51
|
Burmester T. Evolution of Respiratory Proteins across the Pancrustacea. Integr Comp Biol 2015; 55:792-801. [PMID: 26130703 DOI: 10.1093/icb/icv079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Respiratory proteins enhance the capacity of the blood for oxygen transport and support intracellular storage and delivery of oxygen. Hemocyanin and hemoglobin are the respiratory proteins that occur in the Pancrustacea. The copper-containing hemocyanins evolved from phenoloxidases in the stem lineage of arthropods. For a long time, hemocyanins had only been known from the malacostracan crustaceans but recent studies identified hemocyanin also in Remipedia, Ostracoda, and Branchiura. Hemoglobins are common in the Branchiopoda but have also been sporadically found in other crustacean classes (Malacostraca, Copepoda, Thecostraca). Respiratory proteins had long been considered unnecessary in the hexapods because of the tracheal system. Only chironomids, some backswimmers, and the horse botfly, which all live under hypoxic conditions, were known exceptions and possess hemoglobins. However, recent data suggest that hemocyanins occur in most ametabolous and hemimetabolous insects. Phylogenetic analysis showed the hemocyanins of insects and Remipedia to be similar, suggesting a close relationship of these taxa. Hemocyanin has been lost in dragonflies, mayflies, and Eumetabola (Hemiptera + Holometabola). In cockroaches and grasshoppers, hemocyanin expression is restricted to the developing embryo while in adults oxygen is supplied solely by the tracheal system. This pattern suggests that hemocyanin was the oxygen-transport protein in the hemolymph of the last common ancestor of the pancrustaceans. The loss was probably associated with miniaturization, a period of restricted availability of oxygen, a change in life-style, or morphological changes. Once lost, hemocyanin was not regained. Some pancrustaceans also possess cellular globin genes with uncertain functions, which are expressed at low levels. When a respiratory protein was again required, hemoglobins evolved several times independently from cellular globins.
Collapse
Affiliation(s)
- Thorsten Burmester
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| |
Collapse
|
52
|
Parrinello D, Sanfratello MA, Vizzini A, Cammarata M. The expression of an immune-related phenoloxidase gene is modulated inCiona intestinalisovary, test cells, embryos and larva. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:141-51. [DOI: 10.1002/jez.b.22613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/18/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Daniela Parrinello
- Marine Immunobiology Laboratory; Department of Biological Chemical Pharmaceutical Science and Technology; University of Palermo; Via Archirafi Palermo Italy
| | - Maria A. Sanfratello
- Marine Immunobiology Laboratory; Department of Biological Chemical Pharmaceutical Science and Technology; University of Palermo; Via Archirafi Palermo Italy
| | - Aiti Vizzini
- Marine Immunobiology Laboratory; Department of Biological Chemical Pharmaceutical Science and Technology; University of Palermo; Via Archirafi Palermo Italy
| | - Matteo Cammarata
- Marine Immunobiology Laboratory; Department of Biological Chemical Pharmaceutical Science and Technology; University of Palermo; Via Archirafi Palermo Italy
| |
Collapse
|
53
|
Aguilera F, McDougall C, Degnan BM. Evolution of the tyrosinase gene family in bivalve molluscs: independent expansion of the mantle gene repertoire. Acta Biomater 2014; 10:3855-65. [PMID: 24704693 DOI: 10.1016/j.actbio.2014.03.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 12/27/2022]
Abstract
Tyrosinase is a copper-containing enzyme that mediates the hydroxylation of monophenols and oxidation of o-diphenols to o-quinones. This enzyme is involved in a variety of biological processes, including pigment production, innate immunity, wound healing, and exoskeleton fabrication and hardening (e.g. arthropod skeleton and mollusc shell). Here we show that the tyrosinase gene family has undergone large expansions in pearl oysters (Pinctada spp.) and the Pacific oyster (Crassostrea gigas). Phylogenetic analysis reveals that pearl oysters possess at least four tyrosinase genes that are not present in the Pacific oyster. Likewise, C. gigas has multiple tyrosinase genes that are not orthologous to the Pinctada genes, indicating that this gene family has expanded independently in these bivalve lineages. Many of the tyrosinase genes in these bivalves are expressed at relatively high levels in the mantle, the organ responsible for shell fabrication. Detailed comparisons of tyrosinase gene expression in different regions of the mantle in two closely related pearl oysters, P. maxima and P. margaritifera, reveals that recently evolved orthologous tyrosinase genes can have markedly different expression profiles. The expansion of tyrosinase genes in these oysters and their co-option into the mantle's gene regulatory network is consistent with mollusc shell formation being underpinned by a rapidly evolving transcriptome.
Collapse
Affiliation(s)
- Felipe Aguilera
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Carmel McDougall
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Bernard M Degnan
- Centre for Marine Sciences, School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
54
|
Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, Luan YX, Ling E. Insect prophenoloxidase: the view beyond immunity. Front Physiol 2014; 5:252. [PMID: 25071597 PMCID: PMC4092376 DOI: 10.3389/fphys.2014.00252] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 11/13/2022] Open
Abstract
Insect prophenoloxidase (PPO) is an important innate immunity protein due to its involvement in cellular and humoral defense. It belongs to a group of type-3 copper-containing proteins that occurs in almost all organisms. Insect PPO has been studied for over a century, and the PPO activation cascade is becoming clearer. The insect PPO activation pathway incorporates several important proteins, including pattern-recognition receptors (PGRP, β GRP, and C-type lectins), serine proteases, and serine protease inhibitors (serpins). Due to their complexity, PPO activation mechanisms vary among insect species. Activated phenoloxidase (PO) oxidizes phenolic molecules to produce melanin around invading pathogens and wounds. The crystal structure of Manduca sexta PPO shows that a conserved amino acid, phenylalanine (F), can block the active site pocket. During activation, this blocker must be dislodged or even cleaved at the N-terminal sequence to expose the active site pockets and allow substrates to enter. Thanks to the crystal structure of M. sexta PPO, some domains and specific amino acids that affect PPO activities have been identified. Further studies of the relationship between PPO structure and enzyme activities will provide an opportunity to examine other type-3 copper proteins, and trace when and why their various physiological functions evolved. Recent researches show that insect PPO has a relationship with neuron activity, longevity, feces melanization (phytophagous insects) and development, which suggests that it is time for us to look back on insect PPO beyond the view of immunity in this review.
Collapse
Affiliation(s)
- Anrui Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Qiaoli Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Jie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Kai Wu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Wei Xie
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yun-Xia Luan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|
55
|
Lu A, Peng Q, Ling E. Formation of disulfide bonds in insect prophenoloxidase enhances immunity through improving enzyme activity and stability. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:351-358. [PMID: 24480295 DOI: 10.1016/j.dci.2014.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
Type 3 copper proteins, including insect prophenoloxidase (PPO), contain two copper atoms in the active site pocket and can oxidize phenols. Insect PPO plays an important role in immunity. Insects and other invertebrates show limited recovery from pathogen invasion and wounds if phenoloxidase (PO) activity is low. In most insect PPOs, two disulfide bonds are present near the C-terminus. However, in Pimpla hypochondriaca (a parasitoid wasp), each PPO contains one disulfide bond. We thus questioned whether the formation of two sulfide bonds in insect PPOs improved protein stability and/or increased insect innate immunity over time. Using Drosophila melanogaster PPO1 as a model, one or two disulfide bonds were deleted to evaluate the importance of disulfide bonds in insect immunity. rPPO1 and mutants lacking disulfide bonds could be expressed and showed PO activity. However, the PO activities of mutants lacking one or two disulfide bonds significantly decreased. Deletion of disulfide bonds also reduced PPO thermostability. Furthermore, antibacterial activities against Escherichia coli and Bacillus subtilis significantly decreased when disulfide bonds were deleted. Therefore, the formation of two disulfide bond(s) in insect PPO enhances antibacterial activity by increasing PO activity and stability.
Collapse
Affiliation(s)
- Anrui Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Qin Peng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.
| |
Collapse
|
56
|
Molecular cloning and differential expression in tissues of a tyrosinase gene in the Pacific oyster Crassostrea gigas. Mol Biol Rep 2014; 41:5403-11. [DOI: 10.1007/s11033-014-3412-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 05/11/2014] [Indexed: 10/25/2022]
|
57
|
A cDNA Cloning of a Novel Alpha-Class Tyrosinase of Pinctada fucata: Its Expression Analysis and Characterization of the Expressed Protein. Enzyme Res 2014; 2014:780549. [PMID: 24818013 PMCID: PMC4003781 DOI: 10.1155/2014/780549] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Accepted: 03/03/2014] [Indexed: 01/03/2023] Open
Abstract
Tyrosinase plays an important role in the formation of the shell matrix and melanin synthesis in mollusks shells. A cDNA clone encoding a 47 kDa protein was isolated from the pearl oyster Pinctada fucata. The cDNA was 1,957 base pairs long and encodes a 417 residue protein that has extensive sequence identity with tyrosinase (polyphenol oxidase: EC 1.14.18.1). This tyrosinase-like protein, termed PfTy, contains an N-terminal signal sequence and the two copper-binding domain signatures (CuA and CuB), suggesting that PfTy belongs to the α-subclass of type-3 copper proteins. Enzyme activity of PfTy was examined by a spectrophotometric method using the translation product derived from an S30 T7 high-yield protein expression system. Tyrosinase activity was seen in this recombinant product. RT-PCR analysis showed that PfTy mRNA was expressed in the mantle pallial, but not in the mantle edge. Therefore, PfTy may participate in insoluble shell matrix formation of the nacreous layer. PfTy expression was also observed in the foot, liver, and adductor muscle, suggesting that PfTy participates in the synthesis of melanins, which are effective scavengers of free radicals formed in multiple intracellular oxidative processes. This is the first report of a novel α-class tyrosinase from the pearl oyster P. fucata.
Collapse
|
58
|
Thonig A, Oellermann M, Lieb B, Mark FC. A new haemocyanin in cuttlefish (Sepia officinalis) eggs: sequence analysis and relevance during ontogeny. EvoDevo 2014; 5:6. [PMID: 24499521 PMCID: PMC3945787 DOI: 10.1186/2041-9139-5-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/20/2013] [Indexed: 01/22/2023] Open
Abstract
Background Haemocyanin is the respiratory protein of most of the Mollusca. In cephalopods and gastropods at least two distinct isoforms are differentially expressed. However, their physiological purpose is unknown. For the common cuttlefish Sepia officinalis, three isoforms are known so far, whereas for only two of them the complete mRNA sequences are available. In this study, we sequenced the complete mRNA of the third haemocyanin isoform and measured the relative expression of all three isoforms during embryogenesis to reveal a potential ontogenetic relevance. Results The cDNA of isoform 3 clearly correlates to the known Sepia officinalis haemocyanin subunits consisting of eight functional units and an internal duplicated functional unit d. Our molecular phylogenetic analyses reveal the third isoform representing a potentially ancestral haemocyanin isoform, and the analyses of the expression of haemocyanin type 3 reveal that haemocyanin type 3 only can be observed within eggs and during early development. Isoforms 1 and 2 are absent at these stages. After hatching, isoform 3 is downregulated, and isoform 1 and 2 are upregulated. Conclusions Our study clearly shows an embryonic relevance of the third isoform, which will be further discussed in the light of the changes in the physiological function of haemocyanin during ontogeny. Taken together with the fact that it could also be the isoform closest related to the common ancestor of cuttlefish haemocyanin, the phylogeny of cuttlefish haemocyanin may be recapitulated during its ontogeny.
Collapse
Affiliation(s)
| | | | | | - Felix Christopher Mark
- Integrative Ecophysiology, Alfred Wegener Institute for Polar and Marine Research, 27570 Bremerhaven, Germany.
| |
Collapse
|