51
|
Biavasco F, Zeiser R. FLT3-inhibitor therapy for prevention and treatment of relapse after allogeneic hematopoietic cell transplantation. Int J Hematol 2022; 116:341-350. [PMID: 35460465 PMCID: PMC9392688 DOI: 10.1007/s12185-022-03352-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023]
Abstract
The curative potential of allogeneic hematopoietic cell transplantation (allo-HCT) for acute myeloid leukemia (AML) relies on the graft-versus-leukemia (GVL)-effect. Relapse after allo-HCT occurs in a considerable proportion of patients, and has a dismal prognosis with very limited curative potential, especially for patients with FLT-ITD-mutated AML. Since the first description of sorafenib for treatment of FLT3-ITD-mutated AML, several clinical trials have tried to determine the efficacy of FLT3 inhibitors for preventing and treating AML relapse after allo-HSCT, but many questions regarding differences among compounds and mechanisms of action remain unanswered. This review provides an overview on the established and evolving use of FLT3 inhibitors to prevent or treat relapse of AML in the context of allo-HCT, focusing on the recently discovered immunogenic potential of some FLT3 inhibitors and addressing the possible mechanisms of leukemia drug-escape.
Collapse
Affiliation(s)
- Francesca Biavasco
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, University Hospital Freiburg, 79106, Freiburg, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, University Hospital Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
52
|
Jakovic L, Fekete MD, Virijevic M, Kurtovic NK, Todoric-Zivanovic B, Stamatovic D, Karan-Djurasevic T, Pavlovic S, Lekovic D, Bogdanovic A. De novo acute myeloid leukemia harboring concomitant t(8;21)(q22;q22);RUNX1::RUNX1T1 and BCR::ABL1 (p190 minor transcript). J Hematop 2022. [DOI: 10.1007/s12308-022-00509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
53
|
Ip PP, Fang LH, Shen YL, Tung KC, Lai MT, Juan LY, Chen LY, Chen RL. Evolution of Graves' Disease during Immune Reconstitution following Nonmyeloablative Haploidentical Peripheral Blood Stem Cell Transplantation in a Boy Carrying Germline SAMD9L and FLT3 Variants. Int J Mol Sci 2022; 23:ijms23169494. [PMID: 36012751 PMCID: PMC9409095 DOI: 10.3390/ijms23169494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Graves’ disease, characterized by hyperthyroidism resulting from loss of immune tolerance to thyroid autoantigens, may be attributable to both genetic and environmental factors. Allogeneic hematopoietic stem cell transplantation (HSCT) represents a means to induce immunotolerance via an artificial immune environment. We present a male patient with severe aplastic anemia arising from a germline SAMD9L missense mutation who successfully underwent HSCT from his HLA-haploidentical SAMD9L non-mutated father together with nonmyeloablative conditioning and post-transplant cyclophosphamide at 8 years of age. He did not suffer graft-versus-host disease, but Graves’ disease evolved 10 months post-transplant when cyclosporine was discontinued for one month. Reconstitution of peripheral lymphocyte subsets was found to be transiently downregulated shortly after Graves’ disease onset but recovered upon antithyroid treatment. Our investigation revealed the presence of genetic factors associated with Graves’ disease, including HLA-B*46:01 and HLA-DRB1*09:01 haplotypes carried by the asymptomatic donor and germline FLT3 c.2500C>T mutation carried by both the patient and the donor. Given his current euthyroid state with normal hematopoiesis, the patient has returned to normal school life. This rare event of Graves’ disease in a young boy arising from special HSCT circumstances indicates that both the genetic background and the HSCT environment can prompt the evolution of Graves’ disease.
Collapse
Affiliation(s)
- Peng Peng Ip
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
| | - Li-Hua Fang
- Department of Pharmacy, Koo Foundation Sun Yat-Sen Cancer Center, Taipei City 112, Taiwan
| | - Yi-Ling Shen
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
| | - Kuan-Chiun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
| | - Ming-Tsong Lai
- Taiwan Genome Industry Alliance Inc., Taipei City 115, Taiwan
| | - Li-Ying Juan
- Division of Endocrinology, Department of Internal Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei City 112, Taiwan
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
- Correspondence: (L.-Y.C.); (R.-L.C.); Tel.: +886-2-2897-0011 (L.-Y.C. & R.-L.C.)
| | - Rong-Long Chen
- Department of Pediatric Hematology and Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei City 112, Taiwan
- Correspondence: (L.-Y.C.); (R.-L.C.); Tel.: +886-2-2897-0011 (L.-Y.C. & R.-L.C.)
| |
Collapse
|
54
|
Acharya B, Saha D, Armstrong D, Lakkaniga NR, Frett B. FLT3 inhibitors for acute myeloid leukemia: successes, defeats, and emerging paradigms. RSC Med Chem 2022; 13:798-816. [PMID: 35923716 PMCID: PMC9298189 DOI: 10.1039/d2md00067a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/21/2022] [Indexed: 09/10/2023] Open
Abstract
FLT3 mutations are one of the most common genetic aberrations found in nearly 30% of acute myeloid leukemias (AML). The mutations are associated with poor prognosis despite advances in the understanding of the biological mechanisms of AML. Numerous small molecule FLT3 inhibitors have been developed in an effort to combat AML. Even with the development of these inhibitors, the five-year overall survival for newly diagnosed AML is less than 30%. In 2017, midostaurin received FDA approval to treat AML, which was the first approved FLT3 inhibitor in the U.S. and Europe. Following, gilteritinib received FDA approval in 2018 and in 2019 quizartinib received approval in Japan. This review parallels these clinical success stories along with other pre-clinical and clinical investigations of FLT3 inhibitors.
Collapse
Affiliation(s)
- Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Daniel Armstrong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| |
Collapse
|
55
|
A novel RARA-SNX15 fusion in PML-RARA-positive acute promyelocytic leukemia with t(11;17;15)(q13;q21.2;q24.1). Int J Hematol 2022; 116:956-960. [PMID: 35854096 DOI: 10.1007/s12185-022-03421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a series of retinoic acid receptor (RAR) fusion genes that lead to the dysregulation of RAR signaling and onset of APL. PML-RARA is the most common fusion generated from t(15;17)(q24;q21). In addition, the reciprocal fusion RARA-PML is present in over 80% of t(15;17) APL cases. The bcr3 types of RARA-PML and RARA-PLZF in particular are reciprocal fusions that contribute to leukemogenesis. Here, we report a variant APL case with t(11;17;15)(q13;q21.2;q24.1). Massive parallel sequencing of patient RNA detected the novel fusion transcripts RARA-SNX15 and SNX15-LINC02255 along with the bcr3 type of PML-RARA. Genetic analysis revealed that RARA-SNX15L is an in-frame fusion due to intron retention caused by RNA mis-splicing. RARA-SNX15L consisted mainly of SNX15 domains, including the Phox-homology domain, which has a critical role in protein-protein interactions among sorting nexins and with other partners. Co-immunoprecipitation analysis revealed that RARA-SNX15L is directly associated with SNX15 and with itself. Further studies are needed to evaluate the biological significance of RARA-SNX15L in APL. In conclusion, this is the first report of APL with a complex chromosomal rearrangement involving SNX15.
Collapse
|
56
|
Knight TE, Edwards H, Meshinchi S, Taub JW, Ge Y. "FLipping" the Story: FLT3-Mutated Acute Myeloid Leukemia and the Evolving Role of FLT3 Inhibitors. Cancers (Basel) 2022; 14:3398. [PMID: 35884458 PMCID: PMC9315611 DOI: 10.3390/cancers14143398] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/19/2022] Open
Abstract
The treatment of many types of cancers, including acute myeloid leukemia (AML), has been revolutionized by the development of therapeutics targeted at crucial molecular drivers of oncogenesis. In contrast to broad, relatively indiscriminate conventional chemotherapy, these targeted agents precisely disrupt key pathways within cancer cells. FMS-like tyrosine kinase 3 (FLT3)-encoding a critical regulator of hematopoiesis-is the most frequently mutated gene in patients with AML, and these mutations herald reduced survival and increased relapse in these patients. Approximately 30% of newly diagnosed AML carries an FLT3 mutation; of these, approximately three-quarters are internal tandem duplication (ITD) mutations, and the remainder are tyrosine kinase domain (TKD) mutations. In contrast to its usual, tightly controlled expression, FLT3-ITD mutants allow constitutive, "run-away" activation of a large number of key downstream pathways which promote cellular proliferation and survival. Targeted inhibition of FLT3 is, therefore, a promising therapeutic avenue. In April 2017, midostaurin became both the first FLT3 inhibitor and the first targeted therapy of any kind in AML to be approved by the US FDA. The use of FLT3 inhibitors has continued to grow as clinical trials continue to demonstrate the efficacy of this class of agents, with an expanding number available for use as both experimental standard-of-care usage. This review examines the biology of FLT3 and its downstream pathways, the mechanism of FLT3 inhibition, the development of the FLT3 inhibitors as a class and uses of the agents currently available clinically, and the mechanisms by which resistance to FLT3 inhibition may both develop and be overcome.
Collapse
Affiliation(s)
- Tristan E. Knight
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Soheil Meshinchi
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey W. Taub
- Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA;
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
57
|
Ding Y, Smith GH, Deeb K, Schneider T, Campbell A, Zhang L. Revealing molecular architecture of FLT3 internal tandem duplication: Development and clinical validation of a web-based application to generate accurate nomenclature. Int J Lab Hematol 2022; 44:918-927. [PMID: 35795913 DOI: 10.1111/ijlh.13930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION FLT3 internal tandem duplicate (ITD) is associated with unfavorable prognosis of acute myeloid leukemia; targeted therapy improves clinical outcome. We propose that FLT3-ITD detected by next generation sequencing (NGS) should be reported with the same nomenclature pattern as single nucleotide variants so that the mutation can be better interpreted clinically. METHODS A Python-based web application was developed to generate FLT3-ITD nomenclature as recommended by the Human Genome Variation Society (HGVS). Assembled FLT3-ITD sequences from 84 patients and 11 artificially created ITD sequences were used for the validation of this web-based application. Each sequence was inspected manually to confirm that the nomenclature was accurate. RESULTS Accurate nomenclatures were generated for 113 of 114 sequencing results and 7 artificial sequences. One assembled sequence and four artificial sequences were not named accurately; warning statements were automatically generated to alert further inspection. Of the 105 unique FLT3-ITDs, the ITD lengths range from 18 to 300 bp. Depending whether the ITD involves intron or extends into exon 15, three patterns were recognized. Only 44 (42%) ITDs were pure duplications, and three types of variants were identified at the 5' of ITD. When ITD involves intronic sequence, the protein may comprise inserted amino acids encoded by the intron, due to disrupted RNA splicing. CONCLUSION The web application generates accurate FLT3-ITD nomenclature from NGS results except in rare situations. The HGVS nomenclatures provide information on the molecular architecture of FLT3-ITDs and reveal details of complex insertions with partial duplications.
Collapse
Affiliation(s)
- Yi Ding
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Geoffrey Hughes Smith
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kristin Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas Schneider
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrew Campbell
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
58
|
Poor outcome of pediatric patients with acute myeloid leukemia harboring high FLT3/ITD allelic ratios. Nat Commun 2022; 13:3679. [PMID: 35760968 PMCID: PMC9237020 DOI: 10.1038/s41467-022-31489-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/17/2022] [Indexed: 11/08/2022] Open
Abstract
Activating FLT3 mutations are the most common mutations in acute myeloid leukemia (AML), but the optimal threshold of FLT3/ITD allelic ratio (AR) among pediatric AML patients remains controversial. Here, we present the outcome and prognostic significance of FLT3/ITD AR analysis among pediatric patients with AML from the TARGET dataset. Applying fitting curve models and threshold effect analysis using the restrictive cubic spline function following Cox proportional hazards models identifies the cut-off value of 0.5 on FLT3/ITD AR. Moreover, we observe that high FLT3/ITD AR patients have an inferior outcome when compared to low AR patients. Our study also demonstrates that stem cell transplantation may improve the outcome in pediatric AML patients with high FLT3/ITD AR and may be further improved when combined with additional therapies such as Gemtuzumab Ozogamicin. These findings underline the importance of individualized treatment of pediatric AML. Activating FLT3 mutations are the most common mutations in AML. Here, the authors explore the relationship between the FLT3/ITD allelic ratio and prognosis in pediatric AML patients and identify an optimal threshold to stratify patients.
Collapse
|
59
|
Yen SC, Wu YW, Huang CC, Chao MW, Tu HJ, Chen LC, Lin TE, Sung TY, Tseng HJ, Chu JC, Huang WJ, Yang CR, HuangFu WC, Pan SL, Hsu KC. O-methylated flavonol as a multi-kinase inhibitor of leukemogenic kinases exhibits a potential treatment for acute myeloid leukemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154061. [PMID: 35364561 DOI: 10.1016/j.phymed.2022.154061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease with poor overall survival characterized by various genetic changes. The continuous activation of oncogenic pathways leads to the development of drug resistance and limits current therapeutic efficacy. Therefore, a multi-targeting inhibitor may overcome drug resistance observed in AML treatment. Recently, groups of flavonoids, such as flavones and flavonols, have been shown to inhibit a variety of kinase activities, which provides potential opportunities for further anticancer applications. PURPOSE In this study, we evaluated the anticancer effects of flavonoid compounds collected from our in-house library and investigated their potential anticancer mechanisms by targeting multiple kinases for inhibition in AML cells. METHODS The cytotoxic effect of the compounds was detected by cell viability assays. The kinase inhibitory activity of the selected compound was detected by kinase-based and cell-based assays. The binding conformation and interactions were investigated by molecular docking analysis. Flow cytometry was used to evaluate the cell cycle distribution and cell apoptosis. The protein and gene expression were estimated by western blotting and qPCR, respectively. RESULTS In this study, an O-methylated flavonol (compound 11) was found to possess remarkable cytotoxic activity against AML cells compared to treatment in other cancer cell lines. The compound was demonstrated to act against multiple kinases, which play critical roles in survival signaling in AML, including FLT3, MNK2, RSK, DYRK2 and JAK2 with IC50 values of 1 - 2 μM. Compared to our previous flavonoid compounds, which only showed inhibitions against MNKs or FLT3, compound 11 exhibited multiple kinase inhibitory abilities. Moreover, compound 11 showed effectiveness in inhibiting internal tandem duplications of FLT3 (FLT3-ITDs), which accounts for 25% of AML cases. The interactions between compound 11 and targeted kinases were investigated by molecular docking analysis. Mechanically, compound 11 caused dose-dependent accumulation of leukemic cells at the G0/G1 phase and followed by the cells undergoing apoptosis. CONCLUSION O-methylated flavonol, compound 11, can target multiple kinases, which may provide potential opportunities for the development of novel therapeutics for drug-resistant AMLs. This work provides a good starting point for further compound optimization.
Collapse
Affiliation(s)
- Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, China
| | - Yi-Wen Wu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, China; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chiao Huang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Min-Wu Chao
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Huang-Ju Tu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Liang-Chieh Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Master Program in Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ju Tseng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Drug Discovery, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
60
|
FLT3-targeted treatment for acute myeloid leukemia. Int J Hematol 2022; 116:351-363. [DOI: 10.1007/s12185-022-03374-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022]
|
61
|
Ahn JS, Kim HJ. FLT3 mutations in acute myeloid leukemia: a review focusing on clinically applicable drugs. Blood Res 2022; 57:32-36. [PMID: 35483923 PMCID: PMC9057665 DOI: 10.5045/br.2022.2022017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations, the most frequently detected genetic aberrations in patients with acute myeloid leukemia (AML), are identified in approximately 30% of patients with newly diagnosed AML and are more common in patients with normal karyotypes. Since the discovery of FLT3 mutations in AML, clinical trials have been actively conducted in patients with FLT3 mutated AML, and FLT3 inhibitors have been introduced into clinical practice. The current standard treatment for patients with newly diagnosed FLT3-mutated AML is 7+3 induction chemotherapy combined with midostaurin. Additionally, gilteritinib is more effective than salvage chemotherapy for relapsed or refractory FLT3-mutated AML. Ongoing trials are expected to provide additional treatment options depending on the disease state and patient vulnerability. This review summarizes information on clinically available FLT3 inhibitors for the management of AML with FLT3 mutations.
Collapse
Affiliation(s)
- Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Korea.,Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyeoung-Joon Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University, Gwangju, Korea.,Genomic Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
62
|
Duminuco A, Maugeri C, Parisi M, Mauro E, Fiumara PF, Randazzo V, Salemi D, Agueli C, Palumbo GA, Santoro A, Di Raimondo F, Vetro C. Target Therapy for Extramedullary Relapse of FLT3-ITD Acute Myeloid Leukemia: Emerging Data from the Field. Cancers (Basel) 2022; 14:cancers14092186. [PMID: 35565314 PMCID: PMC9105351 DOI: 10.3390/cancers14092186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase family member. Mutations in FLT3, as well known, represent the most common genomic alteration in acute myeloid leukemia (AML), identified in approximately one-third of newly diagnosed adult patients. In recent years, this has represented an important therapeutic target. Drugs such as midostaurin, gilteritinib, and sorafenib, either alone in association with conventional chemotherapy, play a pivotal role in AML therapy with the mutated FLT3 gene. A current challenge lies in treating forms of AML with extramedullary localization. Here, we describe the general features of myeloid sarcoma and the ability of a targeted drug, i.e., gilteritinib, approved for relapsed or refractory disease, to induce remission of these extramedullary leukemic localizations in AML patients with FLT3 mutation, analyzing how in the literature, there is an important development of cases describing this promising potential for care.
Collapse
Affiliation(s)
- Andrea Duminuco
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy; (A.D.); (G.A.P.)
| | - Cinzia Maugeri
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
| | - Marina Parisi
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
| | - Elisa Mauro
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
| | - Paolo Fabio Fiumara
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
| | - Valentina Randazzo
- Division of Hematology & Bone Marrow Transplantation, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; (V.R.); (D.S.); (C.A.); (A.S.)
| | - Domenico Salemi
- Division of Hematology & Bone Marrow Transplantation, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; (V.R.); (D.S.); (C.A.); (A.S.)
| | - Cecilia Agueli
- Division of Hematology & Bone Marrow Transplantation, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; (V.R.); (D.S.); (C.A.); (A.S.)
| | - Giuseppe Alberto Palumbo
- Postgraduate School of Hematology, University of Catania, 95123 Catania, Italy; (A.D.); (G.A.P.)
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alessandra Santoro
- Division of Hematology & Bone Marrow Transplantation, Ospedali Riuniti Villa Sofia-Cervello, 90146 Palermo, Italy; (V.R.); (D.S.); (C.A.); (A.S.)
| | - Francesco Di Raimondo
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
- Department of Chirurgia Generale e Specialità Medico-Chirurgiche, University of Catania, 95123 Catania, Italy
| | - Calogero Vetro
- Division of Hematology, A.O.U. “Policlinico G.Rodolico-S.Marco”, 95123 Catania, Italy; (C.M.); (M.P.); (E.M.); (P.F.F.); (F.D.R.)
- Correspondence: ; Tel.: +39-0953781956
| |
Collapse
|
63
|
Lee JH, Shin JE, Kim W, Jeong P, Kim MJ, Oh SJ, Lee HJ, Park HW, Han SY, Kim YC. Discovery of indirubin-3'-aminooxy-acetamide derivatives as potent and selective FLT3/D835Y mutant kinase inhibitors for acute myeloid leukemia. Eur J Med Chem 2022; 237:114356. [PMID: 35489222 DOI: 10.1016/j.ejmech.2022.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/19/2022]
Abstract
Mutations in Fms-like tyrosine kinase 3 (FLT3) have been implicated in the pathogenesis of acute myeloid leukemia (AML) by affecting the proliferation and differentiation of hematopoietic stem and progenitor cells. Although several FLT3 inhibitors have been developed, the occurrence of secondary TKD mutations of FLT3 such FLT3/D835Y and FLT3/F691L lead to drug resistance and has become a key area of unmet medical needs. To overcome the obstacle of secondary TKD mutations, a new series of indirubin-3'-aminooxy-acetamide derivatives was discovered as potent and selective FLT3 and FLT3/D835Y inhibitors that were predicted to bind at the DFG-in active conformation of FLT3 in molecular docking studies. Through structure-activity relationship studies, the most optimized compound 13a was developed as a potent inhibitor at FLT3 and FLT3/D835Y with IC50 values of 0.26 nM and 0.18 nM, respectively, which also displayed remarkably strong in vitro anticancer activities, with single-digit nanomolar GI50 values for several AML (MV4-11 and MOLM14) and Ba/F3 cell lines expressed with secondary TKD mutated FLT3 kinases as well as FLT3-ITD. The selectivity profiles of compound 13a in the oncology kinase panel and various human cancer cell lines were prominent, demonstrating that its inhibitory activities were mainly focused on a few members of the receptor tyrosine kinase family and AML versus solid tumor cell lines. Furthermore, significant in vivo anticancer efficacy of compound 13a was confirmed in a xenograft animal model implanted with FLT3-ITD/D835Y-expressing MOLM-14 cells related to secondary TKD mutation.
Collapse
Affiliation(s)
- Je-Heon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - WooChan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Pyeonghwa Jeong
- R&D Center, PeLeMed, Co. Ltd., Seoul, 06100, South Korea; Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Myung Jin Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul, 06100, South Korea
| | - Su Jin Oh
- R&D Center, PeLeMed, Co. Ltd., Seoul, 06100, South Korea
| | - Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea.
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea; R&D Center, PeLeMed, Co. Ltd., Seoul, 06100, South Korea.
| |
Collapse
|
64
|
Early T-Cell Precursor ALL and Beyond: Immature and Ambiguous Lineage T-ALL Subsets. Cancers (Basel) 2022; 14:cancers14081873. [PMID: 35454781 PMCID: PMC9030030 DOI: 10.3390/cancers14081873] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Immature T-cell acute lymphoblastic leukemias englobes a wide range of low prevalence subtypes, not well identified, that in some cases overlap with myeloid lineage subtypes. Globally, this “grey zone” of immature leukemias, are difficult to precisely diagnose using a classical immunophenotypic approach. Interesting, genomic data collected during last years has shown that these subtypes share several genomic alterations, raising the question of how their phenotypes reflect distinct AL entities. Here we provide a systematic overview of the genetic events associated with immature T-ALL and outline their relationship with treatment choices and outcomes. Our goal is to offer a basis for using the genetic information for new diagnostic algorithms. An immunogenetic classification of these immature subtypes will better stratify patients and improve their management with more efficient and personalized therapeutic options. Abstract A wide range of immature acute leukemias (AL), ranging from acute myeloid leukemias with minimal differentiation to acute leukemias with an ambiguous lineage, i.e., acute undifferentiated leukemias and mixed phenotype acute leukemia with T- or B-plus myeloid markers, cannot be definitely assigned to a single cell lineage. This somewhat “grey zone” of AL expresses partly overlapping features with the most immature forms of T-cell acute lymphoblastic leukemia (T-ALL), i.e., early T-cell precursor ALL (ETP-ALL), near-ETP-ALL, and pro-T ALL. These are troublesome cases in terms of precise diagnosis because of their similarities and overlapping phenotypic features. Moreover, it has become evident that they share several genomic alterations, raising the question of how their phenotypes reflect distinct AL entities. The aim of this review was to provide a systematic overview of the genetic events associated with immature T-ALL and outline their relationship with treatment choices and outcomes, especially looking at the most recent preclinical and clinical studies. We wish to offer a basis for using the genetic information for new diagnostic algorithms, in order to better stratify patients and improve their management with more efficient and personalized therapeutic options. Understanding the genetic profile of this high-risk T-ALL subset is a prerequisite for changing the current clinical scenario.
Collapse
|
65
|
Cilibrasi V, Spanò V, Bortolozzi R, Barreca M, Raimondi MV, Rocca R, Maruca A, Montalbano A, Alcaro S, Ronca R, Viola G, Barraja P. Synthesis of 2H-Imidazo[2',1':2,3] [1,3]thiazolo[4,5-e]isoindol-8-yl-phenylureas with promising therapeutic features for the treatment of acute myeloid leukemia (AML) with FLT3/ITD mutations. Eur J Med Chem 2022; 235:114292. [PMID: 35339838 DOI: 10.1016/j.ejmech.2022.114292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
Despite progressive advances in understanding the molecular biology of acute myeloid leukemia (AML), the conventional therapeutic approach has not changed substantially, and the outcome for most patients is poor. Thus, continuous efforts on the discovery of new compounds with improved features are required. Following a multistep sequence, we have identified a new tetracyclic ring system with strong antiproliferative activity towards several haematological cell lines. The new compounds possess structural properties typical of inactive-state-binding kinase inhibitors and are structurally related to quizartinib which is known as type-II tyrosine kinase inhibitor. In particular, the high activity found in two cell lines MOLM-13 and MV4-11, expressing the constitutively activated mutant FLT3/ITD, indicates inhibition of FLT3 kinase and on the basis of structure-activity relationship (SAR) the presence of an ureido moiety demonstrates to play a key role in driving the antiproliferative activity towards these cell lines. Molecular modelling studies supported the mechanism of recognition of the most active compounds within the FLT3 pocket where quizartinib binds. Moreover, Molecular Dynamics simulation (MDs) revealed the formation of a recurrent H-bond with Asp829, which more stabilizes the complex of 9c and the FLT3 inactive state. In MV4-11 cell line compound 9c reduces the phosphorylation of FLT3 (Y591) and some of its downstream targets leading to cell cycle arrest at G1 phase and induction of apoptosis. In an MV4-11 xenograft mouse model, 9c significantly reduces the tumor growth at the dose of 1-3 mg/kg without apparent toxicity.
Collapse
Affiliation(s)
- Vincenzo Cilibrasi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Bortolozzi
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Rocca
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Medicina Sperimentale e Clinica, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Stefano Alcaro
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123, Brescia, Italy
| | - Giampietro Viola
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy; Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia Università di Padova, Via Giustiniani 2, 35131, Padova, Italy.
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
66
|
Han SY. Small Molecule Induced FLT3 Degradation. Pharmaceuticals (Basel) 2022; 15:ph15030320. [PMID: 35337118 PMCID: PMC8954439 DOI: 10.3390/ph15030320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 02/04/2023] Open
Abstract
Target protein degrader is a new paradigm in the small molecule drug discovery field and relates to the term ‘event-driven pharmacology’. Fms-like tyrosine kinase 3 (FLT3) is a significant target for treating acute myeloid leukemia (AML). A few FLT3 kinase inhibitors are currently used in the clinic for AML patients. However, resistance to current FLT3 inhibitors has emerged, and strategies to overcome this resistance are required. Small molecules downregulating FLT3 protein level are reported, exhibiting antileukemic effects against AML cell lines. Small molecules with various mechanisms such as Hsp90 inhibition, proteasome inhibition, RET inhibition, and USP10 inhibition are explained. In addition, reports of FLT3 as a client of Hsp90, current knowledge of the ubiquitin proteasome system for FLT3 degradation, the relationship with FLT3 phosphorylation status and susceptibility of FLT3 degradation are discussed.
Collapse
Affiliation(s)
- Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju-si 52828, Korea
| |
Collapse
|
67
|
Senapati J, Kadia TM. Which FLT3 Inhibitor for Treatment of AML? Curr Treat Options Oncol 2022; 23:359-380. [PMID: 35258791 DOI: 10.1007/s11864-022-00952-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
OPINION STATEMENT Treatment options in acute myeloid leukemia (AML) have improved significantly over the last decade with better understanding of disease biology and availability of a multitude of targeted therapies. The use of FLT3 inhibitors (FLT3i) in FLT3-mutated (FLT3mut) AML is one such development; however, the clinical decisions that govern their use and dictate the choice of the FLT3i are evolving. Midostaurin and gilteritinib are FDA-approved in specific situations; however, available data from clinical trials also shed light on the utility of sorafenib maintenance post-allogeneic stem cell transplantation (allo-SCT) and quizartinib as part of combination therapy in FLT3mut AML. The knowledge of the patient's concurrent myeloid mutations, type of FLT3 mutation, prior FLT3i use, and eligibility for allo-SCT helps to refine the choice of FLT3i. Data from ongoing studies will further precisely define their use and help in making more informed choices. Despite improvements in FLT3i therapy, the definitive aim is to enable the eligible patient with FLT3mut AML (esp. ITD) to proceed to allo-SCT with regimens containing FLT3i incorporated prior to SCT and as maintenance after SCT.
Collapse
Affiliation(s)
- Jayastu Senapati
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd. - Unit 428, Houston, 77030, USA
| | - Tapan Mahendra Kadia
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd. - Unit 428, Houston, 77030, USA.
| |
Collapse
|
68
|
Xiang W, Lam YH, Periyasamy G, Chuah C. Application of High Throughput Technologies in the Development of Acute Myeloid Leukemia Therapy: Challenges and Progress. Int J Mol Sci 2022; 23:ijms23052863. [PMID: 35270002 PMCID: PMC8910862 DOI: 10.3390/ijms23052863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex hematological malignancy characterized by extensive heterogeneity in genetics, response to therapy and long-term outcomes, making it a prototype example of development for personalized medicine. Given the accessibility to hematologic malignancy patient samples and recent advances in high-throughput technologies, large amounts of biological data that are clinically relevant for diagnosis, risk stratification and targeted drug development have been generated. Recent studies highlight the potential of implementing genomic-based and phenotypic-based screens in clinics to improve survival in patients with refractory AML. In this review, we will discuss successful applications as well as challenges of most up-to-date high-throughput technologies, including artificial intelligence (AI) approaches, in the development of personalized medicine for AML, and recent clinical studies for evaluating the utility of integrating genomics-guided and drug sensitivity testing-guided treatment approaches for AML patients.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore; (W.X.); (Y.H.L.)
| | - Yi Hui Lam
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore; (W.X.); (Y.H.L.)
| | - Giridharan Periyasamy
- High Throughput Phenomics Platform, Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), Singapore 139632, Singapore;
| | - Charles Chuah
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore; (W.X.); (Y.H.L.)
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
69
|
Zhao JC, Agarwal S, Ahmad H, Amin K, Bewersdorf JP, Zeidan AM. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev 2022; 52:100905. [PMID: 34774343 PMCID: PMC9846716 DOI: 10.1016/j.blre.2021.100905] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/26/2023]
Abstract
FLT3 mutations are the most common genetic aberrations found in acute myeloid leukemia (AML) and associated with poor prognosis. Since the discovery of FLT3 mutations and their prognostic implications, multiple FLT3-targeted molecules have been evaluated. Midostaurin is approved in the U.S. and Europe for newly diagnosed FLT3 mutated AML in combination with standard induction and consolidation chemotherapy based on data from the RATIFY study. Gilteritinib is approved for relapsed or refractory FLT3 mutated AML as monotherapy based on the ADMIRAL study. Although significant progress has been made in the treatment of AML with FLT3-targeting, many challenges remain. Several drug resistance mechanisms have been identified, including clonal selection, stromal protection, FLT3-associated mutations, and off-target mutations. The benefit of FLT3 inhibitor maintenance therapy, either post-chemotherapy or post-transplant, remains controversial, although several studies are ongoing.
Collapse
Affiliation(s)
- Jennifer C Zhao
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Sonal Agarwal
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Hiba Ahmad
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Kejal Amin
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jan Philipp Bewersdorf
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
70
|
Role of Biomarkers in FLT3 AML. Cancers (Basel) 2022; 14:cancers14051164. [PMID: 35267471 PMCID: PMC8909069 DOI: 10.3390/cancers14051164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Genetically heterogeneous disorder acute myeloid leukemia (AML) is marked by recurring mutations in FLT3. Current FLT3 inhibitors and other emerging inhibitors have helped in the improvement of the quality of standard of care therapies; however, the overall survival of the patients remains static. This is due to numerous mutations in FLT3, which causes resistance against these FLT3 inhibitors. For effective treatment of AML patients, alternative approaches are required to overcome this resistance. Here, we will summarize the biomarkers for FLT3 inhibitors in AML, as well as the alternative measures to overcome resistance to the current therapies. Abstract Acute myeloid leukemia is a disease characterized by uncontrolled proliferation of clonal myeloid blast cells that are incapable of maturation to leukocytes. AML is the most common leukemia in adults and remains a highly fatal disease with a five-year survival rate of 24%. More than 50% of AML patients have mutations in the FLT3 gene, rendering FLT3 an attractive target for small-molecule inhibition. Currently, there are several FLT3 inhibitors in the clinic, and others remain in clinical trials. However, these inhibitors face challenges due to lack of efficacy against several FLT3 mutants. Therefore, the identification of biomarkers is vital to stratify AML patients and target AML patient population with a particular FLT3 mutation. Additionally, there is an unmet need to identify alternative approaches to combat the resistance to FLT3 inhibitors. Here, we summarize the current knowledge on the utilization of diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for FLT3-mutated AML. The resistance mechanisms to various FLT3 inhibitors and alternative approaches to combat this resistance are also discussed and presented.
Collapse
|
71
|
Novel potential oncogenic and druggable mutations of FGFRs recur in the kinase domain across cancer types. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166313. [PMID: 34826586 DOI: 10.1016/j.bbadis.2021.166313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) are recurrently altered by single nucleotide variants (SNVs) in many human cancers. The prevalence of SNVs in FGFRs depends on the cancer type. In some tumors, such as the urothelial carcinoma, mutations of FGFRs occur at very high frequency (up to 60%). Many characterized mutations occur in the extracellular or transmembrane domains, while fewer known mutations are found in the kinase domain. In this study, we performed a bioinformatics analysis to identify novel putative cancer driver or therapeutically actionable mutations of the kinase domain of FGFRs. To pinpoint those mutations that may be clinically relevant, we exploited the recurrence of alterations on analogous amino acid residues within the kinase domain (PK_Tyr_Ser-Thr) of different kinases as a predictor of functional impact. By exploiting MutationAligner and LowMACA bioinformatics resources, we highlighted novel uncharacterized mutations of FGFRs which recur in other protein kinases. By revealing unanticipated correspondence with known variants, we were able to infer their functional effects, as alterations clustering on similar residues in analogous proteins have a high probability to elicit similar effects. As FGFRs represent an important class of oncogenes and drug targets, our study opens the way for further studies to validate their driver and/or actionable nature and, in the long term, for a more efficacious application of precision oncology.
Collapse
|
72
|
Li X, Yang T, Hu M, Yang Y, Tang M, Deng D, Liu K, Fu S, Tan Y, Wang H, Chen Y, Zhang C, Guo Y, Peng B, Si W, Yang Z, Chen L. Synthesis and biological evaluation of 6-(pyrimidin-4-yl)-1H-pyrazolo[4,3-b]pyridine derivatives as novel dual FLT3/CDK4 inhibitors. Bioorg Chem 2022; 121:105669. [DOI: 10.1016/j.bioorg.2022.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/02/2022]
|
73
|
The IL-3, IL-5, and GM-CSF common receptor beta chain mediates oncogenic activity of FLT3-ITD-positive AML. Leukemia 2022; 36:701-711. [PMID: 34750506 PMCID: PMC8885422 DOI: 10.1038/s41375-021-01462-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022]
Abstract
FLT3-ITD is the most predominant mutation in AML being expressed in about one-third of AML patients and is associated with a poor prognosis. Efforts to better understand FLT3-ITD downstream signaling to possibly improve therapy response are needed. We have previously described FLT3-ITD-dependent phosphorylation of CSF2RB, the common receptor beta chain of IL-3, IL-5, and GM-CSF, and therefore examined its significance for FLT3-ITD-dependent oncogenic signaling and transformation. We discovered that FLT3-ITD directly binds to CSF2RB in AML cell lines and blasts isolated from AML patients. A knockdown of CSF2RB in FLT3-ITD positive AML cell lines as well as in a xenograft model decreased STAT5 phosphorylation, attenuated cell proliferation, and sensitized to FLT3 inhibition. Bone marrow from CSF2RB-deficient mice transfected with FLT3-ITD displayed decreased colony formation capacity and delayed disease onset together with increased survival upon transplantation into lethally irradiated mice. FLT3-ITD-dependent CSF2RB phosphorylation required phosphorylation of the FLT3 juxtamembrane domain at tyrosines 589 or 591, whereas the ITD insertion site and sequence were of no relevance. Our results demonstrate that CSF2RB participates in FLT3-ITD-dependent oncogenic signaling and transformation in vitro and in vivo. Thus, CSF2RB constitutes a rational treatment target in FLT3-ITD-positive AML.
Collapse
|
74
|
Al-Ali Z, Mohammed B. Relation between FMS-like tyrosine kinase 3 factor and hematological parameter in acute lymphoblastic leukemia patients by flow cytometry. IRAQI JOURNAL OF HEMATOLOGY 2022. [DOI: 10.4103/ijh.ijh_49_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
75
|
|
76
|
Sun J, Ning S, Feng R, Li J, Wang T, Xing B, Zhu X, Zhao Y, Pei L, Liu H. Acute myeloid leukemia with cup-like blasts and FLT3-ITD and NPM1 mutations mimics features of acute promyelocytic leukemia: a case of durable remission after sorafenib and low-dose cytarabine. Anticancer Drugs 2022; 33:e813-e817. [PMID: 34459465 PMCID: PMC8670335 DOI: 10.1097/cad.0000000000001228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/11/2021] [Indexed: 11/25/2022]
Abstract
Some previous researches raised the possibility of a novel acute myeloid leukemia (AML) entity presenting cup-like cytomorphology with mutations of both FLT3 and NPM1 or one of them. However, the clinical implications of this subtype remain unknown. We describe a 63-year-old patient belonging to this distinct AML subtype, who presented similar features of acute promyelocytic leukemia (APL) including nuclear morphology, negative for CD34 and HLA-DR, and abnormal coagulation. He had no response to both arsenic trioxide and CAG regimen (cytarabine, aclarubicin, and G-CSF). Given that the patient carried the FLT3-ITD mutation, we switched to a pilot treatment of FLT3 inhibitor sorafenib combined with low-dose cytarabine (LDAC). To date, the patient achieved durable complete remission over 58 months. These findings suggest that AML with cup-like blasts and FLT3-ITD and NPM1 mutations mimic APL, and the prognosis of this subtype may be improved by sorafenib combined with LDAC.
Collapse
Affiliation(s)
- Jie Sun
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
- Graduate School of Peking Union Medical College
| | - Shangyong Ning
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Jiangtao Li
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Ting Wang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Baoli Xing
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Xiaoquan Zhu
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dongcheng District, Beijing, China
| | - Yanyang Zhao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Dongcheng District, Beijing, China
| | - Lei Pei
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
- Graduate School of Peking Union Medical College
| |
Collapse
|
77
|
Incorporation of FLT3 Inhibitors Into the Treatment Regimens for FLT3 Mutated Acute Myeloid Leukemia. Cancer J 2022; 28:14-20. [DOI: 10.1097/ppo.0000000000000576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
78
|
Hu S, Liu J, Chen S, Gao J, Zhou Y, Liu T, Dong X. Discover Novel Covalent Inhibitors Targeting FLT3 through Hybrid Virtual Screening Strategy. Biol Pharm Bull 2021; 44:1872-1877. [PMID: 34853270 DOI: 10.1248/bpb.b21-00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) plays a very important role in regulating the proliferation, differentiation and survival of normal hematopoietic stem cells. Internal tandem duplications of the FLT3 gene (FLT3-ITD) mutations are present in 25% of all acute myeloid leukemia (AML) patients and are frequently associated with adverse clinical outcomes. Therefore, FLT3-ITD is a promising target for the treatment of AML. The use of covalent virtual screenings has shown that efficient rational approaches for the rapid discovery of new drugs scaffold. Herein, we report a hybrid virtual screening strategy that led to the discovery of FLT3 inhibitors. Using the combination of non-covalent docking and covalent docking, 8 compounds were found to inhibit FLT3, and G856-8335, S346-0154 are also effective against mutant FLT3. These two compounds also show selectivity to receptor tyrosine kinase (C-KIT), which has the potential for optimization. And this work can be extended to the screening of other covalent inhibitors.
Collapse
Affiliation(s)
- Shengquan Hu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University
| | - Jing Liu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University
| | - Sikang Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences
| | - Tao Liu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University.,Cancer Center, Zhejiang University.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University
| |
Collapse
|
79
|
Lv K, Ren JG, Han X, Gui J, Gong C, Tong W. Depalmitoylation rewires FLT3-ITD signaling and exacerbates leukemia progression. Blood 2021; 138:2244-2255. [PMID: 34111291 PMCID: PMC8832469 DOI: 10.1182/blood.2021011582] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Internal tandem duplication within FLT3 (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and correlates with a poor prognosis. Whereas the FLT3 receptor tyrosine kinase is activated at the plasma membrane to transduce PI3K/AKT and RAS/MAPK signaling, FLT3-ITD resides in the endoplasmic reticulum and triggers constitutive STAT5 phosphorylation. Mechanisms underlying this aberrant FLT3-ITD subcellular localization or its impact on leukemogenesis remain poorly established. In this study, we discovered that FLT3-ITD is S-palmitoylated by the palmitoyl acyltransferase ZDHHC6. Disruption of palmitoylation redirected FLT3-ITD to the plasma membrane and rewired its downstream signaling by activating AKT and extracellular signal-regulated kinase pathways in addition to STAT5. Consequently, abrogation of palmitoylation increased FLT3-ITD-mediated progression of leukemia in xenotransplant-recipient mouse models. We further demonstrate that FLT3 proteins were palmitoylated in primary human AML cells. ZDHHC6-mediated palmitoylation restrained FLT3-ITD surface expression, signaling, and colonogenic growth of primary FLT3-ITD+ AML. More important, pharmacological inhibition of FLT3-ITD depalmitoylation synergized with the US Food and Drug Administration-approved FLT3 kinase inhibitor gilteritinib in abrogating the growth of primary FLT3-ITD+ AML cells. These findings provide novel insights into lipid-dependent compartmentalization of FLT3-ITD signaling in AML and suggest targeting depalmitoylation as a new therapeutic strategy to treat FLT3-ITD+ leukemias.
Collapse
Affiliation(s)
- Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jian-Gang Ren
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; and
| | - Xu Han
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jun Gui
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chujie Gong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
80
|
Discovery of a Benzimidazole-based Dual FLT3/TrKA Inhibitor Targeting Acute Myeloid Leukemia. Bioorg Med Chem 2021; 56:116596. [DOI: 10.1016/j.bmc.2021.116596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
|
81
|
Wintering A, Dvorak CC, Stieglitz E, Loh ML. Juvenile myelomonocytic leukemia in the molecular era: a clinician's guide to diagnosis, risk stratification, and treatment. Blood Adv 2021; 5:4783-4793. [PMID: 34525182 PMCID: PMC8759142 DOI: 10.1182/bloodadvances.2021005117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/03/2021] [Indexed: 12/03/2022] Open
Abstract
Juvenile myelomonocytic leukemia is an overlapping myeloproliferative and myelodysplastic disorder of early childhood . It is associated with a spectrum of diverse outcomes ranging from spontaneous resolution in rare patients to transformation to acute myeloid leukemia in others that is generally fatal. This unpredictable clinical course, along with initially descriptive diagnostic criteria, led to decades of productive international research. Next-generation sequencing now permits more accurate molecular diagnoses in nearly all patients. However, curative treatment is still reliant on allogeneic hematopoietic cell transplantation for most patients, and additional advances will be required to improve risk stratification algorithms that distinguish those that can be observed expectantly from others who require swift hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Astrid Wintering
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
| | - Christopher C. Dvorak
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA; and
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| |
Collapse
|
82
|
FLT3-ITD transduces autonomous growth signals during its biosynthetic trafficking in acute myelogenous leukemia cells. Sci Rep 2021; 11:22678. [PMID: 34811450 PMCID: PMC8608843 DOI: 10.1038/s41598-021-02221-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) in hematopoietic cells binds to its ligand at the plasma membrane (PM), then transduces growth signals. FLT3 gene alterations that lead the kinase to assume its permanently active form, such as internal tandem duplication (ITD) and D835Y substitution, are found in 30–40% of acute myelogenous leukemia (AML) patients. Thus, drugs for molecular targeting of FLT3 mutants have been developed for the treatment of AML. Several groups have reported that compared with wild-type FLT3 (FLT3-wt), FLT3 mutants are retained in organelles, resulting in low levels of PM localization of the receptor. However, the precise subcellular localization of mutant FLT3 remains unclear, and the relationship between oncogenic signaling and the mislocalization is not completely understood. In this study, we show that in cell lines established from leukemia patients, endogenous FLT3-ITD but not FLT3-wt clearly accumulates in the perinuclear region. Our co-immunofluorescence assays demonstrate that Golgi markers are co-localized with the perinuclear region, indicating that FLT3-ITD mainly localizes to the Golgi region in AML cells. FLT3-ITD biosynthetically traffics to the Golgi apparatus and remains there in a manner dependent on its tyrosine kinase activity. Tyrosine kinase inhibitors, such as quizartinib (AC220) and midostaurin (PKC412), markedly decrease FLT3-ITD retention and increase PM levels of the mutant. FLT3-ITD activates downstream in the endoplasmic reticulum (ER) and the Golgi apparatus during its biosynthetic trafficking. Results of our trafficking inhibitor treatment assays show that FLT3-ITD in the ER activates STAT5, whereas that in the Golgi can cause the activation of AKT and ERK. We provide evidence that FLT3-ITD signals from the early secretory compartments before reaching the PM in AML cells.
Collapse
|
83
|
Fleischmann M, Schnetzke U, Hochhaus A, Scholl S. Management of Acute Myeloid Leukemia: Current Treatment Options and Future Perspectives. Cancers (Basel) 2021; 13:5722. [PMID: 34830877 PMCID: PMC8616498 DOI: 10.3390/cancers13225722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) has improved in recent years and several new therapeutic options have been approved. Most of them include mutation-specific approaches (e.g., gilteritinib for AML patients with activating FLT3 mutations), or are restricted to such defined AML subgroups, such as AML-MRC (AML with myeloid-related changes) or therapy-related AML (CPX-351). With this review, we aim to present a comprehensive overview of current AML therapy according to the evolved spectrum of recently approved treatment strategies. We address several aspects of combined epigenetic therapy with the BCL-2 inhibitor venetoclax and provide insight into mechanisms of resistance towards venetoclax-based regimens, and how primary or secondary resistance might be circumvented. Furthermore, a detailed overview on the current status of AML immunotherapy, describing promising concepts, is provided. This review focuses on clinically important aspects of current and future concepts of AML treatment, but will also present the molecular background of distinct targeted therapies, to understand the development and challenges of clinical trials ongoing in AML patients.
Collapse
Affiliation(s)
| | | | | | - Sebastian Scholl
- Klinik für Innere Medizin II, Abteilung Hämatologie und Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07740 Jena, Germany; (M.F.); (U.S.); (A.H.)
| |
Collapse
|
84
|
Liu Y, Chen Y, Huang S, Ma X, Huang X, Wang X, Zhou F. Rapid and Sensitive Diagnosis of Drug-Resistant FLT3-F691L Mutation by CRISPR Detection. Front Mol Biosci 2021; 8:753276. [PMID: 34760927 PMCID: PMC8574994 DOI: 10.3389/fmolb.2021.753276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
Sensitive and efficient detection of drug-resistant mutations is essential in cancer precision medicine. In treating acute myeloid leukemia (AML), FLT3 gene F691L mutation shows universal resistance to all currently available FLT3 inhibitors. However, there is no particular detection method for FLT3-F691L. Commonly-used first-generation sequencing (FGS) approaches have low sensitivity, and next-generation sequencing (NGS) is time-consuming. Herein, we developed an accurate and sensitive FLT3-F691L diagnostic method by CRISPR detection. Briefly, the FLT3-691 region is amplified by recombinase polymerase amplification (RPA) and detected by L691-crRNA induced Cas12a reaction, and finally the result can be directly observed under a blue lamp or analyzed by a fluorescence reader. Confirmed by the tests on diluted plasmids and 120 AML patient samples, this method can achieve a sensitivity of 0.1% and complete the whole diagnosis process within 40 min. Potentially, this method will play an important role in point-of-care applications and guidance of AML treatment.
Collapse
Affiliation(s)
- Yin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanling Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaodong Ma
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, South China Normal University, Ministry of Education, Guangzhou, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xinjie Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Institute for Brain Research and Rehabilitation, South China Normal University, Ministry of Education, Guangzhou, China.,Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciencesn, Shenzhen, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
85
|
Modulation of FLT3-ITD Localization and Targeting of Distinct Downstream Signaling Pathways as Potential Strategies to Overcome FLT3-Inhibitor Resistance. Cells 2021; 10:cells10112992. [PMID: 34831215 PMCID: PMC8616352 DOI: 10.3390/cells10112992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES: Internal tandem duplications (ITDs) of the Fms-like tyrosine kinase 3 (FLT3) represent the most frequent molecular aberrations in acute myeloid leukemia (AML) and are associated with an inferior prognosis. The pattern of downstream activation by this constitutively activated receptor tyrosine kinase is influenced by the localization of FLT3-ITD depending on its glycosylation status. Different pharmacological approaches can affect FLT3-ITD-driven oncogenic pathways by the modulation of FLT3-ITD localization. AIMS: The objective of this study was to investigate the effects of N-glycosylation inhibitors (tunicamycin or 2-deoxy-D-glucose) or the histone deacetylase inhibitor valproic acid (VPA) on FLT3-ITD localization and downstream activity. We sought to determine the potential differences between the distinct FLT3-ITD variants, particularly concerning their susceptibility towards combined treatment by addressing either N-glycosylation and the heat shock protein 90 (HSP90) by 17-AAG, or by targeting the PI3K/AKT/mTOR pathway by rapamycin after treatment with VPA. METHODS: Murine Ba/F3 leukemia cell lines were stably transfected with distinct FLT3-ITD variants resulting in IL3-independent growth. These Ba/F3 FLT3-ITD cell lines or FLT3-ITD-expressing human MOLM13 cells were exposed to tunicamycin, 2-deoxy-D-glucose or VPA, and 17-AAG or rapamycin, and characterized in terms of downstream signaling by immunoblotting. FLT3 surface expression, apoptosis, and metabolic activity were analyzed by flow cytometry or an MTS assay. Proteome analysis by liquid chromatography–tandem mass spectrometry was performed to assess differential protein expression. RESULTS: The susceptibility of FLT3-ITD-expressing cells to 17-AAG after pre-treatment with tunicamycin or 2-deoxy-D-glucose was demonstrated. Importantly, in Ba/F3 cells that were stably expressing distinct FLT3-ITD variants that were located either in the juxtamembrane domain (JMD) or in the tyrosine kinase 1 domain (TKD1), response to the sequential treatments with tunicamycin and 17-AAG varied between individual FLT3-ITD motifs without dependence on the localization of the ITD. In all of the FLT3-ITD cell lines that were investigated, incubation with tunicamycin was accompanied by intracellular retention of FLT3-ITD due to the inhibition of glycosylation. In contrast, treatment of Ba/F3-FLT3-ITD cells with VPA was associated with a significant increase of FLT3-ITD surface expression depending on FLT3 protein synthesis. The allocation of FLT3 to different cellular compartments that was induced by tunicamycin, 2-deoxy-D-glucose, or VPA resulted in the activation of distinct downstream signaling pathways. Whole proteome analyses of Ba/F3 FLT3-ITD cells revealed up-regulation of the relevant chaperone proteins (e.g., calreticulin, calnexin, HSP90beta1) that are directly involved in the stabilization of FLT3-ITD or in its retention in the ER compartment. CONCLUSION: The allocation of FLT3-ITD to different cellular compartments and targeting distinct downstream signaling pathways by combined treatment with N-glycosylation and HSP90 inhibitors or VPA and rapamycin might represent new therapeutic strategies to overcome resistance towards tyrosine kinase inhibitors in FLT3-ITD-positive AML. The treatment approaches addressing N-glycosylation of FLT3-ITD appear to depend on patient-specific FLT3-ITD sequences, potentially affecting the efficacy of such pharmacological strategies.
Collapse
|
86
|
Fang DD, Zhu H, Tang Q, Wang G, Min P, Wang Q, Li N, Yang D, Zhai Y. FLT3 inhibition by olverembatinib (HQP1351) downregulates MCL-1 and synergizes with BCL-2 inhibitor lisaftoclax (APG-2575) in preclinical models of FLT3-ITD mutant acute myeloid leukemia. Transl Oncol 2021; 15:101244. [PMID: 34710737 PMCID: PMC8556530 DOI: 10.1016/j.tranon.2021.101244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
Introduction FLT3-ITD mutations occur in approximately 25% of patients with acute myeloid leukemia (AML) and are associated with poor prognosis. Despite initial efficacy, short duration of response and high relapse rates limit clinical use of selective FLT3 inhibitors. Combination approaches with other targeted therapies may achieve better clinical outcomes. Materials and methods Anti-leukemic activity of multikinase inhibitor olverembatinib (HQP1351), alone or in combination with BCL-2 inhibitor lisaftoclax (APG-2575), was evaluated in FLT3-ITD mutant AML cell lines in vitro and in vivo. A patient-derived FLT3-ITD mutant AML xenograft model was also used to assess the anti-leukemic activity of this combination. Results HQP1351 potently induced apoptosis and inhibited FLT3 signaling in FLT3-ITD mutant AML cell lines MV-4-11 and MOLM-13. HQP1351 monotherapy also significantly suppressed growth of FLT3-ITD mutant AML xenograft tumors and prolonged survival of tumor-bearing mice. HQP1351 and APG-2575 synergistically induced apoptosis in FLT3-ITD mutant AML cells and suppressed growth of MV-4–11 xenograft tumors. Combination therapy improved survival of tumor bearing-mice in a systemic MOLM-13 model and showed synergistic anti-leukemic effects in a patient-derived FLT3-ITD mutant AML xenograft model. Mechanistically, HQP1351 downregulated expression of myeloid-cell leukemia 1 (MCL-1) by suppressing FLT3-STAT5 (signal transducer and activator of transcription 5) signaling and thus enhanced APG-2575-induced apoptosis in FLT3-ITD mutant AML cells. Conclusions FLT3 inhibition by HQP1351 downregulates MCL-1 and synergizes with BCL-2 inhibitor APG-2575 to potentiate cellular apoptosis in FLT3-ITD mutant AML. Our findings provide a scientific rationale for further clinical investigation of HQP1351 combined with APG-2575 in patients with FLT3-ITD mutant AML.
Collapse
Affiliation(s)
- Douglas D Fang
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Hengrui Zhu
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Qiuqiong Tang
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Guangfeng Wang
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Ping Min
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Qixin Wang
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Na Li
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Dajun Yang
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China.
| |
Collapse
|
87
|
Ye MT, Zhu J, Luo DX, Wang Y, Chen Z, Yang Y, Tian C, Zhang Y, You MJ. B-Lymphoblastic Leukemia With Aberrant CD5 Expression. Am J Clin Pathol 2021; 156:586-595. [PMID: 33822875 DOI: 10.1093/ajcp/aqaa269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES B-acute lymphoblastic leukemia (B-ALL) is a neoplasm of precursor lymphoid cells committed to the B-lineage. Expression of CD5 is rare in B-ALL. METHODS We studied the clinicopathologic, immunophenotypic, and molecular genetic features of 10 cases of B-ALL with aberrant CD5 expression, and compared with CD5-B-ALL. RESULTS B-ALL with aberrant CD5 expression is rare and predominantly affects men. Patients with CD5+ B-ALL had shorter median overall survival (21 vs 45 months, P = .0003). Expression of CD5 imposed a challenge in the differential diagnoses between B-ALL and other CD5+ B-cell lymphomas with blastic morphology. Dim CD20 and CD45, lack of surface immunoglobulin, expression of CD34 and TdT, negative immunostain for cyclin D1, and absence of t(11;14)(q13;q32) support a diagnosis of B-ALL. CONCLUSIONS CD5 expression is rare in B-ALL and associated with poor clinical outcome. CD5+ B-ALL represents a distinct entity that needs to be considered in the differential diagnoses of CD5+ B-cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- Matthew T Ye
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Zhu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - David X Luo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, and Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zehui Chen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, and Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yaling Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chen Tian
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, and Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yizhuo Zhang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, and Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
88
|
Tang G, Tam W, Short NJ, Bose P, Wu D, Hurwitz SN, Bagg A, Rogers HJ, Hsi ED, Quesada AE, Wang W, Miranda RN, Bueso-Ramos CE, Medeiros LJ, Nardi V, Hasserjian RP, Arber DA, Orazi A, Foucar K, Wang SA. Myeloid/lymphoid neoplasms with FLT3 rearrangement. Mod Pathol 2021; 34:1673-1685. [PMID: 33990705 DOI: 10.1038/s41379-021-00817-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Myeloid/lymphoid neoplasms (M/LN) with 13q12/FLT3 rearrangement have been suggested as candidates for possible inclusion in the World Health Organization classification group of M/LN with eosinophilia (M/LN-eo). We report 12 patients with confirmed FLT3 rearrangement, six with t(12;13)/ETV6-FLT3; one with ins(13;22)/BCR-FLT3; and five with an unconfirmed partner gene located on chromosome bands 2p16, 3q27, 5q15, 5q35, and 7q36. Disease presentations were heterogeneous, including lymphoblastic leukemia/lymphoma, myeloid sarcoma, chronic eosinophilic leukemia, chronic myelomonocytic leukemia, and myelodysplastic syndrome. However, some common features were observed, such as extramedullary involvement (n = 7, 58%), associated eosinophilia in blood, bone marrow, or tissue (n = 8, 67%), multilineage involvement, either as biphasic myeloid/lymphoid neoplasms (n = 2) or mixed phenotype acute leukemia (n = 2). Mutations were detected in 4/8 (50%) patients by next-generation sequencing. None (0/10) had FLT3 or KIT mutations. Eleven patients received disease-based chemotherapy or hypomethylating agents, three received FLT3 inhibitors, and five patients proceeded to hematopoietic stem cell transplant. Together with a review of 16 cases published in the literature, it is apparent that M/LNs with FLT3 rearrangement show disease features reminiscent of members in the category of M/LN-eo with PDGFRA, PDGFRB, FGFR1, and PCM1/JAK2 rearrangement, characterized by a specific gene rearrangement, frequent eosinophilia, multi-lineage involvement and therapeutic benefit from kinase inhibitors.
Collapse
Affiliation(s)
- Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stephanie N Hurwitz
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Eric D Hsi
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Andres E Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Kathryn Foucar
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
89
|
Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, Hassanzadeh A, Baradaran B, Ahmadi M, Saeedi H, Tahmasebi S, Jarahian M. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther 2021; 12:465. [PMID: 34412685 PMCID: PMC8377882 DOI: 10.1186/s13287-021-02420-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, 54001, Iraq.,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, 56001, Iraq
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ali Hassanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy, No. 2, Floor 4 Unit (G401), 69120, Heidelberg, Germany.
| |
Collapse
|
90
|
Hosono N, Yokoyama H, Aotsuka N, Ando K, Iida H, Ishikawa T, Usuki K, Onozawa M, Kizaki M, Kubo K, Kuroda J, Kobayashi Y, Shimizu T, Chiba S, Nara M, Hata T, Hidaka M, Fujiwara SI, Maeda Y, Morita Y, Kusano M, Lu Q, Miyawaki S, Berrak E, Hasabou N, Naoe T. Gilteritinib versus chemotherapy in Japanese patients with FLT3-mutated relapsed/refractory acute myeloid leukemia. Int J Clin Oncol 2021; 26:2131-2141. [PMID: 34363558 PMCID: PMC8522999 DOI: 10.1007/s10147-021-02006-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Background Until recently, no effective targeted therapies for FLT3-mutated (FLT3mut+) relapsed/refractory (R/R) acute myeloid leukemia (AML) were available in Japan. The FLT3 inhibitor, gilteritinib, was approved in Japan for patients with FLT3mut+ R/R AML based on the phase 3 ADMIRAL trial, which demonstrated the superiority of gilteritinib over salvage chemotherapy (SC) with respect to overall survival (OS; median OS, 9.3 vs 5.6 months, respectively; hazard ratio, 0.64 [95% confidence interval 0.49, 0.83]; P < 0.001). Methods We evaluated the Japanese subgroup (n = 48) of the ADMIRAL trial, which included 33 patients randomized to 120-mg/day gilteritinib and 15 randomized to SC. Results Median OS was 14.3 months in the gilteritinib arm and 9.6 months in the SC arm. The complete remission/complete remission with partial hematologic recovery rate was higher in the gilteritinib arm (48.5%) than in the SC arm (13.3%). After adjustment for drug exposure, fewer adverse events (AEs) occurred in the gilteritinib arm than in the SC arm. Common grade ≥ 3 AEs related to gilteritinib were febrile neutropenia (36%), decreased platelet count (27%), and anemia (24%). Conclusion Findings in Japanese patients are consistent with those of the overall ADMIRAL study population.
Collapse
Affiliation(s)
- Naoko Hosono
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.
| | - Hisayuki Yokoyama
- Sendai Medical Center, Sendai, Japan.,Tohoku University, Sendai, Japan
| | | | - Kiyoshi Ando
- Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | - Masahiro Kizaki
- Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Kohmei Kubo
- Aomori Prefectural Central Hospital, Aomori, Japan
| | - Junya Kuroda
- Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukio Kobayashi
- International University of Health and Welfare (IUHW), Mita Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | - Qiaoyang Lu
- Astellas Pharma US, Inc., Northbrook, IL, USA
| | | | | | | | | |
Collapse
|
91
|
Al-Subaie AM, Kamaraj B. The Structural Effect of FLT3 Mutations at 835th Position and Their Interaction with Acute Myeloid Leukemia Inhibitors: In Silico Approach. Int J Mol Sci 2021; 22:7602. [PMID: 34299222 PMCID: PMC8303888 DOI: 10.3390/ijms22147602] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) gene mutations have been found in more than one-third of Acute Myeloid Leukemia (AML) cases. The most common point mutation in FLT3 occurs at the 835th residue (D835A/E/F/G/H/I/N/V/Y), in the activation loop region. The D835 residue is critical in maintaining FLT3 inactive conformation; these mutations might influence the interaction with clinically approved AML inhibitors used to treat the AML. The molecular mechanism of each of these mutations and their interactions with AML inhibitors at the atomic level is still unknown. In this manuscript, we have investigated the structural consequence of native and mutant FLT-3 proteins and their molecular mechanisms at the atomic level, using molecular dynamics simulations (MDS). In addition, we use the molecular docking method to investigate the binding pattern between the FLT-3 protein and AML inhibitors upon mutations. This study apparently elucidates that, due to mutations in the D835, the FLT-3 structure loses its conformation and becomes more flexible compared to the native FLT3 protein. These structural changes are suggested to contribute to the relapse and resistance responses to AML inhibitors. Identifying the effects of FLT3 at the molecular level will aid in developing a personalized therapeutic strategy for treating patients with FLT-3-associated AML.
Collapse
Affiliation(s)
- Abeer M. Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia
| |
Collapse
|
92
|
Hogan FL, Williams V, Knapper S. FLT3 Inhibition in Acute Myeloid Leukaemia - Current Knowledge and Future Prospects. Curr Cancer Drug Targets 2021; 20:513-531. [PMID: 32418523 DOI: 10.2174/1570163817666200518075820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 12/20/2022]
Abstract
Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in 30% of acute myeloid leukaemia (AML) patients at diagnosis and confer an adverse clinical prognosis. Mutated FLT3 has emerged as a viable therapeutic target and a number of FLT3-directed tyrosine kinase inhibitors have progressed through clinical development over the last 10-15 years. The last two years have seen United States Food and Drug Administration (US FDA) approvals of the multi-kinase inhibitor midostaurin for newly-diagnosed FLT3-mutated patients, when used in combination with intensive chemotherapy, and of the more FLT3-selective agent gilteritinib, used as monotherapy, for patients with relapsed or treatment-refractory FLT3-mutated AML. The 'second generation' agents, quizartinib and crenolanib, are also at advanced stages of clinical development. Significant challenges remain in negotiating a variety of potential acquired drug resistance mechanisms and in optimizing sequencing of FLT3 inhibitory drugs with existing and novel treatment approaches in different clinical settings, including frontline therapy, relapsed/refractory disease, and maintenance treatment. In this review, the biology of FLT3, the clinical challenge posed by FLT3-mutated AML, the developmental history of the key FLT3-inhibitory compounds, mechanisms of disease resistance, and the future outlook for this group of agents, including current and planned clinical trials, is discussed.
Collapse
Affiliation(s)
- Francesca L Hogan
- Department of Haematology, University Hospital of Wales, Cardiff, United Kingdom
| | - Victoria Williams
- Department of Haematology, University Hospital of Wales, Cardiff, United Kingdom
| | - Steven Knapper
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
93
|
O'Brien G, Cruz-Garcia L, Zyla J, Brown N, Finnon R, Polanska J, Badie C. Kras mutations and PU.1 promoter methylation are new pathways in murine radiation-induced AML. Carcinogenesis 2021; 41:1104-1112. [PMID: 31646336 PMCID: PMC7422620 DOI: 10.1093/carcin/bgz175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Therapy-related and more specifically radiotherapy-associated acute myeloid leukaemia (AML) is a well-recognized potential complication of cytotoxic therapy for the treatment of a primary cancer. The CBA mouse model is used to study radiation leukaemogenesis mechanisms with Sfpi1/PU.1 deletion and point mutation already identified as driving events during AML development. To identify new pathways, we analysed 123 mouse radiation-induced AML (rAML) samples for the presence of mutations identified previously in human AML and found three genes to be mutated; Sfpi1 R235 (68%), Flt3-ITD (4%) and Kras G12 (3%), of which G12R was previously unreported. Importantly, a significant decrease in Sfpi1 gene expression is found almost exclusively in rAML samples without an Sfpi1 R235 mutation and is specifically associated with up-regulation of mir-1983 and mir-582-5p. Moreover, this down-regulation of Sfpi1 mRNA is negatively correlated with DNA methylation levels at specific CpG sites upstream of the Sfpi1 transcriptional start site. The down regulation of Sfpi1/PU.1 has also been reported in human AML cases revealing one common pathway of myeloid disruption between mouse and human AML where dysregulation of Sfpi1/PU.1 is a necessary step in AML development.
Collapse
Affiliation(s)
- Gráinne O'Brien
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Lourdes Cruz-Garcia
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Joanna Zyla
- Silesian University of Technology, Data Mining Division, Gliwice, Poland
| | - Natalie Brown
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Rosemary Finnon
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Joanna Polanska
- Silesian University of Technology, Data Mining Division, Gliwice, Poland
| | - Christophe Badie
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| |
Collapse
|
94
|
Zeng Z, Ly C, Daver N, Cortes J, Kantarjian HM, Andreeff M, Konopleva M. High-throughput proteomic profiling reveals mechanisms of action of AMG925, a dual FLT3-CDK4/6 kinase inhibitor targeting AML and AML stem/progenitor cells. Ann Hematol 2021; 100:1485-1496. [PMID: 33787984 DOI: 10.1007/s00277-021-04493-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022]
Abstract
FLT3 mutations, which are found in a third of patients with acute myeloid leukemia (AML), are associated with poor prognosis. Responses to currently available FLT3 inhibitors in AML patients are typically transient and followed by disease recurrence. Thus, FLT3 inhibitors with new inhibitory mechanisms are needed to improve therapeutic outcomes. AMG925 is a novel, potent, small-molecule dual inhibitor of FLT3 and CDK4/6. In this study. we determined the antileukemic effects and mechanisms of action of AMG925 in AML cell lines and primary samples, in particular AML stem/progenitor cells. AMG925 inhibited cell growth and promoted apoptosis in AML cells with or without FLT3 mutations. Reverse-phase protein array profiling confirmed its on-target effects on FLT3-CDK4/6-regulated pathways and identified unrevealed signaling network alterations in AML blasts and stem/progenitor cells in response to AMG925. Mass cytometry identified pathways that may confer resistance to AMG925 in phenotypically defined AML stem/progenitor cells and demonstrated that combined blockade of FLT3-CDK4/6 and AKT/mTOR signaling facilitated stem cell death. Our findings provide a rationale for the mechanism-based inhibition of FLT3-CDK4/6 and for combinatorial approaches to improve the efficacy of FLT3 inhibition in both FLT3 wild-type and FLT3-mutated AML.
Collapse
Affiliation(s)
- Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charlie Ly
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
95
|
The evolving concept of indications for allogeneic hematopoietic cell transplantation during first complete remission of acute myeloid leukemia. Bone Marrow Transplant 2021; 56:1257-1265. [PMID: 33686251 DOI: 10.1038/s41409-021-01247-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
The long-standing debate of whether patients with acute myeloid leukemia (AML) should proceed to allogeneic hematopoietic cell transplantation (HCT) during first complete remission (CR1) remains unsettled. Although allogeneic HCT during CR1 used to be recommended for those with intermediate or poor cytogenetics if they had a matched sibling donor, the concept of indications for allogeneic HCT during CR1 has been evolving by virtue of advances in understanding of the molecular pathogenesis of AML and innovations in transplantation practice attained over the last few decades. The incorporation of molecular profiles of leukemia has been shown to contribute to further refinements of risk classification that had previously relied mostly on cytogenetics, while the progress in transplantation procedures has made it possible to perform transplantations more safely even for patients without a matched sibling donor. These significant changes have underpinned the need to reappraise indications for allogeneic HCT during CR1 of AML. Improvements in clinical applications of genetic and measurable residual disease information as well as in transplantation technology are expected to further refine indications for allogeneic HCT during CR1, and thus promote an individualized approach for the treatment of AML.
Collapse
|
96
|
Targeted Therapeutic Approach Based on Understanding of Aberrant Molecular Pathways Leading to Leukemic Proliferation in Patients with Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22115789. [PMID: 34071627 PMCID: PMC8198876 DOI: 10.3390/ijms22115789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous hematopoietic neoplasm with various genetic abnormalities in myeloid stem cells leading to differentiation arrest and accumulation of leukemic cells in bone marrow (BM). The multiple genetic alterations identified in leukemic cells at diagnosis are the mainstay of World Health Organization classification for AML and have important prognostic implications. Recently, understanding of heterogeneous and complicated molecular abnormalities of the disease could lead to the development of novel targeted therapeutic agents. In the past years, gemtuzumab ozogamicin, BCL-2 inhibitors (venetovlax), IDH 1/2 inhibitors (ivosidenib and enasidenib) FLT3 inhibitors (midostaurin, gilteritinib, and enasidenib), and hedgehog signaling pathway inhibitors (gladegib) have received US Food and Drug Administration (FDA) approval for the treatment of AML. Especially, AML patients with elderly age and/or significant comorbidities are not currently suitable for intensive chemotherapy. Thus, novel therapeutic planning including the abovementioned target therapies could lead to improve clinical outcomes in the patients. In the review, we will present various important and frequent molecular abnormalities of AML and introduce the targeted agents of AML that received FDA approval based on the previous studies.
Collapse
|
97
|
Daver N, Venugopal S, Ravandi F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J 2021; 11:104. [PMID: 34045454 PMCID: PMC8159924 DOI: 10.1038/s41408-021-00495-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Approximately 30% of patients with newly diagnosed acute myeloid leukemia (AML) harbor mutations in the fms-like tyrosine kinase 3 (FLT3) gene. While the adverse prognostic impact of FLT3-ITDmut in AML has been clearly proven, the prognostic significance of FLT3-TKDmut remains speculative. Current guidelines recommend rapid molecular testing for FLT3mut at diagnosis and earlier incorporation of targeted agents to achieve deeper remissions and early consideration for allogeneic stem cell transplant (ASCT). Mounting evidence suggests that FLT3mut can emerge at any timepoint in the disease spectrum emphasizing the need for repetitive mutational testing not only at diagnosis but also at each relapse. The approval of multi-kinase FLT3 inhibitor (FLT3i) midostaurin with induction therapy for newly diagnosed FLT3mut AML, and a more specific, potent FLT3i, gilteritinib as monotherapy for relapsed/refractory (R/R) FLT3mut AML have improved outcomes in patients with FLT3mut AML. Nevertheless, the short duration of remission with single-agent FLT3i's in R/R FLT3mut AML in the absence of ASCT, limited options in patients refractory to gilteritinib therapy, and diverse primary and secondary mechanisms of resistance to different FLT3i's remain ongoing challenges that compel the development and rapid implementation of multi-agent combinatorial or sequential therapies for FLT3mut AML.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA.
| | - Sangeetha Venugopal
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
98
|
Gilteritinib: potent targeting of FLT3 mutations in AML. Blood Adv 2021; 4:1178-1191. [PMID: 32208491 DOI: 10.1182/bloodadvances.2019000174] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/26/2020] [Indexed: 01/13/2023] Open
Abstract
Since the discovery of FMS-like tyrosine kinase-3 (FLT3)-activating mutations as genetic drivers in acute myeloid leukemia (AML), investigators have tried to develop tyrosine kinase inhibitors that could effectively target FLT3 and alter the disease trajectory. Giltertinib (formerly known as ASP2215) is a novel compound that entered the field late, but moved through the developmental process with remarkable speed. In many ways, this drug's rapid development was facilitated by the large body of knowledge gained over the years from efforts to develop other FLT3 inhibitors. Single-agent gilteritinib, a potent and selective oral FLT3 inhibitor, improved the survival of patients with relapsed or refractory FLT3-mutated AML compared with standard chemotherapy. This continues to validate the approach of targeting FLT3 itself and establishes a new backbone for testing combination regimens. This review will frame the preclinical and clinical development of gilteritinib in the context of the lessons learned from its predecessors.
Collapse
|
99
|
A phase 1/2 study of the oral FLT3 inhibitor pexidartinib in relapsed/refractory FLT3-ITD-mutant acute myeloid leukemia. Blood Adv 2021; 4:1711-1721. [PMID: 32330242 DOI: 10.1182/bloodadvances.2020001449] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) tyrosine kinase inhibitors (TKIs) have activity in acute myeloid leukemia (AML) patients with FLT3 internal tandem duplication (ITD) mutations, but efficacy is limited by resistance-conferring kinase domain mutations. This phase 1/2 study evaluated the safety, tolerability, and efficacy of the oral FLT3 inhibitor PLX3397 (pexidartinib), which has activity against the FLT3 TKI-resistant F691L gatekeeper mutation in relapsed/refractory FLT3-ITD-mutant AML. Ninety patients were treated: 34 in dose escalation (part 1) and 56 in dose expansion (part 2). Doses of 800 to 5000 mg per day in divided doses were tested. No maximally tolerated dose was reached. Plasma inhibitory assay demonstrated that patients dosed with ≥3000 mg had sufficient levels of active drug in their trough plasma samples to achieve 95% inhibition of FLT3 phosphorylation in an FLT3-ITD AML cell line. Based on a plateau in drug exposure, the 3000-mg dose was chosen as the recommended phase 2 dose. The most frequently reported treatment-emergent adverse events were diarrhea (50%), fatigue (47%), and nausea (46%). Based on modified response criteria, the overall response rate to pexidartinib among all patients was 21%. Twenty-three percent of patients treated at ≥2000 mg responded. The overall composite complete response rate for the study was 11%. Six patients were successfully bridged to transplantation. Median overall survival (OS) of patients treated in dose expansion was 112 days (90% confidence interval [CI], 77-150 days), and median OS of responders with complete remission with or without recovery of blood counts was 265 days (90% CI, 170-422 days). This trial was registered at www.clinicaltrials.gov as #NCT01349049.
Collapse
|
100
|
Gilteritinib is a clinically active FLT3 inhibitor with broad activity against FLT3 kinase domain mutations. Blood Adv 2021; 4:514-524. [PMID: 32040554 DOI: 10.1182/bloodadvances.2019000919] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022] Open
Abstract
Gilteritinib is the first FMS-like tyrosine kinase 3 (FLT3) tyrosine kinase inhibitor (TKI) approved as monotherapy in acute myeloid leukemia with FLT3 internal tandem duplication and D835/I836 tyrosine kinase domain (TKD) mutations. Sequencing studies in patients have uncovered less common, noncanonical (NC) mutations in FLT3 and have implicated secondary TKD mutations in FLT3 TKI resistance. We report that gilteritinib is active against FLT3 NC and TKI resistance-causing mutations in vitro. A mutagenesis screen identified FLT3 F691L, Y693C/N, and G697S as mutations that confer moderate resistance to gilteritinib in vitro. Analysis of patients treated with gilteritinib revealed that 2/9 patients with preexisting NC FLT3 mutations responded and that secondary TKD mutations are acquired in a minority (5/31) of patients treated with gilteritinib. Four of 5 patients developed F691L mutations (all treated at <200 mg). These studies suggest that gilteritinib has broad activity against FLT3 mutations and limited vulnerability to resistance-causing FLT3 TKD mutations, particularly when used at higher doses.
Collapse
|