51
|
Central role of oxidative stress and its signaling pathways in causing and preventing acute lung injury*. Crit Care Med 2011; 39:2776-7. [DOI: 10.1097/ccm.0b013e31822b3a00] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
52
|
Lu Q, Sakhatskyy P, Grinnell K, Newton J, Ortiz M, Wang Y, Sanchez-Esteban J, Harrington EO, Rounds S. Cigarette smoke causes lung vascular barrier dysfunction via oxidative stress-mediated inhibition of RhoA and focal adhesion kinase. Am J Physiol Lung Cell Mol Physiol 2011; 301:L847-57. [PMID: 21984567 PMCID: PMC3233834 DOI: 10.1152/ajplung.00178.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/04/2011] [Indexed: 01/23/2023] Open
Abstract
Cigarette smoke (CS) is a major cause of chronic lung and cardiovascular diseases. Recent studies indicate that tobacco use is also a risk factor for acute lung injury (ALI) associated with blunt trauma. Increased endothelial cell (EC) permeability is a hallmark of ALI. CS increases EC permeability in vitro and in vivo; however, the underlying mechanism is not well understood. In this study, we found that only 6 h of exposure to CS impaired endothelial barrier function in vivo, an effect associated with increased oxidative stress in the lungs and attenuated by the antioxidant N-acetylcysteine (NAC). CS also exacerbated lipopolysaccharide (LPS)-induced increase in vascular permeability in vivo. Similar additive effects were also seen in cultured lung EC exposed to cigarette smoke extract (CSE) and LPS. We further demonstrated that CSE caused disruption of focal adhesion complexes (FAC), F-actin fibers, and adherens junctions (AJ) and decreased activities of RhoA and focal adhesion kinase (FAK) in cultured lung EC. CSE-induced inhibition of RhoA and FAK, endothelial barrier dysfunction, and disassembly of FAC, F-actin, and AJ were prevented by NAC. In addition, the deleterious effects of CSE on FAC, F-actin fibers, and AJ were blunted by overexpression of constitutively active RhoA and of FAK. Our data indicate that CS causes endothelial barrier dysfunction via oxidative stress-mediated inhibition of RhoA and FAK.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Department of Medicine, Alpert Medical School of Brown University, RI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Gurkan OU, He C, Zielinski R, Rabb H, King LS, Dodd-o JM, D'Alessio FR, Aggarwal N, Pearse D, Becker PM. Interleukin-6 mediates pulmonary vascular permeability in a two-hit model of ventilator-associated lung injury. Exp Lung Res 2011; 37:575-84. [PMID: 22044313 DOI: 10.3109/01902148.2011.620680] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To test the hypothesis that interleukin-6 (IL-6) contributes to the development of ventilator-associated lung injury (VALI), IL-6-deficient (IL6(-/-)) and wild-type control (WT) mice received intratracheal hydrochloric acid followed by randomization to mechanical ventilation (MV + IT HCl) or spontaneous ventilation (IT HCl). After 4 hours, injury was assessed by estimation of lung lavage protein concentration and total and differential cell counts, wet/dry lung weight ratio, pulmonary cell death, histologic inflammation score (LIS), and parenchymal myeloperoxidase (MPO) concentration. Vascular endothelial growth factor (VEGF) concentration was measured in lung lavage and homogenate, as IL-6 and stretch both regulate expression of this potent mediator of permeability. MV-induced increases in alveolar barrier dysfunction and lavage VEGF were attenuated in IL6(-/-) mice as compared with WT controls, whereas tissue VEGF concentration increased. The effects of IL-6 deletion on alveolar permeability and VEGF concentration were inflammation independent, as parenchymal MPO concentration, LIS, and lavage total and differential cell counts did not differ between WT and IL6(-/-) mice following MV + IT HCl. These data support a role for IL-6 in promoting VALI in this two-hit model. Strategies to interfere with IL-6 expression or signaling may represent important therapeutic targets to limit the injurious effects of MV in inflamed lungs.
Collapse
Affiliation(s)
- Ozlem U Gurkan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Su YW, Chiou WF, Chao SH, Lee MH, Chen CC, Tsai YC. Ligustilide prevents LPS-induced iNOS expression in RAW 264.7 macrophages by preventing ROS production and down-regulating the MAPK, NF-κB and AP-1 signaling pathways. Int Immunopharmacol 2011; 11:1166-72. [PMID: 21457761 DOI: 10.1016/j.intimp.2011.03.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
|
55
|
Zhao J, He D, Su Y, Berdyshev E, Chun J, Natarajan V, Zhao Y. Lysophosphatidic acid receptor 1 modulates lipopolysaccharide-induced inflammation in alveolar epithelial cells and murine lungs. Am J Physiol Lung Cell Mol Physiol 2011; 301:L547-56. [PMID: 21821728 DOI: 10.1152/ajplung.00058.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidic acid (LPA), a bioactive phospholipid, plays an important role in lung inflammation by inducing the release of chemokines and lipid mediators. Our previous studies have shown that LPA induces the secretion of interleukin-8 and prostaglandin E(2) in lung epithelial cells. Here, we demonstrate that LPA receptors contribute to lipopolysaccharide (LPS)-induced inflammation. Pretreatment with LPA receptor antagonist Ki16425 or downregulation of LPA receptor 1 (LPA(1)) by small-interfering RNA (siRNA) attenuated LPS-induced phosphorylation of p38 MAPK, I-κB kinase, and I-κB in MLE12 epithelial cells. In addition, the blocking of LPA(1) also suppressed LPS-induced IL-6 production. Furthermore, LPS treatment promoted interaction between LPA(1) and CD14, a LPS coreceptor, in a time- and dose-dependent manner. Disruption of lipid rafts attenuated the interaction between LPA(1) and CD14. Mice challenged with LPS increased plasma LPA levels and enhanced expression of LPA receptors in lung tissues. To further investigate the role of LPA receptors in LPS-induced inflammation, wild-type, or LPA(1)-deficient mice, or wild-type mice pretreated with Ki16425 were intratracheally challenged with LPS for 24 h. Knock down or inhibition of LPA(1) decreased LPS-induced IL-6 release in bronchoalveolar lavage (BAL) fluids and infiltration of cells into alveolar space compared with wild-type mice. However, no significant differences in total protein concentration in BAL fluids were observed. These results showed that knock down or inhibition of LPA(1) offered significant protection against LPS-induced lung inflammation but not against pulmonary leak as observed in the murine model for lung injury.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medicine, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Birukova AA, Zebda N, Fu P, Poroyko V, Cokic I, Birukov KG. Association between adherens junctions and tight junctions via Rap1 promotes barrier protective effects of oxidized phospholipids. J Cell Physiol 2011; 226:2052-62. [PMID: 21520057 DOI: 10.1002/jcp.22543] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previous studies showed that cyclopenthenone-containing products resulting from oxidation of a natural phospholipid, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent barrier-protective effects in the in vitro and in vivo models of lung endothelial cell (EC) barrier dysfunction, and these effects are associated with enhancement of peripheral actin cytoskeleton, cell-cell and cell-substrate contacts driven by activation of Rac and Cdc42 GTPases. Rap1 GTPase is another member of small GTPase family involved in control of cell-cell interactions; however, its involvement in EC barrier-protective effects by OxPAPC remains unknown. This study examined a role of Rap1 in regulation of OxPAPC-induced interactions in adherens junctions (AJ) and tight junctions (TJ) as a novel mechanism of EC barrier preservation in vitro and in vivo. Immunofluorescence analysis, subcellular fractionation, and co-immunoprecipitation assays indicate that OxPAPC promoted accumulation of AJ proteins: VE-cadherin, p120-catenin, and β-catenin; and TJ proteins: ZO-1, occludin, and JAM-A in the cell membrane, and induced novel cross-interactions between AJ and TJ protein complexes, that were dependent on OxPAPC-induced Rap1 activation. Inhibition of Rap1 function suppressed OxPAPC-mediated pulmonary EC barrier enhancement and AJ and TJ interactions in vitro, as well as inhibited protective effects of OxPAPC against ventilator-induced lung injury in vivo. These results show for the first time a role of Rap1-mediated association between adherens junctions and tight junction complexes in the OxPAPC-induced pulmonary vascular EC barrier protection.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Nassar T, Bdeir K, Yarovoi S, Fanne RA, Murciano JC, Idell S, Allen TC, Cines DB, Higazi AAR. tPA regulates pulmonary vascular activity through NMDA receptors. Am J Physiol Lung Cell Mol Physiol 2011; 301:L307-14. [PMID: 21571905 DOI: 10.1152/ajplung.00429.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tissue-type plasminogen activator (tPA) is a potent fibrinolytic enzyme used to treat acute coronary artery obstruction. However, tPA has shown limited utility in other disorders caused by thrombotic vascular occlusion, such as pulmonary embolism. We found that tPA caused dose-dependent effects on the contractility of pulmonary arterial rings that may affect its effectiveness as a thrombolytic agent. At low concentrations (1 nM), tPA stimulated pulmonary vascular contraction in response to phenylephrine, whereas at higher concentrations (20 nM) tPA inhibited pulmonary arterial contractility and promoted pulmonary vascular permeability through an interaction between its "docking site" and N-methyl d-aspartate receptor type 1 (NMDA-R1) expressed by pulmonary arteries. A hexapeptide derived from plasminogen activator inhibitor type 1 that blocked the docking site of tPA, but not its catalytic activity, inhibited its interaction with NMDA-R1, abolished inhibition of pulmonary artery contractility, attenuated vascular permeability, and facilitated fibrinolysis in a murine model of pulmonary embolism. Similar outcomes were seen using a tPA variant that lacks the docking site but retains catalytic activity. These data suggest that it is feasible to attenuate the deleterious extrafibrinolytic effects of tPA and improve its benefit:risk profile in the management of pulmonary embolism.
Collapse
Affiliation(s)
- Taher Nassar
- Dept. of Pathology and Laboratory Medicine, Univ. of Pennsylvania, 513A Stellar-Chance, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Shand FHW, Langenbach SY, Keenan CR, Ma SP, Wheaton BJ, Schuliga MJ, Ziogas J, Stewart AG. In vitro and in vivo evidence for anti-inflammatory properties of 2-methoxyestradiol. J Pharmacol Exp Ther 2010; 336:962-72. [PMID: 21177477 DOI: 10.1124/jpet.110.174854] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-Methoxyestradiol (2MEO) is an endogenous metabolite of 17β-estradiol that interacts with estrogen receptors and microtubules. It has acute anti-inflammatory activity in animal models that is not attributable to known antiproliferative or antiangiogenic actions. Because macrophages are central to the innate inflammatory response, we examined whether suppression of macrophage activation by 2MEO could account for some of its anti-inflammatory effects. Inflammatory mediator production stimulated by lipopolysaccharide (LPS) and interferon-γ in the J774 murine macrophage cell line or human monocytes was measured after treatment with 2MEO or the anti-inflammatory agent dexamethasone. The effect of these agents on LPS-induced acute lung inflammation in mice was also examined. 2MEO suppressed J774 macrophage interleukin-6 and prostaglandin E₂ production (by 30 and 47%, respectively, at 10 μM) and human monocyte tumor necrosis factor-α production (by 60% at 3 μM). Estradiol had no effect on J774 macrophage activation, nor did the estrogen receptor antagonist 7α-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17β-diol (ICI 182,780) prevent the effects of 2MEO. The actions of 2MEO were not mimicked by the microtubule-interfering agents colchicine or paclitaxel. In mice exposed to LPS, bronchoalveolar lavage protein content, a measure of vascular leak and epithelial injury, was reduced to a comparable extent (~54%) by treatment with 2MEO (150 mg · kg⁻¹) or dexamethasone (1 mg · kg⁻¹). In addition, 2MEO reduced LPS-induced interleukin-6 gene expression. Thus, 2MEO modulates macrophage activation in vitro and has high-dose acute anti-inflammatory activity in vivo. These findings are consistent with the acute anti-inflammatory actions of 2MEO being mediated in part by the suppression of macrophage activation.
Collapse
Affiliation(s)
- F H W Shand
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Birukova AA, Zebda N, Cokic I, Fu P, Wu T, Dubrovskyi O, Birukov KG. p190RhoGAP mediates protective effects of oxidized phospholipids in the models of ventilator-induced lung injury. Exp Cell Res 2010; 317:859-72. [PMID: 21111731 DOI: 10.1016/j.yexcr.2010.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/01/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
Products resulting from oxidation of cell membrane phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exhibit potent protective effects against lung endothelial cell (EC) barrier dysfunction caused by pathologically relevant mechanical forces and inflammatory agents. These effects were linked to enhancement of peripheral cytoskeleton and cell adhesion interactions mediated by small GTPase Rac and inhibition of Rho-mediated barrier-disruptive signaling. However, the mechanism of OxPAPC-induced, Rac-dependent Rho downregulation critical for vascular barrier protection remains unclear. This study tested the hypothesis that Rho negative regulator p190RhoGAP is essential for OxPAPC-induced lung barrier protection against ventilator-induced lung injury (VILI), and investigated potential mechanism of p190RhoGAP targeting to adherens junctions (AJ) via p120-catenin. OxPAPC induced peripheral translocation of p190RhoGAP, which was abolished by knockdown of Rac-specific guanine nucleotide exchange factors Tiam1 and Vav2. OxPAPC also induced Rac-dependent tyrosine phosphorylation and association of p190RhoGAP with AJ protein p120-catenin. siRNA-induced knockdown of p190RhoGAP attenuated protective effects of OxPAPC against EC barrier compromise induced by thrombin and pathologically relevant cyclic stretch (18% CS). In vivo, p190RhoGAP knockdown significantly attenuated protective effects of OxPAPC against ventilator-induced lung vascular leak, as detected by increased cell count and protein content in the bronchoalveolar lavage fluid, and tissue neutrophil accumulation in the lung. These results demonstrate for the first time a key role of p190RhoGAP for the vascular endothelial barrier protection in VILI.
Collapse
Affiliation(s)
- Anna A Birukova
- Lung Injury Center, Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Xing J, Moldobaeva N, Birukova AA. Atrial natriuretic peptide protects against Staphylococcus aureus-induced lung injury and endothelial barrier dysfunction. J Appl Physiol (1985) 2010; 110:213-24. [PMID: 21051573 DOI: 10.1152/japplphysiol.00284.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Lung inflammation and alterations in endothelial cell (EC) permeability are key events to development of acute lung injury (ALI). Protective effects of atrial natriuretic peptide (ANP) have been shown against inflammatory signaling and endothelial barrier dysfunction induced by gram-negative bacterial wall liposaccharide. We hypothesized that ANP may possess more general protective effects and attenuate lung inflammation and EC barrier dysfunction by suppressing inflammatory cascades and barrier-disruptive mechanisms shared by gram-negative and gram-positive pathogens. C57BL/6J wild-type or ANP knockout mice (Nppa-/-) were treated with gram-positive bacterial cell wall compounds, Staphylococcus aureus-derived peptidoglycan (PepG) and/or lipoteichoic acid (LTA) (intratracheal, 2.5 mg/kg each), with or without ANP (intravenous, 2 μg/kg). In vitro, human pulmonary EC barrier properties were assessed by morphological analysis of gap formation and measurements of transendothelial electrical resistance. LTA and PepG markedly increased pulmonary EC permeability and activated p38 and ERK1/2 MAP kinases, NF-κB, and Rho/Rho kinase signaling. EC barrier dysfunction was further elevated upon combined LTA and PepG treatment, but abolished by ANP pretreatment. In vivo, LTA and PepG-induced accumulation of protein and cells in the bronchoalveolar lavage fluid, tissue neutrophil infiltration, and increased Evans blue extravasation in the lungs was significantly attenuated by intravenous injection of ANP. Accumulation of bronchoalveolar lavage markers of LTA/PepG-induced lung inflammation and barrier dysfunction was further augmented in ANP-/- mice and attenuated by exogenous ANP injection. These results strongly suggest a protective role of ANP in the in vitro and in vivo models of ALI associated with gram-positive infection. Thus ANP may have important implications in therapeutic strategies aimed at the treatment of sepsis and ALI-induced gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Junjie Xing
- Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
61
|
Stitt-Fischer MS, Ungerman RK, Wilen DS, Wasserloos K, Renz LM, Raub SE, Peterson J, Pearce LL. Manganese superoxide dismutase is not protective in bovine pulmonary artery endothelial cells at systemic oxygen levels. Radiat Res 2010; 174:679-90. [PMID: 21128791 DOI: 10.1667/rr2062.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bovine pulmonary artery endothelial cells (BPAEC) are extremely sensitive to oxygen, mediated by superoxide production. Ionizing radiation is known to generate superoxide in oxygenated aqueous media; however, at systemic oxygen levels (3%), no oxygen enhancement is observed after irradiation. A number of markers (cell growth, alamarBlue, mitochondrial membrane polarization) for metabolic activity indicate that BPAEC maintained under 20% oxygen grow and metabolize more slowly than cells maintained under 3% oxygen. BPAEC cultured in 20% oxygen grow better when they are transiently transfected with either manganese superoxide dismutase (MnSOD) or copper zinc superoxide dismutase (CuZnSOD) and exhibit improved survival after irradiation (0.5-10 Gy). Furthermore, X irradiation of BPAEC grown in 20% oxygen results in very diffuse colony formation, which is completely ameliorated by either growth in 3% oxygen or overexpression of MnSOD. However, MnSOD overexpression in BPAEC grown in 3% oxygen provides no further radioprotection, as judged by clonogenic survival curves. Radiation does not increase apoptosis in BPAEC but inhibits cell growth and up-regulates p53 and p21 at either 3% or 20% oxygen.
Collapse
Affiliation(s)
- Molly S Stitt-Fischer
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219-3138, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Birukova AA, Xing J, Fu P, Yakubov B, Dubrovskyi O, Fortune JA, Klibanov AM, Birukov KG. Atrial natriuretic peptide attenuates LPS-induced lung vascular leak: role of PAK1. Am J Physiol Lung Cell Mol Physiol 2010; 299:L652-63. [PMID: 20729389 DOI: 10.1152/ajplung.00202.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Increased levels of atrial natriuretic peptide (ANP) in the models of sepsis, pulmonary edema, and acute respiratory distress syndrome (ARDS) suggest its potential role in the modulation of acute lung injury. We have recently described ANP-protective effects against thrombin-induced barrier dysfunction in pulmonary endothelial cells (EC). The current study examined involvement of the Rac effector p21-activated kinase (PAK1) in ANP-protective effects in the model of lung vascular permeability induced by bacterial wall LPS. C57BL/6J mice or ANP knockout mice (Nppa(-/-)) were treated with LPS (0.63 mg/kg intratracheal) with or without ANP (2 μg/kg iv). Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, Evans blue extravasation, and lung histology. Endothelial barrier properties were assessed by morphological analysis and measurements of transendothelial electrical resistance. ANP treatment stimulated Rac-dependent PAK1 phosphorylation, attenuated endothelial permeability caused by LPS, TNF-α, and IL-6, decreased LPS-induced cell and protein accumulation in bronchoalveolar lavage fluid, and suppressed Evans blue extravasation in the murine model of acute lung injury. More severe LPS-induced lung injury and vascular leak were observed in ANP knockout mice. In rescue experiments, ANP injection significantly reduced lung injury in Nppa(-/-) mice caused by LPS. Molecular inhibition of PAK1 suppressed the protective effects of ANP treatment against LPS-induced lung injury and endothelial barrier dysfunction. This study shows that the protective effects of ANP against LPS-induced vascular leak are mediated at least in part by PAK1-dependent signaling leading to EC barrier enhancement. Our data suggest a direct role for ANP in endothelial barrier regulation via modulation of small GTPase signaling.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Lung Injury Center, Dept. of Medicine, Univ. of Chicago, 5841 S. Maryland Ave., Office N613, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG. Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2010; 298:L837-48. [PMID: 20348280 DOI: 10.1152/ajplung.00263.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathological lung overdistention associated with mechanical ventilation at high tidal volumes (ventilator-induced lung injury; VILI) compromises endothelial cell (EC) barrier leading to development of pulmonary edema and increased morbidity and mortality. We have previously shown involvement of microtubule (MT)-associated Rho-specific guanine nucleotide exchange factor GEF-H1 in the agonist-induced regulation of EC permeability. Using an in vitro model of human pulmonary EC exposed to VILI-relevant magnitude of cyclic stretch (18% CS) we tested a hypothesis that CS-induced alterations in MT dynamics contribute to the activation of Rho-dependent signaling via GEF-H1 and mediate early EC response to pathological mechanical stretch. Acute CS (30 min) induced disassembly of MT network, cell reorientation, and activation of Rho pathway, which was prevented by MT stabilizer taxol. siRNA-based GEF-H1 knockdown suppressed CS-induced disassembly of MT network, abolished Rho signaling, and attenuated CS-induced stress fiber formation and EC realignment compared with nonspecific RNA controls. Depletion of GEF-H1 in the murine two-hit model of VILI attenuated vascular leak induced by lung ventilation at high tidal volume and thrombin-derived peptide TRAP6. These data show for the first time the critical involvement of microtubules and microtubule-associated GEF-H1 in lung vascular endothelial barrier dysfunction induced by pathological mechanical strain.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
64
|
Birukova AA, Fu P, Xing J, Cokic I, Birukov KG. Lung endothelial barrier protection by iloprost in the 2-hit models of ventilator-induced lung injury (VILI) involves inhibition of Rho signaling. Transl Res 2010; 155:44-54. [PMID: 20004361 PMCID: PMC2814140 DOI: 10.1016/j.trsl.2009.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/08/2009] [Accepted: 09/09/2009] [Indexed: 01/13/2023]
Abstract
Mechanical ventilation at high tidal volume (HTV) may cause pulmonary capillary leakage and acute lung inflammation culminating in ventilator-induced lung injury. Iloprost is a stable, synthetic analog of prostaglandin I(2) used to treat pulmonary hypertension, which also showed endothelium-dependent antiedemagenic effects in the models of lung injury. To test the hypothesis that iloprost may attenuate lung inflammation and lung endothelial barrier disruption caused by pathologic lung distension and coagulation system component thrombin, we used cell and animal 2-hit models of ventilator-induced lung injury. Mice received a triple injection of iloprost (2 microg/kg, intravenous instillation) at 0, 40, and 80 min after the onset of HTV mechanical ventilation (30 mL/kg, 4h), combined with the administration of a thrombin receptor-activating peptide 6 (TRAP6, 3 x 10(-7)mol/mouse, intratracheal instillation). After 4h of ventilation, bronchoalveolar lavage (BAL), histologic analysis, and measurements of Evans blue accumulation in the lung tissue were performed. The effects of iloprost on endothelial barrier dysfunction were subsequently assessed in pulmonary endothelial cells (ECs) exposed to thrombin and pathologic (18%) cyclic stretch. The combination of HTV and TRAP6 enhanced the accumulation of neutrophils in BAL fluid and lung parenchyma, as well as increased the BAL protein content and endothelial permeability judged by Evans blue extravasation in the lung tissue. These effects were markedly attenuated by iloprost. The application of 18% cyclic stretch to pulmonary ECs enhanced the thrombin-induced EC paracellular gap formation and Rho-GTPase-mediated phosphorylation of regulatory myosin light chains and myosin phosphatase. Iloprost markedly inhibited the Rho-kinase-mediated site-specific phosphorylation of myosin phosphatase, and it prevented cyclic stretch- and thrombin-induced endothelial monolayer disruption. This study characterizes for the first time the protective effects of iloprost in the in vitro and in vivo 2-hit models of VILI and supports consideration of iloprost as a new therapeutic treatment of VILI.
Collapse
Affiliation(s)
- Anna A Birukova
- Department of Medicine, University of Chicago, Chicago, Ill 60637, USA
| | | | | | | | | |
Collapse
|
65
|
Birukova AA, Burdette D, Moldobaeva N, Xing J, Fu P, Birukov KG. Rac GTPase is a hub for protein kinase A and Epac signaling in endothelial barrier protection by cAMP. Microvasc Res 2009; 79:128-38. [PMID: 19962392 DOI: 10.1016/j.mvr.2009.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/27/2009] [Accepted: 11/24/2009] [Indexed: 10/20/2022]
Abstract
Elevation in intracellular cAMP level has been associated with increased endothelial barrier integrity and linked to the activation of protein kinase A (PKA). Recent studies have shown a novel mechanism of cAMP-mediated endothelial barrier regulation via cAMP-dependent nucleotide exchange factor Epac1 and Rap1 GTPase. This study examined a contribution of PKA-dependent and PKA-independent pathways in the human pulmonary endothelial (EC) barrier protection by cAMP. Synthetic cAMP analog, 8-bromoadenosine-3',5'-cyclic monophosphate (Br-cAMP), induced dose-dependent increase in EC transendothelial electrical resistance which was associated with activation of PKA, Epac/Rap1, and Tiam/Vav/Rac cascades and significantly attenuated thrombin-induced EC barrier disruption. Both specific Epac/Rap1 activator 8CPT-2Me-cAMP (8CPT) and specific PKA activator N(6)-benzoyl-adenosine-3',5'-cyclic monophosphate (6Bnz) enhanced EC barrier, suppressed thrombin-induced EC permeability, and independently activated small GTPase Rac. SiRNA-induced Rac knockdown suppressed barrier protective effects of both PKA and Epac signaling in pulmonary EC. Intravenous administration of either 6Bnz, or 8CPT, significantly reduced lung vascular leak in the murine model of lung injury induced by high tidal volume mechanical ventilation (HTV, 30 ml/kg, 4 h), whereas combined treatment with 6Bnz and 8CPT showed no further additive effects. This study dissected for the first time PKA and Epac pathways of lung EC barrier protection caused by cAMP elevation and identified Rac GTPase as a hub for PKA and Epac signaling leading to enhancement of lung vascular barrier.
Collapse
Affiliation(s)
- Anna A Birukova
- Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Xing J, Birukova AA. ANP attenuates inflammatory signaling and Rho pathway of lung endothelial permeability induced by LPS and TNFalpha. Microvasc Res 2009; 79:56-62. [PMID: 19931545 DOI: 10.1016/j.mvr.2009.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/27/2009] [Accepted: 11/12/2009] [Indexed: 12/22/2022]
Abstract
We have previously reported protective effects of atrial natriuretic peptide (ANP) against endothelial cell (EC) permeability induced by thrombin via suppression of Rho GTPase pathway of barrier dysfunction by protein kinase A and Epac-Rap1-Tiam1-Rac signaling cascades. This study tested effects of ANP on EC barrier dysfunction induced by inflammatory mediators lipopolysaccharide (LPS) and TNFalpha and linked them with activation of mitogen-activated protein kinase (MAPK) and NFkappaB signaling cascades known to promote EC hyperpermeability in the models of lung inflammation and sepsis. LPS and TNFalpha increased permeability in human pulmonary EC monitored by measurements of transendothelial electrical resistance, and caused disruption of EC monolayer integrity monitored by immunofluorescence staining for adherens junction marker protein VE-cadherin. Both disruptive effects were markedly attenuated by ANP. Both LPS and TNFalpha caused sustained activation of p38 and ERK1/2 MAP kinases, increased phosphorylation and degradation of negative regulator of NFkappaB signaling IkBalpha, and increased Rho-kinase mediated phosphorylation of myosin phosphatase MYPT1 leading to accumulation of phosphorylated myosin light chains. Consistent with protective effects on EC permeability and monolayer integrity, ANP dramatically attenuated activation of inflammatory signaling by LPS and TNFalpha in pulmonary EC. These results strongly suggest inhibitory effects of ANP on the LPS and TNFalpha induced inflammatory signaling as additional mechanism of EC barrier preservation in the models of acute lung injury and sepsis.
Collapse
Affiliation(s)
- Junjie Xing
- Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|