhanced self-renewal capacity as well as to rapidly respond to antigen and generate protective poly-functional T cells producing IFN-γ, TNF-α, IL-2 and IL-17. It is now evident that T helper Th 1 and Th17 cells are essential for host protection against TB. Recent reports have indicated that Th17 cells preserve the molecular signature for TSM cells, which eventually differentiate into IFN-γ-producing effector cells. BCG is ineffective in inducing Th17 cell responses, which might explain its inadequate vaccine efficacy. Here, we show that revaccination with BCG along with clofazimine treatment promotes TSM differentiation, which continuously restores TCM and T effector memory (TEM) cells and drastically increases vaccine efficacy in BCG-primed animals. Analyses of these TSM cells revealed that they are predominantly precursors to host protective Th1 and Th17 cells. Taken together, these findings revealed that clofazimine treatment at the time of BCG revaccination provides superior host protection against TB by increasing long-lasting TSM cells. Tuberculosis (TB) is one of the deadliest diseases, claiming ~2 million deaths annually worldwide. Bacillus Calmette Guerin (BCG) is the only usable vaccine available and exhibits efficacy against meningeal and disseminated TB in children. Consequently, the vast majority of people in TB endemic regions are vaccinated with BCG. However, host protective immune responses diminish over time due to gradual depletion of T central memory (TCM) cells, which are responsible for long-term host protection. Here, we provide evidence that revaccination with BCG along with the clofazimine, an approved drug for treatment of leprosy and drug-resistant TB, induces stem cell-like memory T (TSM) cells. TSM cells are precursors to TCM cells, and provide long-term host protection to TB by continuous supply of TCM cells. Interestingly, these TSM cells were generated from IL-17-producing T helper (Th)17 cells. These TSM cells differentiated into TCM and T effector memory (TEM) cells and maintained a stable pool of critically important Th1 and Th17 cells to provide optimal host protection against TB.
Collapse
Affiliation(s)
- Shaheer Ahmad
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Neeta Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Varsha Rawat
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sultan Tousif
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
53
|
Brief ex vivo Fas-ligand incubation attenuates GvHD without compromising stem cell graft performance. Bone Marrow Transplant 2020; 55:1305-1316. [PMID: 32433499 PMCID: PMC7329633 DOI: 10.1038/s41409-020-0941-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 11/27/2022]
Abstract
Graft versus host disease (GvHD) remains a limiting factor for successful hematopoietic stem cell transplantation (HSCT). T cells and antigen-presenting cells (APCs) are major components of the hematopoietic G-CSF mobilized peripheral blood cell (MPBC) graft. Here we show that a short incubation (2 h) of MPBCs with hexameric Fas ligand (FasL) selectively induces apoptosis of specific donor T cell subsets and APCs but not of CD34+ cells. FasL treatment preferentially induces apoptosis in mature T cell subsets which express high levels of Fas (CD95), such as T stem cell memory, T central memory, and T effector memory cells, as well as TH1 and TH17 cells. Anti-CD3/CD28 stimulated T cells derived from FasL-treated-MPBCs express lower levels of CD25 and secrete lower levels of IFN-γ as compared to control cells not treated with FasL. FasL treatment also induces apoptosis of transitional, naïve, memory and plasmablastoid B cells leading to a reduction in their numbers in the graft and following engraftment in transplanted mice. Most importantly, ex vivo treatment of MPBCs with FasL prior to transplant in conditioned NOD-scid IL2Rγnull (NSG) mice prevented GvHD while preserving graft versus leukemia (GvL) effects, and leading to robust stem cell engraftment.
Collapse
|
54
|
Maryamchik E, Gallagher KME, Preffer FI, Kadauke S, Maus MV. New directions in chimeric antigen receptor T cell [CAR-T] therapy and related flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:299-327. [PMID: 32352629 DOI: 10.1002/cyto.b.21880] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor (CAR) T cells provide a promising approach to the treatment of hematologic malignancies and solid tumors. Flow cytometry is a powerful analytical modality, which plays an expanding role in all stages of CAR T therapy, from lymphocyte collection, to CAR T cell manufacturing, to in vivo monitoring of the infused cells and evaluation of their function in the tumor environment. Therefore, a thorough understanding of the new directions is important for designing and implementing CAR T-related flow cytometry assays in the clinical and investigational settings. However, the speed of new discoveries and the multitude of clinical and preclinical trials make it challenging to keep up to date in this complex field. In this review, we summarize the current state of CAR T therapy, highlight the areas of emergent research, discuss applications of flow cytometry in modern cell therapy, and touch upon several considerations particular to CAR detection and assessing the effectiveness of CAR T therapy.
Collapse
Affiliation(s)
- Elena Maryamchik
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Frederic I Preffer
- Clinical Cytometry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephan Kadauke
- Department of Pathology and Laboratory Medicine, Cell and Gene Therapy Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Cellular Immunotherapy Program, Department of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
55
|
Frumento G, Verma K, Croft W, White A, Zuo J, Nagy Z, Kissane S, Anderson G, Moss P, Chen FE. Homeostatic Cytokines Drive Epigenetic Reprogramming of Activated T Cells into a "Naive-Memory" Phenotype. iScience 2020; 23:100989. [PMID: 32240954 PMCID: PMC7115140 DOI: 10.1016/j.isci.2020.100989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/09/2019] [Accepted: 03/11/2020] [Indexed: 11/25/2022] Open
Abstract
Primary stimulation of T cells is believed to trigger unidirectional differentiation from naive to effector and memory subsets. Here we demonstrate that IL-7 can drive the phenotypic reversion of recently differentiated human central and effector memory CD8+ T cells into a naive-like phenotype. These "naive-revertant" cells display a phenotype similar to that of previously reported stem cell memory populations and undergo rapid differentiation and functional response following secondary challenge. The chromatin landscape of reverted cells undergoes substantial epigenetic reorganization with increased accessibility for cytokine-induced mediators such as STAT and closure of BATF-dependent sites that drive terminal differentiation. Phenotypic reversion may at least partly explain the generation of "stem cell memory" CD8+ T cells and reveals cells within the phenotypically naive CD8+ T cell pool that are epigenetically primed for secondary stimulation. This information provides insight into mechanisms that support maintenance of T cell memory and may guide therapeutic manipulation of T cell differentiation.
Collapse
Affiliation(s)
- Guido Frumento
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; NHS Blood and Transplant, Birmingham, UK
| | - Kriti Verma
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Andrea White
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Zsuzsanna Nagy
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Frederick E Chen
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK; NHS Blood and Transplant, Birmingham, UK; Clinical Haematology, Barts Health NHS Trust, London, UK; Blizard Institute, Queen Mary University London, London, UK.
| |
Collapse
|
56
|
A single lentivector DNA based immunization contains a late heterologous SIVmac251 mucosal challenge infection. Vaccine 2020; 38:3729-3739. [PMID: 32278522 DOI: 10.1016/j.vaccine.2020.03.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 12/16/2022]
Abstract
Variety of conventional vaccine strategies tested against HIV-1 have failed to induce protection against HIV acquisition or durable control of viremia. Therefore, innovative strategies that can induce long lasting protective immunity against HIV chronic infection are needed. Recently, we developed an integration-defective HIV lentiDNA vaccine that undergoes a single cycle of replication in target cells in which most viral antigens are produced. A single immunization with such lentiDNA induced long-lasting T-cell and modest antibody responses in cynomolgus macaques. Here eighteen months after this single immunization, all animals were subjected to repeated low dose intra-rectal challenges with a heterologous pathogenic SIVmac251 isolate. Although the viral set point in SIVmac-infected cynomolgus is commonly lower than that seen in Indian rhesus macaques, the vaccinated group of macaques displayed a two log reduction of peak of viremia followed by a progressive and sustained control of virus replication relative to control animals. This antiviral control correlated with antigen-specific CD4+ and CD8+ T cells with high capacity of recall responses comprising effector and central memory T cells but also memory T cell precursors. This is the first description of SIV control in NHP model infected at 18 months following a single immunization with a non-integrative single cycle lentiDNA HIV vaccine. While not delivering sterilizing immunity, our single immunization strategy with a single-cycle lentivector DNA vaccine appears to provide an interesting and safe vaccine platform that warrants further exploration.
Collapse
|
57
|
Precision medicine in the clinical management of respiratory tract infections including multidrug-resistant tuberculosis: learning from innovations in immuno-oncology. Curr Opin Pulm Med 2020; 25:233-241. [PMID: 30883448 DOI: 10.1097/mcp.0000000000000575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW In the light of poor management outcomes of antibiotic-resistant respiratory tract infection (RTI)-associated sepsis syndrome and multidrug-resistant tuberculosis (MDR-TB), new management interventions based on host-directed therapies (HDTs) are warranted to improve morbidity, mortality and long-term functional outcomes. We review developments in potential HDTs based on precision cancer therapy concepts applicable to RTIs including MDR-TB. RECENT FINDINGS Immune reactivity, tissue destruction and repair processes identified during studies of cancer immunotherapy share common pathogenetic mechanisms with RTI-associated sepsis syndrome and MDR-TB. T-cell receptors (TCRs) and chimeric antigen receptors targeting pathogen-specific or host-derived mutated molecules (major histocompatibility class-dependent/ major histocompatibility class-independent) can be engineered for recognition by TCR γδ and natural killer (NK) cells. T-cell subsets and, more recently, NK cells are shown to be host-protective. These cells can also be activated by immune checkpoint inhibitor (ICI) or derived from allogeneic sources and serve as potential for improving clinical outcomes in RTIs and MDR-TB. SUMMARY Recent developments of immunotherapy in cancer reveal common pathways in immune reactivity, tissue destruction and repair. RTIs-related sepsis syndrome exhibits mixed immune reactions, making cytokine or ICI therapy guided by robust biomarker analyses, viable treatment options.
Collapse
|
58
|
Lee GH, Hong KT, Choi JY, Shin HY, Lee WW, Kang HJ. Immunosenescent characteristics of T cells in young patients following haploidentical haematopoietic stem cell transplantation from parental donors. Clin Transl Immunology 2020; 9:e1124. [PMID: 32280463 PMCID: PMC7142179 DOI: 10.1002/cti2.1124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives Paediatric and adolescent patients in need of allogeneic haematopoietic stem cell transplantation (HSCT) generally receive stem cells from older, unrelated or parental donors when a sibling donor is not available. Despite encouraging clinical outcomes, it has been suggested that immune reconstitution accompanied by increased replicative stress and a large difference between donor and recipient age may worsen immunosenescence in paediatric recipients. Methods In this study, paired samples were collected at the same time from donors and recipients of haploidentical haematopoietic stem cell transplantation (HaploSCT). We then conducted flow cytometry‐based phenotypic and functional analyses and telomere length (TL) measurements of 21 paired T‐cell sets from parental donors and children who received T‐cell‐replete HaploSCT with post‐transplant cyclophosphamide (PTCy). Results Senescent T cells, CD28− or CD57+ cells, were significantly expanded in patients. Further, not only CD4+CD28− T cells, but also CD4+CD28+ T cells showed reduced cytokine production capacity and impaired polyfunctionality compared with parental donors, whereas their TCR‐mediated proliferation capacity was comparable. Of note, the TL in patient T cells was preserved, or even slightly longer, in senescent T cells compared with donor cells. Regression analysis showed that senescent features of CD4+ and CD8+ T cells in patients were influenced by donor age and the frequency of CD28− cells, respectively. Conclusion Our data suggest that in paediatric HaploSCT, premature immunosenescent changes occur in T cells from parental donors, and therefore, long‐term immune monitoring should be conducted.
Collapse
Affiliation(s)
- Ga Hye Lee
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea.,BK21Plus Biomedical Science Project Seoul National University College of Medicine Seoul South Korea
| | - Kyung Taek Hong
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| | - Jung Yoon Choi
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| | - Hee Young Shin
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| | - Won-Woo Lee
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea.,BK21Plus Biomedical Science Project Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea.,Department of Microbiology and Immunology Seoul National University College of Medicine Seoul South Korea.,Ischemic/Hypoxic Disease Institute Seoul National University College of Medicine Seoul South Korea.,Institute of Infectious Diseases Seoul National University College of Medicine Seoul South Korea.,Seoul National University Hospital Biomedical Research Institute Seoul South Korea
| | - Hyoung Jin Kang
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| |
Collapse
|
59
|
Rosato PC, Wijeyesinghe S, Stolley JM, Masopust D. Integrating resident memory into T cell differentiation models. Curr Opin Immunol 2020; 63:35-42. [PMID: 32018169 PMCID: PMC7198345 DOI: 10.1016/j.coi.2020.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Advances in the field of T cell memory, including the discovery of tissue residency, continue to add to the list of defined T cell subsets. Here, we briefly review the role of resident memory T cells (TRM) in protective immunity, and propose that they exhibit developmental and migrational plasticity. We discuss T cell classification, the concept of cell type versus 'subset', and the difficulty of inferring developmental relationships between cells occupying malleable differentiation states. We propose that popular subsetting strategies do not perfectly define boundaries of developmental potential. We integrate TRM into a 'terrace' model that classifies memory T cells along a continuous axis of decreasing developmental potential. This model also segregates cells on the basis of migration properties, although different migration properties are viewed as parallel differentiation states that may be permissive to change.
Collapse
Affiliation(s)
- Pamela C Rosato
- University of Minnesota, Center for Immunology, 2101 6th St SE, 2-260 WMBB, Minneapolis, MN 55455, United States
| | - Sathi Wijeyesinghe
- University of Minnesota, Center for Immunology, 2101 6th St SE, 2-260 WMBB, Minneapolis, MN 55455, United States
| | - J Michael Stolley
- University of Minnesota, Center for Immunology, 2101 6th St SE, 2-260 WMBB, Minneapolis, MN 55455, United States
| | - David Masopust
- University of Minnesota, Center for Immunology, 2101 6th St SE, 2-260 WMBB, Minneapolis, MN 55455, United States.
| |
Collapse
|
60
|
Cianciotti BC, Ruggiero E, Campochiaro C, Oliveira G, Magnani ZI, Baldini M, Doglio M, Tassara M, Manfredi AA, Baldissera E, Ciceri F, Cieri N, Bonini C. CD4+ Memory Stem T Cells Recognizing Citrullinated Epitopes Are Expanded in Patients With Rheumatoid Arthritis and Sensitive to Tumor Necrosis Factor Blockade. Arthritis Rheumatol 2020; 72:565-575. [PMID: 31682074 DOI: 10.1002/art.41157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Memory stem T (Tscm) cells are long-lived, self-renewing T cells that play a relevant role in immunologic memory. This study was undertaken to investigate whether Tscm cells accumulate in rheumatoid arthritis (RA). METHODS The polarization and differentiation profiles of circulating T cells were assessed by flow cytometry. Antigen-specific T cells were characterized by staining with major histocompatibility complex class II tetramers. The T cell receptor (TCR) repertoire was analyzed by high-throughput sequencing using an unbiased RNA-based approach in CD4+ T cell subpopulations sorted by fluorescence-activated cell sorting. RESULTS We analyzed the dynamics of circulating Tscm cells (identified as CD45RA+CD62L+CD95+ T cells) by flow cytometry in 27 RA patients, 16 of whom were also studied during treatment with the anti-tumor necrosis factor (anti-TNF) agent etanercept. Age-matched healthy donors were used as controls. CD4+ Tscm cells were selectively and significantly expanded in RA patients in terms of frequency and absolute numbers, and significantly contracted upon anti-TNF treatment. Expanded CD4+ Tscm cells displayed a prevalent Th17 phenotype and a skewed TCR repertoire in RA patients, with the 10 most abundant clones representing up to 53.7% of the detected sequences. CD4+ lymphocytes specific for a citrullinated vimentin (Cit-vimentin) epitope were expanded in RA patients with active disease. Tscm cells accounted for a large fraction of Cit-vimentin-specific CD4+ cells. CONCLUSION Our results indicate that Tscm cells, including expanded clones specific for relevant autoantigens, accumulate in RA patients not exposed to biologic agents, and might be involved in the natural history of the disease. Further analysis of Tscm cell dynamics in autoimmune disorders may have implications for the design and efficacy assessment of innovative therapies.
Collapse
Affiliation(s)
| | | | - Corrado Campochiaro
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | - Angelo A Manfredi
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | | | - Fabio Ciceri
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| | | | - Chiara Bonini
- IRCCS Ospedale San Raffaele and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
61
|
Rovatti PE, Gambacorta V, Lorentino F, Ciceri F, Vago L. Mechanisms of Leukemia Immune Evasion and Their Role in Relapse After Haploidentical Hematopoietic Cell Transplantation. Front Immunol 2020; 11:147. [PMID: 32158444 PMCID: PMC7052328 DOI: 10.3389/fimmu.2020.00147] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/20/2020] [Indexed: 01/05/2023] Open
Abstract
Over the last decade, the development of multiple strategies to allow the safe transfer from the donor to the patient of high numbers of partially HLA-incompatible T cells has dramatically reduced the toxicities of haploidentical hematopoietic cell transplantation (haplo-HCT), but this was not accompanied by a similar positive impact on the incidence of post-transplantation relapse. In the present review, we will elaborate on how the unique interplay between HLA-mismatched immune system and malignancy that characterizes haplo-HCT may impact relapse biology, shaping the selection of disease variants that are resistant to the “graft-vs.-leukemia” effect. In particular, we will present current knowledge on genomic loss of HLA, a relapse modality first described in haplo-HCT and accounting for a significant proportion of relapses in this setting, and discuss other more recently identified mechanisms of post-transplantation immune evasion and relapse, including the transcriptional downregulation of HLA class II molecules and the enforcement of inhibitory checkpoints between T cells and leukemia. Ultimately, we will review the available treatment options for patients who relapse after haplo-HCT and discuss on how a deeper insight into relapse immunobiology might inform the rational and personalized selection of therapies to improve the largely unsatisfactory clinical outcome of relapsing patients.
Collapse
Affiliation(s)
- Pier Edoardo Rovatti
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Gambacorta
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lorentino
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
62
|
Baumeister SHC, Rambaldi B, Shapiro RM, Romee R. Key Aspects of the Immunobiology of Haploidentical Hematopoietic Cell Transplantation. Front Immunol 2020; 11:191. [PMID: 32117310 PMCID: PMC7033970 DOI: 10.3389/fimmu.2020.00191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cell transplantation from a haploidentical donor is increasingly used and has become a standard donor option for patients lacking an appropriately matched sibling or unrelated donor. Historically, prohibitive immunological barriers resulting from the high degree of HLA-mismatch included graft-vs.-host disease (GVHD) and graft failure. These were overcome with increasingly sophisticated strategies to manipulate the sensitive balance between donor and recipient immune cells. Three different approaches are currently in clinical use: (a) ex vivo T-cell depletion resulting in grafts with defined immune cell content (b) extensive immunosuppression with a T-cell replete graft consisting of G-CSF primed bone marrow and PBSC (GIAC) (c) T-cell replete grafts with post-transplant cyclophosphamide (PTCy). Intriguing studies have recently elucidated the immunologic mechanisms by which PTCy prevents GVHD. Each approach uniquely affects post-transplant immune reconstitution which is critical for the control of post-transplant infections and relapse. NK-cells play a key role in haplo-HCT since they do not mediate GVHD but can successfully mediate a graft-vs.-leukemia effect. This effect is in part regulated by KIR receptors that inhibit NK cell cytotoxic function when binding to the appropriate HLA-class I ligands. In the context of an HLA-class I mismatch in haplo-HCT, lack of inhibition can contribute to NK-cell alloreactivity leading to enhanced anti-leukemic effect. Emerging work reveals immune evasion phenomena such as copy-neutral loss of heterozygosity of the incompatible HLA alleles as one of the major mechanisms of relapse. Relapse and infectious complications remain the leading causes impacting overall survival and are central to scientific advances seeking to improve haplo-HCT. Given that haploidentical donors can typically be readily approached to collect additional stem- or immune cells for the recipient, haplo-HCT represents a unique platform for cell- and immune-based therapies aimed at further reducing relapse and infections. The rapid advancements in our understanding of the immunobiology of haplo-HCT are therefore poised to lead to iterative innovations resulting in further improvement of outcomes with this compelling transplant modality.
Collapse
Affiliation(s)
- Susanne H C Baumeister
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Benedetta Rambaldi
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States.,Bone Marrow Transplant Unit, Clinical and Experimental Sciences Department, ASST Spedali Civili, University of Pavia, Brescia, Italy
| | - Roman M Shapiro
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Rizwan Romee
- Harvard Medical School, Boston, MA, United States.,Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
63
|
Kato K, Takeuchi A, Akashi K, Eto M. Cyclophosphamide-Induced Tolerance in Allogeneic Transplantation: From Basic Studies to Clinical Application. Front Immunol 2020; 10:3138. [PMID: 32082305 PMCID: PMC7005582 DOI: 10.3389/fimmu.2019.03138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/24/2019] [Indexed: 01/02/2023] Open
Abstract
Immune tolerance against alloantigens plays an important role in the success of clinical organ and allogeneic hematopoietic stem cell transplantation. The mechanisms of immune tolerance to alloantigens have gradually been elucidated over time. Although there have been numerous reports to date on the induction of tolerance to alloantigens, the establishment of mixed chimerism is well-known to be crucial in the induction and maintenance of immune tolerance for either of the methods. Since the early 1980s, the murine system of cyclophosphamide (Cy)-induced tolerance has also been examined extensively. The present review focuses on studies conducted on Cy-induced immune tolerance. Clinical data of patients with allogeneic transplantation suggest that the posttransplant Cy method to induce immune tolerance has been successfully translated from basic studies into clinical practice.
Collapse
Affiliation(s)
- Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Ario Takeuchi
- Department of Urology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
64
|
Lugli E, Galletti G, Boi SK, Youngblood BA. Stem, Effector, and Hybrid States of Memory CD8 + T Cells. Trends Immunol 2019; 41:17-28. [PMID: 31810790 DOI: 10.1016/j.it.2019.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/10/2019] [Accepted: 11/10/2019] [Indexed: 12/14/2022]
Abstract
CD8+ T cell immunological memory of past antigen exposure can confer long-lived protection against infections or tumors. The fact that CD8+ memory T cells can have features of both naïve and effector cells has forced the field to struggle with several conceptual questions about the developmental origin of the cell and, consequently, the mechanism(s) that contribute to memory development. Here, we discuss recent conceptual advances in our understanding of memory T cell development that incorporate data describing a hybrid stem and/or effector state of differentiation. We theorize that the mechanisms involved in developing these cells could be mediated, in part, through epigenetic programs. Finally, we consider the potential therapeutic implications of inducing and/or utilizing such hybrid cells clinically.
Collapse
Affiliation(s)
- Enrico Lugli
- Humanitas Clinical and Research Center, Milan, Italy.
| | | | - Shannon K Boi
- St Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
65
|
Nunes NS, Kanakry CG. Mechanisms of Graft-versus-Host Disease Prevention by Post-transplantation Cyclophosphamide: An Evolving Understanding. Front Immunol 2019; 10:2668. [PMID: 31849930 PMCID: PMC6895959 DOI: 10.3389/fimmu.2019.02668] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Abstract
Post-transplantation cyclophosphamide (PTCy) has been highly successful at preventing severe acute and chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (HCT). The clinical application of this approach was based on extensive studies in major histocompatibility complex (MHC)-matched murine skin allografting models, in which cyclophosphamide was believed to act via three main mechanisms: (1) selective elimination of alloreactive T cells; (2) intrathymic clonal deletion of alloreactive T-cell precursors; and (3) induction of suppressor T cells. In these models, cyclophosphamide was only effective in very specific contexts, requiring particular cell dose, cell source, PTCy dose, and recipient age. Achievement of transient mixed chimerism also was required. Furthermore, these studies showed differences in the impact of cyclophosphamide on transplanted cells (tumor) versus tissue (skin grafts), including the ability of cyclophosphamide to prevent rejection of the former but not the latter after MHC-mismatched transplants. Yet, clinically PTCy has demonstrated efficacy in MHC-matched or partially-MHC-mismatched HCT across a wide array of patients and HCT platforms. Importantly, clinically significant acute GVHD occurs frequently after PTCy, inconsistent with alloreactive T-cell elimination, whereas PTCy is most active against severe acute GVHD and chronic GVHD. These differences between murine skin allografting and clinical HCT suggest that the above-mentioned mechanisms may not be responsible for GVHD prevention by PTCy. Indeed, recent work by our group in murine HCT has shown that PTCy does not eliminate alloreactive T cells nor is the thymus necessary for PTCy's efficacy. Instead, other mechanisms appear to be playing important roles, including: (1) reduction of alloreactive CD4+ effector T-cell proliferation; (2) induced functional impairment of surviving alloreactive CD4+ and CD8+ effector T cells; and (3) preferential recovery of CD4+ regulatory T cells. Herein, we review the history of cyclophosphamide's use in preventing murine skin allograft rejection and our evolving new understanding of the mechanisms underlying its efficacy in preventing GVHD after HCT. Efforts are ongoing to more fully refine and elaborate this proposed new working model. The completion of this effort will provide critical insight relevant for the rational design of novel approaches to improve outcomes for PTCy-treated patients and for the induction of tolerance in other clinical contexts.
Collapse
Affiliation(s)
- Natalia S Nunes
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christopher G Kanakry
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
66
|
Comoli P, Chabannon C, Koehl U, Lanza F, Urbano-Ispizua A, Hudecek M, Ruggeri A, Secondino S, Bonini C, Pedrazzoli P. Development of adaptive immune effector therapies in solid tumors. Ann Oncol 2019; 30:1740-1750. [PMID: 31435646 DOI: 10.1093/annonc/mdz285] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
State-of-the-art treatment strategies have drastically ameliorated the outcome of patients affected by cancer. However, resistant and recurrent solid tumors are generally nonresponsive to conventional therapies. A central factor in the sequence of events that lead to cancer is an alteration in antitumor immune surveillance, which results in failure to recognize and eliminate the transformed tumor cell. A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of cancer provides the basis for improved therapies. Targeted strategies, such as T-cell therapy, not only generally spare normal tissues, but also use alternative antineoplastic mechanisms that synergize with other therapeutics. Despite encouraging success in hematologic malignancies, adaptive cellular therapies for solid tumors face unique challenges because of the immunosuppressive tumor microenvironment, and the hurdle of T-cell trafficking within scarcely accessible tumor sites. This review provides a brief overview of current cellular therapeutic strategies for solid tumors, research carried out to increase efficacy and safety, and results from ongoing clinical trials.
Collapse
Affiliation(s)
- P Comoli
- Cell Factory and Pediatric Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - C Chabannon
- Institut Paoli-Calmettes, Aix-Marseille University, INSERM CBT 1409, Centre for Clinical Investigation in Biotherapy, Marseille, France
| | - U Koehl
- Institute of Clinical Immunology, University of Leipzig and Fraunhofer Institute for Cell Therapy and Immunology, Leipzig; Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - F Lanza
- Hematology and Stem Cell Transplant, Romagna Transplant Network, Ravenna, Italy
| | - A Urbano-Ispizua
- Department of Hematology, IDIBAPS, Institute of Research Josep Carreras, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - M Hudecek
- Department of Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - A Ruggeri
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Rome
| | - S Secondino
- Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia
| | - C Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, University Vita-Salute San Raffaele and Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - P Pedrazzoli
- Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia.
| |
Collapse
|
67
|
Pilipow K, Scamardella E, Lugli E. Generating stem-like memory T cells with antioxidants for adoptive cell transfer immunotherapy of cancer. Methods Enzymol 2019; 631:137-158. [PMID: 31948545 DOI: 10.1016/bs.mie.2019.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Among the multiple factors that are responsible for the success of adoptive cell transfer (ACT) immunotherapy for cancer, the differentiation status of the in vitro expanded T cell product at the time of transfer seems to play a major role. In particular, less differentiated memory CD8+ T cells endowed with self-renewing capacity and multipotency exert the most potent antitumor activity. To this aim, expansion protocols that generate sufficient numbers of tumor-specific CD8+ T cells with superior capacity to persist in vivo following ACT are needed. We describe a procedure for the differentiation of TCF-1+ stem-like CD8+ memory T cells from peripheral blood naïve precursors that takes advantage of the use of antioxidants, in particular N-acetylcysteine (NAC), in combination with T cell receptor stimulation and proinflammatory cytokines. We additionally describe how to conduct in vitro assays to test the stem-like features of the generated cells at the phenotypic, functional and metabolic level. Balancing the oxidative metabolism by the addition of antioxidants during in vitro manipulation of CD8+ T cells results in the generation of cell products with potent antitumor characteristics following ACT.
Collapse
Affiliation(s)
- Karolina Pilipow
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Eloise Scamardella
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
68
|
Adoptive Transfer of Interleukin-21-stimulated Human CD8+ T Memory Stem Cells Efficiently Inhibits Tumor Growth. J Immunother 2019; 41:274-283. [PMID: 29864078 PMCID: PMC6012057 DOI: 10.1097/cji.0000000000000229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Memory stem T (TSCM) cells, a new subset of memory T cells with self-renewal and multipotent capacities, are considered as a promising candidates for adoptive cellular therapy. However, the low proportion of human TSCM cells in total CD8+ T cells limits their utility. Here, we aimed to induce human CD8+ TSCM cells by stimulating naive precursors with interleukin-21 (IL-21). We found that IL-21 promoted the generation of TSCM cells, described as CD45RA+CD45RO−CD62L+CCR7+CD122+CD95+ cells, with a higher efficiency than that observed with other common γ-chain cytokines. Upon adoptive transfer into an A375 melanoma mouse model, these lymphocytes mediated much stronger antitumor responses. Further mechanistic analysis revealed that IL-21 activated the Janus kinase signal transducer and activator of transcription 3 pathway by upregulating signal transducer and activator of transcription 3 phosphorylation and consequently promoting the expression of T-bet and suppressor of cytokine signaling 1, but decreasing the expression of eomesodermin and GATA binding protein 3. Our findings provide novel insights into the generation of human CD8+ TSCM cells and reveal a novel potential clinical application of IL-21.
Collapse
|
69
|
Malagola M, Greco R, Santarone S, Natale A, Iori AP, Quatrocchi L, Barbieri W, Bruzzese A, Leotta S, Carotti A, Pierini A, Bernardi S, Morello E, Polverelli N, Turra A, Cattina F, Gandolfi L, Rambaldi B, Lorentino F, Serio F, Milone G, Velardi A, Foà R, Ciceri F, Russo D, Peccatori J. CMV Management with Specific Immunoglobulins: A Multicentric Retrospective Analysis on 92 Allotransplanted Patients. Mediterr J Hematol Infect Dis 2019; 11:e2019048. [PMID: 31528314 PMCID: PMC6736170 DOI: 10.4084/mjhid.2019.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/06/2019] [Indexed: 11/08/2022] Open
Abstract
CMV represents one of the most severe life-threatening complications of allogeneic stem cell transplantation (allo-SCT). Pre-emptive treatment is highly effective, but toxicity and repetitive reactivation of CMV represent a significant challenge in the clinical practice. The use of anti-CMV specific immunoglobulins (Megalotect) is controversial. We retrospectively collected data on 92 patients submitted to allo-SCT for hematological malignancies, in whom Megalotect was used either for prophylaxis (n=14) or with pre-emptive therapy, together with an anti-CMV specific drug (n=78). All the patients were considered at high-risk, due to the presence of at least one risk factor for CMV reactivation. The treatment was well tolerated, with no reported infusion reactions, nor other adverse events, none of the 14 cases treated with Megalotect as prophylaxis developed CMV reactivation. 51/78 (65%) patients who received Megalotect during pre-emptive treatment achieved complete clearance of CMV viremia, and 14/51 patients (29%) developed a breakthrough CMV infection. 7/78 patients (9%) developed CMV disease. The projected 1-year OS, 1-year TRM, and 1-year RR is 74%, 15%, and 19%, respectively. No differences were observed in terms of OS, TRM, and RR by comparing patients who achieved a complete response after treatment versus those who did not. These retrospective data suggest that Megalotect is safe and well-tolerated. When used as prophylaxis, no CMV reactivation was recorded. Further prospective trials are warranted to identify the best set of patients who can benefit from Megalotect alone or in addition to anti-CMV specific drugs.
Collapse
Affiliation(s)
- Michele Malagola
- Chair of Hematology, Dept of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST-Spedali Civili of Brescia
| | - Raffaella Greco
- IRCCS San Raffaele Scientific Institute, Milano, Italy, Hematology and Bone Marrow Transplantation Unit
| | - Stella Santarone
- Santo Spirito Hospital, Pescara, Department of Hematology, Bone Marrow Transplant Center, Pescara
| | - Annalisa Natale
- Santo Spirito Hospital, Pescara, Department of Hematology, Bone Marrow Transplant Center, Pescara
| | - Anna Paola Iori
- Haematology, Department of Translational and Precision Medicine, Policlinico Umberto I, “Sapienza” University, Rome
| | - Luisa Quatrocchi
- Haematology, Department of Translational and Precision Medicine, Policlinico Umberto I, “Sapienza” University, Rome
| | - Walter Barbieri
- Haematology, Department of Translational and Precision Medicine, Policlinico Umberto I, “Sapienza” University, Rome
| | - Antonella Bruzzese
- Haematology, Department of Translational and Precision Medicine, Policlinico Umberto I, “Sapienza” University, Rome
| | - Salvatore Leotta
- Department of Medical and Surgical specialties, Hematology Section, University of Catania, Catania
| | - Alessandra Carotti
- Hematopoietic Stem Cell Transplantation Program, Hematology and Clinical Immunology Section, Department of Medicine, University of Perugia
| | - Antonio Pierini
- Hematopoietic Stem Cell Transplantation Program, Hematology and Clinical Immunology Section, Department of Medicine, University of Perugia
| | - Simona Bernardi
- Chair of Hematology, Dept of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST-Spedali Civili of Brescia
| | - Enrico Morello
- Chair of Hematology, Dept of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST-Spedali Civili of Brescia
| | - Nicola Polverelli
- Chair of Hematology, Dept of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST-Spedali Civili of Brescia
| | - Alessandro Turra
- Chair of Hematology, Dept of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST-Spedali Civili of Brescia
| | - Federica Cattina
- Chair of Hematology, Dept of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST-Spedali Civili of Brescia
| | - Lisa Gandolfi
- Chair of Hematology, Dept of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST-Spedali Civili of Brescia
| | - Benedetta Rambaldi
- Chair of Hematology, Dept of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST-Spedali Civili of Brescia
| | - Francesca Lorentino
- IRCCS San Raffaele Scientific Institute, Milano, Italy, Hematology and Bone Marrow Transplantation Unit
| | - Francesca Serio
- IRCCS San Raffaele Scientific Institute, Milano, Italy, Hematology and Bone Marrow Transplantation Unit
| | - Giuseppe Milone
- Department of Medical and Surgical specialties, Hematology Section, University of Catania, Catania
| | - Andrea Velardi
- Hematopoietic Stem Cell Transplantation Program, Hematology and Clinical Immunology Section, Department of Medicine, University of Perugia
| | - Robin Foà
- Haematology, Department of Translational and Precision Medicine, Policlinico Umberto I, “Sapienza” University, Rome
| | - Fabio Ciceri
- IRCCS San Raffaele Scientific Institute, Milano, Italy, Hematology and Bone Marrow Transplantation Unit
| | - Domenico Russo
- Chair of Hematology, Dept of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST-Spedali Civili of Brescia
| | - Jacopo Peccatori
- IRCCS San Raffaele Scientific Institute, Milano, Italy, Hematology and Bone Marrow Transplantation Unit
| |
Collapse
|
70
|
Minervina A, Pogorelyy M, Mamedov I. T‐cell receptor and B‐cell receptor repertoire profiling in adaptive immunity. Transpl Int 2019; 32:1111-1123. [DOI: 10.1111/tri.13475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/09/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Anastasia Minervina
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
| | - Mikhail Pogorelyy
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
| | - Ilgar Mamedov
- Department of Genomics of Adaptive Immunity M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry RAS Moscow Russia
- Institute of Translational Medicine Pirogov Russian National Research Medical University Moscow Russia
- Laboratory of Molecular Biology Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology Oncology and Immunology Moscow Russia
| |
Collapse
|
71
|
Jimbo K, Konuma T, Watanabe E, Kohara C, Mizukami M, Nagai E, Oiwa-Monna M, Mizusawa M, Isobe M, Kato S, Takahashi S, Tojo A. T memory stem cells after allogeneic haematopoietic cell transplantation: unique long-term kinetics and influence of chronic graft-versus-host disease. Br J Haematol 2019; 186:866-878. [PMID: 31135974 DOI: 10.1111/bjh.15995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022]
Abstract
T memory stem cells (TSCMs) are a subset of primitive T cells capable of both self-renewal and differentiation into all subsets of memory and effector T cells. Therefore, TSCMs may play a role in immune reconstitution and graft-versus-host disease (GVHD) in patients receiving allogeneic haematopoietic cell transplantation (HCT). We conducted a cross-sectional study to evaluate the proportions, absolute counts, phenotypes and functions of TSCMs in 152 adult patients without disease recurrence at least 12 months after undergoing HCT. CD4+ TSCMs were negatively correlated with number of months after transplantation in HCT patients that received cord blood transplantation, but not in patients that received bone marrow transplantation or peripheral blood stem cell transplantation. The proportions and absolute counts of CD4+ TSCMs and expression levels of inducible co-stimulator (ICOS) in CD8+ TSCMs were significantly higher in patients with mild and moderate/severe cGVHD compared to patients without cGVHD. These data suggested that, more than 12 months after allogeneic HCT, the kinetics of CD4+ TSCMs were dependent on the type of donor source, and further that CD4+ TSCMs and ICOS levels in CD8+ TSCMs were associated with cGVHD.
Collapse
Affiliation(s)
- Koji Jimbo
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki Konuma
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eri Watanabe
- Department of IMSUT Clinical Flow Cytometry Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chisato Kohara
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motoko Mizukami
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Etsuko Nagai
- Department of Laboratory Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maki Oiwa-Monna
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mai Mizusawa
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masamichi Isobe
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiko Kato
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Haematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
72
|
McCurdy SR, Luznik L. Immune reconstitution after T-cell replete HLA-haploidentical transplantation. Semin Hematol 2019; 56:221-226. [PMID: 31202434 DOI: 10.1053/j.seminhematol.2019.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
Impaired immune reconstitution has been one of the perceived limitations of alternative donor transplantation. However, modern transplantation platforms such as HLA-haploidentical transplantation with either post-transplantation cyclophosphamide or with anti-thymocyte globulin combined with intense immunosuppression may be associated with robust immune recovery as inferred by low rate of infectious mortality and post-transplantation lymphoproliferative disease. Here, we review the data on immune reconstitution including individual cell subsets, the effect of reconstitution on outcomes, and comparative studies using these commonly utilized T-cell replete HLA-haploidentical platforms. We find robust recovery of neutrophils, natural killer cells, CD8+ T-cells, and B-cells, with delayed CD4+ T-cell recovery comparable to that after HLA-matched transplantation. In addition, while viral reactivations and infections appear more common after HLA-haploidentical when compared with HLA-matched transplantation, infectious mortality remains low likely due to modern cytomegalovirus monitoring, preemptive treatment, as well as relative frequency of nonlethal viral infections like polyomavirus hominis 1 (BK virus). Higher graft cell doses also appear to be associated with faster recovery without concomitant increases in lethal graft-vs-host disease. Finally, despite rapid numerical return of natural killer cells post-transplant, phenotypically they retain immaturity markers till day 180 or more after transplantation, which suggests an avenue for future research to improve outcomes further.
Collapse
Affiliation(s)
- Shannon R McCurdy
- Abramson Cancer Center and the Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA.
| | - Leo Luznik
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
73
|
Wachsmuth LP, Patterson MT, Eckhaus MA, Venzon DJ, Gress RE, Kanakry CG. Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J Clin Invest 2019; 129:2357-2373. [PMID: 30913039 DOI: 10.1172/jci124218] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Post-transplantation cyclophosphamide (PTCy) recently has had a marked impact on human allogeneic hematopoietic cell transplantation (HCT). Yet, our understanding of how PTCy prevents graft-versus-host disease (GVHD) largely has been extrapolated from major histocompatibility complex (MHC)-matched murine skin allografting models that were highly contextual in their efficacy. Herein, we developed a T-cell-replete, MHC-haploidentical, murine HCT model (B6C3F1→B6D2F1) to test the putative underlying mechanisms: alloreactive T-cell elimination, alloreactive T-cell intrathymic clonal deletion, and suppressor T-cell induction. In this model and confirmed in four others, PTCy did not eliminate alloreactive T cells identified using either specific Vβs or the 2C or 4C T-cell receptors. Furthermore, the thymus was not necessary for PTCy's efficacy. Rather, PTCy induced alloreactive T-cell functional impairment which was supported by highly active suppressive mechanisms established within one day after PTCy that were sufficient to prevent new donor T cells from causing GVHD. These suppressive mechanisms included the rapid, preferential recovery of CD4+CD25+Foxp3+ regulatory T cells, including those that were alloantigen-specific, which served an increasingly critical function over time. Our results prompt a paradigm-shift in our mechanistic understanding of PTCy. These results have direct clinical implications for understanding tolerance induction and for rationally developing novel strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Lucas P Wachsmuth
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI)
| | - Michael T Patterson
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI)
| | | | - David J Venzon
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI)
| | - Christopher G Kanakry
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI)
| |
Collapse
|
74
|
Bone marrow central memory and memory stem T-cell exhaustion in AML patients relapsing after HSCT. Nat Commun 2019; 10:1065. [PMID: 30911002 PMCID: PMC6434052 DOI: 10.1038/s41467-019-08871-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/20/2019] [Indexed: 12/14/2022] Open
Abstract
The major cause of death after allogeneic Hematopoietic Stem Cell Transplantation (HSCT) for acute myeloid leukemia (AML) is disease relapse. We investigated the expression of Inhibitory Receptors (IR; PD-1/CTLA-4/TIM-3/LAG-3/2B4/KLRG1/GITR) on T cells infiltrating the bone marrow (BM) of 32 AML patients relapsing (median 251 days) or maintaining complete remission (CR; median 1 year) after HSCT. A higher proportion of early-differentiated Memory Stem (TSCM) and Central Memory BM-T cells express multiple IR in relapsing patients than in CR patients. Exhausted BM-T cells at relapse display a restricted TCR repertoire, impaired effector functions and leukemia-reactive specificities. In 57 patients, early detection of severely exhausted (PD-1+Eomes+T-bet-) BM-TSCM predicts relapse. Accordingly, leukemia-specific T cells in patients prone to relapse display exhaustion markers, absent in patients maintaining long-term CR. These results highlight a wide, though reversible, immunological dysfunction in the BM of AML patients relapsing after HSCT and suggest new therapeutic opportunities for the disease.
Collapse
|
75
|
Soares MV, Azevedo RI, Ferreira IA, Bucar S, Ribeiro AC, Vieira A, Pereira PNG, Ribeiro RM, Ligeiro D, Alho AC, Soares AS, Camacho N, Martins C, Lourenço F, Moreno R, Ritz J, Lacerda JF. Naive and Stem Cell Memory T Cell Subset Recovery Reveals Opposing Reconstitution Patterns in CD4 and CD8 T Cells in Chronic Graft vs. Host Disease. Front Immunol 2019; 10:334. [PMID: 30894856 PMCID: PMC6414429 DOI: 10.3389/fimmu.2019.00334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/08/2019] [Indexed: 01/05/2023] Open
Abstract
The success of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the treatment of hematological malignancies remains hampered by life-threatening chronic graft vs. host disease (cGVHD). Although multifactorial in nature, cGVHD has been associated with imbalances between effector and regulatory T cells (Treg). To further elucidate this issue, we performed a prospective analysis of patients undergoing unrelated donor allo-HSCT after a reduced intensity conditioning (RIC) regimen containing anti-thymocyte globulin (ATG) and the same GVHD prophylaxis, at a single institution. We studied T cell subset homeostasis over a 24-month follow-up after HSCT in a comparative analysis of patients with and without cGVHD. We also quantified naive and memory T cell subsets, proliferation and expression of the apoptosis-related proteins Bcl-2 and CD95. Finally, we assessed thymic function by T cell receptor excision circle (TREC) quantification and T cell receptor (TCR) diversity by TCRVβ spectratyping. While the total number of conventional CD4 (Tcon) and CD8 T cells was similar between patient groups, Treg were decreased in cGVHD patients. Interestingly, we also observed divergent patterns of Naive and Stem Cell Memory (SCM) subset recovery in Treg and Tcon compared to CD8. Patients with cGVHD showed impaired recovery of Naive and SCM Tcon and Treg, but significantly increased frequencies and absolute numbers of Naive and SCM were observed in the CD8 pool. Markedly increased EMRA CD8 T cells were also noted in cGVHD. Taken together, these results suggest that Naive, SCM and EMRA CD8 play a role in the emergence of cGHVD. Reduced Naive and recent thymic emigrant Tcon and Treg in cGVHD was likely due to impaired thymic output, as it was accompanied by decreased CD4 TREC and TCR diversity. On the other hand, CD8 TCR diversity was similar between patient groups. Furthermore, no correlation was observed between CD8 TREC content and Naive CD8 numbers, suggesting limited thymic production of Naive CD8 T cells in patients after transplant, especially in those developing cGVHD. The mechanisms behind the opposing patterns of CD4 and CD8 subset cell recovery in cGVHD remain elusive, but may be linked to thymic damage associated with the conditioning regimen and/or acute GVHD.
Collapse
Affiliation(s)
- Maria V Soares
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Rita I Azevedo
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Inês A Ferreira
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana C Ribeiro
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Vieira
- Unidade de Citometria de Fluxo, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Paulo N G Pereira
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ruy M Ribeiro
- Laboratório de Biomatemática, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Dario Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação, IP, Lisbon, Portugal
| | - Ana C Alho
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - António S Soares
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Nádia Camacho
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Carlos Martins
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Fernanda Lourenço
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Raul Moreno
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - João F Lacerda
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
76
|
Cao J, Zhang C, Han X, Cheng H, Chen W, Qi K, Qiao J, Sun Z, Wu Q, Zeng L, Niu M, Li L, Xu K. Emerging role of stem cell memory-like T cell in immune thrombocytopenia. Scand J Immunol 2019; 89:e12739. [PMID: 30506564 DOI: 10.1111/sji.12739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jiang Cao
- Department of Hematology; The Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Changxiao Zhang
- Department of Endocrinology; Xuzhou City Hospital of Traditional Chinese Medicine; Xuzhou China
| | - Xiao Han
- Department of Hematology; The Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Hai Cheng
- Department of Hematology; The Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Wei Chen
- Department of Hematology; The Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Kunming Qi
- Department of Hematology; The Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Jianlin Qiao
- Jiangsu Bone Marrow Stem Cell Institute; Xuzhou China
| | - Zengtian Sun
- Jiangsu Bone Marrow Stem Cell Institute; Xuzhou China
| | - Qingyun Wu
- Jiangsu Bone Marrow Stem Cell Institute; Xuzhou China
| | - Lingyu Zeng
- Jiangsu Bone Marrow Stem Cell Institute; Xuzhou China
| | - Mingshan Niu
- Jiangsu Bone Marrow Stem Cell Institute; Xuzhou China
| | - Li Li
- Department of Gastroenterology; The Affiliated Hospital of Xuzhou Medical University; Xuzhou China
| | - Kailin Xu
- Department of Hematology; The Affiliated Hospital of Xuzhou Medical University; Xuzhou China
- Jiangsu Bone Marrow Stem Cell Institute; Xuzhou China
| |
Collapse
|
77
|
Harris KM, Davila BJ, Bollard CM, Keller MD. Virus-Specific T Cells: Current and Future Use in Primary Immunodeficiency Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 7:809-818. [PMID: 30581131 DOI: 10.1016/j.jaip.2018.10.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/28/2022]
Abstract
Viral infections are common and can be potentially fatal in patients with primary immunodeficiency disorders (PIDDs). Because viral susceptibility stems from poor to absent T-cell function in most patients with moderate to severe forms of PIDD, adoptive immunotherapy with virus-specific T cells (VSTs) has been used to combat viral infections in the setting of hematopoietic stem cell transplantation in multiple clinical trials. Most trials to date have targeted cytomegalovirus, EBV, and adenovirus either alone or in combination, although newer trials have expanded the number of targeted pathogens. Use of banked VSTs produced from third-party donors has also been studied as a method of expanding access to this therapy. Here we review the clinical experience with VST therapy for patients with PIDDs as well as future potential targets and approaches for the use of VSTs to improve clinical outcomes for this specific patient population.
Collapse
Affiliation(s)
- Katherine M Harris
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC
| | - Blachy J Davila
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC; Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC; Division of Blood and Marrow Transplantation, Children's National Health System, Washington, DC
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Health System, Washington, DC; Division of Allergy and Immunology, Children's National Health System, Washington, DC.
| |
Collapse
|
78
|
Chen Y, Zander R, Khatun A, Schauder DM, Cui W. Transcriptional and Epigenetic Regulation of Effector and Memory CD8 T Cell Differentiation. Front Immunol 2018; 9:2826. [PMID: 30581433 PMCID: PMC6292868 DOI: 10.3389/fimmu.2018.02826] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022] Open
Abstract
Immune protection and lasting memory are accomplished through the generation of phenotypically and functionally distinct CD8 T cell subsets. Understanding how these effector and memory T cells are formed is the first step in eventually manipulating the immune system for therapeutic benefit. In this review, we will summarize the current understanding of CD8 T cell differentiation upon acute infection, with a focus on the transcriptional and epigenetic regulation of cell fate decision and memory formation. Moreover, we will highlight the importance of high throughput sequencing approaches and single cell technologies in providing insight into genome-wide investigations and the heterogeneity of individual CD8 T cells.
Collapse
Affiliation(s)
- Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ryan Zander
- Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David M Schauder
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Blood Center of Wisconsin, Blood Research Institute, Milwaukee, WI, United States
| |
Collapse
|
79
|
Link-Rachner CS, Eugster A, Rücker-Braun E, Heidenreich F, Oelschlägel U, Dahl A, Klesse C, Kuhn M, Middeke JM, Bornhäuser M, Bonifacio E, Schetelig J. T-cell receptor-α repertoire of CD8+ T cells following allogeneic stem cell transplantation using next-generation sequencing. Haematologica 2018; 104:622-631. [PMID: 30262565 PMCID: PMC6395323 DOI: 10.3324/haematol.2018.199802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/25/2018] [Indexed: 12/01/2022] Open
Abstract
Alloreactivity or opportunistic infections following allogeneic stem cell transplantation are difficult to predict and contribute to post-transplantation mortality. How these immune reactions result in changes to the T-cell receptor repertoire remains largely unknown. Using next-generation sequencing, the T-cell receptor alpha (TRα) repertoire of naïve and memory CD8+ T cells from 25 patients who had received different forms of allogeneic transplantation was analyzed. In parallel, reconstitution of the CD8+/CD4+ T-cell subsets was mapped using flow cytometry. When comparing the influence of anti-T-cell therapy, a delay in the reconstitution of the naïve CD8+ T-cell repertoire was observed in patients who received in vivo T-cell depletion using antithymocyte globulin or post-transplantation cyclophosphamide in case of haploidentical transplantation. Sequencing of the TRα identified a repertoire consisting of more dominant clonotypes (>1% of reads) in these patients at 6 and 18 months post transplantation. When comparing donor and recipient, approximately 50% and approximately 80% of the donors’ memory repertoire were later retrieved in the naïve and memory CD8+ T-cell receptor repertoire of the recipients, respectively. Although there was a remarkable expansion of single clones observed in the recipients’ memory CD8+ TRα repertoire, no clear association between graft-versus-host disease or cytomegalovirus infection and T-cell receptor diversity was identified. A lower TRα diversity was observed in recipients of a cytomegalovirus-seropositive donor (P=0.014). These findings suggest that CD8+ T-cell reconstitution in transplanted patients is influenced by the use of T-cell depletion or immunosuppression and the donor repertoire.
Collapse
Affiliation(s)
- Cornelia S Link-Rachner
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden .,DFG Research Center for Regenerative Therapies Dresden, TU Dresden
| | - Anne Eugster
- DFG Research Center for Regenerative Therapies Dresden, TU Dresden
| | - Elke Rücker-Braun
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden
| | - Falk Heidenreich
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden.,DKMS Clinical Trials Unit, Dresden
| | - Uta Oelschlägel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden
| | - Andreas Dahl
- DFG Research Center for Regenerative Therapies Dresden, TU Dresden.,BIOTEChnology Center, TU Dresden
| | | | - Matthias Kuhn
- Institut für Medizinische Informatik und Biometrie (IMB), Medizinische Fakultät der TU Dresden, Germany
| | - Jan Moritz Middeke
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden.,DFG Research Center for Regenerative Therapies Dresden, TU Dresden
| | - Ezio Bonifacio
- DFG Research Center for Regenerative Therapies Dresden, TU Dresden
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus, TU Dresden.,DKMS Clinical Trials Unit, Dresden
| |
Collapse
|
80
|
Pilipow K, Scamardella E, Puccio S, Gautam S, De Paoli F, Mazza EM, De Simone G, Polletti S, Buccilli M, Zanon V, Di Lucia P, Iannacone M, Gattinoni L, Lugli E. Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI Insight 2018; 3:122299. [PMID: 30232291 DOI: 10.1172/jci.insight.122299] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Adoptive T cell transfer (ACT) immunotherapy benefits from early differentiated stem cell memory T (Tscm) cells capable of persisting in the long term and generating potent antitumor effectors. Due to their paucity ex vivo, Tscm cells can be derived from naive precursors, but the molecular signals at the basis of Tscm cell generation are ill-defined. We found that less differentiated human circulating CD8+ T cells display substantial antioxidant capacity ex vivo compared with more differentiated central and effector memory T cells. Limiting ROS metabolism with antioxidants during naive T cell activation hindered terminal differentiation, while allowing expansion and generation of Tscm cells. N-acetylcysteine (NAC), the most effective molecule in this regard, induced transcriptional and metabolic programs characteristic of self-renewing memory T cells. Upon ACT, NAC-generated Tscm cells established long-term memory in vivo and exerted more potent antitumor immunity in a xenogeneic model when redirected with CD19-specific CAR, highlighting the translational relevance of NAC as a simple and inexpensive method to improve ACT.
Collapse
Affiliation(s)
- Karolina Pilipow
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Eloise Scamardella
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Sanjivan Gautam
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Federica De Paoli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Emilia Mc Mazza
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | | | - Marta Buccilli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Veronica Zanon
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Gattinoni
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
81
|
Lugli E, Brummelman J, Pilipow K, Roychoudhuri R. Paths to expansion: Differential requirements of IRF4 in CD8 + T-cell expansion driven by antigen and homeostatic cytokines. Eur J Immunol 2018; 48:1281-1284. [PMID: 30133745 DOI: 10.1002/eji.201847727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 11/11/2022]
Abstract
Interferon regulatory factor 4 (IRF4) regulates the clonal expansion and metabolic activity of activated T cells, but the precise context and mechanisms of its function in these processes are unclear. In this issue of the European Journal of Immunology, Miyakoda et al. [Eur. J. Immunol. 2018. 48: 1319-1328] show that IRF4 is required for activation and expansion of naïve and memory CD8+ T cells driven by T-cell receptor (TCR) signaling, but dispensable for memory CD8+ T-cell maintenance and homeostatic proliferation driven by homeostatic cytokines. The authors show that the function of IRF4 in CD8+ T-cell expansion is partially dependent upon activation of the PI3K/AKT pathway through direct or indirect attenuation of PTEN expression. These data shed light upon the differential intracellular pathways required for naïve and memory T cells to respond to self-antigens and/or homeostatic cytokines, and highlight the potential translational relevance of these findings in the context of immune reconstitution such as following allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Jolanda Brummelman
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Karolina Pilipow
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| |
Collapse
|
82
|
Costa del Amo P, Lahoz-Beneytez J, Boelen L, Ahmed R, Miners KL, Zhang Y, Roger L, Jones RE, Marraco SAF, Speiser DE, Baird DM, Price DA, Ladell K, Macallan D, Asquith B. Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness. PLoS Biol 2018; 16:e2005523. [PMID: 29933397 PMCID: PMC6033534 DOI: 10.1371/journal.pbio.2005523] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/05/2018] [Accepted: 06/08/2018] [Indexed: 01/26/2023] Open
Abstract
Adaptive immunity relies on the generation and maintenance of memory T cells to provide protection against repeated antigen exposure. It has been hypothesised that a self-renewing population of T cells, named stem cell-like memory T (TSCM) cells, are responsible for maintaining memory. However, it is not clear if the dynamics of TSCM cells in vivo are compatible with this hypothesis. To address this issue, we investigated the dynamics of TSCM cells under physiological conditions in humans in vivo using a multidisciplinary approach that combines mathematical modelling, stable isotope labelling, telomere length analysis, and cross-sectional data from vaccine recipients. We show that, unexpectedly, the average longevity of a TSCM clone is very short (half-life < 1 year, degree of self-renewal = 430 days): far too short to constitute a stem cell population. However, we also find that the TSCM population is comprised of at least 2 kinetically distinct subpopulations that turn over at different rates. Whilst one subpopulation is rapidly replaced (half-life = 5 months) and explains the rapid average turnover of the bulk TSCM population, the half-life of the other TSCM subpopulation is approximately 9 years, consistent with the longevity of the recall response. We also show that this latter population exhibited a high degree of self-renewal, with a cell residing without dying or differentiating for 15% of our lifetime. Finally, although small, the population was not subject to excessive stochasticity. We conclude that the majority of TSCM cells are not stem cell-like but that there is a subpopulation of TSCM cells whose dynamics are compatible with their putative role in the maintenance of T cell memory.
Collapse
Affiliation(s)
| | | | - Lies Boelen
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Raya Ahmed
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Kelly L. Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Yan Zhang
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
| | - Laureline Roger
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Rhiannon E. Jones
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | - Daniel E. Speiser
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Duncan M. Baird
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Derek Macallan
- Institute for Infection and Immunity, St George’s, University of London, London, United Kingdom
- St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Becca Asquith
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
83
|
Terrazzini N, Mantegani P, Kern F, Fortis C, Mondino A, Caserta S. Interleukin-7 Unveils Pathogen-Specific T Cells by Enhancing Antigen-Recall Responses. J Infect Dis 2018; 217:1997-2007. [PMID: 29506153 PMCID: PMC5972594 DOI: 10.1093/infdis/jiy096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Background Interleukin (IL)-7 promotes the generation, expansion, and survival of memory T cells. Previous mouse and human studies showed that IL-7 can support immune cell reconstitution in lymphopenic conditions, expand tumor-reactive T cells for adoptive immunotherapy, and enhance effector cytokine expression by autoreactive T cells. Whether pathogen-reactive T cells also benefit from IL-7 exposure remains unknown. Methods In this study, we investigated this issue in cultures of peripheral blood mononuclear cells (PBMCs) derived from patients infected with various endemic pathogens. After short-term exposure to IL-7, we measured PBMC responses to antigens derived from pathogens, such as Mycobacterium tuberculosis, Candida albicans, and cytomegalovirus, and to the superantigen Staphylococcus aureus enterotoxin B. Results We found that IL-7 favored the expansion and, in some instances, the uncovering of pathogen-reactive CD4 T cells, by promoting pathogen-specific interferon-γ, IL-2, and tumor necrosis factor recall responses. Conclusions Our findings indicate that IL-7 unveils and supports reactivation of pathogen-specific T cells with possible diagnostic, prognostic, and therapeutic significance of clinical value, especially in conditions of pathogen persistence and chronic infection.
Collapse
Affiliation(s)
- Nadia Terrazzini
- School of Pharmacy and Biomolecular Sciences, University of Brighton, United Kingdom
| | - Paola Mantegani
- Laboratory of Clinical Immunology, Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Florian Kern
- Brighton and Sussex Medical School, The University of Sussex, Falmer, East Sussex, United Kingdom
| | - Claudio Fortis
- Laboratory of Clinical Immunology, Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Caserta
- Brighton and Sussex Medical School, The University of Sussex, Falmer, East Sussex, United Kingdom
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- School of Life Sciences, The University of Hull, United Kingdom
| |
Collapse
|
84
|
Inman CF, Eldershaw SA, Croudace JE, Davies NJ, Sharma-Oates A, Rai T, Pearce H, Sirovica M, Chan YLT, Verma K, Zuo J, Nagra S, Kinsella F, Nunnick J, Amel-Kashipaz R, Craddock C, Malladi R, Moss P. Unique features and clinical importance of acute alloreactive immune responses. JCI Insight 2018; 3:97219. [PMID: 29769441 PMCID: PMC6012511 DOI: 10.1172/jci.insight.97219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/19/2018] [Indexed: 01/22/2023] Open
Abstract
Allogeneic stem cell transplantation (allo-SCT) can cure some patients with hematopoietic malignancy, but this relies on the development of a donor T cell alloreactive immune response. T cell activity in the first 2 weeks after allo-SCT is crucial in determining outcome, despite the clinical effects of the early alloreactive immune response often not appearing until later. However, the effect of the allogeneic environment on T cells is difficult to study at this time point due to the effects of profound lymphopenia. We approached this problem by comparing T cells at week 2 after allograft to T cells from autograft patients. Allograft T cells were present in small numbers but displayed intense proliferation with spontaneous cytokine production. Oligoclonal expansions at week 2 came to represent a substantial fraction of the established T cell pool and were recruited into tissues affected by graft-versus-host disease. Transcriptional analysis uncovered a range of potential targets for immune manipulation, including OX40L, TWEAK, and CD70. These findings reveal that recognition of alloantigen drives naive T cells toward a unique phenotype. Moreover, they demonstrate that early clonal T cell responses are recruited to sites of subsequent tissue damage and provide a range of targets for potential therapeutic immunomodulation. Alloreactive response T cells at 2 weeks after allo-SCT displayed intense proliferation with spontaneous cytokine production, and were recruited into tissues affected by GvHD.
Collapse
Affiliation(s)
- Charlotte F Inman
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Suzy A Eldershaw
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Joanne E Croudace
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Nathaniel J Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Archana Sharma-Oates
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tanuja Rai
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Mirjana Sirovica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Y L Tracey Chan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Kriti Verma
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Sandeep Nagra
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Francesca Kinsella
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Jane Nunnick
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Rasoul Amel-Kashipaz
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Charles Craddock
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Ram Malladi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and.,Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and.,Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
85
|
Al Malki MM, Jones R, Ma Q, Lee D, Reisner Y, Miller JS, Lang P, Hongeng S, Hari P, Strober S, Yu J, Maziarz R, Mavilio D, Roy DC, Bonini C, Champlin RE, Fuchs EJ, Ciurea SO. Proceedings From the Fourth Haploidentical Stem Cell Transplantation Symposium (HAPLO2016), San Diego, California, December 1, 2016. Biol Blood Marrow Transplant 2018; 24:895-908. [PMID: 29339270 PMCID: PMC7187910 DOI: 10.1016/j.bbmt.2018.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 02/04/2023]
Abstract
The resurgence of haploidentical stem cell transplantation (HaploSCT) over the last decade is one of the most important advances in the field of hematopoietic stem cell transplantation (HSCT). The modified platforms of T cell depletion either ex vivo (CD34+ cell selection, "megadoses" of purified CD34+ cells, or selective depletion of T cells) or newer platforms of in vivo depletion of T cells, with either post-transplantation high-dose cyclophosphamide or intensified immune suppression, have contributed to better outcomes, with survival similar to that in HLA-matched donor transplantation. Further efforts are underway to control viral reactivation using modified T cells, improve immunologic reconstitution, and decrease the relapse rate post-transplantation using donor-derived cellular therapy products, such as genetically modified donor lymphocytes and natural killer cells. Improvements in treatment-related mortality have allowed the extension of haploidentical donor transplants to patients with hemoglobinopathies, such as thalassemia and sickle cell disease, and the possible development of platforms for immunotherapy in solid tumors. Moreover, combining HSCT from a related donor with solid organ transplantation could allow early tapering of immunosuppression in recipients of solid organ transplants and hopefully prevent organ rejection in this setting. This symposium summarizes some of the most important recent advances in HaploSCT and provides a glimpse in the future of fast growing field.
Collapse
Affiliation(s)
- Monzr M Al Malki
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, California
| | - Richard Jones
- Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, Maryland
| | - Qing Ma
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Dean Lee
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yair Reisner
- Department of Immunology, Weizmann Institute, Rehovot, Israel
| | - Jeffrey S Miller
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota
| | - Peter Lang
- Department of General Paediatrics, Oncology/Haematology, Tübingen University Hospital for Children and Adolescents, Tübingen, Germany
| | - Suradej Hongeng
- Department of Pediatrics, Mahidol University, Bangkok, Thailand
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Samuel Strober
- Division of Immunology and Rheumatology, Department of Medicine, Stanford Medical School, Palo Alto, California
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Richard Maziarz
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Denis-Claude Roy
- Blood and Marrow Transplantation Program, Hôpital Maisonneuve-Rosemont Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Hospital, Milan, Italy
| | | | - Ephraim J Fuchs
- Division of Hematologic Malignancies, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, Maryland
| | - Stefan O Ciurea
- The University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
86
|
Immune monitoring in allogeneic hematopoietic stem cell transplant recipients: a survey from the EBMT-CTIWP. Bone Marrow Transplant 2018; 53:1201-1205. [DOI: 10.1038/s41409-018-0167-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 12/26/2022]
|
87
|
Massey JC, Sutton IJ, Ma DDF, Moore JJ. Regenerating Immunotolerance in Multiple Sclerosis with Autologous Hematopoietic Stem Cell Transplant. Front Immunol 2018; 9:410. [PMID: 29593711 PMCID: PMC5857574 DOI: 10.3389/fimmu.2018.00410] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system where evidence implicates an aberrant adaptive immune response in the accrual of neurological disability. The inflammatory phase of the disease responds to immunomodulation to varying degrees of efficacy; however, no therapy has been proven to arrest progression of disability. Recently, more intensive therapies, including immunoablation with autologous hematopoietic stem cell transplantation (AHSCT), have been offered as a treatment option to retard inflammatory disease, prior to patients becoming irreversibly disabled. Empirical clinical observations support the notion that the immune reconstitution (IR) that occurs following AHSCT is associated with a sustained therapeutic benefit; however, neither the pathogenesis of MS nor the mechanism by which AHSCT results in a therapeutic benefit has been clearly delineated. Although the antigenic target of the aberrant immune response in MS is not defined, accumulated data suggest that IR following AHSCT results in an immunotolerant state through deletion of pathogenic clones by a combination of direct ablation and induction of a lymphopenic state driving replicative senescence and clonal attrition. Restoration of immunoregulation is evidenced by changes in regulatory T cell populations following AHSCT and normalization of genetic signatures of immune homeostasis. Furthermore, some evidence exists that AHSCT may induce a rebooting of thymic function and regeneration of a diversified naïve T cell repertoire equipped to appropriately modulate the immune system in response to future antigenic challenge. In this review, we discuss the immunological mechanisms of IR therapies, focusing on AHSCT, as a means of recalibrating the dysfunctional immune response observed in MS.
Collapse
Affiliation(s)
- Jennifer C Massey
- Haematology and Bone Marrow Transplantation, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,Neurology, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ian J Sutton
- Neurology, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - David D F Ma
- Haematology and Bone Marrow Transplantation, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - John J Moore
- Haematology and Bone Marrow Transplantation, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,Centre for Applied Medical Research, St Vincent's Hospital Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
88
|
|
89
|
Immune tolerance induction by nonmyeloablative haploidentical HSCT combining T-cell depletion and posttransplant cyclophosphamide. Blood Adv 2017; 1:2166-2175. [PMID: 29296864 DOI: 10.1182/bloodadvances.2017009423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
The establishment of safe approaches to attain durable donor-type chimerism and immune tolerance toward donor antigens represents a major challenge in transplantation biology. Haploidentical hematopoietic stem cell transplantation (HSCT) is currently used for cancer therapy either as a T-cell-depleted megadose HSCT following myeloablative conditioning or with T-cell-replete HSCT following nonmyeloablative conditioning (NMAC) and high-dose posttransplant cyclophosphamide (PTCY). The latter approach suffers from a significant rate of chronic graft-versus-host disease (GVHD), despite prolonged immunosuppression. The use of T-depleted grafts, although free of GVHD risk, is not effective after NMAC because of graft rejection. We now demonstrate in mice conditioned with NMAC that combining the power of high-dose PTCY with T-cell-depleted megadose HSCT can overcome this barrier. This approach was evaluated in 2 patients with multiple myeloma and 1 patient with Hodgkin lymphoma. The first myeloma patient now followed for 25 months, exhibited full donor-type chimerism in the myeloid and B-cell lineages and mixed chimerism in the T-cell compartment. The second myeloma patient failed to attain chimerism. Notably, the low toxicity of this protocol enabled a subsequent successful fully myeloablative haploidentical HSCT in this patient. The third patients was conditioned with slightly higher total body irradiation and engrafted promptly. All patients remain in remission without GVHD. Both engrafted patients were able to control cytomegalovirus reactivation. Enzyme-linked immunospot analysis revealed immune tolerance toward donor cells. Our results demonstrate a novel and safer nonmyeloablative haplo-HSCT offering a platform for immune tolerance induction as a prelude to cell therapy and organ transplantation.
Collapse
|
90
|
NK cell recovery after haploidentical HSCT with posttransplant cyclophosphamide: dynamics and clinical implications. Blood 2017; 131:247-262. [PMID: 28986344 DOI: 10.1182/blood-2017-05-780668] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022] Open
Abstract
The use of posttransplant cyclophosphamide (PT-Cy) as graft-versus-host disease (GVHD) prophylaxis has revolutionized haploidentical hematopoietic stem cell transplantation (HSCT), allowing safe infusion of unmanipulated T cell-replete grafts. PT-Cy selectively eliminates proliferating alloreactive T cells, but whether and how it affects natural killer (NK) cells and their alloreactivity is largely unknown. Here we characterized NK cell dynamics in 17 patients who received unmanipulated haploidentical grafts, containing high numbers of mature NK cells, according to PT-Cy-based protocols in 2 independent centers. In both series, we documented robust proliferation of donor-derived NK cells immediately after HSCT. After infusion of Cy, a marked reduction of proliferating NK cells was evident, suggesting selective purging of dividing cells. Supporting this hypothesis, proliferating NK cells did not express aldehyde dehydrogenase and were killed by Cy in vitro. After ablation of mature NK cells, starting from day 15 after HSCT and favored by the high levels of interleukin-15 present in patients' sera, immature NK cells (CD62L+NKG2A+KIR-) became highly prevalent, possibly directly stemming from infused hematopoietic stem cells. Importantly, also putatively alloreactive single KIR+ NK cells were eliminated by PT-Cy and were thus decreased in numbers and antileukemic potential at day 30 after HSCT. As a consequence, in an extended series of 99 haplo-HSCT with PT-Cy, we found no significant difference in progression-free survival between patients with or without predicted NK alloreactivity (42% vs 52% at 1 year, P = NS). Our data suggest that the majority of mature NK cells infused with unmanipulated grafts are lost upon PT-Cy administration, blunting NK cell alloreactivity in this transplantation setting.
Collapse
|
91
|
Gattinoni L, Speiser DE, Lichterfeld M, Bonini C. T memory stem cells in health and disease. Nat Med 2017; 23:18-27. [PMID: 28060797 DOI: 10.1038/nm.4241] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
Abstract
T memory stem (TSCM) cells are a rare subset of memory lymphocytes endowed with the stem cell-like ability to self-renew and the multipotent capacity to reconstitute the entire spectrum of memory and effector T cell subsets. Cumulative evidence in mice, nonhuman primates and humans indicates that TSCM cells are minimally differentiated cells at the apex of the hierarchical system of memory T lymphocytes. Here we describe emerging findings demonstrating that TSCM cells, owing to their extreme longevity and robust potential for immune reconstitution, are central players in many physiological and pathological human processes. We also discuss how TSCM cell stemness could be leveraged therapeutically to enhance the efficacy of vaccines and adoptive T cell therapies for cancer and infectious diseases or, conversely, how it could be disrupted to treat TSCM cell driven and sustained diseases, such as autoimmunity, adult T cell leukemia and HIV-1.
Collapse
Affiliation(s)
- Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel E Speiser
- Department of Oncology, Ludwig Cancer Research, Lausanne University Hospital, Lausanne, Switzerland
| | - Mathias Lichterfeld
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology Transplantation and Infectious Diseases, Leukemia Unit, San Raffaele Scientific Institute, Milan, Italy.,Hematology Department, Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
92
|
Lugli E, Hudspeth K, Roberto A, Mavilio D. Tissue-resident and memory properties of human T-cell and NK-cell subsets. Eur J Immunol 2017; 46:1809-17. [PMID: 27431095 DOI: 10.1002/eji.201545702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 07/12/2016] [Indexed: 11/11/2022]
Abstract
Efficient immune responses to invading pathogens are the result of the complex but coordinated synergy between a variety of cell types from both the innate and adaptive arms of the immune system. While adaptive and innate immune responses are highly complementary, some cells types within these two systems perform similar functions, underscoring the need for redundancy and increased flexibility. In this review, we will discuss the striking shared features of immunological memory and tissue residency recently discovered between T cells, a component of the adaptive immune system, and natural killer (NK) cells, members generally assigned to the innate compartment. Specifically, we will focus on the T-cell and NK-cell diversity at the single-cell level, on the discrete function of specific subsets, and on their anatomical location. Finally, we will discuss the implication of such diversity in the generation of long-term memory.
Collapse
Affiliation(s)
- Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Kelly Hudspeth
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Alessandra Roberto
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
93
|
Mussetti A, Greco R, Peccatori J, Corradini P. Post-transplant cyclophosphamide, a promising anti-graft versus host disease prophylaxis: where do we stand? Expert Rev Hematol 2017; 10:479-492. [DOI: 10.1080/17474086.2017.1318054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alberto Mussetti
- Division of Hematology and Bone Marrow Transplant, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Raffaella Greco
- Hematology and Bone Marrow Transplantation (BMT) Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Peccatori
- Hematology and Bone Marrow Transplantation (BMT) Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Corradini
- Division of Hematology and Bone Marrow Transplant, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Dipartimento di Oncologia ed Emato-oncologia, Universita’ degli Studi di Milano, Milan, Italy
| |
Collapse
|
94
|
Slade M, Fakhri B, Savani BN, Romee R. Halfway there: the past, present and future of haploidentical transplantation. Bone Marrow Transplant 2016; 52:1-6. [DOI: 10.1038/bmt.2016.190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 02/03/2023]
|
95
|
Parida SK, Poiret T, Zhenjiang L, Meng Q, Heyckendorf J, Lange C, Ambati AS, Rao MV, Valentini D, Ferrara G, Rangelova E, Dodoo E, Zumla A, Maeurer M. T-Cell Therapy: Options for Infectious Diseases. Clin Infect Dis 2016; 61Suppl 3:S217-24. [PMID: 26409284 PMCID: PMC4583575 DOI: 10.1093/cid/civ615] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The emergence of drug-resistant tuberculosis is challenging tuberculosis control worldwide. In the absence of an effective vaccine to prevent primary infection with Mycobacterium tuberculosis and tuberculosis disease, host-directed therapies may offer therapeutic options, particularly for patients with multidrug-resistant and extensively drug-resistant tuberculosis where prognosis is often limited. CD8+ and CD4+ T cells mediate antigen-specific adaptive cellular immune responses. Their use in precision immunotherapy in clinical conditions, especially in treating cancer as well as for prevention of life-threatening viral infections in allogeneic transplant recipients, demonstrated safety and clinical efficacy. We review key achievements in T-cell therapy, including the use of recombinant immune recognition molecules (eg, T-cell receptors and CD19 chimeric antigen receptors), and discuss its potential in the clinical management of patients with drug-resistant and refractory tuberculosis failing conventional therapy.
Collapse
Affiliation(s)
- Shreemanta K Parida
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet
| | - Thomas Poiret
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Solna, Sweden
| | - Liu Zhenjiang
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet
| | - Qingda Meng
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet
| | - Jan Heyckendorf
- Division of Clinical Infectious Diseases, German Center for Infection Research, Research Center Borstel
| | - Christoph Lange
- Division of Clinical Infectious Diseases, German Center for Infection Research, Research Center Borstel International Health/Infectious Diseases, University of Lübeck, Germany Department of Medicine, Karolinska Institutet
| | - Aditya S Ambati
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Solna, Sweden Department of Medicine, Karolinska Institutet
| | - Martin V Rao
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet
| | - Davide Valentini
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Solna, Sweden
| | | | - Elena Rangelova
- Pancreatic Surgery Unit, Division of Surgery, Department of Clinical Science, Intervention and Technology
| | - Ernest Dodoo
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, Centre for Clinical Microbiology, University College London National Institute for Health Research Biomedical Research Centre, University College London Hospitals, United Kingdom
| | - Markus Maeurer
- Therapeutic Immunology Division, Department of Laboratory Medicine, Karolinska Institutet Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
96
|
Mehta RS, Rezvani K. Immune reconstitution post allogeneic transplant and the impact of immune recovery on the risk of infection. Virulence 2016; 7:901-916. [PMID: 27385018 DOI: 10.1080/21505594.2016.1208866] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infection is the leading cause of non-relapse mortality after allogeneic haematopoietic cell transplantation (HCT). This occurs as a result of dysfunction to the host immune system from the preparative regimen used prior to HCT, combined with a delay in reconstitution of the donor-derived immune system after HCT. In this article, we elaborate on the process of immune reconstitution post-HCT that begins with the innate system and is followed by recovery of adaptive immunity. Simultaneously, we describe how the tempo of immune reconstitution influences the risk of various infections. We explain some of the key differences in immune reconstitution and the consequent risk of infections in recipients of peripheral blood stem cell, bone marrow or umbilical cord blood grafts. Other factors that impact on immune recovery are also highlighted. Finally, we allude to various strategies that are being tested to enhance immune reconstitution post-HCT.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- a Division of Hematology, Oncology and Transplantation, University of Minnesota , Minneapolis , MN , USA
| | - Katayoun Rezvani
- b Department of Stem Cell Transplantation and Cellular Therapy , MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
97
|
Liu H, Tan Y, Xie L, Yang L, Zhao J, Bai J, Huang P, Zhan W, Wan Q, Zou C, Han Y, Wang Z. Self-assembled dual-modality contrast agents for non-invasive stem cell tracking via near-infrared fluorescence and magnetic resonance imaging. J Colloid Interface Sci 2016; 478:217-26. [PMID: 27299677 DOI: 10.1016/j.jcis.2016.05.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/15/2023]
Abstract
Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo.
Collapse
Affiliation(s)
- Hong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yan Tan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Lisi Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Lei Yang
- Laboratory for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jing Zhao
- Laboratory for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jingxuan Bai
- Laboratory for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Ping Huang
- Laboratory for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Wugen Zhan
- Laboratory for Gene and Cell Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yali Han
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Zhiyong Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| |
Collapse
|
98
|
Kanakry CG, Coffey DG, Towlerton AMH, Vulic A, Storer BE, Chou J, Yeung CCS, Gocke CD, Robins HS, O'Donnell PV, Luznik L, Warren EH. Origin and evolution of the T cell repertoire after posttransplantation cyclophosphamide. JCI Insight 2016; 1. [PMID: 27213183 DOI: 10.1172/jci.insight.86252] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Posttransplantation cyclophosphamide (PTCy) effectively prevents graft-versus-host disease (GVHD), but its immunologic impact is poorly understood. We assessed lymphocyte reconstitution via flow cytometry (n = 74) and antigen receptor sequencing (n = 35) in recipients of myeloablative, HLA-matched allogeneic BM transplantation using PTCy. Recovering T cells were primarily phenotypically effector memory with lower T cell receptor β (TRB) repertoire diversity than input donor repertoires. Recovering B cells were predominantly naive with immunoglobulin heavy chain locus (IGH) repertoire diversity similar to donors. Numerical T cell reconstitution and TRB diversity were strongly associated with recipient cytomegalovirus seropositivity. Global similarity between input donor and recipient posttransplant repertoires was uniformly low at 1-2 months after transplant but increased over the balance of the first posttransplant year. Blood TRB repertoires at ≥3 months after transplant were often dominated by clones present in the donor blood/marrow memory CD8+ compartment. Limited overlap was observed between the TRB repertoires of T cells infiltrating the skin or gastrointestinal tract versus the blood. Although public TRB sequences associated with herpesvirus- or alloantigen-specific CD8+ T cells were detected in some patients, posttransplant TRB and IGH repertoires were unique to each individual. These data define the immune dynamics occurring after PTCy and establish a benchmark against which immune recovery after other transplantation approaches can be compared.
Collapse
Affiliation(s)
- Christopher G Kanakry
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David G Coffey
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Andrea M H Towlerton
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Ante Vulic
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barry E Storer
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Jeffrey Chou
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Cecilia C S Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Christopher D Gocke
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harlan S Robins
- Public Health Sciences Division, FHCRC, Seattle, Washington, USA
| | - Paul V O'Donnell
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA; Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
99
|
Tanase A, Tomuleasa C, Marculescu A, Bardas A, Colita A, Orban C, Ciurea SO. Haploidentical Donors: Can Faster Transplantation Be Life-Saving for Patients with Advanced Disease? Acta Haematol 2016; 135:211-6. [PMID: 26914538 DOI: 10.1159/000443469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
Abstract
Haploidentical stem cell transplantation is a therapeutic option for patients without an HLA-matched donor. It is increasingly being used worldwide due to the application of posttransplantation cyclophosphamide and is associated with lower incidence of graft-versus-host disease and treatment-related mortality. Haploidentical donors are generally available for most patients and stem cells can be rapidly obtained. Delays in transplantation while waiting for unrelated donor cells can be potentially problematic for patients with advanced disease at risk for progression; thus, the use of haploidentical donors, especially in this setting, can be life-saving. Here we reviewed the literature on haploidentical stem cell transplantation performed with posttransplantation cyclophosphamide.
Collapse
Affiliation(s)
- Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
100
|
Myeloablative Conditioning with PBSC Grafts for T Cell-Replete Haploidentical Donor Transplantation Using Posttransplant Cyclophosphamide. Adv Hematol 2016; 2016:9736564. [PMID: 26904123 PMCID: PMC4745340 DOI: 10.1155/2016/9736564] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022] Open
Abstract
Relapse is the main cause of treatment failure after nonmyeloablative haploidentical transplant (haplo-HSCT). In an attempt to reduce relapse, we have developed a myeloablative (MA) haplo-HSCT approach utilizing posttransplant cyclophosphamide (PT/Cy) and peripheral blood stem cells as the stem cell source. We summarize the results of two consecutive clinical trials, using a busulfan-based (n = 20) and a TBI-based MA preparative regimen (n = 30), and analyze a larger cohort of 64 patients receiving MA haplo-HSCT. All patients have engrafted with full donor chimerism and no late graft failures. Grade III-IV acute GVHD and moderate-severe chronic GVHD occurred in 23% and 30%, respectively. One-year NRM was 10%. Predicted three-year overall survival, disease-free survival, and relapse were 53%, 53%, and 26%, respectively, in all patients and 79%, 74%, and 9%, respectively, in patients with a low/intermediate disease risk index (DRI). In multivariate analysis, DRI was the most significant predictor of survival and relapse. Use of TBI (versus busulfan) had no significant impact on survival but was associated with significantly less BK virus-associated hemorrhagic cystitis. We contrast our results with other published reports of MA haplo-HSCT PT/Cy in the literature and attempt to define the comparative utility of MA haplo-HSCT to other methods of transplantation.
Collapse
|