51
|
Muccio L, Falco M, Bertaina A, Locatelli F, Frassoni F, Sivori S, Moretta L, Moretta A, Della Chiesa M. Late Development of FcεRγ neg Adaptive Natural Killer Cells Upon Human Cytomegalovirus Reactivation in Umbilical Cord Blood Transplantation Recipients. Front Immunol 2018; 9:1050. [PMID: 29868012 PMCID: PMC5968376 DOI: 10.3389/fimmu.2018.01050] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/27/2018] [Indexed: 01/25/2023] Open
Abstract
In human natural killer (NK) cells, human cytomegalovirus (HCMV) has been shown to be a driving force capable of inducing the expansion of a highly differentiated NKG2C+CD57+ subset, persisting over time in both HCMV+ healthy subjects and umbilical cord blood transplantation (UCBT) recipients experiencing HCMV viral reactivation. In HCMV+ healthy subjects, such expanded NK-cells are characterized by epigenetic modifications that modulate their phenotypic and functional characteristics. In particular, an enhanced ADCC activity is detectable in NK cells lacking the signaling protein FcεRγ. Timing and mechanisms involved in the acquisition of HCMV-induced, adaptive-like features by NK cells are currently unknown. In this study, we investigated the de novo acquisition of several adaptive features in NK cells developing after UCBT by monitoring NK-cell differentiation for at least 2 years after transplant. In UCBT recipients experiencing HCMV reactivation, a rapid phenotypic reconfiguration occurred resulting in the expected expansion of CD56dim NKG2C+CD57+ NK cells. However, while certain HCMV-driven adaptive hallmarks, including high KIR, LILRB1, CD2 and low/negative NKG2A, Siglec-7, and CD161 expression, were acquired early after UCBT (namely by month 6), downregulation of the signaling protein FcεRγ was detected at a later time interval (i.e., by month 12). This feature characterized only a minor fraction of the HCMV-imprinted NKG2C+CD57+ CD56dim NK cell subset, while it was detectable in higher proportions of CD57+ NK cells lacking NKG2C. Interestingly, in patients developing a hyporesponsive CD56-CD16bright NK-cell subset, FcεRγ downregulation occurred in these cells earlier than in CD56dim NK cells. Our data suggest that the acquisition of a fully "adaptive" profile requires signals that may lack in UCBT recipients and/or longer time is needed to obtain a stable epigenetic reprogramming. On the other hand, we found that both HCMV-induced FcεRγneg and FcεRγ+ NK cells from these patients, display similar CD107a degranulation and IFN-γ production capabilities in response to different stimuli, thus indicating that the acquisition of specialized effector functions can be achieved before the "adaptation" to HCMV is completed. Our study provides new insights in the process leading to the generation of different adaptive NK-cell subsets and may contribute to develop new approaches for their employment as novel immunotherapeutic tools.
Collapse
Affiliation(s)
- Letizia Muccio
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Michela Falco
- IRCCS Istituto Giannina Gaslini, Dipartimento dei Laboratori di Ricerca, Genova, Italy
| | - Alice Bertaina
- IRCCS Ospedale Pediatrico Bambino Gesù, Dipartimento di Oncoematologia e Terapia Cellulare e Genica, Rome, Italy
| | - Franco Locatelli
- IRCCS Ospedale Pediatrico Bambino Gesù, Dipartimento di Oncoematologia e Terapia Cellulare e Genica, Rome, Italy.,Dipartimento di Scienze Pediatriche, Università degli Studi di Pavia, Pavia, Italy
| | - Francesco Frassoni
- IRCCS Istituto Giannina Gaslini, Dipartimento dei Laboratori di Ricerca, Genova, Italy
| | - Simona Sivori
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| | - Lorenzo Moretta
- IRCCS Ospedale Pediatrico Bambin Gesù, Area di Ricerca Immunologica, Rome, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| | - Mariella Della Chiesa
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
52
|
Kurioka A, Cosgrove C, Simoni Y, van Wilgenburg B, Geremia A, Björkander S, Sverremark-Ekström E, Thurnheer C, Günthard HF, Khanna N, Walker LJ, Arancibia-Cárcamo CV, Newell EW, Willberg CB, Klenerman P. CD161 Defines a Functionally Distinct Subset of Pro-Inflammatory Natural Killer Cells. Front Immunol 2018; 9:486. [PMID: 29686665 PMCID: PMC5900032 DOI: 10.3389/fimmu.2018.00486] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/23/2018] [Indexed: 01/22/2023] Open
Abstract
CD161 is a C-type lectin-like receptor expressed on the majority of natural killer (NK) cells; however, the significance of CD161 expression on NK cells has not been comprehensively investigated. Recently, we found that CD161 expression identifies a transcriptional and innate functional phenotype that is shared across various T cell populations. Using mass cytometry and microarray experiments, we demonstrate that this functional phenotype extends to NK cells. CD161 marks NK cells that have retained the ability to respond to innate cytokines during their differentiation, and is lost upon cytomegalovirus-induced maturation in both healthy and human immunodeficiency virus (HIV)-infected patients. These pro-inflammatory NK cells are present in the inflamed lamina propria where they are enriched for integrin CD103 expression. Thus, CD161 expression identifies NK cells that may contribute to inflammatory disease pathogenesis and correlates with an innate responsiveness to cytokines in both T and NK cells.
Collapse
Affiliation(s)
- Ayako Kurioka
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Cormac Cosgrove
- Ragon Institute of Massachusetts General Hospital, Harvard University, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yannick Simoni
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore, Singapore
| | - Bonnie van Wilgenburg
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Alessandra Geremia
- Translational Gastroenterology Unit, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sophia Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Christine Thurnheer
- Division of Infectious Diseases, University Hospital Berne, University of Berne, Berne, Switzerland
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nina Khanna
- Division of Infectious Diseases, University Hospital Basel, Basel, Switzerland
| | - Lucy Jane Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Carolina V. Arancibia-Cárcamo
- Translational Gastroenterology Unit, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Evan W. Newell
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore, Singapore
| | - Christian B. Willberg
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
53
|
Kurioka A, Klenerman P, Willberg CB. Innate-like CD8+ T-cells and NK cells: converging functions and phenotypes. Immunology 2018; 154:547-556. [PMID: 29542114 PMCID: PMC6050209 DOI: 10.1111/imm.12925] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 02/09/2018] [Indexed: 12/15/2022] Open
Abstract
New data in the worlds of both innate-like CD8+ T-cells and natural killer (NK) cells have, in parallel, clarified some of the phenotypes of these cells and also their associated functions. While these cells are typically viewed entirely separately, the emerging innate functions of T-cells and, similarly, the adaptive functions of NK cells suggest that many behaviours can be considered in parallel. In this review we compare the innate functions of CD8+ T-cells (especially mucosal-associated invariant T-cells) and those of NK cells, and how these relate to expression of phenotypic markers, especially CD161 and CD56.
Collapse
Affiliation(s)
- Ayako Kurioka
- Nuffield Department of MedicinePeter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
- NIHR Biomedical Research CentreTranslational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Paul Klenerman
- Nuffield Department of MedicinePeter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
- NIHR Biomedical Research CentreTranslational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| | - Christian B. Willberg
- Nuffield Department of MedicinePeter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
- NIHR Biomedical Research CentreTranslational Gastroenterology UnitJohn Radcliffe HospitalOxfordUK
| |
Collapse
|
54
|
Mace EM. Phosphoinositide-3-Kinase Signaling in Human Natural Killer Cells: New Insights from Primary Immunodeficiency. Front Immunol 2018; 9:445. [PMID: 29563913 PMCID: PMC5845875 DOI: 10.3389/fimmu.2018.00445] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Human natural killer (NK) cells play a critical role in the control of viral infections and malignancy. Their importance in human health and disease is illustrated by severe viral infections in patients with primary immunodeficiencies that affect NK cell function and/or development. The recent identification of patients with phosphoinositide-3-kinase (PI3K)-signaling pathway mutations that can cause primary immunodeficiency provides valuable insight into the role that PI3K signaling plays in human NK cell maturation and lytic function. There is a rich literature that demonstrates a requirement for PI3K in multiple key aspects of NK cell biology, including development/maturation, homing, priming, and function. Here, I briefly review these previous studies and place them in context with recent findings from the study of primary immunodeficiency patients, particularly those with hyperactivating mutations in PI3Kδ signaling.
Collapse
Affiliation(s)
- Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
55
|
Hammer Q, Rückert T, Dunst J, Romagnani C. Adaptive Natural Killer Cells Integrate Interleukin-18 during Target-Cell Encounter. Front Immunol 2018; 8:1976. [PMID: 29387058 PMCID: PMC5776097 DOI: 10.3389/fimmu.2017.01976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/20/2017] [Indexed: 01/04/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection induces adaptations in the natural killer (NK)-cell compartment. Expanded subsets of adaptive NK cells display potent effector functions against cellular targets, despite their apparent unresponsiveness to stimulation with classical dendritic cell-derived cytokines interleukin (IL)-12 and IL-18. However, it remains unclear whether adaptive NK cells have completely lost their ability to sense inflammation via IL-12 and IL-18 or whether these pro-inflammatory signals can be functionally integrated into defined contexts. Here, we demonstrate that adaptive NKG2C+ NK cells can be costimulated by the presence of pro-inflammatory cytokines during target cell-induced activation. Cytokine costimulation of adaptive NK cells resulted in elevated interferon (IFN)-gamma and tumor necrosis factor (TNF) production, which promoted protein expression of HLA class I and adhesion molecules as well as transcription of genes involved in antigen processing and antiviral states in endothelial bystander cells in vitro. We further show that IL-18 drove costimulation in functional assays and was sufficient for elevated cytokine production in the absence of IL-12. Hence, adaptive NKG2C+ NK cells-although poorly responsive to IL-12 and IL-18 as an isolated stimulus-integrate IL-18 as a costimulatory signal during target-cell encounter.
Collapse
Affiliation(s)
- Quirin Hammer
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Timo Rückert
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Josefine Dunst
- Inflammation Biology, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany.,Medical Department I, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
56
|
|
57
|
Cruz-Muñoz ME, Fuentes-Pananá EM. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System. Front Microbiol 2018; 8:2521. [PMID: 29354096 PMCID: PMC5760548 DOI: 10.3389/fmicb.2017.02521] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses are the most abundant and diverse biological entities in the planet. Historically, our main interest in viruses has focused on their pathogenic role, recognized by pandemics that have decimated the world population. However, viral infections have also played a major role in the evolution of cellular organisms, both through interchanging of genes with novel functions and shaping the immune system. Examples abound of infections that seriously compromise the host integrity, but evidence of plant and insect viruses mutualistic relationships have recently surfaced in which infected hosts are better suited for survival, arguing that virus-host interactions are initially parasitic but become mutualistic over years of co-evolution. A similar mutual help scenario has emerged with commensal gut bacteria. EBV is a herpesvirus that shares more than a hundred million years of co-evolution with humans, today successfully infecting close to 100% of the adult world population. Infection is usually acquired early in childhood persisting for the host lifetime mostly without apparent clinical symptoms. Disturbance of this homeostasis is rare and results in several diseases, of which the best understood are infectious mononucleosis and several EBV-associated cancers. Less understood are recently found inborn errors of the immune system that result in primary immunodeficiencies with an increased predisposition almost exclusive to EBV-associated diseases. Puzzling to these scenarios of broken homeostasis is the co-existence of immunosuppression, inflammation, autoimmunity and cancer. Homologous to EBV, HCMV, HHV-6 and HHV-7 are herpesviruses that also latently infect most individuals. Several lines of evidence support a mutualistic equilibrium between HCMV/EBV and hosts, that when altered trigger diseases in which the immune system plays a critical role. Interestingly, these beta and gamma herpesviruses persistently infect all immune lineages and early precursor cells. In this review, we will discuss the evidence of the benefits that infection of immune cells with these herpesviruses brings to the host. Also, the circumstances in which this positive relationship is broken, predisposing the host to diseases characterized by an abnormal function of the host immune system.
Collapse
Affiliation(s)
- Mario E Cruz-Muñoz
- Laboratorio de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
58
|
Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The Broad Spectrum of Human Natural Killer Cell Diversity. Immunity 2017; 47:820-833. [PMID: 29166586 DOI: 10.1016/j.immuni.2017.10.008] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
Abstract
Natural killer (NK) cells provide protection against infectious pathogens and cancer. For decades it has been appreciated that two major NK cell subsets (CD56bright and CD56dim) exist in humans and have distinct anatomical localization patterns, phenotypes, and functions in immunity. In light of this traditional NK cell dichotomy, it is now clear that the spectrum of human NK cell diversity is much broader than originally appreciated as a result of variegated surface receptor, intracellular signaling molecule, and transcription factor expression; tissue-specific imprinting; and foreign antigen exposure. The recent discoveries of tissue-resident NK cell developmental intermediates, non-NK innate lymphoid cells, and the capacity for NK cells to adapt and differentiate into long-lived memory cells has added further complexity to this field. Here we review our current understanding of the breadth and generation of human NK cell diversity.
Collapse
Affiliation(s)
- Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
59
|
Goodier MR, Jonjić S, Riley EM, Juranić Lisnić V. CMV and natural killer cells: shaping the response to vaccination. Eur J Immunol 2017; 48:50-65. [PMID: 28960320 DOI: 10.1002/eji.201646762] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Abstract
Cytomegaloviruses (CMVs) are highly prevalent, persistent human pathogens that not only evade but also shape our immune responses. Natural killer (NK) cells play an important role in the control of CMV and CMVs have in turn developed a plethora of immunoevasion mechanisms targeting NK cells. This complex interplay can leave a long-lasting imprint on the immune system in general and affect responses toward other pathogens and vaccines. This review aims to provide an overview of NK cell biology and development, the manipulation of NK cells by CMVs and the potential impact of these evasion strategies on responses to vaccination.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Stipan Jonjić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Vanda Juranić Lisnić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| |
Collapse
|
60
|
Malmberg KJ, Carlsten M, Björklund A, Sohlberg E, Bryceson YT, Ljunggren HG. Natural killer cell-mediated immunosurveillance of human cancer. Semin Immunol 2017; 31:20-29. [PMID: 28888619 DOI: 10.1016/j.smim.2017.08.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
The contribution of natural killer (NK) cells to immunosurveillance of human cancer remains debatable. Here, we discuss advances in several areas of human NK cell research, many of which support the ability of NK cells to prevent cancer development and avoid relapse following adoptive immunotherapy. We describe the molecular basis for NK cell recognition of human tumor cells and provide evidence for NK cell-mediated killing of human primary tumor cells ex vivo. Subsequently, we highlight studies demonstrating the ability of NK cells to migrate to, and reside in, the human tumor microenvironment where selection of tumor escape variants from NK cells can occur. Indirect evidence for NK cell immunosurveillance against human malignancies is provided by the reduced incidence of cancer in individuals with high levels of NK cell cytotoxicity, and the significant clinical responses observed following infusion of human NK cells into cancer patients. Finally, we describe studies showing enhanced tumor progression, or increased cancer incidence, in patients with inherited and acquired defects in cellular cytotoxicity. All these observations have in common that they, either indirectly or directly, suggest a role for NK cells in mediating immunosurveillance against human cancer. This opens up for exciting possibilities with respect to further exploring NK cells in settings of adoptive immunotherapy in human cancer.
Collapse
Affiliation(s)
- Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; The KG Jebsen Centre for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlsten
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Björklund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Cell Therapy Institute, Nova Southeastern University, Ft Lauderdale, FL, USA.
| |
Collapse
|
61
|
Immune selection during tumor checkpoint inhibition therapy paves way for NK-cell "missing self" recognition. Immunogenetics 2017; 69:547-556. [PMID: 28699110 PMCID: PMC5537320 DOI: 10.1007/s00251-017-1011-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 12/21/2022]
Abstract
The ability of NK cells to specifically recognize cells lacking expression of self-MHC class I molecules was discovered over 30 years ago. It provided the foundation for the "missing self" hypothesis. Research in the two past decades has contributed to a detailed understanding of the molecular mechanisms that determine the specificity and strength of NK cell-mediated "missing self" responses to tumor cells. However, in light of the recent remarkable breakthroughs in clinical cancer immunotherapy, the cytolytic potential of NK cells still remains largely untapped in clinical settings. There is abundant evidence demonstrating partial or complete loss of HLA class I expression in a wide spectrum of human tumor types. Such loss may result from immune selection of escape variants by tumor-specific CD8 T cells and has more recently also been linked to acquired resistance to checkpoint inhibition therapy. In the present review, we discuss the early predictions of the "missing self" hypothesis, its molecular basis and outline the potential for NK cell-based adoptive immunotherapy to convert checkpoint inhibitor therapy-resistant patients into clinical responders.
Collapse
|
62
|
Theorell J, Bileviciute-Ljungar I, Tesi B, Schlums H, Johnsgaard MS, Asadi-Azarbaijani B, Bolle Strand E, Bryceson YT. Unperturbed Cytotoxic Lymphocyte Phenotype and Function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Front Immunol 2017; 8:723. [PMID: 28694809 PMCID: PMC5483846 DOI: 10.3389/fimmu.2017.00723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/08/2017] [Indexed: 11/13/2022] Open
Abstract
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a debilitating disorder linked to diverse intracellular infections as well as physiological stress. Cytotoxic lymphocytes combat intracellular infections. Their function is attenuated by stress. Despite numerous studies, the role of cytotoxic lymphocytes in ME/CFS remains unclear. Prompted by advances in the understanding of defects in lymphocyte cytotoxicity, the discovery of adaptive natural killer (NK) cell subsets associated with certain viral infections, and compelling links between stress, adrenaline, and cytotoxic lymphocyte function, we reassessed the role of cytotoxic lymphocytes in ME/CFS. Forty-eight patients from two independent cohorts fulfilling the Canada 2003 criteria for ME/CFS were evaluated with respect to cytotoxic lymphocyte phenotype and function. Results were compared to values from matched healthy controls. Reproducible differences between patients and controls were not found in cytotoxic lymphocyte numbers, cytotoxic granule content, activation status, exocytotic capacity, target cell killing, or cytokine production. One patient expressed low levels of perforin, explained by homozygosity for the PRF1 p.A91V variant. However, overall, this variant was present in a heterozygous state at the expected population frequency among ME/CFS patients. No single patient displayed any pathological patterns of cellular responses. Increased expansions of adaptive NK cells or deviant cytotoxic lymphocyte adrenaline-mediated inhibition were not observed. In addition, supervised dimensionality reduction analyses of the full, multidimensional datasets did not reveal any reproducible patient/control discriminators. In summary, employing sensitive assays and analyses for quantification of cytotoxic lymphocyte differentiation and function, cytotoxicity lymphocyte aberrances were not found among ME/CFS patients. These assessments of cytotoxic lymphocytes therefore do not provide useful biomarkers for the diagnosis of ME/CFS.
Collapse
Affiliation(s)
- Jakob Theorell
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Indre Bileviciute-Ljungar
- Department of Rehabilitation Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bianca Tesi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.,Clinical Genetics Unit, Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Heinrich Schlums
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Babak Asadi-Azarbaijani
- Division of Medicine, CFS/ME Centre, Oslo University Hospital, Oslo, Norway.,VID Specialized University, Oslo, Norway
| | - Elin Bolle Strand
- Division of Medicine, CFS/ME Centre, Oslo University Hospital, Oslo, Norway.,Norwegian National Advisory Unit on CFS/ME, Oslo University Hospital, Oslo, Norway
| | - Yenan T Bryceson
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
63
|
Abstract
The GATA2 gene codes for a hematopoietic transcription factor that through its two zinc fingers (ZF) can occupy GATA-DNA motifs in a countless number of genes. It is crucial for the proliferation and maintenance of hematopoietic stem cells. During the past 5 years, germline heterozygous mutations in GATA2 were reported in several hundred patients with various phenotypes ranging from mild cytopenia to severe immunodeficiency involving B cells, natural killer cells, CD4+ cells, monocytes and dendritic cells (MonoMAC/DCML), and myeloid neoplasia. Some patients additionally show syndromic features such as congenital deafness and lymphedema (originally defining the Emberger syndrome) or pulmonary disease and vascular problems. The common clinical denominator in all reported cohorts is the propensity for myeloid neoplasia (myelodysplastic syndrome [MDS], myeloproliferative neoplasms [MPN], chronic myelomonocytic leukemia [CMML], acute myeloid leukemia [AML]) with an overall prevalence of approximately 75% and a median age of onset of roughly 20 years. Three major mutational types are encountered in GATA2-deficient patients: truncating mutations prior to ZF2, missense mutations within ZF2, and noncoding variants in the +9.5kb regulatory region of GATA2. Recurrent somatic lesions comprise monosomy 7 and trisomy 8 karyotypes and mutations in SETBP1 and ASXL1 genes. The high risk for progression to advanced myeloid neoplasia and life-threatening infectious complications guide decision-making towards timely stem cell transplantation.
Collapse
Affiliation(s)
- Marcin W Wlodarski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology; Medical Center; Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Northern Centre for Bone Marrow Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Marshall S Horwitz
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
64
|
Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms. Blood 2017; 129:2266-2279. [PMID: 28202457 DOI: 10.1182/blood-2016-10-743302] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Several monogenic causes of familial myelodysplastic syndrome (MDS) have recently been identified. We studied 2 families with cytopenia, predisposition to MDS with chromosome 7 aberrations, immunodeficiency, and progressive cerebellar dysfunction. Genetic studies uncovered heterozygous missense mutations in SAMD9L, a tumor suppressor gene located on chromosome arm 7q. Consistent with a gain-of-function effect, ectopic expression of the 2 identified SAMD9L mutants decreased cell proliferation relative to wild-type protein. Of the 10 individuals identified who were heterozygous for either SAMD9L mutation, 3 developed MDS upon loss of the mutated SAMD9L allele following intracellular infections associated with myeloid, B-, and natural killer (NK)-cell deficiency. Five other individuals, 3 with spontaneously resolved cytopenic episodes in infancy, harbored hematopoietic revertant mosaicism by uniparental disomy of 7q, with loss of the mutated allele or additional in cisSAMD9L truncating mutations. Examination of 1 individual indicated that somatic reversions were postnatally selected. Somatic mutations were tracked to CD34+ hematopoietic progenitor cell populations, being further enriched in B and NK cells. Stimulation of these cell types with interferon (IFN)-α or IFN-γ induced SAMD9L expression. Clinically, revertant mosaicism was associated with milder disease, yet neurological manifestations persisted in 3 individuals. Two carriers also harbored a rare, in trans germ line SAMD9L missense loss-of-function variant, potentially counteracting the SAMD9L mutation. Our results demonstrate that gain-of-function mutations in the tumor suppressor SAMD9L cause cytopenia, immunodeficiency, variable neurological presentation, and predisposition to MDS with -7/del(7q), whereas hematopoietic revertant mosaicism commonly ameliorated clinical manifestations. The findings suggest a role for SAMD9L in regulating IFN-driven, demand-adapted hematopoiesis.
Collapse
|
65
|
Acquired somatic mutations in PNH reveal long-term maintenance of adaptive NK cells independent of HSPCs. Blood 2016; 129:1940-1946. [PMID: 27903532 DOI: 10.1182/blood-2016-08-734285] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/04/2016] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells have long been considered short-lived effectors of innate immunity. However, recent animal models and human studies suggest that subsets of NK cells have adaptive features. We investigate clonal relationships of various NK-cell subsets, including the adaptive population, by taking advantage of naturally occurring X-linked somatic PIGA mutations in hematopoietic stem and progenitor cells (HSPCs) from patients with paroxysmal nocturnal hemoglobinuria (PNH). The affected HSPCs and their progeny lack expression of glycosylphosphatidylinositol (GPI) anchors on their cell surface, allowing quantification of PIGA-mutant (GPI-negative) HSPC-derived peripheral blood cell populations. The fraction of GPI-negative cells within the CD56dim NK cells was markedly lower than that of neutrophils and the CD56bright NK-cell compartments. This discrepancy was most prominent within the adaptive CD56dim NK-cell population lacking PLZF expression. The functional properties of these adaptive NK cells were similar in PNH patients and healthy individuals. Our findings support the existence of a long-lived, adaptive NK-cell population maintained independently from GPIposCD56dim.
Collapse
|